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Abstract 

 

 

This dissertation was written as a part of the MSc in Data Science at the International 

Hellenic University. The exploding volume of available data in recent years render the 

development of distributed algorithms vital for most scientific fields, including Transpor-

tation and Intelligent Transport Systems. This thesis investigates the use of big data tech-

nologies for enhancing urban transportation and planning. A sophisticated traffic fore-

casting model is developed and tested utilizing a large-scale, real-world dataset produced 

by GPS sensors on a taxi fleet (i.e., floating car data) in the area of Thessaloniki, Greece. 

The model implementation, including parts of the data preprocessing steps, are imple-

mented in PySpark, the Python API of Spark distributed programming language. 

At this point I would like to thank my supervisor, professor Apostolos Papadopoulos, 

for his support and guidance throughout my thesis completion. I would also like to thank 

my colleagues Josep Maria Salanova Grau and Panagiotis Tzenos, who shared invaluable 

insights from the field of Transportation and also agreed to contribute the data that ena-

bled the development and validation of the algorithms and models. Without the afore-

mentioned scientists’ passionate participation and input, this master’s dissertation could 

not have been successfully conducted. 
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1 Introduction 

During the last decade, advances in technology have resulted in an exponential in-

crease of the data generation rate. Data growth has revolutionized the way innovative 

companies produce, operate, manage their assets and plan. The scientific community 

identified the birth and significance of Big Data since 2000 and Doug Laney introduced 

the three Big Data V’s, data volume, velocity, variety in 2001 [1]. Ten years later scien-

tists and industry consider another four characteristics, data validity, veracity, value, vis-

ibility as equally important.  

Nowadays, companies dash to adopt Big Data technologies, such as in memory tech-

nologies, to cope with the huge volume of data and gain Business Intelligence, enabling 

them to offer products and services of the highest quality and standards. Examples are 

endless, from personalized advertisement and recommendation systems, to Artificial In-

telligence applications like fully or semi-autonomous vehicles, to clever, humanlike chat-

bots like Apple’s Siri and Microsoft’s Cortana. 

In the field of Transportation, the latest scientific discoveries are complemented with 

big data tools that have empowered the development of state-of-the-art Intelligent 

Transport Systems (ITS) that fuse data from different sources and utilize sophisticated 

data analytics tools and recent scientific discoveries. This dissertation will focus on de-

veloping a tool for processing and analyzing transportation data generated by GPS trans-

mitters installed on vehicles. Such datasets are known in bibliography as Floating Car 

Data (FCD) and have been used extensively for numerous applications including moni-

toring and optimizing road networks, vehicle routing, outlier and anomaly detection, mo-

bility pattern identification and traffic forecasting. 

The raw data of this project are generated from a vehicle fleet that consists of approx-

imately half the taxis operating in the region of Thessaloniki, Greece. The association that 

manages this fleet of taxis (TaxiWay) has a long-term collaboration agreement with the 

Center for Research and Technology Hellas – Hellenic Institute of Transport (CERTH – 

HIT), which has agreed to provide access to part of the database, only for the purpose of 

this research study.  
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The development of the traffic prediction model for this project contains a number of 

complicated procedures, since the road network of Thessaloniki has to be constructed and 

viewed as a mathematical multi-directed graph while raw data has to be matched on the 

corresponding road segment according to their longitude and latitude values, which con-

tain certain amount of inaccuracy. The aforementioned analysis will be implemented us-

ing the programming languages Python and PySpark, the Python API of Spark, which 

allows for parallel computations and processing of huge datasets with great performance.  

The structure of this dissertation is as follows: 

Chapter 2 includes an exhaustive literature review and state-of-the-art definition on 

the concepts of geospatial and floating car data (FCD) processing and analysis, FCD ap-

plications and road traffic forecasting, and justifies the novelty of our proposed approach 

and solution.  

Chapter 3 thoroughly describes the buzz term ‘Big Data’ and presents state-of-the-

art Big-Data technologies  

Chapter 4 comprehensively explains the problem definition and the adopted meth-

odology within the project’s scope. 

Chapter 5 presents the most significant findings and conclusions extracted from this 

thesis.  

Chapter 6 summarizes the most important findings and lessons learned during the 

implementation of this project. 

Chapter 7 includes the author’s opinion for further improvements and advancements 

in the field, while related future research topics are also mentioned. 
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2 Literature Review 

In this section the results of an in-depth literature review of the most recent scientific 

publications are presented. The review covers all scientific topics relevant to this thesis, 

from geospatial and floating car data (FCD) processing and analysis methodologies to 

road network traffic prediction techniques. Furthermore, comparisons between the litera-

ture and the present study are drawn. 

2.1 Traditional Transportation Research Data 
Sources 

The generation of huge amounts of traffic related, GPS data has steered research to new 

data driven models and applications. Early studies on human activity and mobility pat-

terns and Transportation management have been based on survey and questionnaire data, 

which come in limited quantity, are not automatically recorded and thus expensive, can-

not be processed in real time and thus have limited value when the task is traffic optimi-

zation [2]. The following years, road side equipment (stationary cameras and detectors 

placed at crucial road network points) captured data about traffic volume and vehicle 

speed. However, the system’s imperfect accuracy, high installation and maintenance cost, 

and restricted road network coverage limit its potential. As a result, such infrastructure is 

mainly utilized by authorities for traditional Transportation network monitoring [3]. Cur-

rent studies and applications concerned with dynamic traffic management, optimization 

and forecasting have proved FCD as the most valuable data source [3] [4] [5]. In this 

study, we have utilized FCD from vehicles in the region of Thessaloniki, Greece. 

2.2 Floating Car Data (FCD) 

FCD is currently the main source of real time information about traffic condition on road 

networks [6], as data are generated and recorded passively in a fully automated procedure 

by driving vehicles. It is a simple and relatively cheap technology [7], since most vehicle 

fleets nowadays have already incorporated monitoring systems that include in-vehicle 

GPS transmitters. The sensor can even be a modern smart device, like the driver’s 

smartphone or a tablet used in the vehicle for navigation purposes. In the general case, 

the sensor transmits real time data to a server, which then stores them in a database. Other 
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devices save data in a micro-SD memory card that periodically connects physically or 

with a wireless connection to a database. GPS signals commonly include information 

about: 

• geolocation of the vehicle, reporting the coordinates (longitude and latitude) 

• timestamp  

• vehicle id (in the case when a service monitors more than one vehicle) 

• speed measure and speed orientation 

 

2.3 FCD Applications 

The scope of scientific research utilizing FCD is vast. It concerns Transportation topics 

like traffic prediction, Transportation network optimization and planning, and anomaly 

detection in road networks. Furthermore, FCD studies have produced significant results 

related to other fields like Social and Environmental Sciences.  

2.3.1 Traffic Prediction 

Traffic prediction algorithms are at the heart of numerous Intelligent Transport Systems 

developed by scientists attempting to cope up with the increasing number of vehicles on 

the existing road network and infrastructure. The high value and increasing availability 

of FCD have paved the way to an abundance of literature available for the topic of traffic 

prediction, and in the following paragraphs the most significant and modern scientific 

publications utilizing FCD are reviewed.  

According to a systematic literature review on the topic of short-term real-time traffic 

prediction methods by Barros et al. [5], the main characteristics that differentiate studies 

of the field and the predictive models they propose are: 

i. Data collection and processing: Data may arrive in real-time and be processed 

online, or historical data may be processed offline 

ii. Prediction targets and granularity: Some studies forecast traffic in high detail, 

breaking down the road network to small segments and forecast the traffic at each 

street, while others adopt more coarse-grained approaches decomposing a region 

in grid cells [Figure 1]. 
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Figure 1: Grid decomposition (left), traces from 20 taxis (center) and digitized road network 

(right) for the city of Hangzhou, China. 

 

iii. Evaluation prediction metrics: The different models are tested, and their perfor-

mance is reported using a number of metrics (e.g. accuracy and precision for clas-

sification and mean average precision error for regression) 

iv. Methodology and approach: Some approaches are model-driven and utilize sim-

ulations of the road network. Others are data-driven and most commonly exploit 

well known techniques from Statistics (e.g. Auto-Regressive Integrated Moving 

Average methods) and Machine-Learning (e.g. Artificial Neural Networks). 

 

 Our proposed model is data-driven, built for both historical and online data pro-

cessing, considering a digitized road network of Thessaloniki. Multiple metrics are cal-

culated in order to evaluate our model’s performance.  

According to the most recent literature review conducted on traffic prediction for ITS 

[8],  the majority of scientists and studies utilize Statistical methods for predictions [Fig-

ure 1]. However, this review is conducted on studies which use heterogeneous data 

sources beyond FCD, and also states that statistical approaches are mainly used for time-

series analysis, while neural networks have showed more accurate performance with real-

world data, since traffic data is nonlinear. 

Table 1: Comparison of percentage of studies conducted on predictive techniques for ITS. 

Prediction Techniques Percentage of studies 

Neural Network 21.8 

Statistical Methods 30.7 

Ensemble/Hybrid/Combined 19.6 

Bayesian 3.6 

Fuzzy 1.8 

Deep Learning 1.8 

SVM 5.8 

SVR 4.0 

ELM 1.3 
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k-NN 4.0 

Hidden Markov Models 1.3 

Kalman Filter 2.2 

Stochastic Process 1.3 

Random Forest 0.9 

  

The same study also reveals that the most commonly used features for predictions are 

speed, traffic flow (i.e. number of cars per time unit) and traffic volume (i.e. number of 

cars). Obviously, traffic flow and volume are features only available when road side 

equipment (e.g. cameras) are used for recording traffic data. When working with FCD, a 

researcher can deduce those numbers taking into consideration the percentage of vehicles 

contributing to the FCD, but the error could render such estimations useless. Surprisingly, 

only 3.3% of studies include weather data in the models, which according to the authors 

suggest the high unavailability of open, accurate and fine-grained weather data for many 

regions. Regarding performance evaluation measures, root mean squared error (RMSE) 

and mean absolute percentage error (MAPE) are the most commonly used. Unfortunately, 

the review did not present a detailed analysis of the nature of datasets used in the reviewed 

papers, however it states that privately owned datasets, including spatiotemporal GPS 

data are utilized in 66.2% of studies. 

Fabritiis et al. [9] developed a system for online, short time (15 and 30 minute) road 

speed predictions on Rome’s ring road (GRA-Grande Raccordo Anulare). Two models 

were tested and compared. The first was an artificial neural network and the results sug-

gested that it was the best in terms of prediction performance. It was used in a regression 

approach, with good prediction accuracy and generalization abilities, achieving a MAPE 

of 2%-8% for 15 min. predictions and 3%-16% for 30 min. predictions. The RMSE varied 

between 2 and 7 km/h. The second model was a classification approach utilizing Pattern-

Matching and achieved a 18.7% misclassification error. 

 A neural network (NN) also demonstrates its capabilities in [10], earning its creators 

the 5th place in the international competition held in 2010 by Tom-Tom, a company pro-

ducing automotive navigation systems. In order for the team to reach the best perfor-

mance, several different NN architectures were tested, using different combination of in-

put features, training methods and epochs. The best performing NN’s architecture was 

simple, with two input units, utilizing the average velocities and number of GPS pulses 

for each road, and 1 hidden layer of five units. It was subject to 15.000 epochs using the 

resilient propagation technique, which is based on the well-known back-propagation 
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training technique but adds a heuristic that decreases the probability that training will 

converge to a local minimum. The lowest RMSE achieved is 9.15. 

 A more recent research paper examines the capabilities of deeper ANN for traffic 

predictions considering a classification approach [11]. The algorithms are created using 

Python and its most widely used scientific libraries for data science, like Pandas for data 

processing and TensorFlow for developing the deep neural networks. The NN consists of 

3 hidden layers, with 40, 50 and 40 neurons respectively and achieved a 99% prediction 

accuracy. 

 To the best of the authors knowledge, there is only one traffic prediction study utiliz-

ing FCD from the city of Thessaloniki [4]. It investigates the problem of short-term speed 

prediction on street level and compares the capabilities of a statistical ARIMA model to 

an artificial neural network. Several tests are run, with a wide range of parameters values 

for the ARIMA and different structures for the NN, but also different prediction time 

windows, from 5 to 60 minutes. In addition, the problem is also addressed as a multilabel 

classification, categorizing roads as red (heavy congestion), orange (light congestion) and 

green (no congestion). However, the whole analysis is somewhat limited, as it is only 

using traditional technologies for data processing and analysis, without utilization of the 

most modern big data tools like Spark or Hadoop. 

Theodorou et. al. [12] propose a hybrid data-driven model able to adapt to the network 

state, using an SVM model to classify traffic conditions as typical (normal) or atypical.  

The short-term traffic predictions are issued by an Auto-Regressive Integrated Moving 

Average (ARIMA) or k-Nearest Neighbors model, in the typical and atypical case respec-

tively. 

Sunderrajan et al. [13] focused on the minimum penetration of FCD for accurate traf-

fic status estimations, and results suggest that reliable predictions can be produced if at 

least 5% of road vehicles are monitored and contribute to the FCD. 

 

2.3.2 Anomaly Detection in Road Networks 

In general, anomaly (or outlier) detection refers to the identification of observations, items 

or events that significantly differ from most other data. Depending on the nature of the 

dataset and the definition of proximity or similarity amongst data points, anomaly detec-

tion can be defined in various ways.  Network anomaly detection has been widely studied 
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and researched in IP networks and is mainly related to network performance problems, 

failures and security [14]. In road networks, studies mainly focus on detecting anomalies 

of two types, in traffic and trajectories [15].  

A traffic outlier is considered to be a state during which the traffic statistics (travelling 

speeds, flows etc.) suddenly and intensively change for all or part of the road network. A 

highly accurate approach is proposed in [16], where normal traffic flows are established 

for each origin-destination area from historical data and are compared to current obser-

vations and traffic flows. The system managed to identify 3 out of 4 situations of actual 

abnormal situations that were reported by the traffic administrative department in the city 

of Harbin, China. The proposed system in [17] integrates FCD with data from WeiBo, a 

Twitter-like social networking site in China. In short, when an anomaly is detected, the 

algorithm detects the geographical area it affects and extracts posts from the affected area 

at that particular timeframe. Afterwards, text mining methods are applied on posts and 

the top terms identified in the posts are reported. The algorithm was tested on two abnor-

mal situations and it correctly identified the abnormal situation but also the cause, which 

was a traffic accident and a wedding respectively. Another approach constructs outlier 

causality trees and is tested and validate with FCD from Beijing, China, and scales almost 

linearly as the number of outliers to be detected increases, which implies that such an 

application could work online with data streams [18]. 

A trajectory can be classified as anomalous if it deviates significantly from past tra-

jectories with similar origin and destination in historical data. A proposed algorithm for 

identifying anomalous trajectories compares the actual distance covered by a vehicle to 

the shortest network path between the origin and destination nodes. A threshold value for 

the distance difference is applied and larger values indicate anomalies [19]. Another al-

gorithm, called Isolation-Based Anomalous Trajectory (iBAT), is proposed in [20] and 

successfully detects over 90% of abnormal taxi trajectories achieving a false alarm rate 

of less than 2%. The same authors have also proposed an updated version of this algo-

rithm, iBOAT, that is able to operate online [21]. Tools for anomalous trajectory detection 

utilizing FCD have been extensively used for uncovering fraudulent trips and routes by 

taxi drivers [Figure 2]. The levels of accuracy of results [22] [23] reveal the high potential 

of such tools in a taxi business intelligence platform. 
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Figure 2: Normal (green) and fraudulent (orange) taxi trips from A to B 

2.3.3 Driver Ranking and Passenger/Taxi-Finding Strategies 

FCD processing has provided scientists with more tools and techniques for detecting 

driver characteristics beyond fraudulent taxi trips. A lot of different measures for ranking 

taxi drivers have been proposed, in an attempt to discover the common attributes and 

habits along the best drivers [24]. The most common measures calculate driver’s income 

per working hour and ratio of occupied taxi time. The highest scoring drivers according 

to those criteria are found to usually choose the fastest routes to their destination, taking 

into consideration existing traffic conditions, in order to complete the trip and seek for 

new passengers as soon as possible. Liu et al. [25] conducted further statistical analysis 

using k-means clustering and revealed that most highly ranked drivers, according to their 

income, choose similar spatiotemporal places for looking and picking passengers. 

Yuan et al. [26], [27] provide taxi drivers with a pick-up location recommendation 

system. They extract taxi waiting locations from the GPS points and calculate the proba-

bility of picking up a passenger as a function of time and location, which is either a taxi-

stop or just a road segment. 

2.3.4 Transportation Optimization and Planning 

The performance of a road network can be improved by rerouting vehicles based on actual 

traffic conditions inferred from real time FCD processing. Vehicle to infrastructure com-

munication protocols have been developed for optimizing traffic flows, and smart adap-

tive traffic lights is considered a promising technological innovation towards smart cities 

and sustainable mobility. In [28], an implementation of a dynamic traffic lights regulation 

system is presented, which is based on FCD that are transmitted to a unified control center 

in real time. It is estimated that in order for the adaptive traffic lights to operate efficiently 

with equal priority to road users, 35% of vehicles have to be connected to the control 



-10- 

center, which is a viable target and drivers are expected to contribute to such systems in 

the future, as the system will provide valuable services in return. Another case study in 

Amsterdam shows that the total delay time from traffic congestion might be reduced up 

to 3.4% for 10% penetration rate of FCD [29]. Τhis time savings are equivalent to about 

15m. Euros if monetarized. 

 A very important research topic in Transportation is the identification of mobility 

patterns. A usual approach is the definition of origin-destination (O-D) hotspots. O-D 

matrix computation is a complex task as traffic flows and patterns change dynamically 

through time, as a function of numerous parameters. In [30], a method for inferring an O-

D matrix for Shanghai, China is proposed. It processes FCD from taxis to extract trip start 

and end points, clusters them with the DBSCAN algorithm fusing with point of interest 

data from Open Street Maps project. Results are easy to interpret with visualizations gen-

erated by a web-based application. 

Another research based on FCD from probe vehicles proposes an estimation model 

for on-street parking search time that is tested in Rome, Italy [7]. A method for distin-

guishing the final part of a trip when the driver searches a parking spot is presented, and 

the predictive model can be integrated either in on-line tools for dynamic vehicle routing 

or off-line research and applications for planning purposes. 

Towards the shift to green cities and eco-friendly vehicles, a recent study leverages 

FCD for smart mobility cities planning [31]. It re-constructs actual trips from a Free-

Floating Car Sharing System (FFCS), where customers use available cars freely within 

the city’s limits. The study analyses the trips and customer behavior and needs for a period 

of 2 months in the city of Turin, Italy in order to simulate and validate the feasibility of a 

car sharing system with electric vehicles. It is found that in Turin, a city with approx. 1 

million inhabitants, 300 electric vehicles and 15 charging stations would constitute a 

FFCS solution with the ability to auto-sustain itself. 

In another project, FCD reveal the consequences of alternating weather conditions to 

the road network and vehicle speeds [32]. It is found that during peak times and night, 

travelling speeds in the city of Beijing might decrease up to 15% and 10% respectively. 

Furthermore, an effective speed prediction model under different weather conditions is 

developed. 
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2.3.5 Environmental Studies 

FCD are also utilized in analysis of current or future vehicle pollutant emissions and en-

ergy demand, due to their high spatiotemporal resolution. Shaojun et al. utilized data from 

multiple Intelligent Transportation Systems, mainly composed of FCD, to develop a high-

resolution emission inventory for vehicles in Nanjing, China [33]. In a study from Liberto 

et al. [34], scientists confirm the need of vehicle electrification for achieving sustainable 

mobility goals by modelling data from Rome, Italy. In detail, it is calculated that by 2025, 

10% of private vehicles and 30% of public transport vehicles should use electricity, while 

the extra amount of electric energy is estimated to 460GWh. 

 Another study focuses on vehicle fuel consumption. The most crucial parameters cor-

related with it are investigated through exploratory data analysis, and an Artificial Neural 

Network approach is proposed as a capable algorithm for estimating vehicle consumption 

with high accuracy [35]. 

2.3.6 Social Activities  

In [36], the authors examine the correlation between the physical and digital world in 

Thessaloniki, Greece, by fusing FCD with data from social networking websites and 

prove the strength of the relation between social activity and travel patterns, mainly dur-

ing the afternoon and night hours, when individuals are more active on social media plat-

forms. Another application utilizes FCD and implements ensemble machine learning al-

gorithms to establish a trip purpose predictive model [37]. The survey took place in Swit-

zerland and the algorithm achieved an accuracy of up to 85%.  

In a related study, GPS data streams are processed for activity identification. The pro-

duced algorithms are tested on real-world large-scale benchmark datasets, and work and 

other activities are correctly predicted in 85% and 87% of the cases respectively [2].  

Another study with impressive results has been conducted with FCD from the city of 

Hangzhou, China, where scientists build a model that classifies trips based on their pur-

pose [38]. The three categories the paper considers are trips to a) scenic spots, which show 

very different patterns between holidays and weekdays and have much more passengers 

in holiday than weekdays, b) trips to train and/or coach stations, where passenger get-

on/off peaks occur in uncommon time points with insignificant differentiations among 

workdays and weekdays and c) entertainment districts, which present similar statistics to 
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scenic posts but decreased variance between visitor amount peaks and troughs. The 

method achieves an accuracy higher than 94%. 
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3 Big Data 

In this section the term Big Data is explained, along with the most efficient, state-of-the-

art software and techniques for Big Data management and processing. 

3.1 Characteristics 

As the daily production of data increases steeply, the volume of available data is explod-

ing. “Big Data” is an abstract term used to describe massive collections of structured or 

unstructured data, with a volume so enormous that renders traditional databases and soft-

ware for processing prohibited. In 2010, Apache Hadoop defined big data as “datasets 

which could not be captured, managed, and processed by general computers within an 

acceptable scope”. The conventional Relational Database Management Systems 

(RDBMS) cannot cope with big data, as a result of their three main characteristics: vol-

ume, velocity and variety [39]. 

• Data volume refers to the vast size of data. Big data are characterized by huge 

volume. A bank, for example, might need to process and analyze several gigabytes 

of customer data on a daily basis. 

• Data velocity refers to the update rate of data. Some years ago, yesterday’s data 

were considered fresh and valuable. Newspapers still follow that logic. Today the 

end user is interested in the most updated news and wants real-time access to 

newly generated content, just as a bank wants real time data processing in order 

to detect fraudulent transactions. 

• Data Variety refers to the heterogeneous nature of available data, which can be in 

numerous different formats, like databases, csv files, text files, multimedia etc.  

3.2 Challenges and the Cloud 

Companies and stakeholders need to harvest big data in the most efficient way, in terms 

of time and monetary costs, to extract useful, previously unknown knowledge, insights 

and business intelligence [40]. However, processing big data is a highly complicated 

procedure. The vast volume, high velocity and diversity of datasets that have to be 
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analyzed pose hurdles by no means trivial to overcome. The main difficulties are often 

lack of human experts and infrastructure, since big data require more resources than just 

one machine for processing.  In this context, individuals and organizations can nowadays 

take advantage of cloud technologies and services for big data analysis, getting network 

access to computing resources and/or software, provided by outside entities. Those 

services are classified as platform (PaaS), software (SaaS), infrastructure (IaaS) or 

hardware (HaaS) as a service [41]. 

  

3.3 Methods and Tools for Analysis 

Chen et al. [39] identify that the traditional data analysis methods that can be also applied 

on big data  are cluster analysis, factor analysis, correlation analysis, regression 

analysis, A/B testing, statistical analysis and data mining algorithms, and also state that 

pure big data analytic methods and tools include Bloom filters, hashing, indexing, Trie 

trees and mainly parallel computing. 

3.3.1 Parallel computing 

 Parallel computing is a computation paradigm in which the execution of many 

calculations or processes occur simultaneously [Figure 3], utilizing a number of different 

processors [42]. Nowadays, the most widely used open source environments for 

developing distributed algorithms are Hadoop and Spark. 

 

 

Figure 3: A parallel computing example. The computational problem is divided in 4 tasks which 

are carried out by 4 CPU’s in parallel. 
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3.3.2 Hadoop 

Most big data applications and software for parallel computing were initially developed 

in Apache Hadoop [39], released in December, 2011. Hadoop is an open-source 

“collection of software utilities that facilitate using a network of many computers to solve 

problems involving massive amounts of data and computation”, written in Java. At 2014, 

Yahoo! announced  that it stores 455 petabytes of data in over 40.000 servers running 

Hadoop, utilizing more than 100.000 CPUs [43]. The heart of Hadoop is its programming 

paradigm called MapReduce. It allows for massive scalability across an arbitrarily large 

number of servers and nodes in a Hadoop cluster [44]. 

3.3.3 Spark 

Apache Spark can be seen as Hadoop’s rival, offering an open-source cluster-computing 

framework. It was originally developed by Matei Zaharia at University of California and 

was released, in May 2014, two and a half years after Hadoop.  Spark’s codebase was 

later donated to Apache Software Foundation, which maintains it since. Spark offers a 

simple interface for cluster programming and overcomes Hadoop’s limitations posed by 

the MapReduce programming method [45]. Another advantage is the availability of APIs 

from the most widely-used object-oriented programming languages like Python, Java, 

Scala and R. For this analysis Python and PySpark, the Python API for Spark, were used 

in order to process raw FCD data and transform it to a meaningful format for developing 

a short-term traffic forecasting model for Thessaloniki. 
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4 Methodology  

In this section each data processing step is thoroughly reported and the knowledge ex-

traction procedure, from the raw floating car data to the traffic prediction model, is ex-

plained. The computer used for this research study is a laptop running 64-bit Windows 

10 O.S., with an Intel i7-7500U @ 2.7GHz processor and 8Gb of RAM. 

4.1 The Datasets 

The traffic predictive model is developed and tested using two datasets, the digitized road 

network of Thessaloniki, Greece, and FCD from a fleet of taxis operating in the same 

region.  

4.1.1 The Floating Car Dataset 

The taxi association that owns the raw data has a long-term collaboration with the Center 

of Research and Technology Hellas - Hellenic Institute of Transport (CERTH-HIT), 

which has agreed to provide the dataset for research purposes. The data is pseudo-anon-

ymized by CERTH-HIT in order to respect the privacy of the drivers, complying with 

GDPR article 32 regarding “Security of Processing”, and no connections can be inferred 

from the raw data to a specific driver and his behavior. This is not a limitation to our 

study, as we will only use the FCD to extract speeds and traffic conditions of the road 

network of Thessaloniki, without investigating drivers’ habits and characteristics. Our 

dataset was extracted from two different tables of a Relational Database Management 

Systems (RDBMS). The raw data format and feature columns between those tables were 

not identical, which necessitated the development of two data preprocessing modules to 

transform data in the same format and unify the in the same data table. 

 

In detail, the raw data is in structured, tabular form and composed of vehicle location 

(GPS longitude and latitude coordinates), timestamp, orientation, vehicle ID and speed 

as illustrated in [Figure 4], which consists of some data records from a time period prior 

to the one that was utilized for this study. A binary variable about the taxi status (empty 
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or with a passenger) is also provided. Each vehicle’s signals are transmitted and recorded 

in a CERTH’s database every 10 to 12 seconds or when the vehicle travels a distance of 

about 100m. For this study, a subset of this database was used, with data for a duration of 

3 typical weekdays, from Monday 17th September to Wednesday 19th September 2018. 

Vehicle IDs are pseudo-anonymized in order for our study to comply with current GDPR 

regulations, and to respect drivers’ privacy. During each day, the number of operating 

taxis varies from 800 to 1000 vehicles 

 

 

Figure 4: Sample data from taxi GPS signals. Timestamps do not correspond to the dataset used 

for further analysis.   

 

 

4.1.2 The digitized road network of Thessaloniki 

The digitized road network for the region of Thessaloniki was downloaded from the Open 

Street Maps (OSM) project [46]. This project creates accurate geographical data and 

maps, for all the world and distributes them free. The data was downloaded to Python 

using the OSMnx library, developed by Geoff Boeing [47]. This package enables devel-

opers to download boundary shapes and street networks from anyplace, using just a cou-

ple of lines in their code. The downloaded street networks are based on OSM data and 

are NetworkX graph objects. NetworkX is Python’s most developed library for efficient 

manipulation of complex graphs [48] and incorporates numerous functionalities for graph 

analysis. For our study, the road network of Thessaloniki was downloaded in its detailed 

form [Figure 5], and it consists of 18055 nodes and 30672 edges. The developer has ac-

cess to further details about the network and its topology. Each node has a unique OSMid 

and is characterized as a point geometric object, with the exact corresponding coordinates. 

Each edge is a line-string geometric object connecting to points, corresponding to an ex-

isting street or a street segment. Additional road information is also available, such as the 

name of the street, the number of lanes, its type (highway, residential, primary etc.), max 

ID TimeID VehicleID DriverID TIMESTAMP ZoneEntryID GPSLongitude GPSLatitude GPSAltitude GPSHeading GPSSpeed ZoneID

26921429 165 50118 21935 2018-07-02 09:30:33.000 501181530523771 22.96409977 40.60782472 64.0 72,3 9,25 3

26921426 90 50269 269 2018-07-02 09:30:16.000 502691530520964 22.94532333333333 40.66027166666667 65.8 208,98 10,732473 3

26921424 427 50592 20771 2018-07-02 09:30:16.000 505921530514523 22.9501 40.635416666666664 18.3 254,26 1,4746791 3

26921423 266 50717 20974 2018-07-02 09:30:04.000 507171530521897 22.957661666666663 40.61334333333333 20.1 11,41 3,6653368 3

26921422 1350 50549 20694 2018-07-02 09:30:02.000 505491530521706 22.95346833333333 40.593305 17.4 82,51 6,491677 3

26921425 356 50556 21864 2018-07-02 09:29:44.000 505561530521007 22.953781666666668 40.59460166666667 0 179,79 5,693857 3

26921430 306 50320 20294 2018-07-02 09:29:43.000 503201530514408 22.964525000000002 40.61848833333333 42.2 285,23 7,8556905 3

26921458 234 50718 20975 2018-07-02 09:29:34.000 507181530523368 22.93611 40.63661333333334 3.9 307,52 4,4518323 1

26921457 234 50718 20975 2018-07-02 09:29:33.000 507181530523368 22.936155 40.636585 3.9 300,4 4,9207444 1

26921456 234 50718 20975 2018-07-02 09:29:32.000 507181530523368 22.936215 40.636581666666665 4.0 305,9 7,343542 1
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speed limit, length, width, one-way or not. However, for most streets many of those fields 

are blank, meaning that no data is available. 

 

 

Figure 5: The full network of the region of Thessaloniki (left) and zoomed in view over the 

White Tower area(right). 

 

4.2 Data Preprocessing 

During preprocessing, data are imported in PySpark, in a tabular format utilizing one of 

its most efficient and widely used API for data processing, the SQL API. Datatype checks 

and conversions ensure that data will be in appropriate format for the later stages of anal-

ysis. Furthermore, the dataframe is filtered to include GPS signals within the area of in-

terest, defined as the bounding box with longitude and latitude values in the ranges 

[22.91,23.001] and [40.575,40.65] respectively, following the Coordinate Reference Sys-

tem (CRS) WG84. This bounding box includes the area of Thessaloniki shown in [Figure 

6]. 
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Figure 6: The area inside the defined bounding box and the street network on it. 

 

 

 More filters are applied to the data, in order to ensure quality of records. GPS data are 

known to include recording errors, for instance highly inaccurate instantaneous speeds, 

and in bibliography it is considered appropriate to ignore such signals [49]. Therefore, 

records with speeds exceeding 120km/h are also filtered out, following the methodology 

proposed in [50]. At the end of the preprocessing step, the Spark dataframe consists of 

132.227 records and the five columns meaningful for this project [Table 2]. 
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Table 2: A sample of 10 records from the preprocessed dataframe. 

 

4.3 The Concept of Map-Matching 

In recent research studies, scientists follow two different approaches when analyzing GPS 

data. Some focus on coarse-grained results and divide the research area in a grid of equal 

in size cells, thus making it straightforward and computationally inexpensive to match 

each signal to its corresponding cell. Other studies require results in higher detail, which 

means that GPS records have to be matched to the correct link of the digitized network, 

a process called map-matching. This is a crucial step that must produce accurate match-

ings for subsequent analysis. It includes complicated challenges, considering that it is 

normal for GPS coordinates to deviate from the exact location of a vehicle [Figure 7]. 

The factors resulting in such deviations are two [51], the sensor quality and the environ-

ment. Higher quality sensors tend to produce more accurate coordinate records, while 

obstacles and tall structures, like multistory buildings and tunnels in urban environments, 

highly affect any device’s signal. 

 

 

Figure 7: Recorded GPS traces of a taxi travelling at Tsimiski Street, captured at a frequency of 

1Hz  
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Several map-matching algorithms have been proposed and tested in recent years, both 

from academia and industry. Examples include Bayesian probabilistic approaches, Hid-

den Markov Models, local characteristics and statistics of road networks, weighted net-

works etc.  Some algorithms are preferred for sparse datasets with low frequency records 

and considerable distance between points, while others are optimized to handle denser 

GPS datasets. Some of the aforementioned algorithms have to be applied on a sequence 

of datapoints generated by the same vehicle, as the map matching result is affected by the 

position of the vehicle in previous time steps. Unfortunately, the FCD utilized for this 

study are pseudo-anonymized, which prohibits the extraction of unique vehicle trajecto-

ries on the street network.  

 

A developer can alternatively use map-matching services taking advantage of cloud 

technologies and implementations from Google, Microsoft and project OSRM (Open 

Street Routing Machine). Google’s “Snap to roads” service from “Roads API” and Mi-

crosoft’s “Snap to Road API” were tested and perform very fast and with exceptional 

accuracy, however these on-demand cloud services are not free. To the best of the authors 

knowledge, project OSRM is the only free map-matching provider. Unfortunately, the 

API almost always returns 429 errors ("Too Many Requests") as it is oriented for demo 

use only.  

 

Since the aforementioned ready to use algorithms could not be applied, a map-match-

ing algorithm was developed from scratch, especially for this study, mapping each data-

point to the closest network link. This algorithm’s performance is considered adequate 

for this study, considering that GPS accuracy in our specific dataset is high [Figure 7] and 

deviations from real position are in the order of some meters at most.  

 

4.3.1 Point to link distance 

This section explains the methodology for calculating distance between any point and 

road link, a function utilized by our map-matching algorithm. The calculations are exe-

cuted after extracting the coordinates of the point and the endpoints of the edge, utilizing 
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Shapely [52], a well-known Python module for creating and working with planar geomet-

ric objects. 

 

Let d(P,l) denote point’s P distance to a road link l. To calculate d(P,l), the algorithm 

checks if the point projects onto the line segment.  If it does, then d(P,l) is the orthogonal 

distance from the point to the line is calculated. Otherwise, the distance of P to both link 

endpoints is calculated and d(P,l) is the shortest one [Figure 8]. 

 

 

Figure 8: The distance of point P from two road links AB and CD. P projects onto AB, but not 

onto CD. 

 

4.3.2 Map-matching algorithm 

Since the road network of Thessaloniki includes more than 30.000 edges, it is prohibited 

to perform distance calculations and comparisons of every GPS pulse to all edges. Two 

different approaches were developed and tested. The first one receives a point P to map-

match, and then calculates a subgraph G` of the whole network, which is centered at P 

using a radius of 200m. All distances of P to any edge of G` are calculated, and P is 

matched to the edge with the lowest distance. This approach proved to be unacceptably 

slow for the purpose of our study, considering a huge number of points. Distance calcu-

lations and comparisons where completed in acceptable time, however extracting a sub-

graph for each point is computationally too expensive. As a result, an improved, more 

efficient algorithm was developed with the objective of utilizing less subgraphs. To 

achieve this, datapoints are initially clustered into a predefined number of groups and then 

points of the same group are matched using one subgraph for the whole cluster. In detail, 

clustering is completed considering a 30x30 grid over the area of interest. Each datapoint 

is assigned to one of the 900 grid cells and then all points of each cell are map-matched 
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calculating the distances from the subgraph G` that covers the geographic area of the 

corresponding cell. The improved algorithm proved to be immensely more efficient than 

the initial, due to the fact that the number of subgraphs used is equal to the number of 

grid cells, and therefore constant, independently of the number of points to be matched.  

 

 

Figure 9: Three GPS points (red) and the corresponding network edge they are matched to (red). 

 

The final map-matching step is considering speed orientation of the GPS signals. The 

Open Street Maps network downloaded has classified all road links as one-way or two-

way. For each two-way road, the two opposite directions are calculated as degrees of anti-

clockwise deviation from North, the same orientation system used in the GPS dataset. 

Then, all datapoints corresponding to two-way roads are matched to the appropriate di-

rection comparing GPS signal and road orientation.  

 

The whole map-matching algorithm is presented below [Figure 10].  
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Figure 10: Pseudo-code of the complete map-matching algorithm. 

 

After the map-matching procedure, the dataframe consists of five columns, 

timestamp, speed, the node ID of the start and the end of the link respectively and the 

street name, as shown in Table 3. For example, the first record of  Table 3 is matched to 

the road link that starts at node with ID 163257041 and ends at node with ID 1632257934. 

 

Table 3: A sample of 10 records of the map-matched dataset. 

 

 

 

4.4 Time series transformation 

 

After all data points have been matched to the corresponding roads, further processing 

steps take place in order transform data in time series, grouping together the records for 

the same road and time interval. In our model, we consider 15-minute intervals, on the 
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basis that the prediction model should forecast traffic congestion for the near future. As 

already stated in the literature review section, models for longer time intervals have been 

successfully implemented but this is not the scope of this research project. Moreover, this 

implementation utilizes state-of-the-art distributed computation technology to take ad-

vantage of the computational capabilities, fast processing and results production irrespec-

tive of dataset size. 

4.5 Data limitations and formulation of the predic-
tive algorithm 

 At this point the researcher was faced with a limitation derived from the amount of 

available data and its consistency. It was expected that available data would not cover all 

Thessaloniki network consistently for every 15-minute time interval. However, after map-

matching and time grouping it was apparent that only a small number of roads in the 

center of the city (mainly Tsimiski str.) had consistent speed records. After discussions 

with experts from the Hellenic Institute of Transport, which collaborate closely with the 

taxi association for years, the significant lack of data is the result of the following factors: 

1. After the economic crisis in Greece, the majority of taxi drivers choose to wait in 

taxi stops rather than circulating when searching for customers, in order to mini-

mize operational costs. 

2. Customers nowadays prefer to call for taxis using internet services, rather than 

waiting for a random taxi, another factor that has affected circulation. 

3. Increased fuel cost. 

 

 Data on Tsimiski street are adequately dense because it is a three-lane road crossing 

the heart of Thessaloniki city center and is usually busy 24 hours a day. Furthermore, the 

frequency of GPS pulses from some taxis is increased to 1Hz at this area, as a result of a 

completed scientific project. For the following steps towards the implementation of the 

traffic forecasting algorithm, only the subset of pulses map-matched on Tsimiski street 

were used. 

 

 In addition, the high detail of the Open Street Maps network, illustrated in [Figure 5], 

results in road sections of small length and very small or even zero number of observa-

tions for some intervals. Adjacent links were unified to produce more meaningful and 
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data-consistent road links of approximately the same length. The final three road sections 

that were created cover all the length of Tsimiski street. The task of the machine learning 

algorithm was defined as follows: build a forecasting tool for the average speed of the 

middle section (section 2) at any time interval t, utilizing historical data for all three sec-

tions. The term historical refers to any data collected before interval t. 

4.6 Feature Extraction 

Having grouped the data points is both dimensions of time (time interval) and space (road 

section), more statistics were extracted from the distributions of speed. For each time 

interval and road section, the derived statistics are: 

• average speed, 

• standard deviation of speed, 

• count of pulses, 

• maximum speed, 

• distribution skewness, 

• 60% percentile, 

• 80% percentile 

as shown in [Table 4]. 

 

Table 4: Processed dataset for one road section 

 

 

Furthermore, the time interval was encoded in a cyclical fashion, considering one day as 

a circle. A circle (24h) consists of N=96 15-minute intervals, therefore each interval i=0, 

1, 2,  ... ,96  is mapped to its corresponding angle of θ =(2pi*n)/96 rad and is coded to 

the tuple (sinθ,cosθ). Consecutive time intervals are mapped to angles with a minimum 

difference of (2pi)/96 rad, and thus coded to tuples with small sine and cosine difference. 
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Distant intervals are coded to tuples which are significantly different, for example two 

intervals with 12-hour time difference are 48-time intervals away and are therefore coded 

to angles with a difference of (2pi)48/96= pi rad, producing angle codings with opposite 

sings. This tuple was used to train models when the train set was not perceived as a 

timeseries with specific steps, in order to incorporate the cyclical (seasonal) effect of time 

in traffic conditions. 
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5 Results 

In this section the results from the different predictive algorithms implemented for traffic 

forecasting are discussed.  

 

 

5.1 Machine Learning Algorithms 

 

PySpark offers a machine learning library (ML) with numerous utilities and functions 

[53] which enable the construction of a variety of machine learning models for all differ-

ent kinds of problems, including classification, regression, clustering. The objective of 

our proposed technique is speed prediction, which in principal is a regression problem. It 

is also possible to formulate speed prediction as a classification problem, inferring differ-

ent classes according to the deviation of predicted speed from the speed limit of the tar-

geted road section. Our approach follows the regression methodology, which provides 

fine-grained results of higher resolution, while also enabling the researcher to monitor the 

model’s performance closely, with numerous evaluation techniques. For the purpose of 

this study, three of the most well-known machine learning algorithms for regression avail-

able in PySpark were utilized. Namely, these algorithms are Multiple Linear Regression, 

Random Forest and Gradient Boosting. In the following paragraphs follows a short sum-

mary of the principles on which each of the aforementioned algorithms is based on. The 

formal mathematical foundations and definitions of those algorithms is out of the scope 

of this study. 

 

5.1.1 Multiple Linear Regression 

A multiple linear regression algorithm attempts to model the relationship between two or 

more explanatory variables and a response variable by fitting a linear equation to observed 

data. It assumes that every value of the independent variable x is associated with a value 
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of the dependent variable y. Formally, the model for multiple linear regression, given n 

observations, is  

𝑦𝑖  =  𝑎0  +  𝑎1𝑥𝑖,1  +  𝑎2𝑥𝑖,2 + . . . 𝑎𝑛𝑥𝑖,𝑛  +   𝑖 𝑓𝑜𝑟 𝑖 =  1,2, . . . 𝑛. 

 

5.1.2 Random Forest Regression 

Random forests are regression algorithms which combine a – usually big- number of tree 

predictors in such a way that a tree depends on the values of a random vector sampled 

independently and with the same distribution for all trees in the forest. Such predictive 

algorithms, based on numerous individual predictors, belong to the category of ensemble 

methods.  

 

5.1.3 Gradient Boosting Trees Regression 

Gradient boosting regression also belongs to the family of ensemble methods. Typically, 

it utilizes a user specified number of decision trees as individual predictors. During the 

learning process, the loss function is minimized by adding weak learners using the gradi-

ent descent technique. 

 

5.2 Evaluation Techniques and Metrics 

 

The developed machine learning models were evaluated through the process of 10-fold 

cross-validation. This procedure randomly splits the train set to ten mutually exclusive 

subsets, and recursively trains the model on nine of them, using the tenth subset for eval-

uation. Once the 10 folds are completed, the algorithm reports the evaluation metric for 

each fold and the researcher can evaluate the model in a more generic fashion, examining 

its capabilities on different training and test sets.  

 

 The regression evaluation metrics that were monitored in this study include the mean 

of squared errors of predictions, root of mean squared errors, and the mean of absolute 

percentage errors.  
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5.2.1 Mean of squared errors 

The mean of squared errors (mse) evaluation technique is the average squared difference 

between the actual and predicted values of a variable. As a result, it is always non-nega-

tive, with smaller values indicating better predictive performance. It is important to re-

member that it is expressed as squared units of the estimated quantity, and due to its 

mathematical formulation, it weighs large errors more heavily. 

5.2.2 Root mean of square errors 

The root of the mean of squared errors (rmse), also called as root of mean square devia-

tion, is calculated as the square root of mse. Unlike the mse, it is expressed in the same 

units as the estimated quantity, however the rmse is also non-negative and also sensitive 

to outliers as larger errors have a disproportionately large effect on it.  

 

5.2.3 Mean of absolute errors 

The mean absolute error (mae) is calculated as the mean of the absolute values of errors. 

Compared to the rmse and mse, it is the easiest to interpret due to the simplicity of its 

mathematical formula. Mae is also non-negative and just like the mse and rmse it sum-

marizes estimation accuracy without distinguishing over-predictions from under-predic-

tions. Large and low estimation errors have proportional effect on the mae. 

 

5.3 Model tuning 

The algorithms utilized for traffic speed estimation were all fine-tuned in an attempt to 

improve estimation accuracy. Model tuning was implemented based on the grid-search 

cross-validation technique, according to which the developer selects a set of parameters 

with user defined values (called hyperparameters) to be tested. Respective values for each 

hyperparameter are also specified, and an exhaustive grid of all parameter value combi-

nations is created. The model is trained on every combination of parameters, in order to 

detect the optimal hyperparameter values. 
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5.4 Forecasting results 

 

In order to compare amongst the performance of different regression models, all models 

were developed considering the same loss function to minimize, in this case the mean 

squared error. The choice was made because of the evaluator’s characteristics. Mse is 

expressed in km per hour, a value easier to interpret than the rmse. However, it is not to 

be confused with the even simpler expression of mae. The mse was favored against the 

mae, for penalize more the large estimation errors. The proposed model predicts the av-

erage speed of a road and therefore predictions with small positive or negative error 

should not be weighted proportionally to larger errors. In plain words, the model is not so 

strict against small estimation errors, but it penalizes large errors disproportionally more.  

 

 In principle, there is no proven theory on which hyperparameter values would work 

better at each problem, and as a result tuning is achieved through grid search cross vali-

dation, a try-and-error procedure during which the optimum combination of hyperparam-

eter values is detected. The random forest and gradient boosting trees regressors both 

have a number of different hyperparameters to be tuned, and exhaustive grid search with 

10-fold cross-validation was applied on most hyperparameters as Table 5 shows. 
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Table 5: Grid-search cross-validation for random forest and gradient boosting algorithms. 

Regression algorithm Hyperparameter Grid search values 

Random Forest 

Maximum tree depth [3, 5, 7] 

Subsampling rate [0.8 , 1, 1.2 ] 

Impurity criterion 
Only supported option is 

variance 

Number of trees [ 50, 100, 200, 300] 

Gradient Boosting Trees 

Maximum tree depth [3, 5, 7] 

Subsampling rate [0.8 , 1, 1.2 ] 

Impurity criterion 
Only supported option is 

variance 

Number of trees [ 50, 100, 200, 300] 

 

 

 The random forest regressor performed better on the combination of 100 trees of max-

imum depth of five and subsampling rate 1, while gradient boosting best configuration 

was 50 trees of depth five and also with subsampling rate equal to 1. In general, random 

forest performed significantly better than gradient boosting and slightly better than the 

linear regression model. All evaluation metrics of the three models, with optimized hy-

perparameters, are summarized in Table 6. 

 

Table 6: Evaluation Metrics of tested algorithms 

Regression algorithm mse rmse mae 

Random Forest 4.74 22.48 3.10 

Linear regression 4.79 22.98 3.73 

Gradient Boosting Trees 8.08 65.31 4.90 
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6 Conclusion 

During the last years Intelligent Transportation Systems (ITS) that utilize data processing 

algorithms are developed in unprecedent rate. Such innovative systems provide Trans-

portation planners and decision makers with critical tools and knowledge for improving 

the general efficiency of the existing infrastructure. Positive results are profound in mul-

tiple sectors, amongst which are economy, road safety and monitoring. As the volume of 

transportation data increases, certain systems and algorithms will inevitably need to be 

implemented in technologies able to handle the so-called ‘Big Data’, huge volumes of 

data arriving at huge speed from different sources. This project’s primary goal was to 

inspect the suitability of PySpark, Python’s API for distributed programming language 

Spark, for developing a traffic forecasting model.  

 

 The most important findings and lessons learned from this research study are summa-

rized below: 

• PySpark is indeed a very powerful technology that provides a plethora of ready to 

use functionalities and libraries for data processing tasks. Raw data can be arbi-

trarily big, as PySpark is designed to run on parallel utilizing a cluster of ma-

chines. A characteristic that proved very helpful to the author is that PySpark code 

can be developed and run using a Python Integrated Development Environment 

(Python IDE) like Spyder. Taking into consideration that PySpark’s programing 

interface has profound similarities with Python, the transition of algorithms de-

veloped to run locally with Python, to PySpark is to a very great extent seamless. 

• PySpark does pose certain limitations regarding the variety of available built-in 

machine learning algorithms, when compared to the algorithms available on the 

most widely-used platforms like Python. However, as also stated in paragraph 

3.3.3, it is a relatively new programming language that has been around for four 

and a half years, currently supported and developed by Apache. The author’s opin-

ion is that available functionalities will keep increasing in the near future. 
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• The developed tool is proof that a real time traffic monitoring application with 

high predictive performance can be implemented on a large scale utilizing big data 

technologies.  

• In order to achieve a real-world traffic forecasting tool for the whole scale of a 

city’s network, the level of penetration of GPS-equipped vehicles should be con-

siderably high, to ensure constant network-wide data generation. This is a serious 

limitation the developer needs to take into consideration. However, with Internet 

of Things (IoT) enabled devices and increasing data availability the author be-

lieves that in the near future this hurdle will be overcome.   
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7 Future Prospects 

In this section the author states his opinion on actions that could take place in the future 

in order to improve the proposed traffic forecasting system. The traffic forecasting tool 

implemented for this master’s dissertation project certainly reveals that big data technol-

ogies can successfully be adopted by the Transportation sector. However, certain stages 

and modules of the system can be significantly improved in the future.  

 

 The author suggests that the most important improvement could result from a dataset 

of larger volume, as the dataset utilized for this study is limited both in terms of time 

duration and vehicle penetration. Machine learning algorithms are well known for their 

ability to ‘learn’ patterns from huge datasets with millions of records and it is expected 

that a model trained on several months of data could perform more accurately on predict-

ing speeds. Such a model could also be trained on some more extreme scenarios, like days 

with extreme weather conditions or days when vehicle circulation is affected by closed 

roads due to riots or other events. In addition, higher vehicle penetration would lead to 

data availability for more streets, enabling the development of larger scale models with 

more input variables. 

 

 Furthermore, the author believes that there is room for improvement in the map-

matching section. The custom map-matching algorithm that was developed for this study, 

although computationally efficient, is distance-based and does not consider the sequence 

of unique vehicle signals, like some more advanced algorithms provided by Google and 

Microsoft. 
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Appendix A 

PySpark module for importing raw data and applying filters and transfor-

mations. 

 

 

Python module for downloading and inspecting the street network of Thes-

saloniki and also creating geo-data frames of the network, tables with data 

about streets, like maximum speed allowed, number of lanes etc. 
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Appendix B 

PySpark module for feature extraction from map-matched dataset: 
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Appendix C 

PySpark module for building a Random Forest Regressor with 300 trees, 

trained and tested on a 70% – 30% split of the dataset: 
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Appendix D 

PySpark module for implementing a 10-fold grid search cross-validation on 

the Random Forest Regressor, with number of trees and tree maximum depth 

as parameters to search: 

 

 


