3,842 research outputs found

    Interoperability and Standards: The Way for Innovative Design in Networked Working Environments

    Get PDF
    Organised by: Cranfield UniversityIn today’s networked economy, strategic business partnerships and outsourcing has become the dominant paradigm where companies focus on core competencies and skills, as creative design, manufacturing, or selling. However, achieving seamless interoperability is an ongoing challenge these networks are facing, due to their distributed and heterogeneous nature. Part of the solution relies on adoption of standards for design and product data representation, but for sectors predominantly characterized by SMEs, such as the furniture sector, implementations need to be tailored to reduce costs. This paper recommends a set of best practices for the fast adoption of the ISO funStep standard modules and presents a framework that enables the usage of visualization data as a way to reduce costs in manufacturing and electronic catalogue design.Mori Seiki – The Machine Tool Compan

    Service broker based on cloud service description language

    Get PDF

    Methodology for enterprise interoperability assessment

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de ComputadoresWith the evolution of modern enterprises and the increasing market competitiveness, the creation of ecosystems with large amounts of data and knowledge generally needing to be exchanged electronically, is arising. However, this enterprise inter and intra-connectivity is suffering from interoperability issues. Not visible when it is effective, the lack of interoperability poses a series of challenging problems to the industrial community, which can reduce the envisaged efficiency and increase costs. Those problems are mostly caused by misinterpretations of data at the systems level, but problems at the organizational and human levels may pose equivalent difficulties. Existing research and technology provides several frameworks to assist the development of collaborative environments and enterprise networks with well-defined methods to facilitate interoperability. Nonetheless, the interoperability process is not guaranteed and is not easily sustainable, changing upon frequent market and requirement variations. For these reasons, there is a need for a testing methodology to assess the capability of enterprises to cooperate at a certain point in time. This dissertation proposes a methodology to assess that capability, with a corresponding framework to evaluate the interoperability process, applying eliminatory tests to assess the structure of the organizations, the conceptual models and their implementation. This work contributes to increase the chances enterprises have of interoperating effectively, and enables the adoption of extraordinary measures to improve their current interoperability situation

    Structural elements of coordination mechanisms in collaborative planning processes and their assessment through maturity models: Application to a ceramic tile company

    Full text link
    Maturity is defined as a measure to evaluate the capabilities of an organization in regards to a certain discipline. The Collaborative Planning Process is a very complex process and Coordination mechanisms are especially relevant in this field to align the plans of the supply chain members. The objective of this paper is to develop a maturity model and a methodology to perform assessment for the Structural Elements of Coordination Mechanisms in the Collaborative Planning Process. Structural elements are specified in order to characterize coordination mechanisms in a collaborative planning context and they have been defined as key areas to be assessed by the maturity model. The identified structural elements are: number of decision-makers, collaboration level, interdependence relationships nature, interdepen-dence relationships type, number of coordination mechanisms, information exchanged, information processing, decision sequence characteristics and stopping criteria. Structural elements are assessed using the scheme of five levels: Initial, Repeatable, Defined, Managed and Optimized. This proposal has been applied to a ceramic tile company and the results are also reported.Cuenca, L.; Boza Garcia, A.; Alemany Díaz, MDM.; Trienekens, JJ. (2013). Structural elements of coordination mechanisms in collaborative planning processes and their assessment through maturity models: Application to a ceramic tile company. Computers in Industry. 64(8):898-911. doi:10.1016/j.compind.2013.06.019S89891164

    A Framework for Service-Oriented Architecture (SOA)-Based IoT Application Development

    Get PDF
    Funding: This research was partially supported by funds provided by the European Commission in the scope of FoF/H2020-723710 vf-OS, ICT/H2020-825631 ZDMP projects, and by the FCT— Fundação para a Ciência e a Tecnologia in the scope of UIDB/00066/2020 related to CTS—Centro de Tecnologia e Sistemas research unit.In the last decades, the increasing complexity of industrial information technology has led to the emergence of new trends in manufacturing. Factories are using multiple Internet of Things (IoT) platforms to harvest sensor information to improve production. Such a transformation contributes to efficiency growth and reduced production costs. To deal with the heterogeneity of the services within an IoT system, Service-Oriented Architecture (SOA) is referred to in the literature as being advantageous for the design and development of software to support IoT-based production processes.The aim of SOA-based design is to provide the leverage to use and reuse loosely coupled IoT services at the middleware layer to minimise system integration problems. We propose a system architecture that follows the SOA architectural pattern and enables developers and business process designers to dynamically add, query or use instances of existing modular software in the IoT context. Furthermore, an analysis of utilization of modular software that presents some challenges and limitations of this approach is also in the scope of this workpublishersversionpublishe

    Interoperability enablers for cyber-physical enterprise systems

    Get PDF
    BG05М2ОР001-1.002-0002publishersversionpublishe
    corecore