50 research outputs found

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This book is Open Access under a CC BY licence. The LNCS 11427 and 11428 proceedings set constitutes the proceedings of the 25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2019, which took place in Prague, Czech Republic, in April 2019, held as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019. The total of 42 full and 8 short tool demo papers presented in these volumes was carefully reviewed and selected from 164 submissions. The papers are organized in topical sections as follows: Part I: SAT and SMT, SAT solving and theorem proving; verification and analysis; model checking; tool demo; and machine learning. Part II: concurrent and distributed systems; monitoring and runtime verification; hybrid and stochastic systems; synthesis; symbolic verification; and safety and fault-tolerant systems

    New Data Structures and Algorithms for Logic Synthesis and Verification

    Get PDF
    The strong interaction between Electronic Design Automation (EDA) tools and Complementary Metal-Oxide Semiconductor (CMOS) technology contributed substantially to the advancement of modern digital electronics. The continuous downscaling of CMOS Field Effect Transistor (FET) dimensions enabled the semiconductor industry to fabricate digital systems with higher circuit density at reduced costs. To keep pace with technology, EDA tools are challenged to handle both digital designs with growing functionality and device models of increasing complexity. Nevertheless, whereas the downscaling of CMOS technology is requiring more complex physical design models, the logic abstraction of a transistor as a switch has not changed even with the introduction of 3D FinFET technology. As a consequence, modern EDA tools are fine tuned for CMOS technology and the underlying design methodologies are based on CMOS logic primitives, i.e., negative unate logic functions. While it is clear that CMOS logic primitives will be the ultimate building blocks for digital systems in the next ten years, no evidence is provided that CMOS logic primitives are also the optimal basis for EDA software. In EDA, the efficiency of methods and tools is measured by different metrics such as (i) the result quality, for example the performance of a digital circuit, (ii) the runtime and (iii) the memory footprint on the host computer. With the aim to optimize these metrics, the accordance to a specific logic model is no longer important. Indeed, the key to the success of an EDA technique is the expressive power of the logic primitives handling and solving the problem, which determines the capability to reach better metrics. In this thesis, we investigate new logic primitives for electronic design automation tools. We improve the efficiency of logic representation, manipulation and optimization tasks by taking advantage of majority and biconditional logic primitives. We develop synthesis tools exploiting the majority and biconditional expressiveness. Our tools show strong results as compared to state-of-the-art academic and commercial synthesis tools. Indeed, we produce the best results for several public benchmarks. On top of the enhanced synthesis power, our methods are the natural and native logic abstraction for circuit design in emerging nanotechnologies, where majority and biconditional logic are the primitive gates for physical implementation. We accelerate formal methods by (i) studying properties of logic circuits and (ii) developing new frameworks for logic reasoning engines. We prove non-trivial dualities for the property checking problem in logic circuits. Our findings enable sensible speed-ups in solving circuit satisfiability. We develop an alternative Boolean satisfiability framework based on majority functions. We prove that the general problem is still intractable but we show practical restrictions that can be solved efficiently. Finally, we focus on reversible logic where we propose a new equivalence checking approach. We exploit the invertibility of computation and the functionality of reversible gates in the formulation of the problem. This enables one order of magnitude speed up, as compared to the state-of-the-art solution. We argue that new approaches to solve EDA problems are necessary, as we have reached a point of technology where keeping pace with design goals is tougher than ever

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Structural model checking

    Get PDF
    The introduction of symbolic approaches, based on Binary Decision Diagrams (BDD), to Model Checking has led to significant improvements in Formal Verification, by allowing the analysis of very large systems, such as complex circuit designs. These were previously beyond the reach of traditional, explicit methods, due to the state space explosion phenomenon. However, after the initial success, the BDD technology has peaked, due to a similar problem, the BDD explosion.;We present a new approach to symbolic Model Checking that is based on exploiting the system structure. This technique is characterized by several unique features, including an encoding of states with Multiway Decision Diagrams (MDD) and of transitions with boolean Kronecker matrices. This approach naturally captures the property of event locality, inherently present in the class of globally asynchronous/locally synchronous systems.;The most important contribution of our work is the saturation algorithm for state space construction. Using saturation, the peak size of the MDD (luring the exploration is drastically reduced, often to sizes equal or comparable to the final MDD size, which makes it optimal in these terms. Subsequently, saturation can achieve similar reductions in runtimes. When compared to the leading state-of-the art tools based on traditional symbolic approaches, saturation is up to 100,000 times faster and uses up to 1,000 times less memory. This enables our approach to study much larger systems than ever considered. Following the success in state space exploration, we extend the applicability of the saturation algorithm to CTL Model Checking, and also to efficient generation of shortest length counterexamples for safety properties, with similar results.;This approach to automatic verification is implemented in the tool SMART. We test the new model checker on a real life, industrial size application: the NASA Runway Safety Monitor (RSM). The analysis exposes a number of potential problems with the decision procedure designed to signal all hazardous situations during takeoff and landing procedures on runways. Attempts to verify RSM with other model checkers (NuSMV, SPIN) fail due to excessive memory consumption, showing that our structural method is superior to existing symbolic approaches

    Génération de séquences de test pour l'accélération d'assertions

    Get PDF
    Avec la complexité croissante des systèmes sur puce, le processus de vérification devient une tâche de plus en plus cruciale à tous les niveaux du cycle de conception, et monopolise une part importante du temps de développement. Dans ce contexte, l'assertion-based verification (ABV) a considérablement gagné en popularité ces dernières années. Il s'agit de spécifier le comportement attendu du système par l'intermédiaire de propriétés logico-temporelles, et de vérifier ces propriétés par des méthodes semi-formelles ou formelles. Des langages de spécification comme PSL ou SVA (standards IEEE) sont couramment utilisés pour exprimer ces propriétés. Des techniques de vérification statiques (model checking) ou dynamiques (validation en cours de simulation) peuvent être mises en œuvre. Nous nous plaçons dans le contexte de la vérification dynamique. A partir d'assertions exprimées en PSL ou SVA, des descriptions VHDL ou Verilog synthétisables de moniteurs matériels de surveillance peuvent être produites (outil Horus). Ces composants peuvent être utilisés pendant la conception (en simulation et/ou émulation pour le débug et la validation de circuits), ou comme composants embarqués, pour la surveillance du comportement de systèmes critiques. Pour l'analyse en phase de conception, que ce soit en simulation ou en émulation, le problème de la génération des séquences de test se pose. En effet, des séquences de test générées aléatoirement peuvent conduire à un faible taux de couverture des conditions d'activation des moniteurs et, de ce fait, peuvent être peu révélatrices de la satisfaction des assertions. Les méthodes de génération de séquences de test sous contraintes n'apportent pas de réelle solution car les contraintes ne peuvent pas être liées à des conditions temporelles. De nouvelles méthodes doivent être spécifiées et implémentées, c'est ce que nous nous proposons d'étudier dans cette thèse.With the increasing complexity of SoC, the verification process becomes a task more crucial at all levels of the design cycle, and monopolize a large share of development time. In this context, the assertion-based verification (ABV) has gained considerable popularity in recent years. This is to specify the behavior of the system through logico-temporal properties and check these properties by semiformal or formal methods. Specification languages such as PSL or SVA (IEEE) are commonly used to express these properties. Static verification techniques (model checking) or dynamic (during simulation) can be implemented. We are placed in the context of dynamic verification. Our assertions are expressed in PSL or SVA, and synthesizable descriptions VHDL or Verilog hardware surveillance monitors can be produced (Horus tool). These components can be used for design (simulation and/or emulation for circuit debug and validation) or as embedded components for monitoring the behavior of critical systems. For analysis in the design phase, either in simulation or emulation, the problem of generating test sequences arises. In effect, sequences of randomly generated test can lead to a low coverage conditions of activation monitors and, therefore, may be indicative of little satisfaction assertions. The methods of generation of test sequences under constraints do not provide real solution because the constraints can not be linked to temporal conditions. New methods must be specified and implemented, this's what we propose to study in this thesis.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing
    corecore