25,013 research outputs found

    Research in interactive scene analysis

    Get PDF
    Cooperative (man-machine) scene analysis techniques were developed whereby humans can provide a computer with guidance when completely automated processing is infeasible. An interactive approach promises significant near-term payoffs in analyzing various types of high volume satellite imagery, as well as vehicle-based imagery used in robot planetary exploration. This report summarizes the work accomplished over the duration of the project and describes in detail three major accomplishments: (1) the interactive design of texture classifiers; (2) a new approach for integrating the segmentation and interpretation phases of scene analysis; and (3) the application of interactive scene analysis techniques to cartography

    A reconnaissance space sensing investigation of crustal structure for a strip from the eastern Sierra Nevada to the Colorado Plateau

    Get PDF
    The author has identified the following significant results. Research progress in an investigation using ERTS-1 MSS imagery to study regional tectonics and related natural resources is summarized. Field reconnaissance guided by analysis of ERTS-1 imagery has resulted in development of a tectonic model relating strike-slip faulting to crustal extension in the southern Basin Range Province. The tectonics of the northern Death Valley-Furnace Creek Fault Zone and spacially associated volcanism and mercury mineralization were also investigated. Field work in the southern Sierra Nevada has confirmed the existence of faults and diabase dike swarms aligned along several major lineaments first recognized in ERTS-1 imagery. Various image enhancement and analysis techniques employed in the study of ERTS-1 data are summarized

    Digital Heritage

    Get PDF

    Land use classification in Bolivia

    Get PDF
    The Bolivian LANDSAT Program is an integrated, multidisciplinary project designed to provide thematic analysis of LANDSAT, Skylab, and other remotely sensed data for natural resource management and development in Bolivia, is discussed. Among the first requirements in the program is the development of a legend, and appropriate methodologies, for the analysis and classification of present land use based on landscape cover. The land use legend for Bolivia consists of approximately 80 categories in a hierarchical organization which may be collapsed for generalization, or expanded for greater detail. The categories, and their definitions, provide for both a graphic and textual description of the complex and diverse landscapes found in Bolivia, and are designed for analysis from LANDSAT and other remotely sensed data at scales of 1:1,000,000 and 1:250,000. Procedures and example products developed are described and illustrated, for the systematic analysis and mapping of present land use for all of Bolivia

    Impervious surface estimation using remote sensing images and gis : how accurate is the estimate at subdivision level?

    Get PDF
    Impervious surface has long been accepted as a key environmental indicator linking development to its impacts on water. Many have suggested that there is a direct correlation between degree of imperviousness and both quantity and quality of water. Quantifying the amount of impervious surface, however, remains difficult and tedious especially in urban areas. Lately more efforts have been focused on the application of remote sensing and GIS technologies in assessing the amount of impervious surface and many have reported promising results at various pixel levels. This paper discusses an attempt at estimating the amount of impervious surface at subdivision level using remote sensing images and GIS techniques. Using Landsat ETM+ images and GIS techniques, a regression tree model is first developed for estimating pixel imperviousness. GIS zonal functions are then used to estimate the amount of impervious surface for a sample of subdivisions. The accuracy of the model is evaluated by comparing the model-predicted imperviousness to digitized imperviousness at the subdivision level. The paper then concludes with a discussion on the convenience and accuracy of using the method to estimate imperviousness for large areas

    Assessment of a photogrammetric approach for urban DSM extraction from tri-stereoscopic satellite imagery

    Get PDF
    Built-up environments are extremely complex for 3D surface modelling purposes. The main distortions that hamper 3D reconstruction from 2D imagery are image dissimilarities, concealed areas, shadows, height discontinuities and discrepancies between smooth terrain and man-made features. A methodology is proposed to improve automatic photogrammetric extraction of an urban surface model from high resolution satellite imagery with the emphasis on strategies to reduce the effects of the cited distortions and to make image matching more robust. Instead of a standard stereoscopic approach, a digital surface model is derived from tri-stereoscopic satellite imagery. This is based on an extensive multi-image matching strategy that fully benefits from the geometric and radiometric information contained in the three images. The bundled triplet consists of an IKONOS along-track pair and an additional near-nadir IKONOS image. For the tri-stereoscopic study a densely built-up area, extending from the centre of Istanbul to the urban fringe, is selected. The accuracy of the model extracted from the IKONOS triplet, as well as the model extracted from only the along-track stereopair, are assessed by comparison with 3D check points and 3D building vector data
    corecore