o
WILLIAM & MARY
CHARTERED 1693 W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2004

Structural model checking

Radu Siminiceanu
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

6‘ Part of the Computer Sciences Commons

Recommended Citation

Siminiceanu, Raduy, "Structural model checking" (2004). Dissertations, Theses, and Masters Projects.
Paper 1539623441.

https://dx.doi.org/doi:10.21220/s2-8tcm-na84

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.


https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623441&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623441&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-8tcm-na84
mailto:scholarworks@wm.edu

STRUCTURAL MODEL CHECKING

A Dissertation
Presented to
The Faculty of the Departinent of Computer Science

The College of William and Mary in Vivginia

T Partial Fulfillment
Of the Requirements for the Degree of

Doctor of Philosophy

by
Radu Siminiceanu

2003

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPROVAL SHEET

This dissertation is submitted in partial fulfillment of

the requirernents for the degree of

Doctor of Philosophy

«”"") y ’ .
)Z ool v ’”g"? [IINTITR A 277 SO

Radu Siminiceanu

Approved by the Committee, December 2003

-

P
\
‘.3’”'(«%"%/%/ gt ,{:; el
=" Gigfifranco Ciardo, Chai
e AgDIranco Llardo, wnalr

' ' ‘Z —
g 3 LG

Nikos Chfisochoides

David Copp}t |

/M&W Y/ P

Weizhen Mao

BodTh il s Ucts

Benedetto L. Di Vito
NASA Langley Research Center

g
A
-

{ﬁemld ’Liéi itgen

Department of Computer Science, University of York, UK

il

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To my parents

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table of Contents

Acknowledgments
List of Tables
List of Figures
Abstract

1 Introduction

1.1 Overview of Formal Methods . . . . . . . ... . .. .. . . . .. .....
1.1.1 Specification . . . ... oL

1.1.2  Verification . . . . . . . . 0 L e e e
L1211 Simulation . . . . . . e

1.1.2.2  Theorem Proving . . . ... ... . ..o L

1.1.23  Model Checking . . . . . . ... o

1.2 Contribution . . . . . . . e e e e
L3 Organization . .. ... . . e

2 State Space Construction

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ix

x1ii

xiv

5

6

6

10

11

12



2.1 Discrete state systems . . . ., _ ..o oL o
211 Modeling with Petri Nets . . . . ... ... ... ..
2.2 Btate spaces . . . . L L L s e e e
2.3 Explicit state-space generation . . . ... .. o L.
2.4 The state space explosion problem. . . . . ... Lo L.,
2.5 Explicitmethods . .. . . .o L e
2.6 Symbolicmethods ... .. .. .. L
2.6.1  Symbolic encoding of states . . . ... ... 0L
2.6.1.1  Binary decision diagrams . . . . ... ... L.
2.6.1.2 Multi-way decision diagrams . . . . ... . ...
2.6.2 MDDs and structured systems . . .. . ... ...

2.6.3  Symbolic encoding of next-state functions . . . . . . .. ..

3 The Road to Saturation
3.1  Breadth-first symbolic state-space generation . . . .
3.2 Kronecker encoding of the next-state function . . . . . . ... ..
3.3 Anidentity crisis . . ... L o
34 BEventlocality . .. .. . .. ...

S Inmeplaceupdates .. o0 oL Lo Lo

3.6 The saturation strategy . . . . .. . ... oL L

3.7 Correctness . . . . o o e e e e e e e

3.8 Tmplementation issues . . ... Lo L. Lo Lo L

3.9 Wesulls. . . . o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4 Saturation Unbound

4.1 Local state spaces with unknown bounds . . . . . e

4.2 BExample . ... oo o0 oL e e e e

4.3 Implementation issues . . .. ... ... e e e
4.3.1  Data structures for the next-state function . . .. ... ... ..
4.3.2  Unconfirmed vs. confirmed states . . . .. ... .. ... ..
4.3.3  Storing MDD nodes . . . . ... ... e e e e
4.3.4 MDD nodes of variablesize . . . . ... .. o 0L
4.3.5  Garbage collection . . . . .. ... e
4.3.6  Overflow of potential local state spaces . . . . . .. ... .. ...

44 Results. . . . . .o .. oo e

5 Structural CTL Model Checking

9.1 Temporal logic . . ... ... ..., ... ..., e e e
5.1.1  Linear time, branching time . . . . .. ... ... .. ...
5.1.2 The CTL*, CTL, and LTL temporal logics . . . . . .. ... ..
5.1.3  Computing CTL operators . . . . . .. ... ... .. .......

5.2 Saturation-based CTL Model Checking. . . . . . .. e
5.2.1 The EX operator . . . . .. . ... e e e e e e e
5.22 The EF operator . . . . . . .. . o e
5.23 The EU operator . . .. .. . ... e e
524 The EGoperator. . ... ... ... ..... e e

5.3 Results. . ... .. .. ... ... e

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

88

90

91

93

94



6 Counterexamples and Witnesses 116
6.1 The distance fanction . . . . . . L Lo 116

6.1.1  Explicit decision diagram encoding of state distances . . . . . . . . . 117

6.1.2  Symbolic encoding of state distances . . . .. ... o000 119
6.2 A newapproach . ... ... e e e e 121
6,21 Edgevalued MDDs . . ... ..o oo oo oo 121
6.2.2 Canonicity of EVIMDDs .. . . . .. . ... . 123
6.3 Operations with EVTMDDs . . . .. ... .. .. ... ... .. ... .. 125
6.3.1 State-space and distance generation using EVtMDDs . . . . . .. 128
6.3.2  Trace generation using EV*MDDs . . .. ... ... L. 131
6.4 Results. . . .. . . . e 133
7 Application: the Runway Safety Monitor 137
7.1  The Runway Incursion Prevention System . . . . .. . .. ... ... ... 137
72 The SMART model of RSM . . . . . . ... . .. oo o 140
7.2.1 State variables . . . . ... o Lo o 140
7.2.2  Modeling the state transitions . . . . . .. ... oL 000 143
7.2.2.1  The 3-D motion of targets . . . . .. ... ... 144
7.2.2.2  Status definitions . . . . .. ... o 0o L. 145
7.2.3 State-space meagsurements . . . . . ... .. .0 e 0w L 147
7.24 Settingthealarm . . . . ... ... o o oo 148
7.3 Model Checking RSM . . . . . . oo o 153
7.3.1 A “memory-less” property . . ... . .. .o e 154

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7.3.2  Analysis of the transition that canses loss of separation . . . .. ..
7.3.3  Astronger safety property . . . . . ..o Lo Lo

7.3.3.1  Counterexamples for strong safety . . . . .. ... .. ...
734 Conclusions . . . . . . . . . e e e

8 Future Hesearch

A Overview of SMART

B Benchmark of Examples

B.1 Dining philosophers . . . . . . . .. L
B.2 A flexible manufacturing system . . . . ... ... L L
B3 Slotted ring . . . . . . L e
B4 A Kanban systermn. . . . . . . . . . o e e e e e e
B.5 Randomized leader election protocol . . . . .. ... L L o0 oL
B.6 A round-robin mutual exclusion protocol . . ... ... Lo Lo,
Bibliography

Vita

viil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

179

181

182

184

189

192

203



ACKNOWLEDGMENTS

[ owe my thanks to many people who have supported me during my studies. From the
very beginning, this work would not have been possible without the guidance of my adviser,
Dr. Gianfranco Ciardo. His constant strive for excellence, impeccable work ethic and bril-
liant ideas have made it easier for me to achieve my goals. His undeniable mentoring skills
are reflected in the way every studeut that worked with him grew from a just good student
into a good researcher.

Iam grateful to Dr. Gerald Liittgen for my initiation in the field of Formal Methods
and for the internship that he entrusted me with so eatly in my studies. I truly admire his
research attitude and writing skills. T am equally grateful to the people at NASA Langley
Research Center, especially to Dr. Ben Di Vito, for fostering our research ideas and pro-
viding us with many opportunities, most importantly through their financial support.

1 would like to thank my committee, for supporting my work and providing valuable
comments, and the colleagues that I collaborated with: Andrew Miner, for jump-starting
this whole body of work and whose design and implementation of SMART' have made it easy
to put my ideas in practice, and Robert Marmorstein, who provided figures and comments
for one of the chapters in this thesis. Special thanks go to Zvezdan Petkovié, who was
always there for me with a good advice on everything from technical support to the myriad
of every day life problems that I faced. T also am grateful to Carol Conner, Sandra, David,
and the entire Wagoner family for their magnanimous help in making a home away from
home in America.

On a personal note, my endeavor would not have been possible without the affectionate
support of my whole family. My deepest gratitude goes to my parents, Lizeta and llie,
whom I simply owe everything 1 am, and to my sister, Laura, who endured an ocean apart
of distance between us.

Last, but not least, my thoughts and love go to my sweet and generous wife, Valentina,
who brings out the best in me and makes life all worth it.

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Tables

3.1 Time for state-space generation algorithms in SMARP. . . . . . .. ., B 12
3.2 Memory consimption for state-space generation algorithms in SMART, . .. 65

3.3 Results for the saturation algorithm. . . . . . .. e e e 67

4.1 Generation of the state space: On-the-fly vs. pregeneration vs. NuSMV . . 91

5.1  Experimental results for computing EF and EU: SMART vs. NuSMV. . .. 112

5.2 Experimental results for computing EG: SMART vs. NuSMV. .. . ... .. 113
6.1 Experimental results for computing the distance function. . . . . . . .. .. 134
7.1 The state-to-state transition matrix for RSM. . ... .. e e 147
7.2 State space measurements for RSM: number of states. . . . . ... ... .. 148
7.3 State-space construction time for RSM (in seconds). . . .. ... ... ... 149

7.4 Btate-space generation memory consumption for RSM (in Megabytes). . . . 149

7.5 RSM protocol: alarm setting criteria. . . . . . . . .. ..o 150
Al Model checking functions in SMART. . . . . . .. e e e 175
X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Figures

L1 The “map” of Formal Methods . . . . .. ... ... . ... ....... 5

21 Asmall Petrinetexample. . .. .. ... ... ................ 15
2.2 The underlying discrete state model of the Petri net in Fignre 21 . .. . .. 16
2.3 Algorithm for explicit state space exploration. . . . .. . ... ... ..... 18
2.4 A BDD encoding of a boolean function . . . . . .. .. .. 0 0 0. 24
2.5 'The effect of variable ordering over the BDD size . . . .. .. .. ... ... 26
2.6 'The algorithm for binary operations on BDDs. . . . . ... ... ... .. 28
27 Anexample MDD. . . . .. ... o 32
2.8 The algorithm for the unjon of MDDs. . . . . . ... ... .. ... ..... 34

2.9 TDmage computation with MDDs. . . . . ... ... o L oL .. 36

3.1 "I'wo symbolic breadth-first generation algorithms. . . . ... .. ... ... 39
3.2 Algorithm for symbolic breadth-first search with chaining. . . .. .. . ... 40
3.3 A producer-consumer model and its submodels. . . . ... ... 4]

3.4 T'he local states of submodels in the producer-consumer model. . . . . . .. 42

ey
it

Kronecker encoding of A for the producer-consumer model. . . . . .. ... 45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.6

3.7

3.8

3.9

3.10

ot
b

ot
<

6.1

6.2

Satisfying Kronecker-consistency vequivements. . . . . . . ... . ... ...

Kronecker versus MDD encoding of the next state function. . .. . . . . .
Algorithm for firing events with in-place updates. . . . . . . ... . ..

The psendocode for the Generate, Saturate algorithms. . . . . .. .. ..

The pseudocode for Sattire and SetRecFuwe. . . . . . . .. oL,

Local state spaces built in fsolation. .. . . .. ... L o o oL

The Confirm procedure for saturation on-the-fly. . . . .. . ... ...

Saturation by example (part 1). . . . . . . ... oL ..

Saturation by example (part 2). . . .. . L. Lo

Saturation by example (part 3). . . . . ... L L.
Storage for the matrix nodes. . . . . .. Lo
Node and arc storage for MDDs. . . .. 0.0 oo 000 Lo
The implicit index 1 in reduced vs. quasi-reduced MDDs.

Example of potential, but not actual, overflow of a local state space. . .

The eight basic CTL operators . . . . . . .. .. .. .. ... .....
The four basic LT'L operators

The traditional algorithm to compute EU. . . ... .. .. ... .. ...,
The saturation-based algorithm to compute EU. . .. .. .. ... ... ..
somparing BES and saturation order: distance vs. unsafe distauce. .

‘Traditional and saturation-based BEG algovithms. . . . . . . ... .. ..

Storing the distance function: ADD vs. forests of MDDs, .. ... .. . ..
Canonical and non-canonical EVBDDs.

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[
)

<o
-3

83

86

87

90

100

101

106

107

109

110



6.3 Storing total and partial arithmetic fupetions with EVYMDDs, . ... . ..
6.4 'The UnionMin algorithm for EV*MDDs., .. ... .. ... ... ...

6.5  An example of the UnionMin operator for EV*MDDs. . . . .. .. ... ..

6.6 The pseudocode for BuildDistance, EVSaturate and EVEire . . . . . . ..

6.7 The pseudo-~code for EVRecFire. . . . . .. .. .. ... . ...

7.1 The Runway Safety Monitor flow chart. . . . . . ... .. .. o ..
7.2 RSM: missed alarm scenario 1, at ground level. . . . . . ... .. ... ..
7.3 RSM: missed alarm scenario 2, airborne. . . . . . .. ... oL L

7.4 RSM: missed alarm scenario 3, at ground level. . . . . .. ... ... ...

7.5 RSM: missed alarm scenario 4, at ground level. . . . . . ..o oL

7.6  RSM: missed alarm scenario 5, aircraft vs vehicle. . . . . . . . .. ... ...

-th

B.1 The dining philosophers, ¢*" subnet. . . . ... ... ...

B.2 A flexible manufacturing system. . . .. ... ... L.
B.3 Slotted ring model, i* subnet. . . ... ... .. L L.
B4 A kanban system. . . . . ... L e

B.5 Statechart for the leader election protocol. . . . . . . .. . ... ... ...

B.6 The round-robin mutual exclusion protocol. . . . . . .. . ... ... .. ..

xiil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

161

177

179

181

183

185

190



ABSTRACT

The introdaction of symbolic approaches, based on Binary Decision Diagrams (BDD), to
Model Checking has led to significaut improvements in Formal Verification, by allowing
the analysis of very large systems, such as complex circuit designs. These were previously
beyond the reach of traditional, explicit methods, due to the state space explogion phe-
nowenon. However, after the initial success, the BDD technology has peaked, due to a
similar problem, the BDD explosion.

We present a new approach to symbolic Model Checking that is based on exploiting
the system structure. This techuique is characterized by several unique features, including
an encoding of states with Multiway Decision Diagrams (MDD) and of transitions with
boolean Kronecker matrices. This approach naturally captures the property of event local-
ity, inherently present in the class of globally asynchronous/locally synchronous systems.

The most important contribution of our work is the saturation algorithm for state space
construction. Using saturation, the peak size of the MDD during the exploration is dras-
tically reduced, often to sizes equal or comparable to the final MDD size, which makes
it optimal in these terms. Subsequently, saturation can achieve similar reductions in run-
tires. When compared to the leading state-of-the art tools based on traditional symbolic
approaches, saturation is up to 100,000 times faster and uses up to 1,000 times less memory.
This enables our approach to study much larger systems than ever considered. Following the
success in state space exploration, we extend the applicability of the saturation algorithm
to CTL Model Checking, and also to efficient generation of shortest length counterexamples
for safety properties, with similar resulss.

This approach to avtomatic verification is implemented in the tool SMART. We test
the new model checker on a real life, industrial size application: the NASA Runway Safety
Monitor (RSM). The analysis exposes a number of potential problems with the decision
procedure designed to signal all hazardous situations during takeoff and landing procedures
on runways. Attempts to verify RSM with other model checkers (NuSMV, SPIN) fail due to
excessive memory consumption, showing that our structural method is superior to existing
symbolic approaches.

Xiv
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Chapter 1

Introduction

“A4 vlever man commits no minor blunders”

Johann Wolfgang von Goethe (1749-1832)

Today’s hardware and software systems grow in size and coraplexity at a very fast pace.
Unfortunately, the rapid advance in technology sophistication is not matched by the advance
in the degree of certification of the deployed devices. Thercfore, with every leap forward in
technology, the risk for small and subtle errors to escape undetected in the process of design
and verification with low-cost empirical methods increases substantially. At the same time,
an exhaustive verification process takes considerable amounts of resources, in terms of time,
human expertise, and money. The major obstacle in using computerized tools to verifying
modern protocols is usually the stete-space explosion phenomenon. As the complexity of
a system increases, the memory and time requirved to store its combinatorially expanding
state space can easily become excessive. On the other hand, if appropriate measures are
not taken, the cost of errors eventually occurring during operation can be enormous. There
is a number of (in)famous examples already on record:

o The Pentium I processor division bug [57], caused by a circuit design error, costed

Intel half a billion dollars in 1994. The discovery of the error was credited to Prof.
Thomas Nicely, a mathematics professor at the nearby Lynchburg College in Virginia;

2
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CHAPTER 1. INTRODUCTION 3

o The explosion of the Ariane b rocket during liftofl, on June 4 1996, due to a Hoating
point conversion error in a software control module [55], caused the Furopean Space

Agency an estimated loss of seven billion dollars and ten years of development efforis;

e The loss of the Mars Polar Lander exploration probe in December 1999, due in part
to an alleged object iuitialization error in the touchdown sensing software, which was
not correctly tested [86], had a price tag of 120 million dollars in equipment and set

back an entire research program at the Jet Propulsion Laboratory;

¢ The Y2K-bug scare [71], which can be blamed on the computer software industry
as a collective, whose prevention costs worldwide are yet to be quantified, but are

estitpated between 500 billion and 5 trillion dollars;

But most critical is the prospect of even more catastrophic events, where human life is
at stake, such as aircraft collisions or malfunctioning of nuclear plant swrveillance. Safety-
critical systems, such as flight guidance, collision avoidance, and early warning systers,
require a high degree of assurance of design corvectness [23]. Existing techuniques for verifying
safety properties still rely heavily on testing and simulation, which examine only a portion
of the behaviors of the system. Since flaws can hide in the unexamined portions of the
system, engineers need reliable means to design and operate increasingly large systems,
despite their vast complexity.

The field of Formal Methods is one way to achieve this goal, by using rigorous mathe-
matical techniques for the specification and verification of hardware and software systems.
Model Checking is one divection in Formal Methods, concerned with the tasks of represent-

ing a system as an automaton, usually finite-state, and then showing that the initial state

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1. INTRODUCTION 4

of this antomaton satisfies a temporal logic statement [116]. Model Checking has gained
increasing attention since the development of symbolic technigques, based on binary decision
diagrams (BDDs) [17]. Symbolic Model Checking [21] is known to be effective for a number
of simple temporal logics, such as CTL (Computation Tree Logic) and LI'L (Linear Tem-
poral Logic) [37], as it allows for the efficient storage and manipulation of the large sets of
states corresponding to temporal logic formulae. However, practical limitations to sywbolic

Model Checking still exist.

o First, memory and time requirements might be excessive when tackling real systems.
This is especially true since the size (in pumber of nodes) of the BDID encoding
the set of states corresponding to a CTL formula is usually much larger during the
fixed-point iterations than upon convergence. This phenomwenon can be viewed as the
reincarnation of the state space explosion in the form of BDD ezplosion. 'This has
spurred work in two major directions. Distributed and parallel algorithms for BDD
manipulation [106, 137] attempt to alleviate the problem by corralling the resources of
multiple workstations. However, the parallelization of BDD algorithms is notoriously
ineffective, and the resulting algorithins have very little if any speed-up. Another
direction has concentrated on verification techniques that try to reduce the number
of expensive BDDD computations in an attempt to avoid the risk of BDD expansion.
This includes the work in [24, 111, 126] that reduce the number of iteration steps
needed to explore the state space symbolically, and also the heuristics to better guide

the exploration of states [12, 121].

¢ Second, symbolic Model Checking has been quite successful for hardware verification
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CHAPTER 1. INTRODUCTION

but software, in particular distributed software, has g0 far been considered beyond
reach. This is because the state space of software is much larger, but also because of

the widely-held belief that symbolic techuiques work well only in synchronous settings.

In this work, we attempt to dispel these myths by showing that symbolic Model Check-
ing based on the model structure copes well with asynchronous behavior and even benefits
from it. Furthermore, the techniques we introduce excel at reducing the peak memory con-

sumption in the fixed-point iterations, thus directly addressing the issue of BDD explosion.

1.1  QOverview of Formal Methods

eation and

[

As mentioned before, the field of Formal Methods includes two areas, specifi
verification, which we briefly overview next. The map of Formal Methods is sketched in the

diagram of Figure 1.1 as a tree and our work is situated along the highlighted path.

Formal Methods
Specification Yerification

Simulation iodet Checking  Theorem Proving
Automata Temporal Logie

Explicit Symbolic

Figure 1.1: The “map” of Formal Methods

1.1.1  Specification

Specification (and/or modeling) is the process of describing a real-life system and its desired

properties in a formal way, by using a specification language. The properties that need to
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CHAPTER 1. INTRODUCTION G

be expressed may range from functional behavior, timing behavior, internal structure, to
performance characterigtics.

Z [128] and VDM [85] ave the most popular languages for specifying the sequential
behavior of state-based systems. States are described by means of rich structures such as
sets, relations, and functions. The transitions between states are given in terms of pre-
conditions and post-conditions logic formulae.

Other methods, like CSP [78], COS [105], state-charts [74], and 1/O automata [102]

focus on specifying the behavior of concurrent systems.

1.1.2 Verification

Verification goes one step beyond modeling, by analyzing the specification of the system for
desired properties. The verification can be partial or exhaustive. Simulation and test case
generation fall in the former category, while Model Checking and Theorem Proving are in

the latter category.

1.1.2.1 Simulation

Excluded nowadays by purists, but widely used in practice, simulation and test case gener-
ation were the only means of testing and validating hardware and software in the early days
of systern design. The two methods are similar in that they attempt to cover, with a set of
inputs, as many execution paths in the system as possible, mostly the ones that presumably
contain errors. The difference lies in the fact that simulation runs on a theoretical model
of the system, while testing runs on a physical prototype of the system itself.

The main disadvantage of both remains the inability to cover all the possible cases,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1. INTRODUCTION 7

hence the risk of missing nnwanted events that occur with very small probability. Good
simulations are difficult to build and time consuming. Their effectiveness sharply drops in
the late stages of the design, when the number of errors is considerably diminished. The
time necessary to discover bugs in the late phases increages dramatically.

The sheer size of modern gystems is gradually making the traditional methods obsolete,
as at the end of a simulation session owe is never fully sure of the validity of the model.
A suggestive example is the TCAS II system [60] for which the Federal Aviation Admin-
istration has contracted the Rannoch company to build scenarios for the aircraft collision
avoidance protocol. The end-product of Rannoch comprised 300 encounter scenarios. 'ut
in the light of the actual state-space size (that the tool SMV fails to completely build within
1 Gigabyte of memory, after constructing over 107 possible states), the number of tested
scenarios is alarmingly small. The more so as the system is already installed on all US

commercial aircraft ag of January 1994 (and a worldwide extension, ACAS II, is promoted

for equipping all aircraft by January 2005).

1.1.2.2 Theorem Proving

Theorem Proving is the most powerful formal verification approach, in which both the
system and its desired properties are expressed as formulae in some mathematical logic,
given as a set of axioms and a set of inference rules to make deductions. The process of
finding a proof for a property starts from the axioms and then uses the inference rules (and
possibly derived definitions and intermediate leminas) to validate the initial assertions.
Proofs can be constructed by hand, but machine-assisted proving has become more and

more powerful, although not fully automated, remaining mainly interactive.
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CHAPTER 1. INTRODUCTION 8

In contrast to Model Checking, Theovern Proving can deal with iufinite systems, since
it relies on more powerful techniques, like structural induction. However, the interaction
with a user results in a slow and sowmetimes ervor-prone process. Depending on the degree

of automation, theorem provers can be classified in three groups:

o User-guided automatic deduction tools: Nghtm [14], Reve {99], RRL [88], Eves [49],
LP [65], and ACL2 [89] are guided by user input, which is a sequence of lemumas,
but each theorem is proven automatically, using built-in heuristics. The milestone in
this category has been the proof of Godel’s first incompleteness theorem in Nghtm by

Boyer and Moore {14];

e Proof check

: LCF {70], Nuprl [46], HOL [69], LEGO [101], and Coq [48] are used

to formalize and verify problems in Mathematics and Program Verification;

e Combination provers: PVS [110], Analytica [43], and STeP [10] combine Theorem
Proving with symbolic algebra, Model Checking, and interactive proof to verify a
variety of problems ranging from number theory to hardware design and fault-tolerant

algorithins.

1.1.2.3 Model Checking

Model Checking is the formal verification approach that relies on building a finite model
of a system and exhaustively searching its state space to check the desired properties. In
principle, the systematic search is guaranteed to end, as the model is finite. The practical
limitations are, obviously, the amount of available memory (on oue or wultiple processors)

and the running times of the required algorithms. Therefore, the challenge in Model Check-
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CHAPTER 1. INTRODUCGTION 9

ing is devising algorithims and data structures that enable handling of very large state-spaces
in a reasonable amount of time.

Iv practice there are two main approaches in Model Checking: temporal and automata-
based. T'he temporal Model Checking was developed independenily in the 1980s by Clarke
and Emerson [37] in the U.S. and Quielle and Sifakis [119] in France. In this approach,
systems are modeled as finite state transition systems, and specifications are expressed in
a temporal logic.

In the second approach, the specification is given as an automalon. Then, the system
which is modeled as an automaton itself is compared to the specification to determine
whether it satisfies the required properties. The conclusion can be drawn via language
inclusion, refinement orderings, or observational equivalence. Vardi and Wolper showed
how to translate temporal logic Model Checking in terms of automata, thus making the
connection between the two approaches [133].

Model Checking is fully automated and fast. Its main asset is the delivery of witnesses
(and counterexamples) that show how states where the desired property does (or does not)
hold can be reached. Its major challenge is represented by the state-space explosion problem.
This task has been addressed by the introduction of BDDs, partial order reductions, and
semantic minimizations. All of these methods either reduce the size the of the model by
eliminating unnecessary states, or compress the state-space representation itself.

There are numerons Model Checking tools in use, the best known arve listed below:

e Temporal logic model checkers: EMC [37] and Caesar [119], SMV [104] - the first to
use symbolic techniques (BDDs), SPIN [81] -~ based on partial order reductions, Mur-

phi [54], the Concurrency Workbench [45] ~ based on u-caleulus, SVE [61], FORMAT
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o

[50], and CV [53] ~ for hardware verification, HyTech [3] - for hybrid systems, and
Kronos [77] - for real-time systems.

e Combined checkers: Bevkeley’s HSIS [80] combines model checking with language in-
clusion, Stanford’s STeP [10] uses deductive methods, VIS [15] employs logic synthesis,
PVS [110] is a theorem prover with Model Checking abilities for p-calculus, while the

METAFrame environment [129] supports Model Checking in the entive software de-

velopment process.

1.2 Contribution

This work contributes with a series of novel techniques to the area of temporal logic Model
Checking. We have designed a new model checker, integrated in the software tool SMART

[25] at the College of William and Mary, which features:

Multiway Decision Diagrams (MDD) [87] for compressed state storage of structured

discrete-state systems;

o Kronecker matriz [6] storage for efficient representation of the transition relation

between states, based on a decomposition of the model into submodels;

Saturation [27], a revolutionary iteration strategy for exploring state spaces and com-

puting fixed-point model checking operators;

An. on-the-fly algorithm that performs an exact computation of local state spaces of

the decomposed model for each state variable of the system [28];
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e Fidge-valued decision diagrams [30], an advanced storage scheme to encode informa-
tion that helps building shortest paths in reachability graphs, with direct implications

in. providing shortest length counterexamples for safety properties in Model Checking.

We call this new approach Structurel Model Checking [31].

1.3  Organization

The remainder of this document is organized as follows. Chapter 2 introduces the basic con-
cepts in discrete state modeling and presents various alternatives to addressing the problem
of efficient state space construction. Chapter 3 describes our contributions and improve-
ments to the problem of state space construction, leading to our most advanced algorithm,
based on the idea of saturation. An extension of the algorithm in a less restrictive context
is presented in Chapter 4, where we also compare the performance of our algorithm imple-
mented in SMART with another state-of-the-art model checker, NuSMV. Chapters 5 and 6
further expand the scope of our saturation strategy to other areas of Model Checking, such
as the efficient computation of temporal logic operators and the generation of counterex-
amples, along with the corresponding experimental results. Chapter 7 presents our findings
regarding the performance and applicability of our model checker to a real-life example: the

Runway Safety Monitor. We conclude by discussing future research plans in Chapter 8.
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Chapter 2

State Space Construction

In this chapter, we first look at the models most frequently used in practice and examine
their common characteristics. We then proceed with defining the state space of a model,
discussing the various existing techniques to construct it, and the major challenges in un-
dergoing this task.

Since the introduction of automated verification tools in industry, the most popular
systems to be analyzed were digital circuits, concurrent programs, distributed protocols,
and reactive systems. When talking about behavior, one should capture in one way or
another the notion of time and evolution. Therefore, the basic entities that all the models
have to be built on are states and transitions (between states). The states should be seen as
snapshots of the parameters of the system at specific moments in time, while the transitions
are a set of rules that describe the changes in the system state when an event occurs.

Several frameworks have been proposed for modeling systems. We adopt the following

terminology.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. STATE SPACE CONSTRUCTION 13

2.1 Discrete state systems

Definition 2.1.1 A discrete-state model 15 a triple M = (

S.8,N), where

o S 45 the set of potential states of the model, specifying the “type” of the states.

]

»

We indicate states with lowercase holdface letters, 1,j. ..
o 5 & & g the initial state of the model.

o N : & 2% is the next-state function specifying the states reachable from cach state

in a single step.

There exist a number of variations to the above definition. One of them assumes a more
general case of a set of initial states, 8. This can be easily integrated in our definition by
adding & unique initial state s and defining M (s) = 8.

The next-state function A is sometimes defined as a binary relation N C Sx8 , such
that (1,j) € A if and only if i can transition to j. In this case, N is called the transition
relation.

Another variation is the partitioning of N into a union of next-state functions [20]:
N({) = J,ce Ne(i), where & is the (finite) set of events in the model. Then, N, is the
next-state function associated with event e, i.e., No(i) is the set of states the system can
enter when e occurs, or fires, in state i. An event e is said to be disabled in i if N(i) = 0;
otherwise, it is enabled.

Discrete-state systems are usually described in a formalism that allows the specifica~
tion of its states and transitions. Low-level formalisms explicitly define the entire set of

states that the system can be in, together with the complete transition relation. A more
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CHAPTER 2. STATE SPACE CONSTRUCTION 14
convenient approach is to use a high-level formalism that recurs to more sophisticated math-

ematical objects to define the behavior of the system. This is done by describing rules that

characterize groups of states and events together.

2.1.1 Modeling with Petri Nets

Indroduced by C.A Petri in 1962 [113], Petri nets are an elegant bigh-level mathematical
formalistn that has been well studied and has since become popular due to some of its

practical properties.

P is a finite set of places; pluces can hold o non-negative number of tokens; an

assignment pu . P — N of places with tokens is called a marking;

e T' 4s q finite set of transitions (or cvents), which update the number of tokens in

places;

e po 2 P — N is an initial marking of places with tokens;

DY, D™ P xT - N, describe the rules to add and remove tokens from places by

firtng transitions;

Note that a Petri net defines a bipartite directed graph, where the sets of nodes are P
and T, annd the set of arcs A C (P xT)U(T % P) is uniquely determined by the two functions

D* and . There is an arc from place p to transition ¢ if and only if D~ (p,#) > 0 and

respectively from ¢ to p if and only if D¥(p,t) > 0.
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Figure 2.1: A small Petri net example.

A transition ¢ is said to be enabled in a warking p if and only if its input places contain
at least as many tokens as the corresponding arc cardinalities, Vp € P @ u(p) = D™ (p,1).
Enabled transitions may fire by removing the number of tokens indicated by the input arc
cardinality, and adding to each of the output places the number of tokens indicated by the
output arc cardinality. Hence, the firing of an enabled transition { changes a marking p to
a marking w, where w(p) = p(p) + Dt (p,t) — D (p,t). The firing is sometimes written as
/./.-ill;/,u.

Figure 2.1 displays a small Petri net, with places P = {p,q,r}, transitions T = {t, u, v},

and arcs A = {{q,t), (t,p), (p,u), (0, q), {g,v), (v,7)}. D~ and D* take the value 1 for all

will also use the superscript notation for markings: pg = p2¢r0.

Although there is a connection between the places and transitions of a Petri net, and
the states and events in a model, it is now clear that the discrete state model that a Petri
net defines does not coincide with the net itself. In Figure 2.1 for example, the Petri net
has three places and three transitions, while its discrete state model hag six possible states
and nine transitions, as shown in Figure 2.2

In the underlying state model, the states are represented by a set of markings, S e,

and the transition relation is defined between markings: (g, p2) € N if and only if there
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CHAPTER 2. STATE SPACE CONSTRUCTION 16

Figure 2.2: The underlying discrete state model of the Petri net in Figure 2.1

exists an enabled transition ¢ in py, and g 2 e

There are several extensions of ordinary Petri nets, such as inhibitor arcs, guards, mark-
ing dependent arc cardinalities (self modifying nets), fiving times {(Stochastic Petri Nets, or
SPNs), Colored Petri uets, and Hierarchical Petri Nets [109].

Besides providing a modeling formalism, Petri nets have also been studied as a com-
putation model, by means of their associated languoge [112]. The class of standard Petri
net languages is a strict superset of regular Janguages and a subset of context-sensitive lan-
guages. Inhibitor arcs, marking dependent arc cardinalities and firing times add expressive
power to ordinary Petri nets. In fact these generalizations have the same expressive power

as Turing machines [112] (they are Turing-equivalent).

2.2 State spaces

Given a cliscrete state model M = (S, 8,N), the state space § ¢ & is defined as the smallest

set containing s and closed with respect to N:

where “*” denotes the reflexive and transitive closure of applying the function, and the
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CHAPTER 2. STATE SPACE CONSTRUCTION 7

application of A i8 extended to sets of states: N (&) =) . p N(s).

Pl

An equivalent way to define § is as the smallest fixed point of the equation

§ = {s} UN(S).

Starting form these definitions, there are several algorithis to construct the state space
of a system. They are distinguished by two aspects: the iteration strategy and the data
structures used to store states.

The iteration strategy specifies a systematic mechanism to discover reachable states,
starting from the initial state and firing events N, in a specific order. A fundamental result
was established in [66], by showing that the state space can be constructed by firing the
individual events in an arbitrary order, as long as each event is considered often enough.

From the state storage point of view, state space generation algorithms can be classified
in two categories: ezplicit and implicit (or symbolic). Explicit techniques store each state
individually, hence the space needed to store some representation of the state-space is
at least linear in the number of constructed states. Symbolic techniques instead represent
states implicitly, using advanced data structures to compactly encode and manipulate entire

sets of states at once.

2.3 Txplicit state-space generation

In traditional explicit state-space generation approaches, states are discovered one by one.
Figure 2.3 shows a general algorithmm that stores the unexplorved states in a set U, If U

is managed as a gueue, the exploration is breadth-first. If U is managed as a stack, the
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exploration is depth-fivst, Statement 11 is performed as many times as there are state-to-
state transitions between reachable states, thus an eflicient search data structure, such as
a hash table or a search tree, must be used to organize the states in .

Fach state requires a number of bytes for its storage, so it is efficient to index states
with a function 4 : & —» NU{null} such that (i) =i € {0,...,|8]-1} if i € & aud (i) = null
itig S, A natural definition for ¢ is to assign increasing indices to new states in the order

they are found, starting from (s) = 0, as shown in Figure 2.3.

EaplicitSsGen(s : state, N : stateset — 25905 - siateset
Compute & C i3 starting from s by repeatedly applying N
1. declare S U:stateset, rstateset —NU{null}, 1j:state;
2.8 « {s} e known states
3. U « {s}; e unexplored known states
4. p(8) « O e 0 Js the index of the first state
5. while I{ $ @ do e still states to explore
6. choose a state i in U;
7. if N(i) has been exhausted
8. U +« U\{i} e remove i from U
9. else
10.  j < next element in N (i)
1. if j& & then e if' j is a new state...
12. ¥(j) « |5 e ...assign the next index to it,...
13. S «~ SuU{jh e ..add it to S, and...
14. U «— UU{j} e ..remember to explore it later
15. return &;

Figure 2.3: Algorithm for explicit state space exploration.

2.4 The state space explosion problem

‘The size of the state space & is a factor that influences in a radical measure not only the

efficiency of verification, but also the very feasibility of the whole process.
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For example, if the components of a system are “loosely coupled” — Le., they can evolve
independently in an asynchronous fashion - the number of possible global states is given
by the number of possible combinations of local states for each compounent. If there are K
subcomponents, each taking up to n; values, for 1 < ¢ £ K, there could be as many as

Ny -ng ... iy ditferent combinations of values. This number can easily become too large

to handle. The state-space growth is therefore exponential, as for a system that is regular
(i.e., n; = n, for all 1) and scalable by K, the upper bound of |S| is ', It is then utterly
justified to call this phenomenon state-space explosion.

Using unsophisticated algorithms that represent the model with explicit storage for
states and transitions, each state consuming a number of bits, one will only manage to deal
with very small systems. As the models cannot exceed in size the memory capacity of a
computer /network of workstations, this usually means the waximum state space size that
can be handled is of the order of millions of states (107 — 10%). Therefore, only systems
with just a handful of (not very complex) subcomponents can be analyzed.

The guestion that naturally arises is how to deal with larger and more complex systems?
In the following we enumerate the most important methods devised to cope with state space

explosion [41].

2.5 Explicit methods

Partial order reduction. The method consists of constructing a reduced version of the
state space [82]. It is most suitable for concurrent systems where events may be independent,

hence the order in which these events are considered may be irrelevant to the evaluation of
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properties. For example, if a sequence of n transitions has the same effect when executed in
any order, the total number of possible interleavings that have to be considered is n!, while
the nmumber of intermediate states is 27, If it were possible to choose one representative of all
interleavings, then we have to consider just 1 permutation and n - 1 states. The conditions
under which the reduction is applicable are that the transitions involved commute and do

not disable each other [4, 67, 82, 132, 134], and this is sometimes quite restrictive.

Structural equivalences. This technique is designed to replace large portions of
the state-space with smaller structures that have the exact same properties with respect
to formulae that are checked. To achieve this goal, a notion of equivalence between two
structures is introduced, namely the bisimulation relation [45]. The most challenging task
in exploiting the structural equivalences is searching for those structures that may be bigin-
ulated by smaller structures. In particular, it is often desirable to find a minimal equivalent
of a (sub)model. The algorithm that checks for the largest bisimulation relation between
two structures is inspired from checking the equivalence between languages. In many cases,
however, the maximal equivalence is found to be the identity, hence the original model

cannot be reduced.

Symumetry. A similar approach is targeted at exploiting the internal symmetry of
certain models. If there is some symmetry in a model, an equivalence relation can be
introduced between groups of states. The rest of the verification is performed on the quotient
model induced by that equivalence [38]. As in the previous cases, the quotienting is not
allowed to change the behavior of the original system. A typical class of examples are the

token-ring-like systems. These consist of a set of behaviorally equivalent “cells” arranged
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in a circle and numbered modulo n. Then, one state in each cell orbits through the whole

ring, hence the quotient model may be reduced by a factor of » in the number of states.

Compositional reasoning. The strategy is to check local properties vsing only the
part of the system they actually affect. Then, a composition step follows in which the local
properties are put together. At any time, only a portion of the global systern is considered.
The assembling must lead to an equivalent specification of the original model 42, 75, 97].

A related approach is compositional minimization. The state-space of a concurrent
system is built stepwise, one parallel component at a time, and the space is minimized af

every intermediate step according to behavioral congruences [72].

Abstraction. This approach is effective at the system description level, hence hefore
the model is even constructed. Therefore, it avoids the generation of large, unreduced
models from the very beginning. There are two well-known techniques based on abstraction:
the cone of influence reduction and data abstraction [7, 47].

The cone of influence reduction attempts to reduce the mumnber of variables that are
taken into consideration from the original model. Starting from the variables that are
directly referred to in the specification and going backwards through a chain of dependencies,
all the variables than remain outside the chain can be discarded from the model, as they
have no influence on the outcome of the verification part. This approach is straightforward,
but in many cases it may find very few or even no redundant variables at all, hence little
reduction is possible.

Data abstraction targets the domaeins of the variables. The size of a domain may be

reduced by mapping it to a smaller (abstract) domain that contains only those values that
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are significant to establish a property. For example, an integer variable v may take any value
frow the domain Dy = Z = {...,~1,0,1,...}. But, if the specification cares only about the
sign of v, the domain D, cau be simply changed to the abstract domain ’sz," =2 {0, U by
via the mapping o : D, — D

v, ifw<0

a(x) = vy, i@ ==
v, a0

The original model is then collapsed into a reduced, abstract model that simulates the
original one, and is much smaller. As a result, whatever properties can be established for
the original model they will also be valid in the abstract model. Note that by using this
method, only formulae over the abstract set of propositions can be checked, so the user has
to make sure in advance that it is possible to express properties of the original model in the

abstract form [51].

Induction. The induction technique allows for reasoning on infinite families of finite-
state systems. The most typical examples are the systems parameterized with a “free”
variable. Finding an invariant reduces the verification process to one, arbitrary, member
of the infinite family. To extend the validity to all the systems, an inductive argument is

considered acceptable.

2.6 Symbolic methods

The comrnon charactevistic of all explicit approaches is they attempt to reduce the number
of states that veed to be explored for verifying or invalidating a certain property. An

alternative is offered by symbolic methods, which, in contrast to the explicit methods,
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reduce the size of the representation of the states. By using a compact, sub-linear encoding
of large sets of states with advanced data-structures, such as Binary Decision Diagraras,
symbolic techniques make it affordable to store the entire state space very efficiently.

Binary Decision Diagrams (BDD) have taken Model Checking by storm, ever since
their rediscovery in the mid 1980s, thanks to a paper by R. Bryant [16]. BDDs have been
previously used in boolean logic to efficiently store functions [3, 98]. But so important
was the impact of BDDs in Model Checking, that they have now been “borrowed” by
dozens other fields. A simple search for the keyword BDD on several on-line reference sites
produced more than 2000 titles, in over 50 different journals and conferences, in the last
decade only. At the same time, Bryant's paper on BDDs is now the most cited paper in
all Computer Science, with more than 1300 references, according to the website Citeseer
(http://citeseer.nj.nec.com/cs).

What made BDDs so success{ul is that they work at a low level; on the storage scheme of
states themselves. They exploit the internal structure, symmetries and common properties
of the components of the system by default, without additional analysis or prior knowledge
of the system. Hence, no heuristic is needed to reduce the number of states and in some
cases sets of the order of 101900 states can be stored efficiently in as little as a few megabytes
of memoxy. Moreover, since partial order reduction, equivalences, and abstraction are com-
pletely orthogonal to the actual representation of the states, any of the above may still be
applied to an already efficiently stored state-space.

To sy rabolically represent a model, one needs a scheme to store its states, and another

scheme to store its transition relation.
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Figure 2.4: A BDD encoding of a boolean function
2.6.1 Symbolic encoding of states
2.6.1.1 Binary decision diagrams

Description. A binary decision diagram represents a boolean function of n binary vari-
ables, f : {0,1}" — {false,true}, as a directed acyclic graph (DAG), with a unique root
node and two terminal nodes corresponding to the boolean values false and true (or 0 and 1
for simplicity). Non-terminal nodes are labeled with variable names z;, 1 <4 < n, and have
two outgoing arcs, left and right, corresponding to the two possible values of the boolean
variable, 0 and 1. To evaluate a function for a given input, one follows the path from the
root to a terminal node corresponding to the truth assignment of variables to 0 and 1. The
terminal node indicates the value of the function for the given truth assignment.

A non-terminal node whose two successors are equal is called redundant; two nodes
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with identical children are called duplicate ov non-unigue. The compactness of the BDD
representation is achieved by merging duplicate nodes into a single copy, and eliminating
redundant nodes.
as a truth table into several intermediate forms leading to a reduced ordered BDI), by a
series of reductions: (b) is the initial ordered binary tree, the non-unigque terminals and
non-terminals are merged in (¢} and (d) respectively, and redundant nodes are eliminated
in {e).

There is a clear relationship between the set of BDDs with nodes labeled with identifiers
xi, 1L <i < n (call it BDD,) and the set of n-ary boolean functions, {0,1}" — {0,1}. An
arbitrary DAG from BDD, truly represents a function only if there are no two distinet
paths labeled with the same truth assignment of variables and leading to different terminal
nodes.

To make the relationship biunivocal, a canonical representation is needed. That is, two
boolean functions that are logically equivalent should be represented by isomorphic BDDs.

This can be achieved by imposing three restrictions on a BDD:

(BDD1) There is a total order over the set of identifiers ) < z» < ...zy, such that the labels

along every path are conforming to this order;

(BDD2) There are no duplicate nodes (terminal or non-terminal); duplicates are merged into

one single copy of all such nodes;

(BDD3) There are no redundant nodes;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. STATE SPACE CONSTRUCTION 26

Figure 2.5: The effect of variable ordering over the BDD size

The above restrictions also give a simple algorithin that transforms an initial binary tree
into a reduced and ordered binary decision diagram (ROBDID), which is a canonical form
for representing functions. In Figure 2.4, the final stage (e) is a ROBDD.

If restriction (BDD3) is dropped from the requirement list and replaced with the con-
straint (BDD3') that all arcs connect nodes on consecutive levels, the decision diagrams are
alled quasi-reduced (QOBDD) [98]. In our example this corresponds to the intermediate
step (d). Tt is easy to see that this form is also canonical. QOBDDs may contain redundant
nodes (which are additional nodes compared to the ROBDD form). On the other hand
QOBDDs possess a handy property: every node has its successors labeled with the same
variable name, hence the whole diagram is structured in n “levels”, with arcs connecting
only nodes on adjacent levels. In the reduced version, arcs may skip levels.

The step from storing functions to storing sets is straightforward, as the characteristic
function of a set ¢ € {0,1}" is an n-ary boolean function: xy(z) = 1 if and only if = € U.

Most of our discussion on decision diagrams will be concerned with representing sets.

The wvariable ordering is a critical factor in reducing the size of a BDD. A compelling
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(a) the BDD has nine non-terminal nodes, while for the ordering @ < 4y < 29 < ya (b)
the number of non-terminals is just six. In fact, for the general case with n bits, the st
ordering produces 3 (2" - 1) non-terminals and the second 3n, a logarithmic reduction in
size.

Finding an optimal variable ordering is an intractable problem. Even checking that a
particular ordering is optimal is NP-complete [3]. Farthermore, certain classes of functions
have exponential size for any variable ordering [17].

The only solution in such situations is to look for a “good” ordering. The intuition
behind most heuristics is that variables that depend on each other should be placed in close
vicinity [62, 63]. When no obvious rule can be assessed about a good ordering, a dynamic
reordering technique [124] which periodically rearranges the variables to reduce the number
of nodes can give reasonably good results.

Operations with BDDs. We next explain how to perform various logical operations
using BDDs. The basis for combining two BDDs is the restriction operator: in an n-ary
boolean function f, if the variable @; is bound (restricted) to the constant b € {0,1}, we

obtain

f‘.z:wmb (mlw Ces v'f'n) == f (Cl:]ﬁ -ee g Ly, [), gl o - ,:Iin) -

Given: the ROBDD for f, the ROBDD for the restriction can be obtained by redirecting
all the arcs that point to nodes labeled z; to the b-descendant of that node. Then, step

BDD3) of the definition is performed to eliminate any newly introduced redundant nodes.
E Y )
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The resulting BDID has one variable less than the original, as z; was eliminated.

The reverse operation is called (Shannon) expansion:

f= (71, ff:xw»«()) + (I ’ fl:z;<-~1) :

Based on this divide-and-conquer-like technique, one can write a recursive algorithm to
build the BDD for any binary operation f * g [16], as listed in Figure 2.6. Note that, for
QOBDDs, the test z = y in line 7 holds in every recursive call for BDDs of the same height

defined over the same ordered set of variables.

BDDapply(« : operator, f = bdd, g : bdd) : bdd
The recursive algorithm to compute a generic f x g

1. let 2 and y be the variables corresponding to the roots of f and ¢
2. if both z and y represent terminal nodes

3. return val(z) * val(y)

4. else

5 fo + flaco fi & Slaen

6. go + f}'y%ﬂ? g1 4 f{;l/««ll

7. if & =y then

8. return T - BDDapply (*, fo, g90) + = - BDDapply (x, f1, a1 )

9. elseifr <y

[y
=

return T - BDDapply (*, fo,g) + 2 - BDDapply (*, f1, 9);
. else
return - BDDapply (+, f,90) +y - BDDapply (+, f,91);

fk et
N =t

Figure 2.6: The algorithm for binary operations on BDDs.

Since each call to BDDapply may generate two other recursive calls, the algorithm as
shown has exponential time complexity. By using an auxiliary data structure, called cache
to store all the answers to already computed subproblems, the complexity is reduced to

polynomaial time. Indeed, the number of distinet pairs that can be formed with roots of
) ) ¢
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subdiagrams from f and ¢ is the product of the number of nodes in each BDD [17].
Extensions. There exists a multitnde of BDID generalizations [56]:

e By using decomposition roles other than Shannon’s to obtain Ordered Functional
Decision Diagrams (OFDDs): examples are the positive and negative Davio decom-
position [62]. All the three rules (the two Davio and Shannon) may then be combined
in the Kronecker functional decision diagrams (OKFDDs), which allow different de-
compositions at different nodes. A canonical form of OKFDDs can be obtained by

fixing the rule for each variable.
e By relaxing the ordering condition: these are the Free BDDs,

e By representing arithmetic functions instead of boolean functions:
Multi-terminal BDDs (MTBDDs) [8, 39], are extensions of BDDs used to represent
binary functions of the type f : {0,1}% — {0,1,...,m — 1}. MTBDDs have m
terminal nodes, corresponding to the m possible values of the function. This detinition
can be further extended to arithmetic functions, where each variable may take a finite
set of integer values, instead of binary values: f:{0,...,n; -1} x{0,...,ng—~1}...x
{0,...,ng — 1} = {0,...,m ~ 1}. The resulting form is called Multi-way Decision

Diagrams (MDDs). They are presented in detail in the next section.

e By introducing edge labeling, to obtain the Edge Valued BDDs (EVBDDs) [94]: in
this category also fall the Binary Moment Diagrams (BMD), Multiplicative BMDs

(*BMDs) [18], and Zero Supressed BDDs (ZBDDs) [83].
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2.6.1.2 Multi-way decision diagrams

The very first symbolic model checker, called SMV [104], was successfully employed in
the verification of digital circuits, as BDDs are suitable for modeling this type of systems.
Signals are naturally represented by boolean variables and the combination of gates in the
cireuit can be encoded as a large boolean function.

However, for arbitrary asynchronous systems, BDDs have many difficulties especially in
representing integer functions. A variable xy that takes ny values, can be encoded using
[logy ni] binary variables. However, the height of the diagram may become very large,
and therefore hampers the efficiency of diagram manipulation, as the complexity of BDD
operations depends on the number of BDD nodes.

One way to cope with this problem is to use Multi-way Decision Diagrams to efficiently

encode functions of the type

f:SK‘X...SQXS‘l “‘){O,l}

where &, == {0,...,np ~ 1}, for 1 <k < K.

Originally introduced in [87], MDDs are natural extensions of BDDs, more suitable for
modeling complex asynchronous systems, since they allow discrete variables to take values
over arbitrary finite sets instead of requiring boolean variables. The quasi-reduced version
of MDDs we now define is a natural combination of the multi-way extension with the quasi-
reduced canonical format introduced for BDDs in [90].

Formally:

Definition 2.6.1 4 K -variable quasi-reduced ordered multi-way decision diagram, or MDD
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for short, is a directed acyclic edge-labeled multi-graph where:

e Nodes are organized into K 4 1 levels. We wrile {(klp) to denole o node af level k,

where p is o unique index for that level.

o Level K contains o single non-terminal node (K|r), the root, whereas levels K -1

through 1 contain one or more non-terminal nodes.
e Level O consists of twe terminal nodes, (0]0) and (0]1).

e A non-terminal node (klp) has ny arcs pointing to nodes at level k—1. If the it are,
for i € S, is to node (k—1lq), we write (k|p)[i] = ¢. Duplicate nodes are not allowed
but, unlike reduced ordered MDDs, redundant nodes where aoll arcs point to the same

node are allowed (both versions are canonical).

Notice the inverse indexing of levels, from K down to 1. This is justified by the conven-
tion that the terminal nodes should always be at level 0.

Given the above definition, we can extend our arc notation to paths. The index of the
node at level [ — 1 reached from a node (k|p) through a sequence (ig,..., i) € S x -+ x &,

for K > k > 1> 1, is recursively defined as

(Blp) ik igets i) = (k= 1[EIp) [ie]) ik, -« 2]

The substates encoded by, or “below”, {(k|p) are then
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and those reaching, or “above”, (k) are

A(Elp)) = {e € S x -+ x Sppy t (K[ = p}.

For any node {klp) on a path from the root (K|r) to (0}1), the set of (global) states
B({kip}) = A({klp)) is a subset of the set of (global) states encoded by the MDD, which we

can write as B{{K|r)) or A((0]1}).

Si=1{0,1,2,3) & = {1000, 1010, 1100,
L 1110, 1210, 2000

Eo 5 {0, 1,2 e Pt
4 v } 2010, 2100, 2110
Sy == {0,1} 2210, 3010, 3110,

3200, 3201, 3202,

8, = {0,1,2 .
r=10.1.2} 3210,3211, 3212}

Figure 2.7: An example MDD,

We reserve the indices 0 and 1 at each level k to encode the sets @ and &g % -+ %
&1, respectively.  Such nodes do not need to be explicitly stored; this saves not only a
small amount of memory, but also substantial execution time in the recursive manipulation
algorithms. Figure 2.7 shows a four-variable MDD and the set § it encodes (the node
indices are in boldface and have been chosen arbitrarily, except for those with value 0 and
1). To see whether state (1,2,1,0) is encoded by this MDD, begin with the root node (4/5)
and follow the path: (4|5)[1] == 4, (3]4)[2] = 7, 2|N)[1] = 4, and (1|4){0] == 1: since we
reach the terminal node 1, the state is indeed encoded, ie., (1,2,1,0) € B({4/5)). On the
other hand, we can determine in a single operation that no state of the form (0,143,149, ) is
encoded by the MDD, since (4]5)[0] = 0 and, by convention, node {3]0) is known to encode

the empty set.
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To illustrate how using quasi-reduced MDDs simplifies the manipulation algorvithing, and
how our convention on the meaning of the indices 0 and 1 improves efficiency, we show the
pseudocode for performing a union operation on two MDDs, in Figure 2.8. We use the types
level, index, and local for MDD levels, MDD node indices within a level, and local state
indices, respectively. Function NewNode(k) allocates a new MDD node {(kjz) at level k with
all arcs (k|x){d] == 0, for all i € 8. Setdre(k,p,1,y) sets (kp)[i] to y; Checkin(k,p) searches
a unigue table at level k for a node (klg) with the same ny arc values as (klp); if it finds such
a node, it deletes the duplicate node {klp) and returns ¢, otherwise it inserts (k{p) in the
table and returns p. Cached(UNION Lk, p, q,u) searches an operalion cache at level k using
the hash key “UNION (an integer code), p, ¢”; if it finds the key, it sets u to the associated
cached value and returus frue, otherwise it returns false. PutlnCache{UNION, k,p, q,u)

associates the value u to the key “UNION k., p,q” in the level-k operation cache.

2.6.2 MDDs and structured systems

In an unstructured system, the states are opaque and no internal information is given
about their properties, only their inter-dependencies via the transition relation. Structured
systems, on the other hand, give more detailed information about the system states and
their internal properties, such as variables types, ranges, and other functional dependencies
between them. This information can be exploited in devising techniques to better store and
manipulate large sets of states [108].

A cornon characteristic of the high-level models we consider is that they can be parti-
% . L

tioned, or structured, into interacting submodels. For a model composed of K submodels, a

global system state 1 can be written as a K-tuple (ix,...,11), where iy is the local state of
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Union(k : level, p:index, q: index) : index
Return an index u such that B({klu)) = B{{kip)) U B({k]q)).
1. declare u : index, @ locol;
2. ifp=yg o B{{k|p)) U B({klp)) = B{{k|p))
3. return p;
4 elseifp=1orgs==1 e exploit special meaning of {k{1)
5 retumn 1;
6. else if p =0 e exploit special meaning of {k|0}
7. return q;
8. else if g = 0 e exploit special meaning of (k|0)
9. return p;
10. else if k=0 e terminal case, p and q are booleans
11, return pV g,
12. if Cached(UNION  k,p,q,u) e don’t redo work
13, return w;
14. uw <~ NewNode(k); e create a new node at level k
15, for ¢ = 0 to ny ~ 1
16.  SetAre(k,u,i, Union(k — 1, (klp)[i], (klg)[));
17w «~ CheckIn(k,u); e insert {(klu) in unique table
18. PutinCache(UNION k,p, q,u); e remember resulf
19, return u;

Figure 2.8: The algorithm for the union of MDDs.

submodel k&, for K > k> 1. Thus, the potential state space S is given by the cross-product
Sk x--+x 8y of K local state spaces, where Sy, contains (at least) all the possible local states
for submodel k. For example, the places of a Petri net can be partitioned into K subsets,
so that the marking can be written as a vector of the K corresponding submarkings. In
software modeling, a variable can be considered a component, and its vange is one of the
sets Sg.  In both circumstances, the one-to-one correspondence between submodels and
MDD levels is straightforward, and the partitioning of the system allows us to exploit the
system structure by means of new and improved algorithms.

just as each reachable global state i is mapped to a

Retorning to the issue of indexing

L b

natural number 7 in the explicit approach, one can map local states as well. Asswming for
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now that each local stato space & is known a priori, i.e., can be built considering the &'
submodel in isolation, we define K mappings v, : S -+ {0,1,...,np—1}, where ny is the
size of the local state space Sp. Then, a global structured state (iy,..., 1) can be mapped

to a vector (ig,...,4) of indices.

2.6.3 Symbolic encoding of next-state functions

The next-state function N of a model can also be encoded using a decision diagram, since
a binary relation can be viewed as a set of pairs of states. Therefore, for representing
transitions between states, twice as many variables as the decision diagram encoding the
states are needed. In the case of MDDs, this means encoding the characteristic function of
the transition relation with a 2K -variable MDD. Rather than numbering the variables from
2K down to 1, we distinguish them as “from” and “40” variables, and use unprimed and
primed integers for “from” and “to” levels, respectively. Also, we prefer a double-bracket
notation to distinguish these nodes from those of K-variable MDDs encoding sets of states.
Thus, {5'|p)) is a “to” node associated with the 5 submodel, and {(5'[p)[45] = ¢ means
that the arc labeled with local state index j5 from this node points to {4l¢), a “from” node
associated with the 4 submodel.

If the MDD encoding A is rooted at {(K|t)), we have

(K, i -n i1, 1) € BILK D) < (g, o 1)) € N (iR, oy 1)

In principle, any permutation of the 2K variables could be used, but most common is

that the variables are interleaved, so that the “from” and “to” variables for a given level
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Image(k : level,p : index, q @ index) : indes
Computes Nyyiqy (B({kIp)))

1. declare v, ¢, ¢t @ inde, i : local
2 p=0Vg=0 e gtates not encoded or no event enabled
3. return 0 e return empty sef
4. if k=0 o reached terminal node
5. returmn ¢

6. r ¢ NewNode(k);

7. foreach i & {0...ny ~ 1}

8

s - (Klghld e follow the “from” pattern
9. foreach j € {0...np~1}

10.  t < Image(k ~ L {klp)[El, (K" |s)15]) e recursive call downstream

1. Setdre(k,r, j, Union{{k|r}[j], %) o accumulate new states in (kjr)

12. v e CheckIn{K,r);
13. return r

Figure 2.9: Image computation with MDDs.

are next to each other'. There are at least two good reasons for this. First, it is widely
acknowledged that interleaving is often the most efficient order in terms of nodes required
to store the next-state function. Second, the symbolic state-space generation algorithms
we consider next can be easily expressed using recursion if interleaving is used. Indeed, a
very important third reason related to the above is that traditional symbolic approaches
to represent A fail to exploit the large number of identity transformations (i.e., ig = i} )
present in the class of systems we address.

In order to construct a complete BDD-based approach for state-space construction, the
only missing piece is an algorithm to symbolically compute the next state function on sets
of states. This is traditionally referred to in the literature as tmage computation.

The recursive algorithm in Figure 2.9 takes at input a node at level & in the K-level

"We assume that level k is above level k', since we store the forward wext-state function V. However,
syrholic model-checking [21] also makes use of the backward or previous-state fanction N' and, in this
case, we would have level B above level k.
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MDD encoding the “from” states, {kip), a corresponding node {(kl¢) at level 2k in the
2K-level MDD encoding the next state function, and combines them to extract from the
2K-level MDD the corresponding “to” states. The function is recursive aud at each step
it descends one level in the “from” MDD synchronized with a descent of two levels in the
2K-level MDD, During a call, the “from” states pattern is matched against the interleaved
encoding of A, and all the results of executing the transitions are collected in the node
(klr). An Image(K,p,q) call at level K applies the global next-state function to B({K|p}),
while a call at a lower level, k < K, computes the restriction of the next-state function to
the subdomain encoded by the sub-diagram rooted at {(Elg) (for brevity, this is denoted as
Niiiay)-

For asynchronous systems, it is often advantageous to store the next-state function as a
disjunction [20]. If the events £ are implied by the high-level model, as is clearly the case
for Petri nets, where each transition ¢ in the net corresponds to exactly one event in &, we
simply need to store each N, as a separate 2K-variable MDD (of course, an MDD forest

should be used, so that these MDDs can share common nodes [117]).
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Chapter 3

The Road to Saturation

In this chapter we introduce our new state-space exploration strategy, safuration. This
came at the end of a series of improvements on the traditional breadth-first algorithm,
which is still used in most modern model checkers. We present these improvements in
chronological order, starting with already existing heuristics in Section 3.1 and continuing

with our contributions in the remainder of the chapter.

3.1 Breadth-first symbolic state-space generation

The simplest and most widely used symbolic state-space generation algorithm is shown at
the top of Figure 3.1. An alternative algorithm, shown at the bottom of the same figure,
is conceptually simpler and closer to the definition of the state space S as a fixed-point.
Both versions will halt after exactly as many steps as the maximum distance of any state
from the initial state s. The mwain computational difference is the cost of applying the
next-state function; the traditional algorithm applies N only to the unexplored states U
which, at iteration d. consists of all states at distance ezactly d from s, while the alternative

algorithm applies N to all known states, that is, all states at distance af most d from s.
38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. THE ROAD TO SATURATION 39

BfSsGen(s : stale, N : staleset - 29985500} stateset

Compute & ¢ S starting from s by repeatedly applying A in breadth-first fashion. All sets
are stored using MDDs.

1. declare 8§, U, X : stateset,;

2. 8§ « {s}; e known states
30U « {s}; o unexplored known states
4. while U +# § do e there are still unexplored states
5, X + NU) e possibly new states
6. U « X\ e truly new states
7. 8§ « SulU;

8. return 8,

AlBfSsGen(s : state, N : statesel —» 25885ty + gtateset
1. declare 8,0 : stateset;

2.8 ¢« {sh e known states
3.0 4+ B s ofd states
4. while (0 £ & do e test for the fixed point
5 O + & o save old state space
6. S « OQUN(O): e apply N to entire state space
7. return §;

Figure 3.1: Two symbolic breadth-first generation algorithms.

While it would be wasteful to apply the next-state function to the same state more than
once in an explicit setting, the cost of applying N to a set of states encoded as an MDD in a
symbolic setting depends on the number of nodes in the MDD, not ou the number of states
encoded by the MDD, so it is not clear that the traditional algorithm is better, nor why
the altermative version appears to have been neglected in the literature. Indeed, Section 3.9
reports experimental evidence suggesting that the set If of states having exactly distance
d is ofters not a “pice” set to be encoded as an MDD, Furthermore, the traditional version
of the breadth-first generation algorithin incurs the additional cost of the set-difference
operation required to compute the “truly new states” X'\ §. However, our main motivation
for discussing AllBfSsGen is that it introduces a different way of applying the next-state

function, i.e., one that does not distinguish between new and old states. This is one of the
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Ch8sGen(s : stale, Nyeg : stateset —» 29998+ ghqtesel

using MDDs.
1. declare 8,U : stateset;

2.8 « {sh e known states
3. U + {s}; o unexplored known states
4. while U # § do e there are still unexplored states
5. foreachec & do

6. U + UUNAU); e add to possibly new states
7. U « U\S; o truly new states
8. § « SUU,

9. return S
AlNlCKSs Gen(s: state, Noe s statesel — 25895€0Y: spateset
1. declare S, 0 : stateset;

2.8 + {s} e known states
3.0 « @ e old states
4. while O # 8 do e test for the fixed point
5 ) ¢ & e save old state space
6. foreachec¢ & do

7. 8§ ¢ SUNLSY e apply N, to entire state space
8. return §;

Figure 3.2: Algorithm for symbolic breadth-first search with chaining,

characteristics of the algorithms we introduce in Section 3.6.

A second variation of symbolic breadth-first state-space generation, which introduces
the idea of chaining [123], is shown at the top of Figure 3.2. Its key advantage lies in that
the states in M (U), i.e., the (possibly) new states reachable in one firing of event e from
the currently unexplored states U, arve added to ¢ right away, instead of only after having
explored each event iu isolation from the same original ¢4, In other words, if j(l) ¢ /\/;,(1,3 (i),
e N (i), ..., 5 ¢ N 41 and if the for-loop considers the events in the order
e e el ChSsGen finds all the states in this path in a single iteration, while both
BfSsGen and AlIBfSsGen would reguire d iterations. Note that statement 6 in ChSsGen,

Just like statement 6 in AlUBfSsClen, applies the next-state function to the same states more
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than once. However, it does s0 only to states in the set U being built. The difference
between explored and unexplored states is still kept in the outer while-loop. An algorithm
merging the ideas in AUBfSsGen and ChSsGen is shown at the bottor of Figure 3.2. We
believe that this is the most straightforward state-space generation algorithm when N is
disjunctively partitioned into events, and the results of Section 3.9 show that its performance
is competitive with respect to that of BfSsGen, AUBSsGen, and ChSsGen.

ChSsGen and ANLCKSsGen are fundamentally different from BfSsGen and AUBfSsGen in
one way: they do not find states in strict breadth-first order. This is a second characteristic
of the algorithms we introduce in Section 3.6, where we also discuss the importance of the
order in which events are considered,

This concludes the summary of traditional techniques. We proceed with the presentation
of our contributions, not before introducing a running example that will serve to the better

understanding of our techniques.

Running example: a producer-consumer model

Subniwodl 3

Submodet 1

Figure 3.3: A producer-consumer model and its submodels.

As a running example, consider Figure 3.3, showing a simplified producer-consumer
| H Lo ¥ -

system represented as a Petrl net. This model illustrates the concept of mutual exclusion
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Submodel 1

Figure 3.4: The local states of submodels in the producer-consumer model.

on a shared resource, stored in place r. The producer creates a resource, by firing event
a, when the place p holds a token and place r is empty (this is enforced by the inhibitor
arc from place r to transition ). If the consumer has not used an existing resource yet,
transition a cannot fire. After creating a resource, the producer enters the idle state, with
a token in place ¢. It can later go back to the ready state, by firing event b, and this can
oceur inclependent of the status of the consumer. The consumer is ready to get the resource
when there is a token in place s. If there is an available token in place r, it is removed by

firing transition ¢. Thus, the consumer releases the access to r and enters the idle state,
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with a token in place £. The process may continue indefinitely.

The model has eight reachable (global) states:

S = {(p "M, (' 00y, (10t s H0) (p0 gt 011,

(T)J q(l,,,”t 311)0);(])1 q{),,.ksﬂt};)’ (poqlf"’slt"),(pogl 7‘050751 )}

We decompose the model into the three submodels shown in Figure 3.3, each corresponding
to exactly one non-terminal level of an MDD. The reachable local states of the example are
shown in Figure 3.4. Submodel 1 has two local states, submodel 2 has four, and submodel

3 has two.

3.2 Kronecker encoding of the next-state function

The encoding of sets of states using MDDs instead of BDDs has no immediate advantage
in itself, since the two data structures are very similar, except for the number of levels.
However, the advantages of MDDs become apparent when we consider our encoding of the
next-state function and how this encoding is exploited in fixed-point computations, which
we discuss next.

We adopt a representation of N inspired by work on Markov chains, where the in-
finitesimal generator matrix of a large continuous-time Markov chain is encoded through a
Kronecker algebra ezpression [6] on a set of small matrices [19, 115]. In our setting, this
corresponds to a two-dimensional decomposition of N: by events and by submodels. This
is possible when the decomposition of the model into submodels is Kronecker consistent,

that is, when we can find K - |£] functions Ny, : 8 — 2Nk describing the (local) effect of
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a particular event e on a particular subsystem k. Formally, this means that, for each event

e € £ and (global) state (ig,...,01) € &,
Neligey i) == N elir) % .o Ny oliy).

Thus, it must be possible to express the effect of fiving an event e in a global state as
the cross product of the local effects of e on each submodel.

The local next-state functions Ay, . can be encoded as incidence matrices Ny o € {0, 1} %",
where

Npelig, dil = 1 & ik € N o(ir).

Thus, event e is locally enabled in local state ¢ € Sy, of the &™ submodel, M (i) # 0, iff
not all entries of the it row in N, are zero, Nyeli, ] 5 0.
The overall next-state function NV is then encoded as the incidence matrix given by the

(boolean) sum of Kronecker products

N-Y @ M

ecf K>k>1

The Kronecker encoding of A for the producer-consumer model is shown in Figure 3.5,
as full matrices. In general, the Ny, . matrices are extremely sparse (for Petri nets, each row
containg at most one nonzero entry), and are indexed using the same mapping 4 used to
index 8.

For some formalisims, such as ordinary Petri nets, the Kronecker consistency requirement

is always satisfied, regardless of how the model is partitioned into submodels. In other
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" T 5 . N
NB,( :”“( 00 ) N3 f)““"( 1 ()) N:;,ﬁx‘h“;lﬂ 'NS,(!;:‘::';L{
R VT 0000 T
dooool)| 00 t1olle o001 -
New= | g g0 0 | {N22= o000 | |Ne 1 00 o0 Nza=1i
000 0 100 0 000 0
, N 01 ‘ 0
Niyga=1I» Nyl Nmm( a “) N],d““"( 10 )

Figure 3.5: Kronecker encoding of A for the producer-consurer model.

formalisms, not all decompositions will be Kronecker consistent; however, we can always find

a consistent decomposition by refining the events or coarsening the partition into submodels.

N?.ie' NZL“
0 1 01
ol 11 0
1 1} 1
Nz &3”3" Nie Nl,e
0.1 " 0 1 0 1
A
LI & 0 ol T3
11 11 1
Nl.c
[ Nie
U 00 01 10 11
11 00
01 1
1] 1y
11

Figure 3.6: Satisfying Kronecker-consistency requirements.

Consider for example Figure 3.6, where a model consists of two boolean variables 2
and zo and the partition assigns each variable to a different submodel. If an event e
swaps the values of zy and x9 but is enabled only when zy % @9, the partition is not
Kronecker counsistent. If it were, Ny, and Np, would have to satisfly 1 € Noe(0) and

1 € Nie(0). However, Kronecker consistency would also imaply that (1,1) € Ny (0) x
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N1 o(0) = N (0,0}, while a transition from state (0,0) to state (1, 1) should not be allowed.
To achieve Kronecker consistency, one can then either split event e into ¢ and ¢”, which
allows us to treat the two enabling states, (0,1) and (1,0), separately, or merge the two

levels into a single level with four possible local states.

3.3 An identity crisis

Event e is said to be independent of level k if Ny . = I, the identity matrix, that is, if
its occurrence is not affected by, nor it affects, the local state of the k™ submodel. Our
approach neither stores nor processes these identity matrices. This results in large savings
especially when dealing with asynchronous systems, where most of the Ny , matrices are
identities.

On the other hand, a decision diagram representation of N does not efficiently encode or
exploit these identities. The variables (levels) not affected by an event ¢ are still represented
in the decision diagram by “identity patterns”. These are wasteful both in terms of memory,
as they require ng + 1 nodes per variable along each corresponding path in the diagram, and
in terms of time, as these additional nodes are processed during the image computation,
just like any other node. The compactness of a BDD representation is characterized by
the degree of merging of duplicate nodes and the number of redundant nodes that are
eliminated and replaced with arcs skipping levels. However, when representing N with a
BDD, an arc that skips levels & and & (the “from” and “to’ variables corresponding to
the k% submodel, respectively) means that, after an event fires, the A" component can

be either 0 or 1, regardless of whether it was 0 or 1 before the firing. The more natural
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behavior is instead the one where a 0 remains a 0 and a 1 remaing a 1, the default in our

Kronecker encoding.

Kronecker matrices: Disjunctions of MDDs:
I b C d
101 1:0 I I
2100 1230 1 1820 ) X
17 1 I 0:1 1:0

Monolithic MDD:

{611} 3
!
3
2 3
2 '3'
1 2
)
1 o
1
1
)

Figure 3.7: Kronecker versus MDD encoding of the next state function.

Figure 3.7 shows Kronecker, monolithic MDD, and partitioned MDD representations
of the next state function for our running example (for brevity, the matrices are in sparse
notation and the MDD arcs pointing to 0 are also excluded).

For the Kronecker representation, the total number of nonzero entries is nine and five
out of twelve Kronecker matrices are identities. This is not a remarkable ratio because
the model is small. For many asynchronous systems, however, the nmuber of events grows
linearly in K but most, if not all, events are described by a constant number (independent
of K} of non-identity matrices. Thus, while the Kronecker description potentially requires
O(K?) matrices, O(K) matrices suffice in practice, which is a huge improvement. On the

other hand, the monolithic MDD encoding of A, requires 19 nodes, while the partitioned

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. THE ROAD TO SATURATION 48

MDD encoding requires 8 nodes each for M, A, and N, and 10 nodes for Ny (in total,
only 8 ++ & 4 8 - 10 — 3 == 31 nodes are required, since the three nodes at levels 1 and 1’ for
Ny and Ay, can be shared).

One reason for the large number of nodes in the MDD encoding is the explicit vepre-
sentation of identity transformations, corresponding to patterns where a “from” node (k|p)
with ny, distinct children (K'|¢‘D), such that (&'|¢'N[0] = -+ == (K|~ D) [ng, — 1], shown
with bold lines in the figure. In the partitioned MDD case, these patterns are clearly visible
because all other arcs (K'|q")[4], for j +# 4, have value 0. In the monolithic MDD case, some
of these patterns are harder to recognize because the level-E' nodes may have additional
nonzero arcs, as is the case for the identity pattern at levels 2 and 2/ in our figure, while
other identity patterns are destroyed when performing the union of the next-state functions
for multiple events, as is the case for the identity patterns at levels 3 and 3" of N, and
Ng. However, these transformations are still encoded in the MDD, and they can occupy a

non-negligible amount of memory.

3.4 Event locality

In large globally-asynchronous locally-synchronous systems, most events are independent of
most Jevels. Then, in addition to efficiently representing NV, the Krovecker encoding is also
able to clearly evidence event locality 26, 107], that is, identify which events affect which
levels.

Let Top(e) and Bot(e) denote the highest and lowest levels on which e depends:

Top(e) =max{k : N ,#I}, Bot(e)=min{k : Ny .#I}.
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If events that are independent of all levels (hence do not affect the model’'s behavior) are

ignored, these maximum and minimum levels exist, that is:

Ve e £,

s o

We can then partition £ into K classes,

Ep={ec& : Tople)=k}, foorK>kzx1

where some &, might be empty.

We can use this locality information to avoid unnecessary work [26]. When firing an
event e, we do not have to start at the root of the MDD, since we know that all state
components from K down to Top(e) + 1 are not going to change anyway. Rather, we can
“lump-in-the-middle” of the MDD by directly accessing each node at level k = Top(e) and
fire e in it and, recursively, on its descendants, up to nodes at level | = Bot(e). Of course,
this requires that MDD nodes be organized and stored in such a way that provides easy
access by level. Conceptually, for each node {(k|p), we can compute a node {(k|f) encoding

the effect of firing ¢ in it:

B((k

1) = Nie 5+ % Nio 5 Moo (B(EIp))).

o
ideatity functions

Then, we can substitute node (k|p) with a node (k|u), where u is the value returned by the

call Union(k,p, [), that is,

B({(k|u)) = B({klp)) U B({k|f)).
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"T'his is correct becanse, ifi € & and j € N, (1), we can conclude that j € & and, in particular,

ifie A((klp)) x B({klp)), then § ¢ A({Klp)) x B((E|f)), and substituting (klp) with {(k]u)
will indeed add any such state j.

The efficiency of jumps-in-the-middle is due to two factors. First, we avoid work in
nodes at levels from K to &k + 1. Second, any algorithm that fires e starting frono the MDD
root would reach (k|p) and attempt to fire ¢ in it as many times as the pumber of incoming
arcs pointing to (klp) from level k-+1. Of course, all but the first time the effect of this firing
is retrieved from the operation cache, but the cost of these cache lookups is not negligible.
With jump-in-the-middle, instead, we only need to consider {klp) once.

One complication with this approach, however, is that substituting (klp) with (k|w)

u) instead of {(k|p). Thus,

requires us to redirect all incoming arcs so that they point to (&

in [26], we pair jump-in-the-middle with another improvement, in-place updates of MDD

nodes, which not only avoids the explicit computation of node (k| f), but also greatly reduces

the need to redirect arcs from nodes at level k + 1.

3.5 In-place updates

The idea of substituting (k|p) with (kju) we just discussed can be further improved by
realizing that, instead of computing the result of firing e in (k|p) as a separate node (k| f)
and then computing the union node (klu), we can incrementally modify the arcs of node
{klp), so that, when we are done, they point to the same nodes that the arcs of node {(k|u)
would have pointed, had we have built it explicitly.

This is described in Figure 3.8, which provides the pseudocode for functions Fire and
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faa

Fire(e : event, k : level, p: index) : index

Fire e in {k|p), where k == Top(e), using in-place updates. *When pipelining is used, return
& such that *B((k|z)) = N}/ (B({k|p))).

1. declare f,u: index, 4,7 :local, L : set of local;
2. L+ {ip € S (klp)lie) # OANgelin, -] # 0}
3. while £ # § do

4, pick and remove i from L;

5. f « RecFire(e, k-1, (klp)[i]);

6. if f 40 then

7. foreach j s.t. N [i,5] = 1 do

8. u - Union(k-1, f, (Eip)J]):

9. if w (k|p}lj] then

10. (kip)i] < w

11. if Ny c[7,-] # 0 then e optiopal: for pipelining
12 Lo« LU{j} e optional: for pipelining
13. p <+ Checkin(k,p); e reinsert (klp) in unique table

14. return p;

Reclire(e : event, 1 : level, q: indez) : index

Recursively fire ¢ in (l|g), where [ < Top(e).

1. declare f,u,s : index, 1,7 :local, L : set of local;
2. if I < Bot(e) then return ¢;

3. if Cached(FIRE,l,e,q,s) then return s;

4. 5 +~ NewNode(l),

5. L <= {ip € 8 Nygliy, ] # 0 A (Uplir] # 0}
6. while £ # 0§ do

7. pick and remove i from L;

8. f < RecFire(e,l-1,{l|g)[i]);

9. if f 0 then

10.  foreach j s.t. Ny [i,j] = 1 do

11. u 4~ Union(l—1, f, {|s){7]):

12. if ust(l)s)[7] then

13. {Us)1] + w;
14. s ¢ CheckIn(l, s); e insert (I|s) in unique table
15. PutinCache(FIRE,(,¢,q,s); o remember result

16. return s

Figure 3.8: Algorithm for firing events with in-place updates.
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RecFire, Function Fire is called to fire event ¢ in nodes (k|p), with k = Top(e), and it
updates its arcs (klp)[f] in place. The recursive function HecFlire is called to fire ¢ on nodes
(g), with Top(e) > 1 > Bot(e), but it does not modify these nodes. Instead, it creates a

3) that encodes the local effect of firing € on node (llg) and its descendants. The

node (I
salls Cached (FIRE, L e,q, s) and PutInCache(FIRE 1, e, q, $) are exactly analogous to those
used in Union, except that, when the keyword is FIRE, the search key is now an event, ¢,
and a node index, ¢, instead of the two nodes required for a union. It should be noted that
only the firing of an event e on nodes at levels below Top(e) are cached. This is because, by
updating node (k|p) in place, we keep changing (increasing) the set of states it encodes, thus
the cached value for the effect of firing e in (k|p) becomes obsolete after every update. Note
that, in a traditional approach without in-place updates, we need to cache this informaftion
only to deal with the situation when (k|p) has multiple incoming arcs; each in-place update
in our case is equivalent to creating a new node (or a sequence of new nodes, if Fire uses
pipelining) in the traditional approach, and thus there would be no cached value for such
nodes, unless they are duplicates of existing nodes.

By using in-place updates, Fire achieves a chaining effect: if two local states 7 and ¢/
“locally enable” event e, i.e., Ny [7,-] # 0 and Ny [¢',-] # 0, i Ny .[¢,7'] = 1, and i is picked
before 7/ in statement 4, the effect of firing e in (k|p)[¢] has already been incorporated in
the updated node (kp) (that is, in the node pointed by {(k|p)[j]), by the time j is picked.
Thus, (k{p)[j] will include the effect of firing e, zero, one, or two times. This pipelining can
be carried even further by adding the last two statements in Fire, marked optional in the
pseudocode: if we add the new local states j back to the set £ of local states to explore

(statemenit 12), the order in which the elements in £ are picked does not matter, and the
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result is a “fll” pipelining: event e is fired in the local states of (klp) as long as doing
so discovers new states. Therefore, the call Fire(e, k,p) updates (k|p) in-place so that it
encodes N¥(B({k|p))), where, for notational convenience, we interpret the application of
a global next-state function to a set of substates in the obvious way: N(B({k|p))) really
means Ny o x -+ X Ny (B({k[p})).

In addition to creating and destroying fewer nodes, in-place updates have the advantage
that the node (k|p) being updated is seldom deleted, so that its incoming arcs do not need
to be redirected. In other words, if the value of (k -+ 1lg}[i] was p before a call Fire(e, k, p),
the value should remain p. Redirection is needed only when, after having been modified in
place, node (klp) becomes a duplicate of an existing node {(k|d). In this case, (k|p) must
be deleted and its incoming arcs must be redirected to (k|d) (in other words, we must set
(k+ 1) ] to d). In [26], we do so by using either upstream arcs or forwarding arcs. In
the former case, we actually maintain pointers from each node (k|p) to any node (k + 1|¢)
having pointers to it. In the latter case, we place an arc in the node {(k[p) to be deleted,
pointing to its active duplicate (k|d); (klp) can then be actually deleted only once all the

references to it have been forwarded to {k|d).

3.6 The saturation strategy

An important advantage of using decision diagrams to encode N lies in the ability to
obtain an entire set of new states reachable from the current set through a single symbolic
step. This approach works well in practice for the analysis of mostly synchronous systems.

However, in many practical examples, the state space explosion phenomenon that hampers
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explicit techniques, reshapes itself in the form of a new obstacle for symbolic methods:
“the BDD node explosion”. This usually manifests midway through symbolic exploration,
when the mumber of vodes in the decision diagrams, especially for levels in the middle
section, grows extremely fast, before contracting to the final configuration, which is vsually
much more compact. The peak size of the decision diagram (measured in bytes or nodes)
is frequently hundreds or thousands of times larger than the final size, placing enormous
strain on the storage and computational resources.

A fundamental goal of any exploration strategy, then, should be a small peak-to-final
size ratio. Attempts have been made in this direction, but most of them are still tied to the
idea of breadth-first search through the use of global iterations and have had limited success
in reducing peak memory requirements. The algorithms in [111, 126] aim at reducing the
number of iterations needed to reach all states, by producing a pipelining effect; using a
static causality analysis, events can be ordered so that their fiving increases the chance of
finding new states at each step. Other approaches attempt a partial symbolic traversal on
certain subsets of the newly reached states in the first stages and delay the exploration on
the other portion, only to complete the full search in the end. The high density approach in
[120] targets those subsets that have the most compact symbolic representation to advance
the search in the early stages. The technique in [24] computes, in aun initial learning phase,
the activity profiles of each BDD node in the transition relation and uses this information
to prune the decision diagrams of the inactive nodes. The guided search in [12] uses user-
defined hints to simplify the transition relation, but this requires a priori knowledge of the
system (0 predict the evolution of the BDD.

Our apsproach starts by identifying nodes that contribute to the peak MDD size and are
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eventnally eliminated, as opposed to nodes that ave still (likely to be) present in the final
MDD. To this end, we define a restriction of the next-state function to the set of events

affecting level £ and below:

Ny, = U N, = U Ne

1<i<Ch e:Tople)<k

Then, the following condition gives a necessary, but not sufficient, condition for a node to

be in the final MDD,

Definition 3.6.1 An MDD node (klp) at level k is said to be saturated if it represents
a fized point with respect to the firing of any event that affects only levels k and below:

B({klp)) = N2 (B({klp)))-

It can be shown by contradiction that any descendant of a saturated node must be

saturated as well. Also, since Ncg is simply N, we can conclude that

B((K|r)) = N*(B{K]|r})),

when the root (Klr) of the MDD is saturated. Furthermore, if s € B({(K|r)), we have
B({K|r)) 2 N*(s). Thus, if we initialize the root node (K|r) so that it encodes exactly the
initial state, B{(K|r)) = {s}, and if we saturate (K|r) without ever adding any unreachable
state in 8\ § to B({K|r)), the final result will satisfy B((K|r)) = &.

This is the idea behind our saturation algorithm [27]. We greedily transform unsatn-
rated nodes into saturated ones in a way that minimizes the number of unsaturated nodes

present in the MDD. When working on a node at level k, only one MDD node per level
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is unsaturated, at levels K through k. We fire events node-wise and exhaustively, instead
of level-wise and just once per iteration, and in a specific saturation order that guarantees
that, when saturating a node at level &, all nodes at levels below & are already saturated.
In other words, starting from the MDD encoding the initial state, we first fire all events in
&1 exhaustively in the node at level 1. Then, we saturate the node at level 2, by repeatedly
fiving all events in &. U this creates nodes at level 1, they are immediately saturated, by
fiving all events in £; on them. Then, we saturate the node at level 3, by exhaustively firing
all events in £5. If this creates nodes at levels 2 or 1, we saturate them immediately, using
the corresponding set of events. The algorithm halts when we have saturated the root node
at level K. A detailed example of how the saturation algorithm works is presented in the
next chapter, where we extend it to a more general case, hence the given example serves
both causes.

While we assume a single initial state s, thus a single unsaturated node per level in the
initial MDD, it is trivial to extend the algorithm to the case where there is a set of initial
states encoded by an arbitrary MDD. Also in this case, the number of unsaturated nodes
never increases beyond the initial count. Thus, except for those initially unsaturated nodes,
only saturated nodes contribute to the peak size of the MDD. These saturated nodes are not
guaranteed to be present in the final MDD, as they might become disconnected when arcs
pointing to them are redirected to other (saturated) nodes encoding even larger sets. But
they have at least a chance to be present in the final MDD, since they satisfy the necessary
condition: they are saturated.

The pseudocode for the saturation algorithm is shown in Figures 3.9-3.10. Just as

in traditional symbolic state-space generation algorithms, we use a unigue table to detect
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Generate(s : state, N : & -~ 25) 1 indee
Build an MDD rooted at (K|r) encoding N™*(8), return r.

1. declare r,p: index, k: level;

200 4+ 1

3. for k=1 to K do

4. 1 < NewNode(k);

(IO} ¢ m e the index ¥ (s,) of is 0
Saturate{k,r);

ChockIn(k,7);

p oo

9. return r;

® N e

Saturate(k : level, p: indez)
Update (k|p) in-place, to encode N2 (B({(k|p})).

1. declare ¢ : event, chng : bool;
2. chng < lrue;
3. while chng do

4. chng - false;
5. foreach e € & do
6.  chng <« chngV SatFire(e, k,p);

Figure 3.9: The pseudocode for the Generate, Saturate algorithms.

duplicate nodes, and operation caches, in particular a union cache and a firing cache, to
speed-up computation. In our approach, however, only saturated nodes are checked in the
unique table or referenced in the caches. In particular, the Union function of Figure 2.8
operates correctly without having to know whether the nodes it operates upon are saturated
or not. This is because the result of the union of two saturated nodes is going to be saturated

by definition:

B({klp)) = N2 (B(EIp)) A B({klg)) = Ny (B((klg}))

= B((klp)) U B((k|) = N(B((klp)) U B({E|a)))-

The saturation strategy has several bmportant properties. 1t is very flexible in al-
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Satlire(e : event, k : level, p: index) : bool

Update (k|p) in-place, to encode N2, (N (B((k]p)))).

1. declare [,uzindex, d5:local, L:set of local chng:bool;
2. chng < false;
3. Lt i € S : (Klp)loe] # 0 Nuelie, ] # O

4. while £ # ) do
5. pick and remove i from L;
6. f + SatRecFire(e, k-1, {kp)]);
7. if f 50 then
8. foreach j s.t. Ngli,j] =1 do
9. w - Union(k~1, f, (klp)[5]);
10. if u # (k|p)[4] then
11. (klp)lgl - w
12. chng - true;
13. if Ng olg,] 5 0 then
14, L+ Lu{jh

15. return chng;

SatRecFire(e : event, 1: level, ¢ : indes) : index

Build an MDD rooted at {I|s) encoding N2,(Nc(B({l|g)))), return s.

1. declare f,u,s:index, 1,7 :local, L:set of local, chng:bool;
2. if I < Bot(e) then return g;
3. if Cached(FIRE,l, ¢, q,s) then return s;

4. 5 <+~ NewNode(l); chng <« false;

5L « {ip € S {g)a) # 0, Ny lig, -] # 0}
6. while L # ) do

7. pick and remove i from L;

8. f « SatRecFire(e,l—1,(l|g)[4]);

9. if f # 0 then

10.  foreach j s.t. Ny [i, 5] = 1 do
11. u 4~ Union(l—-1, [, {I|s)[7]);
12. if u # (l]s)]7] then

13. (s)g] 4 w

14, chng <+ true;

15. if chng then Saturate(l, s):

16. CheckIn(l, s);

17. PutInCache(FIRE,l ¢, q,3);

18. return g

-~

Figure 3.10: The pseudocode for SatFire and SatRecFire.
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lowing a “chaotic” order of firing events, as dictated hy the dynamics of creating new
nodes. Moreover, all firings of events ave very lightweight operations, with localized and
chained/pipelined effects, as opposed to the monolithic heavyweight image computation of
traditional breadth-first strategies. Storing and managing only saturated nodes has addi-
tional benefits. Many, if not most, of these nodes will still be present on the final MDD,
while the unsaturated nodes are gueranteed not to be part of it. These properties lead to
enormous time and memory savings, as illustrated in the results section: saturation is up to
five orders of magnitude faster and uses up to three orders of magnitude less memory when
compared to other state-of-the-art tools, such as NuSMV [33]. The experimental studies
for saturation also show that, at times, saturation is optimal, in the sense that the peak

and final numbers of nodes differ by a small constant.

3.7 Correctness

Theorem 3.7.1 Consider a node {klp), K > k > 1, with saturated children. Moreover,
(a) let {I{q} be one of its children, satisfying q # 0 and | = k—1; (b) let U stand for B({l|q))
before the call SatRecFire(e,l,q), for some event e with | < Top(e), and let V represent
B({f)), where f is the value returned by this call; and (c) let X and Y denote B({k|p))
before and after calling Saturate(k, p), respectively. Then, (i) V = N2 y(Ne(d)) and (i) Y =

By choosing, for node {(k|p}, the root {K|r) of the MDD representing the initial system
state s, we obtain Y = N (B{(K|r)) = N2 ({8}) = S, as desired.

Proof. To prove both statements we employ a simultaneous induction on k. For the
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returns 1 becanse of the test on ! (¢f. line 2). Theo, U = V = {(}} and {()} = ’\/'”"0 (N(LO)-
(i1) The call Saturate(1, p) repeatedly explores events in £y, in every local state ¢ for which
Nig (i) 5% 0 and for which (1]p)[4] is either 1 at the begiuning of the “while £ # §" loop, or
has been modified (cf, line 10) from 0 to 1, which is the value of f, hence u, since the call
SatRecFire(e,0,1) returns 1. The iteration stops when further attempts to fire & do not
add any new state to B({1|{p)). At this point, Y = Ng (X) = N, (X).

For the induction step we assume that the calls to Saturate(k —1,) as well as to

SatRecFire(e,l—1,-) work correctly. Recall that [ =k ~ 1.

(i) Unlike SatFire (cf. line 14), SatRecFire does not add further local states to £, since
it modifies in-place the new node (I|s), and not node {l|¢) describing the states from
where the firing is explored. The call SatRecFire(e,l, ) can be resolved in three ways.
If I < Bot(e), then the returned value is f = ¢ and N (i) == U for any set U;
since ¢ is saturated, B({lg)) = NZ/(B({l|g))) = NZ(N(B({l|g)))). I 1 = Dot(e)
but SatRecFire has been called previously with the same parameters, then the call
Cached{FIRE, l,e,q,s) is successful. Since node ¢ is saturated and in the unique
table, it has not been modified further; note that in-place updates are performed
only on nodes not yet in the unique table. Thus, the value s in the cache is still
valid and can be safely used. Finally, we need to consider the case where the call
SatRecFire(e,l,q) performs “real work.” First, a new node (I|s) is created, having all
its arcs initialized to 0. We explore the firing of e in each state ¢ satisfying (l|¢)[¢] £ 0
and N ((i) # 0. By induction hypothesis, the recursive call SatRecFire (e, -1, ({]¢)[i])

returns Ny, (Me(B({I-1]{lg)[i]}))). Hence, when the “while £ 3# §” loop terminates,
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B({s)) = Usget Nieli) x N2 Ne(BU =LA@ D)) = N2y (Ne(B({Hh))) hold
Thus, all children of node {lls) are saturated. According to the induction hypothesis,
the call Saturate(l,s) correctly saturates ({]s). Consequently, we have B({lls)) ==

N N2 (Ne(B({a)))) = N2 (Ne(B({llg)))) after the call.

(i) As in the base case, Saturate(k,p) repeatedly explores the firing of each event e that
is locally enabled in 7 € S; it calls SatRecFire(e, bk~ 1, (kip)[i]) that, as shown above
and since [ = k-1, returns N,ﬁ ot Ne(B((k—1](EIp)[1)))).  Further, Saturate(k,p)
terminates when firing the events in & = {ey, e2,..., ¢} does not add any new state

to B({k|p)). At this point, the set Y encoded by (k[p) is the fixed-point of the iteration

YD e P G N My Vg Wes (- Mgy Ve ) ),

initialized with Y « X. Hence, Y = NZL(X), as desired. O

3.8 Implementation issues

Garbage collection. MDD nodes can become disconnected, i.e., unreachable from the
root, and should be removed. Disconnection is detected by associating an incoming-arc
counter to each node (k|p). Recycling disconnected nodes is a major issue in traditional
symbolic state-space generation algorithms, where usually many more nodes become dis-
connected. In our algorithim, this phenomenon is much less frequent, and the best runtime

is achieved by removing these nodes only at the end. We refer to this policy as LAzy policy.

We also implemented a STRICT policy where, if a node ) becomes disconnected, its

“delete-flag” is set and its arcs {£]p)[i] arve re-directed to (k- 1]0), with possible recursive
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effects on the nodes downstream. When a hit in the cache returns an index s, this entry is
considered stale il the delete-flag of node {(k|s) is set. By keeping a per-level count of the
nodes with delete-flag set, we can decide in voutine NewNode(k) whether to (a) allocate
new memory for a node at level & or (b) recycle the indices and the physical memory of
all nodes at level k with delete-flag set, after having removed all the entries in the cache
referring to them. The threshold that triggers recycling can be set in terms of number of
nodes or bytes of memory. The policy using a threshold of one node, denoted as STricT(1),

is optimal in terms of memory consumption, but has a higher overbead due to more frequent

Optimizations. First, observe that the two loops in Saturate ensure that fiving some
event e € & does not add any new state. If we always consider these events in the
same order, we can stop iterating as soon as |E;| consecutive events have been explored

without revealing any new state. This saves |£x|/2 firing attempts on average, which trans-

PutlnCache(UNION,p, q, s) records that B((k|s)) = B({k|p)) U B({klg)). Since this implies
B({k|s)) = B({klp)) U B({k|s)) and B({k|s)) = B({kl|s)) U B({klq)), we can, optionally, also
issue the calls Cached(UNION ,p, s, s), if s # p, and Cached(UNION ,q,s,3), if 8 # ¢. This

speculative union heuristic improves performance by up to 20% in some models.

3.9 Results

To evaluate our saturation algorithm, we have chosen a suite of examples with a wide range

of characteristics. Their detailed description is given in Appendix B.
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In all cases, the state space sizes depend on a parameter N.

o The dining philosophers and slotted ring models |26, 111] are obtained by connecting N
identical safe subnets in a circular fagshion. The MDD has N/2 MDD levels {two
submnets per level) for the former model and N levels (one subnet per level) for the
latter. Fvents are either local or synchronize adjacent subnets, thus they span only

two levels, except for those synchronizing subnet N with subnet 1, which span the

entire MDD,

e The round-robin muter protocol model [72] also has N identical safe subuets placed
in a circular fashion, which represent N processes, each mapped to one MDD level.
Another subnet models a resource shared by the N processes, giving raise to one
more level, at the bottom of the MDD, There are no local events and, in addition
to events synchronizing adjacent subnets, the model contains events synchronizing

levels nand 1, for 2<n < N + 1.

e The flexible manufacturing system (FMS) model [107] has a fixed shape, but is pa-
rameterized by the initial number N of tokens in some places. We partition this model
into 19 subnets, giving rise to a 19-level MDD with a moderate degree of locality, as

events span from two to six levels.

We conducted two series of experiments. In the first, we compared the various explo-
ration algorithms presented in Section 3.6, which we implemented in our tool SMART using
MDDs and Kronecker matrices.

To the left of Tables 3.1-3.2 are the model parameters (N and [&], the state space size),

while the runtimes and memory requirements for six different exploration strategies are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. THE ROAD TO SATURATION tid

listed in the right hlocks of columus, respectively. The strategies considered are the two
variants of breadth-first search, BfSsGen and AllBfSsGen, the two variants of BFS with
chaining, ChSsGen and AUChSsGen, the in-place update approach of [26] (Fwd), and the
saturation algorithm [27] with LAzY garbage collection policy (Saf). The last column in
Table 3.2 lists the memory needed by the final MDD, encoding the entire state space, this

quantity being independent of the algorithi used.

N Reachable Time (sec)

states Bfs | AUBfs | Chn | AllChn | Fwd | Sai
Dining Philosophers: K =N, [S§;|=34 for all &

50 | 2.2x10% 37.6 36.8 1.3 1.3 0.1 0.0
100 | 5.0x10% | 644.1 | 6304 5.4 5.9 0.3 02
1000 | 9.2x 109 — L 8954 | 915.5 4.6 1.1
10000 | 4.3 108269 e | 7040 | 84.4

Slotted Ring Network: K = N, |Sp|=15 for all &
5 1 5.3x107 0.2 0.3 0.1 0.1 0.0] 0.0
10 | 8.3x107 21.5 24.1 2.1 1.2 0.1 0.0
15 | L5x10'% 17454 | 7715 185 8.9 051 0.1
50 | 1.7x1052 | 12031 2.9

100 | 2.6x 109 4976.1 | 21.6

Round Robin: K= N+1, |Sg|=10 for all k except |§)|=N+1
10 | 2.3x10% 0.2 0.3 0.1 0.1 0.0 0.0
20 | 4.7x107 2.7 441 0.3 0.3 01} 0.0
30 | 7.2x10%0 16.4 26.7 0.7 0.7 0.3 0.1
50 | 1.3%x 1017 263.2 | 4276 2.9 2.8 1.0 0.2
100 | 2.9x10%2 -— e | 2201 19.3 7.7 1.2
200 | 7.2x10%2 e — 58.1 1 10.9
FMS: K =19, |Si|=N+1 for all k except |517]=4,|S12| =3, |57 =2
5 1 2.9%x100 0.7 0.7 0.1 0.1 0.0 0.0
10 | 2.5x10Y 7.0 5.8 0.5 0.3 0.1 0.0
15 | 2.2x101 41.0 | 30.5 1.9 1.0 0.2 0.0
20 | 6.0x10'2 183.6 126.0 5.3 2.3 0.5 0.1
25 | 8.5x 1018 677.2 437.9 12.9 5.1 1.0 0.1
150 | 4.8x10% e e 8.4

Table 3.1: Time for state-space generation algorithms in SMART,

'The results show a steady performance gain that “chronologically” follows the series of
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N Reachable Memory (MB)
states Bfs | AllBfs ! Chn | AlChn | Pwd | Sat | final
Dining Philosophers: K=N, [8;]=34 for all k
50 | 2.2x10% 146.8 131.6 2.2 221 007] 001 00
100 | 5.0x10%% | > 999.9 | > 999.9 8.9 891 021 021 00
1000 | 9.2x 10526 e | 8952 1 8950 | G5 04 0.3
10000 | 4.3x1082% | 551 391 3.1
Slotted Ring Network: K = N, |8y l =15 for all k
5 | 5.3x%10¢ 0.8 1.1 0.3 027 007 00 00
10 | 8.3x10% 39.0 45.0 5.7 3310 001 00| 00
15 | 1,55 104 344.3 375.4 | 351 2021 01 011 0.0
50O | 1.7x1052 e 421 22| 01
100 | 2.6x1080% o} — | 44.5 | 14.8 | 04
Round Robin: K e N1, QSH"‘ 10 for all & @xwpt }é:q} = N 41
10 | 2.3x10% 0.6 121 0.1 0.1 00] 00 00
20 | 4.7x107 5.9 1281 0.5 0.5 00 00] 0.0
30 | 7.2x104 227 48.9 1.3 1] 01 0010 00
50 | 1.3% 107 126.7 257.7 4.3 381 02 01 0.1
100 | 29%x10% | — — 1 221 2001 0.7] 04| 04
200 | 7.2%1052 — 27| 14| 14
FMS: K19, lS;J""N{ 1 for all & wuept (bl([wtl, |S12]=3, |S7|=2
51 2.9%10° 2.6 2.9 0.4 021 001 00 0.0
10 | 2.5x10° 18.2 147 23 131 0.0 00 00
15 | 2.2x10M 61.9 48.8 8.0 431 01 01} 0.0
20 | 6.0x10%? 154.0 1194 | 202 1031 01 01 0.1
25 | 8.5%x1018 319.7 245.3 | 42.7 2121 031 02] 0.1
150 | 4.8%x10% e ~— 1307 | 15.8

Table 3.2: Memory consumption for state-space generation algorithms in SMART

improvernents presented in this chapter. The chaining technique improves on traditional
BFS, the in-place updates and locality improve on chaining, while the saturation strategy
is vastly superior to all predecessors by several orders of magnitude, both in terms of time
and memory consumption.

On the issue of using just the MDD encoding of frontier set (strictly new states) versus
the encoding of the entire current set in the BES iterations, we found a rather surprising

fact. Not only does the unanimous preference for the frontier set approach seems to be
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unjustified, but, at least for the clags of asynchronous systems studied here, the second
approach that uses all states performs consistently better (even for the dining philosopher
model, where ChSsGen and AUCASsGen have shimilar timing performance, AUCHKSsGen uses
substantially less peak memory). This is counterintuitive only in the context of explicit
methods. Decision diagrams exploit structure in the encoded sets, which seems to be poor
in the frontier set.

In the second experiment (Figure 3.3) we compare three variants of our new algorithm
using both the LAzy policy and the STRICT policy (with thresholds of 1 or 100 nodes per
level). For reference, we also compare them with the RECURSIVE algorithmn in [107] and
the FORWARDING algorithm in [26]. On the left column, Figure 3.3 reports the size of the
state space for each roodel and value of N. The graphs in the middle and right columns
show the peak and final number of MDD nodes and the CPU time in seconds required for
the state—space generations, respectively.

For the above models, saturation is up to two orders of magunitude faster than [107]
and up to one order of magnitude faster than [26]. These results are observed for the
LAzY variant of the algorithm, which yields the best runtimes; the STRICT policy also
outperforms [107] and [26]. TFurthermore, the gap keeps increasing as we scale up the
models.

Just as important, the saturation algorithm tends to use many fewer MDD nodes, hence
less memory. This is most apparent in the FMS model, where the difference between the
peak and the final number of nodes is just a constant, 10, for any STricT policy. Also
notable is the reduced memory consumption for the slotted ring model, where the STRICT(1)

policy uses 23 times fewer nodes compared to [107], for N = 50.
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Model & size Peak & final MDD nodes Generation time (sec.)
Dining phil. 1000 prommr
N o 100 e
100 | 4.0710% ol I
200 | 2471012 v et
400 6101025() 1 “ o e

. amy B it B
600 | 1.51-1087 ot ] L
800 | 3.72-10%01 .
1000 | 9.18.10826 ' 200 400 60D BOD 1000
1()00Q ¥ ji ¥ ¥ 1 T T

Slotted ring
N S

10 ] 8.29.10°
20 | 2731020
30 1 104100
40 | 4.1610%
50 | 1.72-10%2

Q.1
10 15 20 25 B30 35 40 46 50

Round r()l)ill 45000 T 1t T 1000 T ¥ 1
: - 40000
N S 36000 F 100
10 | 2.30°10% 30000 } M
25 | 1.89.10° 256000 "

50 | 1.27.1017 2o | ] Ty

100 | 2.85-10%* 10000 | A~ J/‘I/ 1 0.1 g

150 | 4.821097 5000 | e v oo ,
200 | 7.28.1052 Yo s e 180 200 O w0 180 200
FMS 60000
N iy 50000 |-
5 | 2.9010° 40000
10 | 2.5010° 30000
25 8.54-10‘f 20000
‘29 4'24’_101' 10000
75 | 6.98.10" ;
100 | 2.7010% 0 10 20 30 40 50 60 70 80 90 100 001 10 20 30 40 50 60 70 B0 90 100
Key lazy wobone fazy -t
strict(1) e g:tricmg :
sirict(1010) airiot(100,

forwarding -

forwarding - eoursive -8

Table 8.3: Results for the saturation algorithm.
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In a nutshell, regarding generation time, the best algorithun is Lazy, followed by
STRICT(100), STRICT(]), FORWARDING, and RECURSIVE. With respect to memory con-
sumption, the best algorithin is Stricr(l), followed by STrRICT(100), LAZY, FORWARDING,

and RECursIVE. Thus, our new algorithw is consistently faster and uses less memory than

previously proposed approaches.
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Chapter 4

Saturation Unbound

In devising the algorithms presented so far, we have agsumed that the model is partitioned
s0 that the state space of each submodel can be generated in isolation. This practice requires
careful addition of constraints (such as inhibitor arcs for Petri nets) to ensure correct local
behavior without affecting the global behavior. Traditionally, the burden of this task has
been placed on the user, and this is often a difficult and error-prone endeavor,

In circuit verification the possible values of each state variable are known: they are
simply 0 and 1. For arbitrary systems modeled in high-level formalisms, such as Petri nets
or pseudocode, determining the range of the state variables is more challenging. One can
argue that this problem is as hard as constructing the global state-space itself.

In this chapter we introduce a new algorithm that merges an explicit, on-the-fly con-
struction of the local state-spaces, Sy, with the symbolic global state-space generation. The
algorithin produces an MDD representation of the final state-space and an exact represen-
tation of the “minimal” local state spaces. This relieves the modeler from worrying about
the behavior of submodels in isolation,

Symbolic analysis of unbounded discrete-event systems has been considered before. In
most cases, the goal is the study of systems with infinite but regular state spaces. Ior

69
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example, the Quene BDDs of [68] allow one to model systems with a finite number of
boolean variables plus one or more unbounded queues, as long as the contents of the queue
can be represented by a deterministic finite automaton. The MONA system [76] implements
monadic second-order logic and can be used to verify parametric systems without relying
on a proof by induction. These types of approach can be generally classified under the
umbrella of Regular Model Checking [13].

Here, we target a different problem: the analysis of bounded models with unknown
bounds of the state variables. Traditional symbolic state-space generation assumes that
each local state space is known a priori. One could argue that this is reasonable for BDD-
based methods, since each boolean variable takes simply values in {0,1}; bowever, this
requires a similar assumption, i.¢, that we know how many boolean variables are needed
to represent some system variable, such as an integer variable in a software module being
modeled, or the number of tokens in a Petri net place. In other words, we need to know each
Sk, and in particular its size ng, so that we can set up either the correct number [logny]
of boolean variables for it, if we use a BDD, or the correct size nj, of the nodes at level k,
if we use an MDD.

The algorithm we describe in this section can be used for syrmbolic state-space generation
when all we know (or need to assume) initially about Sy is that it has a finite but unknown
size. The main idea is to interleave symbolic generation of the global state space with
explicit, “ou-the-fly” generation of the smallest local state spaces (plus, possibly, a small rim
of additional local states that are discarded at the end). Starting only with the knowledge
of the initial state, the algorithm discovers new local states at each level. As ny, increases,

the size of the MDD nodes at level & increases as well (if we used BDDs, the number of
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levels would have to tucrease instead).

Typical applications of this algorithm are found in mwodeling distributed software, one
of the most challenging cases for symbolic methods. For this type of systews, even though
the state spaces are finite, the highly “irregulax™ nature of the local spaces makes it difficult
to apply Regular Model Checking rmethods.

For a given high-level formalism, we can attempt to pregenerate the k' local state space

th gybmodel,

&, with an explicit traversal of the local state-to-state transition graph of the &
obtained by counsidering all the variables associated with that submodel and all the events
affecting those variables. Unfortunately, this may create spurious local states. For example,
it the two places of the Petri net in Figure 4.1(a) are partitioned inte two subsets, the
corresponding subnets, (b) and (¢), have unbounded local state spaces when considered in
isolation. Iu subnet (b), transition u can keep adding tokens to place a since, without the
input arc from b, u is always locally enabled. Hence, in isolation, ¢ may contain arbitrarily
many tokens. The same can be said for subnet (c). However, S = {a*b?,a"'}, so we would
ideally like to define 8y = & = {0, 1}. This can be enforced by adding either inhibitor arcs,
(d), or complementary places, (e). Consider now the Petri net of Figure 4.1(f), partitioned
into two subnets, one containing ¢, d, and ¢, the other containing f and g. The inhibitor
arcs shown avoid unbounded local state spaces in isolation, but they do not ensure that
the local state spaces are as small as possible. For example, the local state space built in
isolation for the subnet containing f and g is { %%, 14", f9', f'g*}, while only the first
three states are actually reachable in the overall net, since f and g can never contain a
token at the same time. This is corrected in (g) by adding two more inhibitor arcs, from

g to v and from f to w. An analogous problem exists for the other subnet as well, and
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Figure 4.1: Local state spaces built in isolation.

correcting it with inhibitor arcs is even more cumbersome.

Thus, there are two problems with pregeneration: a local state space in isolation might
be unbounded (causing pregeneration to fail) or it might contain spurious states (causing
inefficiencies in the symbolic state-space generation, since ny, is larger that needed). Asking
the modeler to cope with these problems by adding constraints to the original model (e.g.,
the inhibitor arcs in Figure 4.1) is at best burdensome, since it requires a priori knowledge
of §, the output of state-space generation, and at worst dangerous, since adding the wrong

constraint might hide undesirable behaviors present in the original model.

4.1 Local state spaces with unknown bounds

We now describe an on-the-fly algorithm that intertwines explicit generation of the local
state spaces with symbolic generation of the global state space and, as a result, builds the
Sg % -+- x 8. Ideally, the additional time spent exploring local state spaces on-the-fly

should be comparable to that spent in the pregeneration phase of our previous algorithm.
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This is indeed the case for our new algorithm, which incrementally discovers a set é»k of
locally-reachable local states, of which a subset & is known to be also globally reachable.
Our algorithm confirms that a local state 45 € E;}; is globally reachable when it appears as the
k™ component of some state encoded by the MDD rooted at (Kr). Since unconfirmed local
states in ﬁk \ S are limited to a “rim” around the confirmed ones, and since unconfirmed
states do not affect the size of the MDD nodes, there is only a small memory and time
overhead in practice.

In this on-the-fly version of the saturation algorithm, the arcs of the MDD nodes are
labeled only with confirmed states, while our Kronecker encoding of the next-state func-
tion must describe all possible transitions from confirmed local states to both confirmed
and unconfirmed local states. Thus, we only explore global symbolic firings originating in
confirmed states.

The on-the-fly algorithm follows exactly the same steps as the pregeneration one, except
for the need to confirm local states. Rather than providing the entire pseudocode for this
modified algorithm, we show procedure Confirm in Figure 4.2, and list the three places
where it should be called from the pregeneration pseudocode of Figure 3.9. Between lines

3 and 4 of function Generate we add the statement
Confirm(k,0);

to confirm each initial local state, since we number local states starting at 0, that is,
P(sg) = 0 for all submodels k. Between lines 10 and 11 of function SatFire we add the

statement

if § & & then Confirm(k,7);
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and between lines 12 and 13 of function SatRecFire we add the statement
if § & & then Confirm(l, 7);

to confirm each local state 7 (if not already confirmned) after it has been determined that a

global state with § as the k'™, or "] component can be reached through a symbolic firing.

Confirm(k < level, i : local)
Add local state index i to Sy and build the corresponding rows Ny o[4, -] for all matrices
Nk,e 7‘( L

1. declare ¢ : event, j:local, n:int, i, ji: stele;

2. 0 4 e/:l‘l(/),

3. foreach e s.t. Ny, # I do

4. foreach ji € Ny (ix) do e access high-level model
5. 7 + k(e "

6. if 7 = null then ® jr & Sk, new local state
7. (i) « Skl e assign next local index to jj,
8. J e |5

9. & + SU{jnk

10, Ngeli gl « 1
11, S « & {ik}i

Figure 4.2: The Confirm procedure for saturation on-the-fly.

The firing of an event e in a local state 7 for node (k|p) may lead to a state j € S or
JE S \Sx. In the former case, j is already confirmed and row j of Ny . has been built, thus
the local states reachable from j are already in §;c. In the latter case, 7 is unconfirmed: it is
locally, but not necessarily globally, reachable, thus it appears as a column index but has no
corresponding row in Ny, .. Local state j will be confirmed if the global symbolic firing that
used the entry Ny ([i, 7] is actually possible, i.e, if e can fire in an MDD path from Top(e)
to Bot(e) passing through node (k{p). Only when j is confirmed, the corresponding rows
Ny,eld, ] (for all events e that depend on k) are built, using one forward step of explicit local

reachability analysis. This step must consult the description of the model itself, and thus
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works on actual submodel variables, not state indices. This is the only operation that may
discover new unconfirmed local states, Thus, the on-the-fly algorithm uses “rectangular”
Kronecker matrices over {0, 1}‘%"‘@*. In other words, only confirmed local states “know”
their successors, confirmed or not, while unconfinmed states appear only in the columns of

the Kronecker matrices.

4.2  Example

Figures 4.3-4.5 illustrate the application of the on-the-fly algorithm on our running example.

The net is partitioned into three subnets, defined by sets of places {p}, {¢,r}, and {s,1},

{d}. In each snapshot we show the current status of the MDD on the left, and of the
Kronecker matrices and local spaces on the right. Local states are described by the number
of tokens, listed as superscripts, for each place in the subnet. Their equivalent indices, that
is, the mapping v, is also given (=), and confirmed local states are underlined. Saturated
MDD nodes are shown in dark background, light foreground. For the matrices we adopt
a concise description listing only the nonzero entries, in the format row:col. This is very

close to the actual sparse storage representation we use for each Kronecker matrix.

(a) The algorithm starts with the insertion of the initial state (0,0,0), encoded with one

MDD node per level.

(b) The initial local states, each indexed 0, are confirmed. Their corresponding rows in
the Kronecker matrices are built by consulting the model. This leads to the discovery

of new local states. In subspace 83, local state p¥, indexed 1 is obtained by firing
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(a) Initial Configuration:

o b ¢ 4 Sy {p} m
2o 3 Ily S {g™YY s {0}
2 1 Eyom {10} {0}
2[o] LR
20

(b) Confirm initial p' =0,¢%Y 2 0,:4% = 0

a b & d

2[4 K 02T T
2 1
2{0] 1 1 0:1
2{0 ]
(¢) Saturate (312)(Fire «):
€ b I d
slTor o211 b
21 0 i
L I 1 0:1
o b e d Sy={pt,p% %} = {0,1,2)
3700762771 I Sy {0 ‘i,gf"r“i,(;(’rl‘_ql'ro} = {0,1,2,3}
2 [T T 12T 8T &y = {y Ty 2= {0, 1}
1 1 I 01
« b ¢ d Sa={ph, 0%, 9%} = {0,1,2}
T T2 1T 11 Sa=={q0r0 gt el g0 qtr0)
01 (12 |13 (1 Sy {810, 80T} = {0,1}
I I 0:1
a_ b {plp®, 0} = {0, 1,2}

poy

0:1 1 O
011 L2 03

070 ghrl, 0rl, gtr0)
& {0, L}

={0,1,2,3)

- e
o) et il Dy

Figure 4.3: Saturation by example (part 1).
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(g) Saturate (1{3}{Fire d):

@ L
(1 (i

bt}

| 1
1 I [N A E

R
o b ¢ d = {4, 1,3}
0:1 U: I rz”i‘ cptr gt} {0, 4, 2,3,4)
Meldd T L2501 13 1 P [
] 1 el 10
a b ¢ d ! p" ,n*" } {(J l,‘.}
(:] (:2,1:0 I ¥ 4

b G

TS T T80 T T3 T T
. O N S

(j) Continne Saturating (3]2)(Fire b):

3 b :
(1 0:2,1:0 1

0:1,:4 ) L A0 | 1S i
1 1 0:1 1:0

a b ¢ d Ss={p',p",p?} = {() 1,2}
i1 0:2,1:0 1 I Sy : M{;]T/qu rl, gVt q‘r“ gt} = {0,1,2,8,4}
0T34 [ 12,30 | Th20 |1 §1 o= (5T, SO00T = (0L
T I o T

(1) Saturate (2]4)(Fire ¢)
a b ¢ d gz {p 0%, p*} = {0, 1, 2}
0:1 | 0:2,1:0 I I Sa={g0r%, o'rl %, ¢ r®, Pt} = {0,1,2,3,4)
0084 T30 | 13,20 7 1 Sy = {gifﬂ 2945} 3""{“6 1}
I I 0:1 1:0
(m) Union (2}2) and (2}4)
I ¢ d = {pt, 0% p%} = {0,1,2}
a1 i ' q“rtr: qtrt, g”/“.qlr" et E {0,1,2,8,4}
O3 TS0 T 50 1 = fgb 7
I 0:1 1:0

Figure 4.4: Saturation by example (part 2).
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(n) Continue Saturating (3|2)(Fire a):

« b ¢ d
3 1 2, 1 I i
20 Waed | 180 120 i
1 1 I o1 1:0
b c d
0:2,1:0 I 1
T2,3:0 1 1:3,2:0 [
1 a1 1:0
[/ b [ d
3 0:1 :2,1:0 1 1
2ol 3d | L2301 1320 1
i 1 i 0:1 1:0
(q) Continue Saturating (3]2)(Fire b)
b o d Sz={ph,p%p* Y = {01
0:2,1:0 1 1 5= {g0r0) glel, q(’r q 70, g7} = {0, 1,2,8,4}
12,30 | 1320 [ ¥ W ST =70, 17
1 [V} 1:0
a b c d ={p,pf, 11 ,,,,,, {0 1, 2}
3 G:1 0:3,1:0 T i .ﬁm {q%", q 7l g0t g0 g%ty = 0,1, 2,3,4)
2 701,34 | 12,30 | 13,20 1 1 pee -F“;,
3 1 ) 0:1 1:0
(8) Discard unreachable local states:
a. b [ d
3 [76:9 1:0 1 1 #={0,1,2,3}
AR IV R A ER T TR I AN 1 T B |
1 I i :1 1:0

Figure 4.5: Saturation by example (part 3).
8 I
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eveut a, and local state p?, indexed 2, by firing event b. Sirailarly, in subspaces §?
and &, local states ¢'r! and s"t! are discovered from the initial local state, and are

each indexed 1.

(¢) The saturation process starts with the bottom node (1]2), for which no event is en-
abled, hence it is marked saturated. The same holds for node (2{2). Moving up, we
begin saturating the root node, (3|2). Event a is enabled at level 3 by local state

3).

0. SatFire(a,3,2) calls SatRecFire(a,2, (3]2)[0]), which creates a new node, (2

Since local state 0 at level 2 enables a, the recursive call continues downstream with

SatRecFire (a,1, (212)[0]). This returns index 2 = (2{2)[0], since 1 < Bot(a).

(d) Upon return, an arc is set from (23)[1] to (1|2), meaning the unconfirmed local state
g*r' = 1 has been globally reached and the Confirm procedure is called on substate
g'rt. As a result, two new local states, ¢%' and ¢'+9, are discovered by locally firing
events b and ¢, respectively, and indexed 2 and 3 in &,. The pairs 1:2 and 1:3 are

added to the corresponding matrices, Ny j and N .

(e) At this point, SatRecFire(a,2,2) has the result of firing a below level 2, encoded by

(2

3), which we need to saturate. The only event in &, ¢, is enabled by local state 1,
and moves subsystem 2 to local state 3, according to Ny .. SatFire(c, 2, 3) makes the
recursive call SatReclire(c, 1, (213)[1]). This creates the node (1|3), and sets its arc

{(1]3)[1] to (0[1), the base case result of SatRecFire(c,0,1).

(f) Local state s"t* = 1 has been globally reached and has to be confirmed in &§. The
only possible move discovered from this state is via event d, and leads submodel 1 to

the already known local state s't¥ = 0.
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(g) Since {1]3) is a new node, it is immediately saturated, by firving event d, the only
element of &. This adds the arc (1{3){0] to point to the terminal node {0]1). Local
state 0 at level 1 is an old state, hence it does not need to be confirmed again. Node
(1]3) is declared saturated and returned as the result of SatRecFire{c,1,2). An arc is
set from (2]3)[3] to (1|3} to represent the local move from local state 1 to local state

3 in Sy, as demanded by No .

(h) Local state ¢'r" = 3 now has to be confinmed. It leads to the alrecady known state
¢"r% = 0 via b, and a new local state ¢%r!, which is indexed 4, via a. Node (2/3) is
now saturated and it is returned as the result of SatRecFire(a,2,2), which started in
snapshot (c).

¥ z= 1 has been reached.

(i) Arc (3]2)[1] is set to point to (2|3}, signifying that Jocal state p
The confirmation of it in g», adds one entry in the Kronecker matrices: to p! = 0 in

NB,IJ-

(j) The saturation of node (3]2) continues with the firing of the other event in &3, b.
SutFire(b,3,2) is enabled by both local states at level 3 represented in the node, 0
ancl 1. The first subsequent call, SatRecFire (b, 2, (3|2){0]) finds no local states at level
2 enabled in node (3(2)[0] == (2]2). The recursion stops and returns index 0, signaling
the failure to fire event b from this particular combination of local states. The second
call, SatRecFire(b,2,(3]2)[1]) is successful in firing b, based on the enabling pattern

(1, 1,%), and creates node (2[4).

Opl =

(k) Since local state ¢r 2 is reached in this firing, ¢°r' needs to be confirmed in S;.

The only move discovered is to ¢%" = 0, via event ¢. The corresponding element,
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1:0, is ingerted in Ny .

(1) After setting the arc (2}4)[2] to (1]3), node (2}4) bas to be saturated. Event ¢ is
enabled, and its firing causes node (24} to be updated by setting its arc {24)[0] to

(112). No other firings produce changes to the node, which is returned as the result

of SatRecFire (b,2,(3

20).

(m) Upon return, node (3|2) is updated in-place to incorporate the effect of the recursive
calls. This requires a union operation between its existing child in position 0, (2|2),
and (2{4). The result of the union is (2|4). The arc (3]2)[0] is updated accordingly,

causing node (2|2) to become disconnected and, thevefore, removed from the diagram.

(n) Even though both events a and b have alveady been fired in (3]2), the saturation of the
root node is not complete, siuce both firings produced new states. The loop continues

and event ¢ is fired again, which induces the creation of node (2|5) at level 2.
(0) Node (2|5) is saturated by firing event ¢, and adding in-place the arc (2|5)[3] to (1]3).

(p) The union of {2|3) and (2|5), required by the in-place update of the root, is node (2/5),
which is known to be saturated, as it represents the union of two saturated nodes.
Node (2/5) is the new successor of the root along arc 1. The old successor, node (2|3),

becomes disconnected and is deleted.

(q) Finally, we fire event b one more time and set {3]2)[0] to the result of the union between

(2]4) and newly created (2[6).

(r) The union of the two nodes is encoded by (2]6). Further attempts to fire ¢ or b in the

root. do not discover any other new states, hence the root is finally saturated.
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(s) The algorithm concludes by discarding all local states still unconfirmed. These are

g

p? = 2, at level 3, and ¢%r 4, at level 2.

4.3 Implementation issues

4.3.1  Data structures for the next-state function

We store the next-state function A of the model using a sparse watrix N, whose entries
are themselves sparse matrices. The rows of N correspond to the levels of the model.
The columns of N correspond to the events of the model. Fach entry of N coutains a
sparse matrix Ny . describing the effect on level & of firing event e. Storing N as a full
two-dimensional array would waste a significant amount of memory, since most Ny . are

(134

identities, so we use a sparse encoding where a issing entry means “identity”, not “zexo”.

We provide sparse access using linked lists by columns (8o that we can efliciently access
all levels affected by an event ¢), and by rows (so that we can efficiently access all events
affecting a level k). These two types of access are required by the most common and
expensive operations of state space generation, firing an event and confirming that a local
state is globally reachable, respectively. The resulting data structure is shown in Figure 4.6.

Each node in the figure consists of a pointer to the data structure storing N ., plus
pointers to the next elements along its row and along its column. Fach Ny, in turn, is
stored as a sparse row-wise matrix [114], since the only required access to Ny ¢ is the retrieval
of all local state indices j such that Ny .[7, 4] = 1, for a given ¢. The ouly implementation
difficulty is that the matrix size must be dynamic, since as we discover local states on-the-

fly, we need to add new rows to it (adding new columns is not an issue, since, in a sparse
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ByEvent

Bylevel

Figure 4.6: Storage for the matrix nodes.

row-wise representation, column indices appear only as values in the entries for each row).

4.3.2 Unconfirmed vs. confirmed states

With the exception of the first local state for each level, which is assigned index 0 and is
confirmed by definition, any other local state we find is always unconfirmed at first. Yet,
this unconfirmed state j, must be referenced as a column index j = 95 (ji) on a confirmed
state row 4, that is, we need to be able to set Ny [4,7] = 1. It is natural and efficient
to assign increasing sequential state indices to the states in §k, but, unfortunately, not all
states in ..‘;‘\;ﬂ will be necessarily confirmed. Worse yet, even those that will be confirmed are
not guaranteed to be confirmed in the order they are discovered.
We could ignore this problem and simply index local states using ¢y, : Sy - {0,...,7

1} everywhere, where 7iy, = |§kl, obviously for the currently-known S This would be indeed
correct, but ineflicient in two ways. First, the sparse row-wise storage of each Ny, would
require 72y, pointers to the rows, while we know that only ny = |Si| rows corresponding to
the confirmed local states need to be built and accessed, thus the remaining 7y - ny row

pointers would simply be null. Second, each MDD node at level & would require 7y, arcs,
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while, again, we know that only the subset corresponding to states in 8 may be pointing
to nodes other than (k — 1|0). This second problem can potentially have a large impact,
since it may substantially increase the memory requirements, depending on how the MDD
nodes are storec.

To avoid these inefficiencies, we then use a second wapping ® @ {0,...,%; — 1} —
{0, mg — 1} U {null} from “unconfirmed indices” to “confirmed indices™. A local state
Jky then, has an unconfirmed index § = 9, (i), which is used exclusively for column indices
in Nge. Once it is confirrued, though, it also has a confirmed index §' = (5}, which is
used as a row index in Ny, and as an arc label in the MDD nodes at level k. Thus, to test
whether a local state j, € S is confirmed given its unconfirmed index 4, we only need to
test whether ®4(4) # null,

When state-space generation is complete, we know that any unconfirmed state can never

be reached, so we:
e Discard the states in S \ Sg, keep only those in S.
e Redefine vy, so that 9y : S - {0,...,ny — 1}

e Examine the matrices Ny . and, for each of them, delete any entry Ny, ([4, 7] such that

Pr(7) = null.

e Switch from unconfirmed to confirmed indices in the column indices, i.e, change the

entries of each Ny, . s0 that N [1, Br(4)] = 1 if Np [, j] was 1.

e Discard the areay used to store the ¢4 mapping.
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4.3.3  Storing MDD nodes

To store the state space, we use a quasi-reduced MDD, which naturally lends itself to a
level-oriented node storage. In owr implementation, the data for an MDD node (kip) is
divided into two extensible arrays nodes), and arcsy associated with level & (Figure 4.7).
Entry nodesg[p] occupies the same number of bytes for each node (at any level) and stores

the following data:
e an integer offset into extensible array arcsy,
e an integer size describing the length of the portion array used by the node,
e a count of incoming arcs,

e and the boolean flags saturated, shared, sparse, and deleted (the first two are required
only when SMART' manages multiple MDDs on the same potential state space S, e.g.,

for Model Checking).

The data for the arcs of node (k|p) occupies instead a variable-size portion of array arcsy,.
If nodesy[p).sparse = true, the arcs of node (klp) are stored in 2 - nodesi[p].size entries of
arcsy, starting in position nodesy[p].offset, as pairs of local and index values, meaning that
(klp)llocal] = indez. If instead nodesg[p].sparse = false, “truncated full” storage is used,

that is, ares[z] = ¢ if (klp)|z ~ nodesi[p].offset] = q. However, not all nj; arcs need to be

is set to 71z — m.
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Figure 4.7: Node and arc storage for MDDs.
4.3.4 MDD nodes of variable size

We keep track of the index of the last node in nodesy, and of the last used position in arcsy.
Requests for a new node at level k are satisfied by using the next available position in these
arrays. "T'hus, the node being saturated is always at the end of the array, and so are its arcs.
This is particularly important with saturation on-the-fly, where we do not know beforehand
how maxyy entries in arcs;, are needed to store the arcs of a node being saturated.

A fundamental property of our encoding is that a saturated node (k|p) remains saturated

and encodes the same set even after a new state 4 is added to S. This is because, regardless
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of whether the node is using sparse or truncated full storage, it will be automatically and
correctly interpreted as haviong (klp)[i] = 0. However, the possible growth of Sy implies
that it becomes hard to exploif the special meaning for node (k|1), which, we vecall is
B((k|1})) = 8 x -+ x &. With pregencration, this optimization speeds up computation
whenever node {(k{1) is tnvolved in a union, since we immediately conclude that B{{(k]1})) U

B({klp)) = B({k|1}). Further, such nodes need not be explicitly stored.

Figure 4.8: The implicit index 1 in reduced vs. quasi-reduced MDDs.

To reserve index 1 for the same purpose with the on-the-fly approach is possible, but
problematic, since, whenever a new state is added to &, for [ <k, the meaning of B({k|1})
implicitly changes. This is one of the reasons that led us to use quasi-reduced instead of
reduced MDDs. The latter eliminates redundant nodes and is potentially more efficient,
but its arcs can span multiple levels. As discussed in [26], such arcs are more difficult to
manage and can yield a slower state-space generation when exploiting locality. With the
on-the-fly algorithm, they create an even worse problem: they become “incorrect” when a
local state space grows. For example, both the reduced and the quasi-reduced 3-level MDDs

in Figure 4.8(a) and (¢) encode the state space

§ = {(0,0,2),(0,1,2), (1,0,2),(1,1,2), (3,0,2)},

when 8z = {0,1,2,3}, & = {0,1}, and & = {0,1,2}. If we want to add global state
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(3,2,2) to 8, we need to add local state 2 to Sy and set arc (2[4)[2] to (1]7). However,
while the resulting quasi-reduced MDD in (d) is correct, the reduced one in (b) is not,
since now it also encodes global states (0,2,2) and (1,2,2). To fix the problem, we could
reintroduce the formerly-redundant vode (2|8) so that the new reduced and quasi-reduced
MDDs coincide. While it would be possible to modify the MDD to obtain a correct reduced
ordered MDD in this manner whenever a local state space grows, the cost of doing so is
unjustifiably high. Of course, we can still reserve index 0 for the empty set, and exploit the
relation B((k]0)) U B((k[p)) = B({k|p)), since the representation of the empty set does not

change as the local state spaces expand.

4.3.5 Garbage collection

If a node {klp) becomes disconnected, we “mark it for deletion” by setting its fag nodesy[pl.
D : Y : :

deleted to true. However, the node itself remaing in memory until the garbage collection

manager performs a cleanup. Such a node can then be “resuscitated” by simply resetting

this flag. This occurs if a reference to it is retrieved as the result of an operation cache

lookup. Of course, if a cleanup is issued after marking (k|p) for deletion and prior to the
cache lookup, there will be a cache lookup miss, since all entries referring to nodes marked
for deletion are eliminated when these nodes are actually deleted.

One problem with MDD nodes of variable sizes is that the “hole” left in arcsy when a
node is deleted can be smaller than what is needed for a new node, thus it cannot be easily
“recycled”. However, the use of separate nodesy, and arcs;, arrays affords us great fexibility

in our garbage collection strategy. In particular, we can “compact to the left” the entire

arcsg array any time the memory used by its holes exceed some threshold (standard value
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10%) without having to access uodes at other levels. The space freed at the right end of
arcsy can then be reused for new nodes. This compaction only requires to re-adjust the
values of each nodesy[p).offset, for cach level-k node. There are several ways to do this.

One approach is to store, together with the chunk for (klp) in arcsg, a back pointer to
the node itsell, i.e, the value p. This allows compaction of aresy via a linear scan: valid
valnes may be shifted to the left over invalid values until all boles have been removed.
Simultaneously, using the back pointer p, we access and update the value nodesg[p]. offset
after shifting the corresponding arcs. With respect to our previous pregeneration imple-
mentation, where array arcsp is not used becaunse the arcs are stored directly in nodesy
as arrays of fixed-size ng, this requires 12 additional bytes per node, for offset and size in
nodesy, and for the back pointer in arcs,. However, it can also save memory, since we can
now employ sparse or truncated full storage.

A better alternative is to build a second, temporary, array tmp when compacting the
arcs at level k by scanning the nodes sequentially and copying the arcs of each non-deleted
node from arcsy. to tmp. When we are done copying, ¢mp becomes our new compacted arcsy,
array, and the old aresy array is deleted. This additional array tmp temporarily increases
the memory requirements, but avoids the need for back pointers, saving four bytes per node.

In addition to compacting the arcsy array, we also need to regularly, and independently,

compact the nodes) array. This can also be done by “compacting to the left” over nodes

marked for deletion but, this now means that what was node (k|p} is now node {(k|g), with
g < p. When performing this compaction, we build a temporary indirection array old2new
of size eqqual to the old number of nodes, so that old2new(p] == g. Then, once compaction

o

is complerted, we scan the arcs in the level above, arcsg,., and change each occurrence of
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p into ¢ using a lookup into oldfnew. Finally, old2new is destroyed when this scan has

completed.

Rubmaodel |

Submuodel 2 5

Figure 4.9: Example of potential, but not actnal, overflow of a local state space.

4.3.6  Overflow of potential local state spaces

Our new algorithm eliminates the need to specify additional constraints for any formalism
where each state can reach a finite number of states in a single step. A subtle problem
remains, however, if an infinite number of states can be reached in one step. For example,
in Generalized Stochastic Petri Nets [2], immediate transitions, such as v in Figure 4.9,
are processed not by themselves, but as events that can take place instantaneously after
the firing of timed transitions, such as ¢ and u (somewhat analogous to internal events in
process algebra). In Figure 4.9, we partition the net into submodel 2, containing place p,
and subinodel 1, containing places ¢ and r.

The initial local states are (p") and (¢'r?), respectively. When the latter state is con-
firmed into &, an explicit local exploration begins. Transition ¢ can fire in submodel 1 in
isolation, leading to marking (¢*r"). This enables immediate transition v which, processed
right away as part of the firing of 4, leads to markings (¢%r)), (¢°r?), (¢*r*), ... and so
on. Thus, the explicit local exploration fails with an overflow in place v, while a traditional

explicit global exploration would not, since it would never reach a global marking with two
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N | Heachable Final merory (KB) Peak memory (KB) Time (sec)
states Otf | Pre | NuSMV|  Otf | Pre | NusSMV] Otf | Pre | NusSMV
Dining Philosophers: K =N, [St] == 14 fur all k
2013.46x10¢ 4 3 178 5 4 41921 0011 001 0.4
5012.23% 103! 11 10 3,&34, 14 12 8.863] 0.03 | 0.02 13.1
10014.97 % 1094 24 20 8,801 28 25 1 15,256 0.06 | 0.05 990.8
200[2.47x 10125 A8 40 | 21,618 57 50 | 59,4230 015 ] 0.11 ] 18.129.3
5,00016.53x10%13411.210 | 1,015 1,445 | 1,269 — 16555 | 51.20
Slotted Ring Nviwoxh Koz NS =15 fm all &
515 iwxm’i 1 1 502 5 5 507 0.01 1 0.01 0.1
1018.29% 109 5 5 4,332 28 27 8,863 0.06 | 0.04 6.1
15] 14631015 10 9 771 80 770 11,054 018 | 0.13 | 2,853.1
100{2.60>%10"5 | 434 308 e {15,753 | 14,486 41.72 | 25.78
Round Robin Mutual Exclusion: K =N+ 1, |&,1 =10 for all k exc ept Iéw ENES

10]2.30x 107 5 5 917 6 7 932 0.01] 0.01 0.2
2014.72%107 18 17 5,980 20 21 5985 0.04 | 0.03 1.4
3017.25 x 1010 a7 36 22921 41 41 8,716 0.09 | 0.07 5.6
1002.85x10% | 357 355 | 13,789 372 3721 21,814] 211 ] 1.55 | 2,836.5
15014.82 x 1047 784 781 -~ 807 807 e b T4 BOT] o~
FMS: K19, |Spl=N+1 for all & except |Si7| =4, |S19]=3, |57 =2

5[1.92% 10" 5 6 2,113 6 9 2,126/ 0.017] 0.01 1.0
1012.50%10° 16 19 1,152 26 31 8,928) 0.02 | 0.02 41.6
2518541013 86 135 | 17,045 163 239 | 152,253} 0.16 | 0.11 | 17,321.9

150{4.84x10%% 16,291 | 15,459 e 116,140 | 29998 | - 18.50 1 1092 |

Table 4.1: Generation of the state space: On-the-fly vs. pregeneration vs. NuSMV

tokens in ¢. This situation is quite artificial, however. It can occur only if the formalism

allows a state to reach an infinite nuwmber of states in one “timed step”.

4.4 Results

We compared the space and runtime required by our new algorithm with those of its pregen-

eration predecessor [27] and of NuSMV [33], a symbolic verifier built on top of the CUDD

library [127]. The benchmark of examples include: dining philosophers, slotted ring, round

robin mutual exclusion, and flexible manufacturing system (FMS).

Table 4.1 lists the peak and final memory and the runtime for these algorithms. For
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comparison’s sake, we assume that a BDD node in NuSMV uses 16 bytes. To be fair, we
point out that our memory consumption refers to the MDD ounly, while we believe that the
number of nodes reported by NuSMV includes also those for the next-state function, How-
ever, our Kronecker encoding for A is extremely efficient, requiring at most 300KB in any
model, except for the model with 5,000 dining philosophers, where it requires 5.2MB. The
memory for the operation caches is not included in either our or NuSMV results (for our
algorithms, caches never exceeded 20MB on these examples). Both the on-the-fly and the
pregeneration MDD algorithms are able to handle significantly larger models than NuSMYV.
We show the largest value of N for each of the four models where generation was possi-
ble, in the penultimate row for NuSMV and the last row for SMART. When comparisons
with NuSMV can be made, our algorithms show speed-up ratios over 100,000 and memory
reduction ratios over 1,000.

The results also demonstrate that the overhead of the on-the-fly algorithm versus pregen-
eration is acceptable. Moreover, the additional 12-byte per node memory overhead required
to manage dynamically-sized nodes at a given level & can be offset by the ability to store
nodes with m < ny arcs (because they were created when Sy contained only m states, or
because the last ng — m arcs point to {k—1]|0) and are truncated). In fact, for the FMS
model, this regults in smaller memory requirements than with pregeneration, suggesting
that the use of sparse nodes is advantageous in models with large local state spaces. Even if
our on-the-fly implementation is not yet as optimized as that of pregeneration, the runtime
of the on-the-fly algorithm is still excellent, at most 70% over that of pregenecation. This
15 a good tradeoff, given the increase in modeling ease and safety afforded by not having to

worry about local state space generation in isolation.
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Chapter 5

Structural CTL Model Checking

Having defined the abstract concept of a model and its state space in Chapter 2, next we
need a theory that makes the model meaningful, by asserting some type of observations
about the constructed model. These assertions will be evaluated in the formn of truth or
falsehood, therefore the theory will be called logic. Moreover, when the evolution of the
model in time is studied, this is called temporal logic [22, 59, 95, 100, 103, 116, 118, 122].
The simplest and most intuitive mathematical structure that captures the above ele-
ments is a Kripke structure [91]. This is nothing but a discrete state model endowed with a
labeling function of its states with atomic propositions. The propositions can be viewed ag
basic properties, evaluating to true or false, that can be observed of each state, hence they

are given as axioms before the verification process starts. Formally:

Definition 5.0.1 Given a finite set of atomic propositions P, a Kripke structure is o
quadruple (873, N, L), consisting of the discrele state system (S,s,./\f ) and the labeling

. g Ty . e oy
function I : & — 27, that assigns to cach state the set of propositions satisfied by that state.

Definition 5.0.2 A computation of @ Kripke structure (8 8, N, L) , 8 o path (a sequence

of states ) w = 1%t ... 1" such that i¥ = s and V' € NG, for all 0 < j < n.
93
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Definition 5.0.3 The reachability set of a Kvipke structure is the sel of stotes & =

{i € 8| ewists a path n from the initial stute s to i}.

The traditional definition of a Kripke structure requires that the next state function &
be total {(in the sense that for each state i there always exists a successor for it, N (i) # 0).
We omitted this requirement from the definition, since this is rather reminiscent from the
reactive systems, where the evolution of the system is considered infinite (through a set of
finite states, though). We have generalized the classical definition to arbitrary transition
relations, since one can always introduce back the infinite paths by adding sell loops to

absorbing states.

5.1 Temporal logic

Given a Kripke structure (§ 8, N, L), over a set of propositions P, there is a temporal
relation - that can be established over the set S. We say that state i precedes states j,
i < jif there is a sequence of transitions that leads from i to j. This temporal relation is only
transitive, but not necessarily reflexive, syminetric, or antisyminetric, since the reachability
graph may contain cycles. If i is the current state, the “future” states are all those that can
be reached from i by a sequence of transitions (transitive closure of ). Conversely, the
“past” states of 1 are all those that can reach i by some sequence of transitions.

Next we can introduce fense operators [95, 116] that ave specifically devised to make
statemerits about changes in time. Tnformally, a tense formula is of the form p, where p is
a boolean predicate and @ is a tense operator, which is evaluated only in the present state.

In the following, the symbols —, V, A, denote the negation, disjunction and conjunction
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operators from propositional logic.

o Iventually (in the future): g is true in the present state, if ¢ is true in some future

state, and there is a path that connects the two states;

e fiventually (in the past): Pg is true in the present state, if ¢ has held at some prede-

cessor state in the past;

o Generally {globally or always in the future): Ggq is true in the present state, if ¢ holds

in all future states. This is also equivalent to —F~yg;

¢ Generally in the past (or historically): Hq is true in the present state, if ¢ has been

true at all moments in the past. Equivalent to -P-q;

e Until: p U g holds in the present state, if p holds from the current state until a state
in the future where ¢ holds. As a special case, p U ¢ holds if ¢ holds in the present

state.

A tense formula acts like an open sentence with one free parameter, representing the
present state. In that way, there is a bijection that can be established between states and
formulae:

- BEach formula is determined by the set of all states in which it holds;

- Bach state can be labeled with the set of formulae that are valid in it.

5.1.1 Linear time, branching time

There exists a relationship between the characterization of the temporal relation ~« and the

set of axioms that can be used in a similar fashion to the inference rules from the proving
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techniques of mathernatical logic, to reduce a desired property to another.
For exarmple, the following axioms exactly characterize a partial ovder (trausitive and

aptisymmetric) relation < [22]:

Gp=2q) = (Gp= Gq)
H{p=+q) = (Hp= Hyg)

p = GPp
p o= HFp

s

To make < total (i.e., for any two states either 1 < j, i = j, or j < i, two additional

axioms are needed to fully characterize

(FPq) = (PgVqVFq)
(PFq) = (PgVgqVFq)

This setting corresponds to a view of linear time, for which all the states are linearly
ordered according to their occurrence in time. In practice, time is modeled as a discrete
sequence, measured by integers. In this common case, each state has an immediate successor
and an immediate predecessor. Formally, a state j is an immediate successor of state 1 if

i <jand there is no other state in between, Ai': 1 <1’ < j. This property can be enforced

by adding two more axioms to the linear time frame:

pAHp = FHp
pAGp = PGy

Within the discrete time frame, it is useful to define the next time operator: Xp is true
in the present state i when there is an immediate successor of i in which p is true. The dual
operator, X corresponds to the predecessor.

The above frameworks are very intuitive, but they lack the notion of non-determinisin.

This bappens when a state may have multiple successor and/or predecessor states. With
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the addition of non-deterministic choice with respect to the future only, the temporal order
-¢ defines a tree that branches towards the future. Any state bas a unique past, but undeter-
mined future. The branching frame comes natural to many practical mwodels, like reactive
systems (which receive unpredictable input from the outside world), or non-deterministic
programs,

Formally, bronching time can be obtained from the linear time by dropping the assump-

tion (PFq) = (PqV ¢V ¥Fq), which orders the future.

5.1.2 The CTL*, CTL, and LTL temporal logics

Next, we will introduce three of the most popular temporal logics, each having a different

expressive power.

The CTL* (Computation Tree Logic) termporal logic [37] is a convenient subset of the branch-

ing time family. CTL* formulae use two types of operators:

e Modal operators (or path quantifiers), which can be either A (on all paths) or E (for

some path).

e Tense operators: F (future), G (generally), U (until), or X (next), which were previ-

ously defined.

Notice that there are no past operators. They are dropped for reasons of symmnetry,
as any reasoning frame in terms of past time can be mirrored back in order to get its
counterpart in terms of future time.

Formally, for a set of atomic propositions 7 and a Kripke structure (§ LS, N, L), the

set of C'I'L* formulae can be introduced by inductive definition. Note that CTL* formulae
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may refer to either a state, hence they are called state formulae, or to a path, thus called

path formulae.

Definition 5.1.1 State formuloe:

L ifp e P, then p is a stale formula;

2. if p,q are state formulae, then —p, pV q, p A g, p=> q, p & q are state formulae;

3. if p is a puth formula, then Bp, Ap are state formulae;

Path formulae:

4. if p is a state formula, then p is also ¢ path formula;

if p,q are path formulae, then —p, pV q, pNq, p=>q, p > q, Xp, Fp, Gp, p U ¢ are

©

path formulae.

Next, we formally define the = (“satisfies”) relation, between states and formulae. This

relation can be further extended to paths, as shown later. Let IT; denote the set of all paths

starting in state i, and for a path = = i%'. . 7w, represents the suffix of = starting at
position k: my = iFiFTL L

Definition 5.1.2 For a Kripke structure (.Sgﬁ,/\f , L), the state 1 is soid to satisfy the
CTL* formula | (written i k= f) if one of the following cases holds (for clavity we use
p for atomic propoesitions from P, [, f1, f2 denote state formulae, while g, 9y, 92 wre path

formulae):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. STRUCTURAL CTL MODEL CHECKING 99

1 dif=p & p & L(i)
2, i t““ bt f L i };/7, f

3 il fiofy & (i fi)o (i k= fa), for any operator o € {V, A, =, &}

4. il=Bg «» A & U such that ©n k=g
5. il Ag & Vrwelly, ni=g

6. whsf < welljandifp=f

7. wk ey @ wlkg

8 wEgog & (vl g)o(n =g, for any operator o € {V, A=, ¢}

9. wpk=Xyg & Mg
10.  n |=Fg @ JkZ20mg k=g
11. wl= Gy & VEZO0 mp kg

12. 7 Ug & F20:mulkg adV0<j<krkFn
Lemma 5.1.1 Adjacent path quantifiers are legal. However, this is a purely syntactical
loophole, as semantically:

Qn .- Qolhyg & Qg

for any combination of path quantifiers Q; € {AE}, 1 <{ < n.

Proof. The key observation is that the quantifier adjacent to the predicate “cancels” the
effect of the other quantifiers, based on the conversion of path formulae to state formulae
and the definition of the |= property in this case. To prove the above statement for n = 2, we
have to show that Qo219 <> (J1g. Since path quantifiers are applied only to path formulae

and (g is a state formula, this has to be interpreted back as a path formula according
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EXp EGp Elplig]
% ﬁf A
8 f%’ o
AXp AGp

fLE(}END: @ pholds @ o holds O dov’tcare

Figure 5.1: The eight basic CTL operators

to item 6 in the above definition. Hence, i k= Qg & 3/Vr € I 7 k= Q1g. But, since
m € 1L, 7 b= (hg < 1 k= Qrg (based on item 6). Together, i k= (Qu@g < 1 = (g, g.e.d.

The claim can be easily extended to n quantifiers, by induction.

The CTL temporal logic [37] is a subset of C'TL*, in which temporal operators appear
only in pairs. The first is a path quantifier, A or E. The second is the tense part, which can
? , or X. Hence, besides excluding the past tenses, there is one more restriction:
be ¥, G, U, or X. Hence, besides excluding the past tenses, there is one more restriction
path quantifiers cannot be combined directly with the propositional part. This leaves only
eight possible combinations for a valid CTL pair.
Their intuitive meaning is described in Figure 5.1 on small examples, where the root
node of each branching tree is a state satisfying the listed property.
For convenience, we can determine an even smaller subset of CTL operators that can

be used to express any other combination (a complete subset). If the subset is minimal, it
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Figure 5.2: The four basic LTL operators

is called a generator. One such set is {EX, AU, EU}, as the rest of the operators can be

obtained as follows [37):

Lemma 5.1.2
AXp = -EX-p
AFp = Aftrue U p)
EFp = E(lrue Up)
AGp = ~E(true U ~p)
EGp = ~A(true U -p)

Another generator set frequently used for CTL is {EX, EG,EU}.

In the Linear Temporal Logic LTL [64], a different view of the behaviors of the system
is assumed, in which the branching of the outgoing paths is not important. A property
is considered satisfied by a state if all possible interleavings of future paths verify it. The
relation between different executions (such as existing common suffixes, prefixes, etc.) is
not relevant in LTL.

The interleaving of the branches is consistent with only one path quantifier, A, which
is always assumed at the beginning of an LTL formula. Therefore the path quantifier can
be discarded, leaving lour possible choices for LT path formulae: Xp, Fp, Gp, and p U ¢.
On the other hand, the connectors may be combined in any order (as opposed to the strict

pairing of CTL).
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The expressiveness of the three temporal logics that were introduced are not equivalent,
The LT formula FGp (meaning that there is some state in the future from which p will
hold forever) has no equivalent in the CTL syntax. Oun the other hand, the CTL formmuia
AG(EFp) (meaning that on all paths, there exists a branching path along which p will
eventually hold) is not expressible in LTL.

If we combine the two above formulae, say A(FGp) v AG(EFp) we obtain a formula
that is not valid in either LTL or C'TL syntax, but it is valid in CTL*.

More details about the logic hievarchy can be found in [34, 58, 96, 103, 116]. We
implement CTL, as its simple syntax is expressive enough to formulate most properties of

interest.

5.1.3  Computing CTL operators

Given a set of C'TL formulae F, and a Kripke structure (§ s, N, L) , solving the specification
F means labeling each state i in 8 with those formulae of F that are satisfied by i. In other
words, each formula is identified by the set of states that validates it, thervefore solving F
is reduced to building subsets of reachable states.

Working with sets is very practical, since CTL properties can then be characterized
as fixed points of appropriate functionals [35]. The lattice over which the functionals are
defined is £ = (2‘5 , Gyl ﬁ), the lattice of subsets of S, with set inclusion as the partial order
relation, and set union and set intersection for infimum and supremun of two elements. It
is well kviown that, for a finite 8, the lattice £ is complete, hence any mwonotonic functional
f 28 5 98 (for which P € @ implies f(P) € f(Q)), is also continnous with respect

to union and intersection: ie. f(UP) == Wi f(Fo), F(MP) = 0 f(P:). In this case, by
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Tarski’s theorem [130], any monotonic functional f has a least fixed point pf = Jyq SH)

and a greatest fixed point pf == Nizo S(S).
We are now ready to give the fixed point characterization of a generator set of CTL

operators:

Theorem 5.1 [37] For a finite Kripke structure (E; 8, N, b) and two CTL predicates p

and ¢ (corresponding to the sets of states 7 and Q):

2. BEGp = v X.fo(X), where fo(X) = P N A{Y);
3. B(p U q) = puX.f3(X), where f3(X) = QU (P NA{(X)).

provided h : 28 5 98 , B(X) = {i € gi JeX:jeN (i)}5 the functional that computes

EX.

Corollary 5.1.1 For completeness only, the fized point characterizalion of the remaining

CTL operators is:
1. AFp = pX.f4(X), where fuy(X) =P UK (X);
2. AGp = vX.f5(X), where f5(X) =P NH(X);
8. A(p U q) = pX.fe(X), where fo(X) = QU (P NN (X)).

provided h' 98 2£ B(X) == { ieS|jeN{i=jecX }, the functional that computes

AX.

Intuitively, properties that look for a property that eventually holds build a least fixed

point - by finding in each iteration more states to add to the initial set §), and properties that
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check that a property holds globally build a greatest fixed point — by gradually eliminating

states from the initial set &.

5.2 Saturation-based CTL Model Checking

Given the excellent performance of the saturation strategy, we next investigate how to
extend it to improving the computation of the CTL operators {31]. As said above, only a
generalor subset needs to be implemented in a model checker, as the remaining operators
can be expressed in terms of those in the set [41]. {BEX,EU,EG} is such a set, but the

following discusses also EF for clarity.

5.2.1 The EX operator

Semantics: i’ |= EXp iff 3i! € (i) such that i }= p. (“k=" means “satisfies”)

In our notation, EX corresponds to the inverse of function AV, the previous-state func-
tion, N1 With our Kronecker matrix encoding, the inverse of N, is simply obtained by
transposing the incidence matrices Ny, in the Kronecker product, thus A ~1is encoded as
Veéé’ ®K>k>1 NZ,(

To compute the set of states where EXp is satisfied, we can follow the same idea used
to fire events in an MDD node during our state-space generation: given the set P of states
satisfying formula p, we can accumulate the effect of “firing backward” each event N1(P) =
Ueee Mo H(P), and take advantage of locality. This results in an efficient calculation of EX.
Computing its reflexive and transitive closure, that is, the backward reachability operator

EF, is a wnuch more difficult challenge, which we consider next.
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5.2.2 The EF operator

Semantics: i° }= EFp iff 3n > 0,31 € N(i%),..., 3" € N(E"1) such that i" }=p.

In our approach, the construction of the set of states satisfying EFp is analogous to
the saturation algorithm for state-space generation, with two differences. Besides nsing
the transposed incidence matrices Nf?” the execution starts with the set P, not a single

state. These differences do not affect the applicability of saturation, which retains all its

substantial time and mewmory benefits.

5.2.3 'The EU operator

Semantics: i = ElpUq| il 3n > 0,31 € N (i), ..., 31" € N(i*') such that i = q and
i k= p for all m < n. (in particular, i k= ¢ implies i k= BElp Uyg))

The traditional computation of the set of states satisfying E{p U g] uses a least fixed point
algorithm. Starting with the set @ of states satisfying ¢, it iteratively adds all the states
£

that reach them on paths where property p holds (see Algorithms EUlrad in Figure 5.3).

The number of iterations to reach the fixed point is

max (min {n | 3i’ € Q@AY 0<m<n, Iim e NI NP AL =i"})
1S

Applying saturation to EU.

The challenge in applying saturation arises from the need to “filter out” states not in
P (line 5 of Algorithin EUtrad): as soon as a new predecessor of the working set X is
obtained, it must be intersected with P. Failure to do so can result in paths to Q that

stray, even temporarily, out of P. However, saturation works in a highly localized manner,
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EUtrad (in P, Q : stateset) : staleset

1. declare X,V : stateset;
e e initialize X with all states in Q
repeat

Y o &

X e XUW Y X)) nP); ¢ add predecessors of states in X that are in P
until Y = X;
return A,

N

~No ;e w

Figure 5.3: The traditional algorithm to compute EJ.
adding states out of breadth-first-search order. Performing an expensive intersection after
each firing would add enormous overhead, since our firings are very lightweight operations.
To cope with this problem, we propose a “partial” saturation that is applied to a subset of
events for which no filtering is needed. These are the events whose firing is guoranteed to
preserve the validity of formula p. For the remaining events, BFS with filtration must be
used. The resulting global fixed point iteration interleaves these two phases (see Figure 5.4).
The following classification of events is analogous to, but different from, the wvisible vs.

invisible one proposed for partial order reduction [4].

Definition 5.2.1 In a discrete state model (§ ,8,N), an event e is dead with respect to
a set of states X' if there is no state in A" from which its firing leads to a state in X, ie.,
NoHX)M X = P (this includes the case where e is always disabled in X); it is safe if it is not
dead and its firing cannot lead from a state not in A’ to a state in X, i.e., § C N HX) C A,

it is unsafe otherwise, Le., Ny X))\ X #£ QAN (X) N X # (. o

Givenn a formula E[p U q|, we first classify the safety of events through static analysis.
Then, each BU fixed point iteration consists of two backward steps: BEFS on unsafe events
followed by saturation on safe events. Since saturation is in turn a fixed point computation,

the resulting algorithm computes a nested fixed point. Note that the operators used in both
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Classifylivents(in X : stateset, out £y, Eg : set of event)

L Eg « @ &y « ¥ e initialize safe and unsale sets of events
2. for each event e € & o determine safe and unsafe events, the rest are dead
3. (PN X)) C )

4. &g + EgU{e} e safe event wrt. A
5. else if (W H{A)NX #G)

6. &y + Eyuieh e ynsalte event wor.t. X

EUsat(in P, Q : staleset) : stateset

1. declare XY : statesel;

2. declare &y, &y : set of cvent;

3. ClassifyBvents(P L Q, &y, Eg);

4. X ¢+ @

5. Saturate(X,Ey); e initialize X with all states at unsafe distance () from @
6. repeat

7. YV & X

8. A + XUW, Hayn(pPuQ), e perform one unsafe backward BFS step
9. if A% Y then
10.  Saturate(X,Es); e perform one safe backward saturation step
11 until ) == X
12. return X;

Figure 5.4: The saturation-based algorithm to compute EU.

steps are monotonic (the working set X' is increasing), a condition for applying saturation

and in-place updates.

Note 5.2.1 Dead events can be ignored altogether by our EUsat algorithun, since the

working set A" is always a subset of P U Q.

Note 5.2.2 The Saturate procedure in line 10 of EUsat is analogous to the one we use in

Chapter 3, except that it is restricted to a subset £g of events.

Note 5.2.3 ClassifyEvents has the same time complexity as one EX step and is called

only once: prior to the fixed point iterations.

Note 5.2.4 To simplify the description of EUsat, we call ClassifyEvents with the filter

PUQ, ie., Es={e: 0 C N, HPUQ) ¢ PUQ). With a slightly more complex initialization
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in BUsat, wo could use instead the smaller filter P, ie., £ = {e: 0 ¢ N-YWP) € P In
i - § [ . d

practice, both sets of events could be computed. Then, if one is a strict superset of the

other, it should be used, since the larger s is, the more El/sat behaves like our efficient

EF saturation; otherwise, some heuristic must be used to choose between the two.

Note 5.2.5 The number of EUsat terations is 1 plus the *“unsafe distance from P to @7,

maxiep(ruin{n|H € RL(Q) A V0 < m < n, 3™ € RE(Ru (™) NP) A = i"}), where
AWy LAY el e A pep 4 b da oF Yeafn rrodocoaaca?

Rs(X) = Upepy No ' (X) and Ry (X) = Ugee, N H(X) are the sets of “safe predecessors

and “unsafe predecessors” of X, respectively.

Lemma 5.2.1 Iteration d of EUsat finds all states 1 at unsafe distance d from Q.

Proof. By induction on d. Base: d = 0 = 1 € RE(¢) which is a subset of A (lines
4,5). Inductive step: suppose all states at unsafe distance m < d are added to X in the m'™

! ,

iteration. By definition, a state i at unsafe distance d+ 1 satisfies: Ji® € R5(Q) AVO<m <
d+ 1,3 € Ry(i™ 1) NP, 3™ € RL(™), and i = i¢*l. Then, i™ and j™ are at unsafe
distance m. By the induction hypothesis, they are added to X in iteration m. In particular,
i is a new state found in iteration d. This implies that the algorithin must execute another
iteration, which finds 9! as an unsafe predecessor of i% (line 8). Since i is either j4*! or

can reach it through safe events alone, it is added to & (line 10).
Theorexn 5.2.1 Algorithm EUsat returns the set X of states satisfying Elp Uql.

Proof. It is immediate to see that Flsat terminates, since its working set is a monotoni-

cally increasing subset of §, which is finite. Let ) be the set of states satisfying E[p U g|.

X, and (i) X € PUQ (lines 8,10). This implies X C Y. Since any state in ) is at some
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unsafe distance:

distance:
Figure 5.5: Comparing BFS and saturation oxder: distance vs, unsafe distance.

»

finite unsafe distance d from @, by Lemma 5.2.1 we conclude that YV ¢ &X. The two set
inclusions imply & = Y,

Figure 5.5 illustrates how our exploration differs from BFS. Solid aud dashed arcy rep-
resent unsafe and safe transitions, respectively. The shaded areas encircle the explored
regions after each iteration of EUsat, four in this case. Eltrad would instead require seven
iterations to explore the eutire graph (states are aligned vertically according to their BFS

depth).

Note 5.2.6 Our approach exhibits “graceful degradation”. In the best case, all events are

safe, and EUsat performs just one saturation step and stops. This happens for example

simply perform backward reachability from Q using saturation on the entire set of events.
In the worst case, all events are unsafe, and FUsat performs the same steps as EUtrad. But
even then, locality and our Kronecker encoding can still substantially improve the efficiency

of the algorithm.

5.2.4 'The EG operator

Semantics: i’ = BGp iff i%fk=p A Vn>0: 3" ¢ N(i"1) such that i = p.
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EGirad(in P : staleset) : statesel EGsat(in P : stateset) « statesct
1. declare X,V : stateset; 1. declare X, V,C, T : staleset,
2. X « P 2. C ¢ EUsat(P,{icP ie N({D)))
3. repeat 3.7 « &

4. Y + X 4. while Ji ¢ P\ (CUT) do
5. X « N Haynp; 5 & ¢« BUsal(P\C{i});
6. until Y = X 6. Y + ESsat(P\C,{i});
7. returmn X 7. if XYY > 1 then

8. C + CUX,

9. else ‘

10, T + Tuiik

11. retumn C;

Figure 5.6: Traditional and saturation-based EG algorithms.

In graph terms, consider the reachability subgraph obtained by restricting the transition
relation to states in P. Then, EGp holds in any state belonging to, or reaching, a nontrivial
strongly connected component (SCC) of this subgraph.

Algorithm EGtrad in Figure 5.6 shows the traditional greatest fixed point iteration. It
initializes the working set X with all states in P and gradually eliminates states that have
no successor in A until only the SCCs of P and their incoming paths along states in P are
left. The number of iterations equals the maximum length of any path over P that does

not lead to such an SCC.

Applying saturation to EG.

EGtrad is a greatest fixed point algorithm, so to speed it up we must eliminate unwanted
states faster. The criterion for a state i is a conjunction: i should be eliminated if all its
suceessors are not in P. Since it considers a single event at a time and makes local decisions
that must be globally correct, it would appear that saturation cannot be used to improve

EGtrad. However, Figure 5.6 shows an algorithm for EG which, like [11, 136], enumerates
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the SCCs by finding forward and backward reachable sets from a state. However, it uses
saturation, instead of breadth-first search. In line 2, Algorvithm EGsat disposes of selfloop
states in P and of the states reaching them through paths in P (self-loops can be found by
performing EX using a modified set of matrices Ny, where off-diagonal entries are set to
zero). Then, it chooses a single state 1 € P and builds the backward and forward reachable
sets from 1 restricted to P, using ElUsal and ESsat, where ES is the dual in the past of
EU. ESsat differs from Elsat only in that it does not transpose the matrices Ny . If &
and Y have more than just i in common, i belongs to a nontrivial SCC and all of A is part
of our answer €. Otherwise, we add i to the set T of trivial SOCs (i might nevertheless
reach a nontrivial SCC, in Y, but we have no easy way to tell). The process ends when P
has been partitioned into C, containing nontrivial SCCs and states reaching them over P,
and T, containing trivial SCCs.

EGsat is more efficient than EGirad only in special cases. An example is when the
EUsat and ESsat calls in EGsat find each next state on a long path of trivial SCCs through
a single lightweight firing, while EGtrad always attempts firing each event at each iteration.
In the worst case, however, EGsal can be much worse than not only EGirad, but even an
explicit approach, since it enumerates all SCCs. For this reason, the results section discusses

only EGirad, which is guaranteed to benefit from locality and the Kronecker encoding,.

5.3 Results

We compared our new Model Checking algorithms implemented in SMART with those in

NuSMYV' [33]. In all experiments, the time necessary to build the encoding of N is not
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State-space generation EG query
NubSMV SMART NasMV AR
N |51 after 55 alone Etitrad
time | mem | time | mem time | mem | time | mem | tine | mem
Leader: K = 2N, |&]= N7 -+ 13N EG(statusy # leader)

3| 8.49x10° 0.1 2 0.04 <5 (.2 4 0.7 4 0.02 <5

4 | 1.15%10% 2.1 10 0.27 2.5 232.8 12 1 1189.1 235 0.11 2

51 1.50x10° 56.0 29 1.49 1| 180236 | 104 e (44 9

6| L.89x10% || 1063.7 | 205 | 7.35 31 - — | L6438

7| 2.39%107 e L b 40,64 7 e | e A5 128

Philosophers: K = [N/2], |£] = 4N BEG(phil 3 eat) (starvation)
20 | 3.46%10% 0.8 61 002] <5 0.1 8 1.1 6] 001] <5
50 | 2.23x10% 36.0 46 (.07 <5 0.9 46 132.3 50 .02 1
100 | 4.96x105% || 1134.8 | 316 015 1 = 9.0 | 316 | 252531 3581 008 3
500 | 3.03x 10313 e | L0 1 e | 0.28 | 58
Slotted ring: K = N, |E] = 8N G (sloty # hg)

5 | 5.38x10° 0.1 1 0.00 <.B 0.0 1 0.0 <5 .00 <5
10 | 8.29x10° 3.1 10 0.05 1 <. 0.6 10 0.1 1 0.01 ] «.b
15 | 1.46x10'0 1503.9 15 0.17 <5 4.7 15 0.2 2 0.01 <5

100 | 3.03%10'93 | =1 39701 16 i e || 0621 62
Round robin: K = N+ 1, [£] = ON BG{true) (find all cycles)

5| 3.60x107 0.1 11 =005 <.5 0.0 1 0.1 1§ «.005 <5
10 | 2.30x10° 63.2 11 0017 <« 0.3 11 78.5 131 <008 | <.B
15 | 1.10x 108 4201.5 40 002 <«<b 1.2 40 | 4739.5 4] 0.01] <5

100 | 2.85x10% I I R 1 A e 1291 20
Flexible manuf. sys.: K = 19, |&] = 20 BEGH(Pis = Pys = Pys = N)

2 | 3.44x10° 128.3 17 0.01 <5 0.2 17 128.9 18 | <.005 <.B

3| 4.86x104 4107.5 127 0.02 <D 1.0 127 0.01 <D
25 | 8.54x1013 e 417,08 <D o o e 50.38 251

Table 5.1: Experimental results for computing EF and EU: SMART vs. NuSMV.

included in the tables. While this time is negligible for our Kronecker encoding, it can be
quite substantial for NuSMYV, at times exceeding the reported runtimes,

Tables 5.1-5.2 show the state-space size, runtime (in seconds), and peak memory con-
sumption (in megabytes) for the five models, counting MDD nodes plus Kronecker matrices
in SMART | and BDD nodes in NuSMV. There are three sets of columns: state-space genex-
ation (analogous to EF), EU, and EG.

Note that in NuSMV it is possible to evaluate EU expressions without explicitly build-

ing the state space first; however, this substantially increases the runtime, so that it almost
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EU query
NuSMV SAART
N |81 after 55 alone ElUtrad Ellsat
time | mem | time | mwem | tter | time | mem | iter | time | mem
Leader: Bl{prefi == 0) U (statusy = leader)]

3| 8.49% 10~ 0.1 3 18.3 12 43 0021 <5 ] 22 0021 <5

4 1 L1sx1ot 2.3 111 8104.7 | 871 621 0.36 1] 38 0.27 1

51 L.50%x10° 52.0 33 81 74 71 52 3.00 e
6| 1.89x108 S R - e 101 ] 46.90 30| 66 35.67 28

7 | 2.39%107 e ] 121 169085 1 1161 85| 41685 | 101

Philosophers E[(phaly # eat) U (phily = eat))
20 | 3.46x 10 0.1 T 0.8 6 40 0.03 ] «.5 4 0021 <.5
50 | 2.23x103 1.2 46 39.7 46 | 100 0.17 1 4 0.06 1
100 | 4.96x10%2 791 316 | 11208 | 3161 200 067 3 4 0.14 3
500 | 3.03% 10313 —] : e | 1000 | 19.09 78 4 0.77 60
Slotted ring El(sloty # bf) U (sloty = ag))

5 1 5.38%10° 0.0 1 0.0 1 337 00117 <5 9 0.00] <5
10 | 8.29%10Y 0.2 10 0.4 31 63] 001 <B5] 9 001 <5
15 | 1.46x 1015 1.8 15 2.0 0] 98] 037 1 9 0021 <5

100 | 3.03x 10305 — - e L B03 e 9 1.60 62
Round robin El(p1 # load) U (py = send))

51 3.60%x10% 0.0 1 0.2 1 9] 000] <5 6 0.00] <5
10 | 2.80x10% 0.2 11 85.0 11 390 001 <51 11 001 <5
15 | 1.10x 108 0.6 40 | 4922.7 401 59| 003] <5 16 0.01] <5

100 | 2.85 %1052 - - L399 | 13.32 32 1 101 4.67 19
FMS E[(M, > 0)U(Ps = Ps = Fys = N)|

2 1 3.44x10% 0.2 17 | 318.1 437 311 004] <B[] 6 0.01] <5

3 | 4.86x10? 1.0 127 46 016] <5| 8 002 <5
25 | 8.54%x10% || B ~ | 376 - e | 52| 1010.85 | 203

Table 5.2: Experimental results for computing EG: SMART' vs. NuSMV.

equals the sum of the state-space generation and EU entries. The same holds for EG.
In SMART, the state-space construction is always executed in advance, hence the memory
consumption includes the MDD for the state space. We show the largest parameter for
which NuSMV can build the state space in the penultimate row of each model, while the
last row shows the largest parameter for which SMART' can evaluate the EU and EG.
Overall, SMART outperforms NuSMV time- and memory-wise. Saturation excels at
state-space generation, with improvements exceeding 100,000 in tirne and 1,000 in memory.

For EU, we can see the effect of the data structures and of the algorithm separately, since we
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report for both BUtrad and EUsal. When comparing the two, the latter reaches a fixed point
in fewer iterations (recall Figure 5.5) and uses less memory. While each FUsaet iteration is
more comaplex, it also operates on smaller MDDs, one of the benefits of saturation. The
performance gain is more evident in large models, where EUtrad runs out of memory before
completing the tagk and is up to 20 times slower. The comparison between our FlUtrad,
EGtrad and NuSMV highlights instead the differences between data structures. SMART is
still faster and uses much less memory, suggesting that the Kronecker representation for the

transition relation is much more efficient than the 2K-level BDD representation.
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Chapter 6

Counterexamples and Witnesses

One of the most attractive features of Model Checking is its ability to provide counterex-
amples and witnesses for the properties that are checked, as this allows the user to inspect
execution traces in the model for debugging purposes. The two notions are dual: whenever
a formula prefixed with the universal path quantifier, A, is not valid, the model checker
provides the user with an execution trace that proves the negation of the formula (a coun-
terezample). Similarly, for a valid formula prefixed with the existential path quantifier, E,
the model checker delivers a witness to that.

Tn many cases, however, this feature is the most time- and space-consuming stage of
the entire verification process. For example, [40] shows how to construct traces for gueries
expressed in the temporal logic CTL [36] under fairness constraints. A different approach
is taken in SAT-based Model Checking [1]. The search for counterexamples is conducted
incrementally, by looking for execution traces of increasing length, and using a satisfiability
checker instead of BDDs to verify the desired properties written as propositional logic
formulae. The resulting method, called Bounded Model Checking [9], is able to provide
the shortest connterexamples. On the other hand, the method is incomplete, in the sense
that it cannot give an answer when no counterexamples exist, and it is limited in practice

115
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to finding errors with short coumterexamples. The SAT-based approach becomes complete
when appropriately combined with the BDD-based approach, resulting in a hybrid method
[135].

Since a trace is usually meant to be examined by a hwmnan, it is particularly desirable
for a model-checking tool to compute a minimal-length trace. Unfortunately, finding such
trace is an NP-complete problens [80], thus a sub-optimal trace is sought in most cases. For
some operators, finding minimal-length witnesses is instead easy in principle. An example
is the EF operator, which is closely related to the (backward) reachability relation: a state
satisfies EFyp if there is an execution path from it to a state where property p holds. Bven
using symbolic encodings [21], though, the geuneration and storage of the sets of states
required to generate an EF witness can be a major limitation in practice.

In this section we investigate the possibility of using the saturation strategy to build
shortest-length execution traces for reachability queries. This is based on the definition of

the distance tfunction between states/sets of states, which we introduce next.

6.1 'The distance function

The distance of a reachable state 1 € § from the initial state s is defined as §(i) =

min{d : i € N¥(s)}. We can naturally extend § : & — N to all states in S by letting

§(i) = oc for any noun-reachable state i € S\ 8. Alternatively, given such a function
o - . B » p " P’ " >

6:8 - WU {0}, we can identify & as the subset of the domain where the function is finite:

S={ie §:4§(i) < oo}

The formulation of our problem is then: Given a description of a structured discrete-
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state system (f;‘"? 8, ), determine the distance to all reachable states, Le., compute and
store § 1 § —» HU {oo} (note that the reachable state space S is not an input, rather, i
is implicitly an output). This can be viewed as a least fixed-point computation for the
functional @ : D - D, where D is the set of functions mapping & onto NU {oc}, More

precisely, @ refines an approximation of the distance function from the initial 5% ¢ D,

defined as §01(i) = 0, if i = s, 619(i) = o otherwise, via the iteration

S Il(sy = B(8) (i) = min (6{"”] (i), min {1 + (i)

iéEN(i’)}).

Note that the state-space construction is itself a fixed-point computation, so we seek
now to efficiently combine the two fixed-point operations into one. Before showing our
algorithm to accomplish this, in Section 6.2, we first describe a few approaches to compute

distance information based on existing decision diagrams technology.

6.1.1 Explicit decision diagram encoding of state distances

Algebraic decision diagrams (ADDs) [8] are an extension of BDDs where multiple terminals
are allowed (thus, they are also called MTBDDs [44]). ADDs can encode arithmetic func-
tions from & to RU {oc}. The value of the function on a specific input (representing a state
in our case) is the value of the terminal node reached by following the path encoding the
input. While ADDs are traditionally associated to boolean argument variables, extending
the arguments to finite integer sets is straightforward.

The compactness of the ADD representation is related to the merging of nodes, exploited
to a certain degree in all decision diagrams. In this case, there is a unique root, but having

many terrinal values can greatly reduce the degree of node merging, especially at the lower
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Figure 6.1: Storing the distance function: ADD vs. forests of MDDs,

levels, with respect to the support decision diagram, i.e., the MDD tbat encodes & C 8 In
other words, the number of terminal nodes for the ADD that encodes § : & — N U {0}
equals the number of distinct values for § (hence the “explicit” in the title of this section).
If we merged all Anite-valued terminals into one, thus encoding just & but not the state
distances, many ADD nodes may he merged into one MDD node.

An alternative explicit encoding of state distances can be achieved by simply using a
forest of MDDs. This approach is derived from the traditional ROBDD method, by ex-
tending it to multi-valued variables. Each of the distance sets N4(s) = {i € S| 6(i) = d}
(or {i € & | 6(i) < d}, which may require fewer nodes in some cases) can be encoded using
a separate MDD. Informally, this reverses the region where most sharing of nodes occurs
comparecl to ADDs: the roots are distinct, but they may be likely to share nodes down-
stream.

The range of the function is critical to the compactness of either representation: the
wider the range, the less likely it is that nodes are merged. Figure 6.1 (a) and (b) show
an example of the same distance function represented as an ADD or as a forest of MDDs,

respectively,
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6.1.2 Symbolic encoding of state distances

In this section we introduce a new data structure that is able 1o store the distance function
more efficiently. This can be achieved by “distributing” the values of the terminal nodes in
the ADD as the composition of several numerical values associated to the arcs along paths
in the decision diagram. This is based on the intuition that scattering the value that was
previously “concentrated” in a single terminal node would increase the degree of merging
of nodes, so that they share common arcs.

The idea of associating numerical values to the edges of regular BDDs was proposed in

(93, 94], resulting in a new type of decision diagrams, edge-valued BDDs (EVBDDs)L.

Definition 6.1.1 An EVBDD is a directed acyclic graph that encodes a total function

[ {0, 1} 5 Z ag follows:
1. There is a single terminal node, at level 0, with label 0, denoted by (0]0).

2. A non-terminal node at level k, K > k> 1, is denoted by (k|p), where p is a unique
identifier within level k, and has two children, (k|p)[0].child and (k|p)[1].child (corre-
sponding to the two possible values in &) which are nodes at sorme (not necessarily

the same) level [,k >1>0.

3. The l-edge is labeled with an integer value (klp){l]val € 7%, while the label of

(klp)[0].val is always (implicitly) 0.

"We observe that also binary moment diagrams (BMDs), independently introduced in [18], asso-
clate values to edges. For BMDs however, evaluating the function on a particular argument requires
the traversal of multiple paths, as opposed to a unique path for EVBDDs, Thus, while very effective
for verifying circuits such as a multiplier, BMDs are not as suited for our approach.
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Figure 6.2: Canonical and non-canonical EVBDDs.

for a “dangling” edge labeled with an integer value p & Z.

5. Canonicity restrictions analogous to those of reduced ordered BDDs apply:

uniqueness: if (k|p)[0].child = (k|g)[0].child, (klp)[1].child = {(k|q)[1].child, and
(klpy[1]wal = (k|g)[1].val, then p = ¢;

reducedness: there is no redundant node (k|p) satistying (k|p)[0].child = (k|p)[1].child

and {k|p}[1].val = 0.

The function encoded by an EVBDD node (k|p) is recursively defined by

- o Fimogenitalin -« -5 01) if ig =0
UCDICRELY {f'(fclp){l].chﬂ,d(im-~-,il)*f"(’f?iz))[l]-ml ifip =1

where I and r are the levels of (k|p)[0].child and (k|p)[1].child, respectively, and figjg = 0.
The function encoded by an EVBDD edge, that is, a (value,node) pair is then simply
obtained by adding the constant value to the function encoded by the node. In particular,
the function encoded by the EVBDD is f = p + Fkolr)-

Note that the nodes are normalized to enforce canonicity: the value of the O-edge is

always (. If this requirement were relaxed, there would be an infinite number of EVBDDs
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representing the same function, obtained by rearranging the edge values. An example of
multiple ways to encode the function of Figure 6.1 with non-canonical EVBDDs is shown
in Figure 6.2 2. Only the EVBDD in Figure 6.2(a) is normalized. This node normalization
implies that p = f{0,...,0) and may require the use of both negative and positive edge
values even when the encoded function is non-negative, as is the case for Figure 6.2(a).
More importantly, if we want to represent functions such as our distance 4 : § -y N {00},
we can allow edge values to be oo; however, if 6(0,...,0) = oo, i.e., state (0,...,0) is not
reachable, we cannot enforce the required normalization, since this implies that p is oo, and
[ is identically oo as well. This prompted us to introduce a more general normalization

rile, which we present next.

6.2 A new approach

To the best of our knowledge, this is the first attempt to use edge-valued decision diagrams

of any type in fixed—point computations or in the generation of traces.

6.2.1 KEdge-valued MDDs

We extend EVBDDs in several ways. The first extension is straightforward: from binary

r

to multi-valued variables. Then, we change the normalization of nodes to a slightly more
general one needed for our task. Finally, we allow the value of an edge to be oo, since this

is required to describe our distance functions. Note that the cholee to use quasi-reduced

*The edge values are written in circled boxes on the corresponding arcs, Also, for better read-
ability, a missing edge-value has to be interpreted as (0 - the neutral element of integer addition, and
the arcs labeled with oo are completely eliminated.
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instead of reduced decision diagrams is not dictated by limitations in the descriptive power

of EVBDDs, but by efficiency considerations in the saturation algorithm.

Definition 6.2.1 Given a function f 1 8 = ZU {0}, au EVIMDD for f # oo is a directed
acyclic graph with labeled edges that satisfies the {ollowing properties:

1. There is a single terminal node, at level 0, with label 0, denoted by {0]0).

2. A non-terminal node at level k, K >k > 1, is denoted by (k|p), where p is a unique
ideuntifier within the level, and has ny > 2 edges to children, {k|p}[ig].child, labeled

with values {k|p)[ir].val € NU {0}, for 0< i <ny.

3. If (klp)lix).val = oo, the value of {(k|p)[i].child is irrelevant, so we require it 10 be 0
for canonicity; otherwise, {k|p)[ig].child is the index of a node at level £ — 1.

4. There is a single voot node, (K|r), with no incoming edges, except for a “dangling”
incoming edge labeled with an integer value p € Z.

5. Each non—terminal node has at least one outgoing edge labeled with 0.

6. All nodes are unique, iLe.,
if Wiy, 0 <ig < ng, (k|p)[ig].child = {k|g)[ix].child, (klp)[ix].val = (k|g)[ix].val, then

p=q.

Figure 6.3 shows two EVTMDDs storing a total and a partial® function, respectively (the

total function encoded is that of Figures 6.1 and 6.2). Note that, unlike the normalization

By “partial, we mean that some of its values can be oo; whenever this is the case, we omit the
corresponding value and edge from the graphical representation.
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Figure 6.3: Storing total and partial arithmetic functions with EVTMDDs.

negative, and at least one per node be zero, but not in a pre-determined location; compare
the EVBDD of Pigure 6.2(a) with the equivalent KVTMDD of Pigure 6.3(a). The function

encoded by the EVTMDD node (k|p) is

Fouoy Gy -5 in) = (KIp)in]-val + Fa1jiplis).chitdy (15 - - -2 B1)

and we let fi = 0. As for EVBDDs, the function encoded by the EV*MDD (p, (K|r)) is
[ = p+ figyy. However, now, p == min{f(i) : ¢ € S x --- x §1}. In our application, we

encode distances, which are non-negative, thus p = 0.

6.2.2 Canonicity of EV*MDDs

Lemma 6.2.1 From every non-terminal EVYMDD node, there is an outgoing path with

all edges labeled 0 reaching (0(0).
Corollary 6.2.1 Function fy,,, encoded by node {klp) is non-negative and min{ £y ) = 0.

Definition 6.2.2 The graphs rooted at two EVEMDD nodes (k|p) and {k|q) are isomorphie

if there is a bijection b from the nodes of the first graph to the nodes of the second graph
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such that, for each node (I]¢) of the first graph and each 4 € & (with k> 1> 1):

bl s ] .chald = b({l|s)4,).child) and  b({{|s))]i].val = (Us)[4].val.

Theorem 6.1 {Canonicity) If two BEVIMDDs (py, (K|ry)) and {po, (K]re)} encode the

{(K|r1) and (K|ry) are isomorphic.

Proof. It is easy to see that, since the value on the dangling edges of the two EV*MDDs
equals the minimum value p the encoded function f can assume, we st have py = py = p,
and the two nodes (K|ry) and (K|ry) must encode the same function f - p. We then need
to prove by induction that, if two generic EVMDD nodes (k|p) and {k|g) encode the same
function, the labeled graphs rooted at them are isomorphic.

Induction base (k = 1): if (1]p) and (1|¢) encode the same function f : & = N U {00},
(Lp)li1]-child = (1g}[i1].child = 0 and {(1|p)[i1].val = (Ug)lii]wal = f(4y) for all ¢y € Sy,
thus the two labeled graphs rooted at (1]p) and (1l|¢) are isomorphic.

Induction step (assume claim true for & — 1): if (k|p) and (k|¢) encode the same function
8, x - x 8 — NU {oo}, consider the function obtained when we fix 44 to a particular
value £, i.¢., fi,«- Let g and b be the functions encoded by (k|p)|t].child and (k|g)[t].child,
respectively; also, let (klp)[t].val = a and (klg)[f].val = £, and observe that the functions
«+g and g+ h must coincide with f; ;. However, because of Corollary 6.2.1, we know
that both the g and A evaluate to 0, their minimum possible value, for at least one choice
of the arguments (ig_y,...,%1). Thus, the minimum of values o+ g and 3 + h can have are

e and f, respectively. Since « + g and 4 h are the same function, they must have the
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UnionMin(k : level, (oo, p) 1 edge, (B, ¢) : edge) : edge

Computes the minimum of two partial functions

L. if v == 0o then return (5, q);

2, if B == 00 then return (o, p);
3. if k == 0 then return {min{e, £),0); e the only node at level k = 0 has index ()
4. if Cached (EVunion, k,p,q, a3, (7y,u)) then e maich (k,p,q,a-pB), return (7, u)
5. return (v -+ min{e, 8),u);
6. w + NewNode(k); e create new node at level k with edges set to (oo, 0)
7. p¢ 4~ min{e, f);
8. for iy = 0 to ny ~ 1 do
9. '« (klp).childlip];, o o~ p+ (kip).valliz];
10. ¢ < (k|g).childlix);, B' « B — p+ (klg).vallig];
11 (klu)ix] « UnionMin(k~1, (&, p"), (8, ¢)): e continue downstream
12. CheckIn(k,u);

ey
had

PutInCache(EVunion, k,p,q,cc ~ 3, (11, u));

[oy
&

return (i, u);

Figure 6.4: The UnionMin algorithm for EVTMDDs.

same minimum, hence o = . This implies that g = h and, by inductive hypothesis, that
(k|p)[t].child and (k|q)[t].child are isomorphic. Since this argument applies to a generic child

t, the two nodes {klp) and (k|g) are then themselves isomorphic, completing the proof.

6.3 Operations with EVTMDDs

We are now ready to discuss manipulation algorithms for EVIMDDs. We do so in the con-
text of our state-space and distance generation problem, although, of course, the UnionMin
function we introduce in Figure 6.4 has general applicability. The new types used in the
pseudocade of Figures 6.4 and 6.6 are value (for edge values) and edge, denoting a pair

(value, iredez) (i.e., the type of (k|p)[i]).
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The Uniondin algorithm computes the roinimum of two partial functions. This acts
like a dual operator by performing the vnion on the support sets of states of the two
operands (which must be defined over the same potential state space 5)? and by fnding
the minimum value for the common elements. The algorithm starts at the roots of the fwo
operand EVIMDDs, and recursively descends along matching edges. If at some point one
of the edges has value oo, the recursion stops and returns the other edge (since oo is the
neutral value with respect to the minimum). If the other edge has value oo as well, the
returned value is (oo, 0), i.e., no states are added to the union; otherwise, if the other edge
has finite value, we have just found states reachable in one set but not in the other. If the
recursion reaches instead all the way to the terminal node (0}0), the returned value is the
minimum of the two input values « and S.

If both a and f are finite and p and q are non-terminal, UnionMin “keeps” the minimum
value on the incoming arcs to the operands, p, and “pushes down” any residual value o — i,
ifp=p0g<aor B—p if p=a< f tothe children of p or g, respectively, in its
recursive downstream calls. In this case, the returned edge (i, u) is such that g+ fyp =
min(o -+ firipy B+ Fielg))-

An example of the application of the UnionMin algorithm is illustrated in Figure 6.5.
The potential state space is Sz x Sp x §; = {0,1,2} x {0,1} x {0,1}. The functions encoded
by the operands, [ and g, are listed in the table to the left, along with the result function

h = min{f, g).

Lemma 6.3.1 The call UnionMin(k, (e, p),(f,q)) returns an edge (u,w) such that p =

min(a, #) and (klu) and its descendants satisfy property 5 of Definition 6.2.1, if (k|p) and
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w0 0 0 0 3 V1 oy 2 2 2 2

i 1 0 1 0 1
Fi0 o 2 oo 2 2
gl0 2 oo x 2 :
B0 2 2 oo 2 2

Figure 6.5: An example of the UnionMin operator for EVTMDDs.

(klg) do.

Proof. It is immediate to see that g = min(w, §). To prove that (klu) satisfies property
5, we use induction: if k = 0, there is nothing to prove, since property 5 applies to non-
terminal nodes only. Assume now that the lemma is true for all calls at level k—1 and
consider an arbitrary call UnionMin(k, («,p), (5, q)), where the input nodes (k|p) and {k|q)
satisfy property 5. If « or £ is 0, the returned node is one of the input nodes, so it
satisfies property 5. Otherwise, since p = min(a, f), at least one of o — p and g — p
is 0; say «v — pu == 0. The values labeling the edges of (kju) are computed in line 11 of
UnionMin. Since (k|p) satisfies property 5, there exists i € {0,...,n4 1} such that

(klp).vallig] = 0. Then, for the corresponding iteration of the for-loop, ¢ is 0 and the edge
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returned by UnionMin(k -1, (o, p), (4, ¢")) is (min{e!, 5),4') = (0,4'), where (k- 1]u')

satisfies property b by induction; thus, (klu)]ix].wal is set to 0.

We conclude the discussion of UnionMin by observing that the hash-key for the entries
in the union/min cache is formed by the two nodes (passed as level, index, index, since
the nodes are at the same level) plus the difference o — f of the values labeling two
edges pointing to these nodes. This is better than using the key (k,p, ¢, o, ), which would
unnecessarily clutter the cache with entries of the form (k,p,q, a0 + 7,8+ 7, {p + 7,u))}, for

all the values of r arising in a particalar execution.

6.3.1 State—space and distance generation using EVMDDs

Our fixed-point algorithim to build and store the distance function 4, and implicitly the state
space S, is described by the pseudo-code for BuildDistance, EVSaturate, and EVRecFire,

shown in Figures 6.6-6.7. Given a model (S, s, ) we follow these steps:

1. Encode s into an initial EVTMDD node (K|r). This can be done by building the MDD
for s, then setting to 0 all edge values for edges going to true (called 1 in the MDD
terminology of [27]), setting the remaining edge values to oo, eliminating the terminal
node false, and renaming the terminal node érue as 0 (in EV"MDD terminology). See
[27] on how to build an MDD when s contains a single state. In general, the MDD
encoding of 8 will be derived from some other symbolic computation, e.g., it will be

already available as the result of a temuporal logic query.

2. Call BuildDistance(K,r).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. COUNTEREXAMPLES AND WITNESSES 13

2

4

L

3.

BuildDistance(k  level,p : index)
1.

if k> 0 then
for 4p = 0 to ng — 1 do
if (klp)s].val < co then BuildDistance(k — 1, (klp)|i]. child);
. EVS8aturate(k,p);

5

EVSaturate(k : level,p : index)
1.
2.
3.
4,

repeat

pChanged + false;

foreach ¢ € &, do pChanged < pChanged V EVFire(e, k,p)
until pChanged = false;
. CheckIn(k, p);

fury

EVFire(e : cvent, k : level,p : index)

. pChanged + false

2. L« {ig : Npelig) #0 A (Klp)lig].val # oo}
3. while £ # 0 do
4. pick and remove iy from L,
5. (e, f) « EVRecFire(e, k-1, (k|p)ik]);
6. if a # oo then
7. foreach jy & Ny c(ip) do
8. (B,u) ¢+ UnionMin(k—1, (x4 1, £, (klp)[x]);
9. if (8,u) #{Elp)[jr] then
10. (klp)jk] (B, u);
11. pChanged ¢~ true;
12. if Nipolg) # 0 then £ « LU{s}; e remember to explore j; later
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EVEBecFue(e : enent, ki : level, («v, ¢) « edge) © edge

L. if k = Bot{e) then return (a, g); s Jevel [ is not affected by event e
2. f Cached(EVFIRE k,q,¢,(7,s)) then e match (k,q,¢), return (v, 8)
3. retumn (77 + @, s);

4. 5 4 NewNode(k), o create new node at level k with edges set to (00,0)
5. sChanged 4 false;

0. £ 4 ig: Niolig) ADN (Blg)lig]val £oc}

7. while £ 5 0 do

8. pick and remove 45, from L;

9. (& f) + EVRecFire(e, k-1, {Elg)[ig]);

10, i ¢ 5 oo then

11, foreach j € Ny o(ir) do

12. (B,u) 4~ UnionMin(k~1, (¢, ), (kls}d]);
13. if (B,u)# (kls)[ji] then

14. (k)] - (Bru);

15. sChanged <4 true;

16. if sChanged then EVSalurate(k,s);
17. v 4 Normalize(k, s);

18. 5 ¢+ Checkln(k, s);

19. PutinCache(EVFIRE, k,q,¢, (v, 8));
20. return (v + «, 5);

Figure 6.7: The pseudo-code for EVERecFire.

The new function Normalize(k, s) puts node {(k|s) in canonical form by computing p =
min{{k|s)[ir].val : i € S} and subtracting p from each (k|s)[iz].val (so that at least one of
them becomes 0), then returns p; in particular, if all edge values in (k|s) are oo, it returns
oo (this is the case in line 17 of EVRecFire if the while-loop did not manage to fire e from
any of the local states in L).

The hash-key for the firing cache does not use the value o on the incoming edge,
because the node (k]s) corresponding to the result (vy,s) of EVRecFire is independent of
this quantity. The edge value returned by FVERecFire depends instead on o it is simply

obtained by adding the result of Normalize(k, s) to «.
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EVEeckire may push excess values upwards when normalizing a node in line 17, that
is, residual values are moved in the opposite direction as in UnionMin. However, the
normalization procedure is called only once per node (when the node has been saturated),

therefore excess values are not bounced back and forth repeatedly along edges.

6.3.2 Trace generation using EV'"MDDs

Once the EVTMDD (p, {K|r)) encoding § and & is built, a shortest-length trace from any
of the states in 8 to one of the states in a set A’ (given at input as an MDD) can be obtained
by backtracking. For simplicity, the following algorithin does not output the identity of the

events along the trace, but this option could be easily added, if desired:

1. Transform the MDD for Y into an EVYMDD (p,, (K|z)) encoding X and §, using
the approach previously described for s, where §,(i) = 0 if i € A and §,(i) = oo if

ie S\

2. Compute IntersectionMax (K, (p,7), (pz,2)), which is the dual of UnionMin, and
whose pseudo-code is exactly analogous; let (u, (K|m)) be the resulting EVTMDD,
which encodes & NS and the restriction of § to this set (1 is then the length of one

of the shortest-paths we are seeking).

3. Extract from (4, (K|m)) a state ji = (jg’;sj, ey j{‘"’ }) encoded by a path from (K|m)

to {0]J0) labeled with 0 values (j*! is a state in ¥ at the desired minimum distance g

frorn s). The algorithm proceeds now with an explicit flavor.

4. Initialize v to p and iterate:
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(a) Find all states i € & such that j# € A'(i). With our boolean Kronecker encoding
of N, this “one step backward” is easily performed: we simply have to use the
transpose of the matrices Ny ..
{(b) For each such state i, compute 6(i) using (p, (K|r)) and stop on the first i such
that §(i) = v — 1 (there exists at least one such state i").
(¢} Decrement v.

(d) Let j[“’J be i*.
5. Output j9,... j0.

The cost of obtaining 5 as the result of the IntersectionMaz operation is Q(F{K |r} -
#(K|x)), where # indicates the number of EVYMDD nodes. The complexity of the rest of
the algorithm is then simply Oy - M - K), where M is the maximum number of incoming

1je 8y,

ares to any state in the reachability graph of the model, i.e., M = max{JN"1(j)
and K comes from traversing one path in the EV*MDD. In practice M is small but, if
this were not the case, the set A"1(j)) could be computed symbolically at each iteration
instead.

Generating the same trace using traditional symbolic approaches could follow a similar
idea. If we used ADDs, we would start with an ADD encoding the same information as the
EVIMDD (py, (K|#)), compute the ADD equivalent to the EVIMDD (i, (K|m)) using a

breadth~first approach, and pick as ji¥! any state leading to a terriinal with minimal value

as j¥ any state in N1 X. Then, the backtracking would proceed in exactly the same way.
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In either case, however, we are discovering states symbolically in breadth-fivst order,
thus we could choose to perform an intersection with X after finding each additional set
of states N%, and stop as soon as N9(s) N & # §. Overall, we would then have explored
only {i: d(i) < u}, which might be a strict subset of the entire state space §. However,
two observations are in order. First, while this “optimization” manages fewer states, it way
well require many more nodes in the symbolic representation: decision diagrams are quite
counterinfuitive in this respect. Second, in many verification applications, the states in
A satisfy some property, e.g., “being a deadlock”, and they can only be reached in some
obscure and tortuous way, so that the minimum distance p to any state in &X' is in practice
close, if not equal, to the maximum distance p to any of the states in §.

The advantage of our approach is that, while it must explore the entive &, it can do
so using the idea of saturation, thus the resulting decision diagrams are built much more
efficiently and require much less memory than with breadth-first approaches. The following
section confirins this, focusing on the first and expensive phase of trace generation, the
computation of the distance information, since the backtracking phase has negligible cost

in comparison and is in any case essentially required by any approach.

6.4 Results

of encodings for the distance function we have discussed, EVTMDDs, forests of MDDs, and
ADDs, in conjunction with two iteration strategies, based on breadth-first and saturation,

respectively (see Table 6.1). Since only breadth-first is applicable in the case of forests of
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Table 6.1: Experimental results for computing the distance function.
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MDDs, this leads to five cases: EVIMDD with saturation (E,), EVTMDD with breadth-

first (Fy), forest of MDDs with breadth-first (M), ADD with saturation (A,), and ADD

with breadth-first (A4;). Note that only My and A, have been used in the literature before

(8, 39], while E, and Ej use our new data structure and A, applies the idea of saturation

to ADDs, thus it is also a new approach. The ADD algorithms arve conceptually similar to

the EVMDD ones with several differences in the UnionMin and RecFire procedures. The
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base cases for the ADD version of UnionMin(k,p,q) are

it p=gVps== o0 return ¢

else if & == 0 return min(p, q);

For the ADD version of the RecFire(e, 1, k, p) procedure, we observe that, for all firings, the
recursive calls have to reach the terminal nodes on all oceasions, hence they no longer stop

at level Boi(e). The base case is then
if 1 == 0 then return p -+ 1;

We imaplemented the five algorithios in SMART and used them to generate the distance
function for the entire state space. The suite of examples is chosen from the same benchmark
we used in previous experiments. For each model, we list the maximum distance D, the
number K of levels in the decision diagram, and the sizes of the local state spaces. For each
experiment we list the maximum distance to a reachable state, which is also the number
of iterations in the breadth-first approaches, the runtime, and the number of nodes (both
final and peak).

In terms of runtime, there is a clear order: E, < By < M, < A; < Ap, with E, easily
managing much larger systems; F., £, < M, < A,, Ay clearly attests to the effectiveness
of the data structures, while F, < By, and A, < Ay attest to the improvements obtainable
with saturation~based approaches.

With EVTMDDs, in particular with £, we can scale up the models to huge parameters.
The other two data struciures do not scale up nearly as well and run out of memory. In

terms of rnemory consumption: £, < A, < Ey = My < A, for the peak munber of nodes,
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il

while Fy == I < Ay == Ay & My for the final number of nodes. The key observation is that
Eg substantially outperforms all other methods. Compared to Ay, it is over 1,000 times

faster and uses fewer peak nodes, also by a factor of 1,000.
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Application: the Runway Safety

Monitor

In this chapter, we present the results of applying our new model checker to a real-life
industrial-size application: the Runway Safety Monitor. The application was made available

to us through a collaboration with NASA Langley Research Center.

7.1 'The Runway Incursion Prevention System

The Runway Safety Monitor (RSM) is a component of NASA’s Runway Incursion Preven-
tion System (RIPS) research. Designed and implemented by engineers at Lockheed Martin,
RSM is intended to be incorporated in the Integrated Display System (IDS), under devel-
opment since 1993. IDS also includes other aircraft and ground-based incursion detection
and prevention algorithms, such as TCAS [60]. The IDS design makes it easy for RSM
to exploit the existing data communications facilities, displays, Global Positioning System
(GPS), available ground surveillance system information, and data links.

Collision avoidance protocols already exist and operate. TCAS has been in use since

137
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1994, and it is nowadays vequired by FAA on all commercial US aircraft. 'TCAS has a full
formal specification, but it has been verified only partially, not fully, due to its complexity
which arises mostly from modeling the trajectories of planes with trigonometric functions
and linear equations.

Unlike TCAS, the goal of RSM is not to prevent hazards, but rather to defect them.

The runway incursions are defined by the Federal Aviation Administration [73] as:

“any occurrence at an alrport involving an aircraft, vehicle, person, or object
on the ground, that creates a collision hazard or vesults in the loss of separation

with an aircraft taking off, intending to take off, landing, or intending to land”.

The prevention part is provided by other components of RIPS in the form of a number of
IDS capabilities: heads up display (HUD), electronic moving map (EMM), cockpit display
of traffic information (CDTI), taxi routing, and others.

Experimental studies conducted by Lockheed Martin [73] showed that “incursion sit-
uations are less likely to occur when IDS technology is employed on aivcraft, but in the
event that IDS fails to provide complete situational awareness, RSM plays an even more
Important role.”

Figure 7.1 shows the high level architecture of the RSM algorithm. RSM runs on a
device, installed in the cockpit, that is turned on before takeoff and landing procedures on
airports.  The traffic is monitored in a zone surrounding the runway where the takeoft or
landing is to take place. The zone is a three-dimensional volume of space that runs 220
feet laterally from the edge of the runway, up to 400 feet of altitude above the runway, and

1.1 nautical miles from the runway ends. The 400 feet altitude corresponds to a glide slope
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of 3 degrees for takeoff/landing trajectories.

139

The protocol refers to the aircraft that is operating on as ownship, and to other aircraft,

ground vehicles using the same runway, or even physical obstacles, such as equipment, as

targels.

The protocol, written in the C language, consists of a repeat loop containing three major

phases. In the first phase, the device gathers traffic information from radar updates (coming

through a data-link). It identifies each target present in the monitored zone and stores its

3-D physical coordinates. Updates may not be received with a constant frequency, but

rather irregularly, and can even be faulty. The implications of data Jink errors or lack of

input are not addressed in this study, as it is a challenging task in itself. Tt has alveady been

the subject of some experimental measurements, and the analysis of faulty behavior carries

a stochastic/probabilistic favor, not captured in our present model, which is concerned only
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with logical errors.

In the second phase of each iteration, the algorithm assigns to each target a stefus, from
a pre-determined set of values that includes taxi, pre-takeoff, takeoff, climb-out, landing,
roll-out and fly-through modes. The definition of these states is described in detail when
discussing our model of the system,

The third phase is responsible for detecting the incursions, and is performed for each
target based on the combination of physical coordinates of ownship and the target (position,
heading, ete), and some additional conditions. Table 7.5 shows the operational state matrix
of the testing for incursions phase. Our analysis is focused on certifying that this decision
procedure is able to detect all possible incursion scenarios.

The model of the RSM protocol in our tool SMART is described next.

7.2 The SMART model of RSM

The process of extracting a Petri net model from the specifications of RSM is a typical
software engineering task, which starts with identifying the relevant variables to describe
the states of the system and the events that transition the system from one state to another.
At the end of several iterations of refinement, our model included the variables discussed

below.

7.2.1 State variables

The number of tracked targets, num.targets, plus ownship as target number 0, gives the

number of subsystems in the model. For ecach subsystem, the relevant attributes are:
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e location : the 3D coordinates, as a vector of three variables (¢, y, ), where the X-axis
is across the width of the yunway, the Y-axis is along the length, and the Z-axis s on

the vertical;

¢ speed and heading: packed together in a speed vector, for which we need three more

variables, (v, vy,vz),

e acceleration along the runway: one variable ay, for which only its sign (positive,

negative, or zero) is relevaunt;
e status : one variable;
e alarm flag : one variable;

All other variables can be removed from the model, which helps in significantly reducing
the size of the state-space.

Since SMART operates on discrete-type systems, abstraction (by discretization) is needed
to cope with continuous-type variables of RSM. Coming up with “good” representations
of the variable domains can start with the “roughest” possible discretization that can be
extracted from the protocol specifications, and then refined to an acceptable solution. As
modelers, we had to take into consideration a balanced solution between a very rough
discretization (which potentially hides too many meaningful bebaviors by merging distinct
stales into a single representative), and a discretization that is too fine to allow an efficient
state-space generation (the state-space explosion problem). At the end of this decision

making process, the domaing were chosen as follows:
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» The 3-D coordinates: may be as simple as z,y, 2 € {0,1,2}: out of the zone, in the
vicinity, or on the rauway, but a better representation is:
xe{0,...,maz.z}

y €10,...,maz_y}
2 € {0,...,max. 2z}

R R

where 0 means outside the wone, and the constants maz.z, mazx.y, moz.z can be ad-

justed to the user’s preference;

e Speed: the only relevant information in the specification is the taxi speed threshold,
which is used to classify targets that move slower than 45 knots as being in taxi mode;

hence, variables v, vy, vz can simply be assigned to the domain

v, vy, vz € {0,£1 ~ “slow”, £2 ~ “fast” }

Again, a more general representation is {—max speed,...,0,..., maz._speed }, using

another adjustable parameter max _speed.
e Status: enumerated type, {out, taxi, pretakeoff, takeoff, climb, land, rollout, flythru};
e Alarm: boolean.

The acceleration variable, which helps discern between the status fakeoff and status
rollout, can be eliminated altogether at this point, since its value can be computed on the
spot, based on the variation of the variable speed: the acceleration along the Y-axis is
positive in the current state if there hag been an increase in vy compared to the previous
update, negative for a decrease in the value of vy, and zero, otherwise.

At the end of this first design stage, our Petri net model consists of a number of iden-

tical submets (one for each target and ownship) with one place for each variable. For the
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coordinates (w,y, z), the number of tokens in a place represents the (integer) value of the
variable. For the representation of the speed, bowever, since a place cannot hold a negative
number of tokens, the values of va, vy, and vz can be obtained from the marking of the
corresponding places with tokens by subtracting moz_speed: a number of tokens in the in-
terval (0..maz .speed - 1] represents a negative speed, maz speed tokens represents no speed,
and the interval [maz_speed + 1.2 % maz_speed] encodes all positive speed values.

The status variable can be modeled with a single place holding from 0 to 7 tokens,
encoding one of its possible enmerated values. For better readability, we adopt an equiv-
alent encoding with eight different safe places (holding 0 or 1 tokens only): st.out, st tawi,
st.pretakeoff, st.takeoff, st climb, st land, st.rollout, st.flythru. In each subnet, exactly
one of these places can hold a token at any moment

To corplete our structural approach, we have to define a Kronecker consistent parti-
tioning of the net. Since the modeling of transitions influences this decision, we discuss this

issue in Section 7.2.4.

7.2.2 Modeling the state transitions

The evenits in the model can be grouped in three categories, corresponding to the three

phases executed in each iteration of the algorithm:

1. Update aircraft data from the radar scans;

2. Update the status of each target;

3. Set. or reset alarm (for each target);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 7. APPLICATION: THE RUNWAY SAFETY MONITOR 144

This execution flow suggests that the model displays a globally asynchronous / locally
synchronous behavior, The updates on each target can be performed concurrently and
independently of each other, while every phase ends with a synchronization step, to ensure
that, before assigning the status to every target, all coordinates have been read, and also
that before taking the decision to raise an alarm or not, the status has been updated and
is consistent with the physical coordinates.

To establish this execution flow, we introduce one more variable per tavget, phase €

{ph.radar, ph_status, ph_alarm}, that governs the three phases.

7.2.2.1 The 3-D motion of targets

By introducing a discretization function, we have practically divided the monitored volume
of space into a number of smaller volumes arranged in a three-dimensional grid. As a result,
the positions of the aireraft are identified only by a finite number of positions in the grid,
from the discrete domain {0,...,maz.z} x {0,...,maz y} x {0,..., maz_z}. Similarly, the
continuous trajectories are identified by an abstract, discretized trajectory traversing the
small volumes of the 3D grid. This abstraction technique is fmqnen'bly used in practice to
deal with continuous type variables.

We use some additional modeling rules:

e Location (0,0,0) represents all positions outside the zone. A target that exits the
zore or has not entered is assigned this position. No other location can have a 0 value

for x, y or z.

e As an alternative, we could use an outer layer of states surrounding the extended zone
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to further distinguish between locations outside the zone, but this would uonecessarily
increase the state space with entries of the type (0,4, 2), (2,0,2), and (2,y,0), all

representing the same state: not monitored.

¢ Movement is allowed only between adjacent “cubes”, and consistent with the heading:
coordinate x cannot decrease if ve s positive (unless it becomes (0 upon exiting the

zone), cannot increase if v is negative, and the equivalent rules for the other axes.

¢ When a target enters the zone, ifs position is non-deterministically chosen on the

the entry speed parameters have to be consistent with the point of entry. For example,
one canuot enter from the left (i.e. crossing the 2-D plane & = 1 from an outside
position) with a negative vz. Also, out of the six 2> planes of the frontier of the zone,

a4

only five can be actually crossed (no entry is possible from “below ground”)

Note that the model might include unrealistic trajectories. This is acceptable in the
verification process as long as all realistic behaviors (all the behaviors we are interested in)
are covered by the model. Consequently, if a universal property holds in the abstract model,
then it must hold in the realistic model. If a property does not hold, then the provided
counterexample has to be checked to determine whether it represents a real counterexample

or not. This is a typical procedure when working with abstraction techniques.

7.2.2.2 Status definitions

The value of the status variable for each target is set in the second phase of the execution

loop. Using our model variables, we define each value of this variable as follows (15 denotes
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the taxi speed threshold of 45 knots):

1. out: pot in the monitored zoue

1y

(@ = 0) Ay == 0) A (z =0)

2. tazi: on the ground and (at low speed or not runway heading) =
(2= DA ({(oz] <TE A Juyl <T8) Vv (vz#0))

3. takeoff roll: on the ground, runway heading, accelerating 3
4 ) ) g

(z = 1) A

vyl > TS A (v = 0) A (ay > 0)

4. rollout: on the ground, runway heading, decelerating =

(z =1 Aoy > TS)A (vz = 0) Aay, <0)

5. climbout: airborne, runway heading and positive vertical speed =

(z > DA (vx =0)A(vz > 0)

6. landing: airborne, runway heading and negative vertical speed =

(z > 1) A (vz = 0) A (vz < 0)

7. flythru: airborne and not climbout or landing =

(> DA (ve #0)

Note that predicates (z = 1) and (z > 1) automatically imply that z > 0 and y > 0 by
the way we designed the outside zone to be represented by a single state, not a “rim” of
states.

As a derived issue in our analysis, we investigated which status-to-status transitions are

never possible in the RSM model. Table 7.1 shows this in the form of a matrix, where, for
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each row/column corbination, an “X” sign means the transition is possible, and a dash

means it is not.

To ~» | out | taxi | takeoff | rollout | clitnbout | landing | flythru
From |
out X X - - X X X
taxi X | X X X X - X
takeoff X1 X X X X - X
rollout X X X X ~ - -
climbout | X - - X X X
landing X X X X X X X
flythru X X X X X X X

Table 7.1: The state-to-state transition matrix for REM.

7.2.3 State-space measurements

The model that includes the first two phases of the protocol can be used as a building block
to further conducting the analysis. The third phase, setting the alarm, can be added into
the model as actual transitions, or alternatively, the value of the alarm variable can be
implied by the combination of status and positioning after the second phase.

Up to this point, the constructed model exhibits strong event locality. This also allows
for a flexible choice of partitioning of the model. A natural choice is to group variables
referring to the same target together. However, assigning all variables to the same partition

leads to extremely large local state spaces:

2.3 8(maz_z + 1)(maz.y + V(maz .z + 1)(2maz speed + 1)°

possible local states, which is nnacceptable. A better choice is to further split the subnets

into evens. smaller ones.
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This decision is strongly influenced by the need to satisfy the Kronecker consistency
requirements for each event. This proved to be the most challenging part of the modeling
phase. As far as the events in the first two phases are concerned, a partitioning of places into
five subnets per target yielded very good results. We arranged the variables in num_targets-
1 clusters, as follows:

gubmet 544 1: phoradar(i], ph.stetusfi], ph_status[i]

subnet bxd-+2: st.outli], st texilt], ..., st flythruli], alorm[i]

subnet 5#*¢--3: afd, veli]

subnet Bi--4: yli], vyli]

subnet Sxi4+5: z[i], vali]

We took measurements on the generated state spaces for different input parameters of

the model: number of targets, decomposition grid size, thresholds of speed. The state space
size, runtime, and mwemory consumption ave listed in Tables 7.2-7.4. The results show that

the reachability set can be constructed for multiple targets, a fairly large size of the grid,

and multiple thresholds of speed in a matter of minutes, using under 100 MB of memory.

grid size | speeds | 1 target | 2 targets | 3 targets | 4 targets
Ix5x3 1.O0x10M 134107 | 1.1x10% | 3.5x10%°
5x10x5 4.1x10™ | 8.4x10% | 1.7x10% | 3.5x10%
10 x 10 x 10 7.6x10%% | 6.6x10% | 5.8x10" | 5.0x10%
3xbx3 2.7x10M | 4.4x10%1 | 7.2x10% | 1.2x10%
5x10x5 8.3x101 | 7.6x10%% | 6.9x10% | 6.3x10%
10 x 10 x 10 1.4x10Y7 | 5.0x10% | 1.8x10% | 6.7x10%2

LA B BRG] I NG (LI

Table 7.2: State space measurements for RSM: number of states.

7.2.4 Setting the alarm

The third, and most important, phase of the RSM algorithm is setting the alarm Hag for

every target. In pseudo-code, this corresponds to a single variable assignment statement:
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grid size | speeds | 1 target | 2 targets | 3 targets | 4 targets
Ixbhx3 2 2.01 2.93 3.93 4.91
Sx10 x5 2 5.52 8.27 1119 13.91
10 x 10 x 10 2 13.62 20.58 27.50 34.42
35 x3 5 4.41 6.51 877 10.98
5x10x5H 5 12.91 19.07 25.42 32.06
10 % 10 % 10 5 28.45 42.84 57.25 7175

Table 7.3: State-space coustruction time for RSM (in seconds).

grid size | speeds | 1 target | 2 targets | 3 targets | 4 targets
d3xbx3 2 2.00 3.00 4.00 4.99
5x10x%x5 2 7.21 10.81 14.41 18.01
10 % 10 x 10 2 20.86 31.29 41.72 52.15
Ixbx3 5 4.22 6.33 8.44 10.55
Ex10x5H 5 15.48 23.21 30.95 38.69
10 % 10 x 10 5 39.73 59.59 79.45 99.31

Table 7.4: State-space generation memory consumption for RSM (in Megabytes).

set the (boolean) value of alarm based on different combinations of the current values of

the other variables, as listed in operational state matrix in Table 7.5 [T3].

Modeling this rather complex assign statement in a Petri net is difficult because of

two factors. First, predicates such as “distance is closing” or “in the takeoff path” that

involve geometry and linear equations arve difficult to express in a discretized model. Second,

the Kronecker consistency requirements will force splitting of events into many finer-grain

events. FFor example, the predicate “target i is in takeoff/landing path of ownship” can be

expressed as:

(i = o) A\ (o > 0) A (g > w0)) V (o < 0) A (i < )

Since variables y; and yo ave not in the same partition, each term involving the two must
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Target - taxi takeoff | climbout | land | rollout fly-thru
Ownship |
taxi - 1AB 1AG IAG L 1IAZAG -
pretakeotf 2A0 yes 1v4d yes ves 2N3
takeoft [N 4Vvh 4V5 4V5 1v4 2A3
climhout 1LAG 4Vh 4v5 4vh 4V 5 2A3
landing IAG 4vDh 4Vvh 4Vvh l1vd 2A3
rollout LA3SAG] LVv4 1v4 1v4 | 4v5h 2A3
fly-thru - 2A3 2A3 2A3 2A3 -

(1) Distance closing

(2) In takeoff/landing path

(3) Distance less than minimum separation

(4) Takeoft/landing in same direction and distance less than minimum separation
(5) '“lakooif/lmulmg«, in opposite direction and closing

(6) 1

Caxi fetationary on/near runway

Table 7.5: R8M protocol: alarm setting criteria.

be split to satisfy Kronecker consistency:
VO, € [1..mazx.y):
(@i = z0) Al(vyo > 0Ny = Cy ACy > yo) V (vyo < 0 Ayi = Cy A Cy < 1))
The same procedure must be applied to x¢ and z;, by further splitting terms:
VO, € [1..maz . z):
VCy € [1..maz_y}:
(5 = Cy) A (g = Cp) Avyo > ) A (s = Cy) A(Cy >yo) Vv
(w5 = C) Ao = Cy) A (vyo < 0) A (s = Cy) MOy < yo)
This generates 2 - maz.z - mas_y events from a single original event,.
In genieral, the number of events needed to model the third phase necessitated over 2000
lines of additional SMART' code, compured to just 500 lines needed to model the first two
phases together.

An excerpt from the actual model that illustrates this procedure is listed below:
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/% dbid Alarm for ownship rollout & target taxl +esd+ #/
for (int jx in {2..max.x-1}) {
for (int jy in {2..max_y-1}) {
trans alarm roll taxiilil{ixlliyv],
alarm. roll taxi2[i] [jx] {jy];
fiving(alarm, roll taxil[i] [ix] Liv] expo(l),
alarm_roll taxi2{il [ix][jyl:expo(1));
arcs(
phoalarm{il:alarm_roll_ taxillil [jx10{jyl,
ph_alarm({i] :alarm_roll_taxi2[il[ix] [jy],
alarm_wxoll _taxilli] [jxl{iv]:ph._radar[i],
alarm_roll_taxi2(i] [jx][jy]:ph_radar[il,
alarm_roll taxillil{jx3[jyl:f1l_alarm[i],
alarm_roll taxi2{i] [jx]{jy]:f1l alarm[il);
guard(
alarm_roll_ taxilli] [jx][jy]l:tk(st_taxili])>0 & tk(st_rollout{0]1)>0 &
th(x[0D)==jx & tk(y[01)==jy & tk(vy[0])>max_speed &
th(x[i])»=jx~1 & th{x[i])<=jx+1 &
tk(y[iD>»=jy & tk(y[il)<=jy+1,
alarm_roll taxil2[i] [jx][jy]:tk(st_taxi[il)>0 & tk{st_rollout[0])>0 &
th(x[0])==jx & tk{y[0])==jy & tk{vy[0])<max_speed &
th(x[il)>=jx~1 & tk(x[il)<=jz+1l &

th(yli)>=jy-1 & tk(y[il)<=jy);
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/# +edrd No alarm for ownship rollout & target taxi +tidd %/
for (int jx in {2..max_x-1}) {
trans noalarm_ roll_ taxix[i][jx];
firing (noalarm_roll taxix[il [jx]:expo(1));
ares (ph_alarnli) tnoalarm_roll taxix[i][jx],
noalarm. roll taxixii] [jx]:ph_radaril);
guard (noalarm_roll_taxix[1][jx]:
th{st. taxil[i])»0 & tk(st_rollout{0])>0 &
tk(x[01)==ix & (tk(z[D)<jw-1itk(x[i])>ix+1))
}
for (dint jy in {2..max_y-1}) {
trans noalarm_roll taxii[il[jy],
noalarm_roll_taxi2[il(jy];
firing(noalarm_roll_taxiili][jy]:expo(l),
noalarm_roll_taxi2[il [jyl:expo(1));
arcs(ph_alarm[i] inoalarm_roll taxiti{il([iy]l,
ph_alarm[i] :noalarm_roll_taxi2{il[jy],
noalarm_roll_taxil(il [jy]:ph_radar[i],
noalarm_roll_taxi2[il [jy]:ph_radar[il);
guard(
noalarm_roll taxilli] [jyl:tk(st_taxil(il)>0 & tk(st_rollout[0])>0 &
tk(y[0])==iy & th(vy[0])>max_speed & (tk(y[il)<iy | tk(y[il)>jy+1),
noalarm roll taxi2[i] [jy]:tk(st_taxilil)>0 & tk(st_rollout[0])>0 &
tl(y[0])==9y & tk(vy[0})<max_speed & (tk{y[iD)<jy~1 | tk(y[il)>jy)

Y5
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At the end of this process, the most significant change in the model was a dramatic loss
of event locality, leading to a slowdown in generation time and, most importantly, a much
higher memory consamption. The peak MDD size increased to over 1000 times larger than
the final, causing our model checker to run out of memory for large parameters, including
multiple targets. However, we were still able to build the state space for one target and a
medium size of the grid, within 1 GB of memory and less than 5 minutes. This was enough

to expose several potential problems with the decision procedure of the protocol.

7.3 Model Checking RSM

The goal of our analysis is to exhaustively check whether the operational matrix in Table
7.5 is able to detect all incursion scenarios. A sitnation where two aircraft get too close to
each other, within the minimum separation distance (MS) of 900 feet, without the alarm
variable being set is called a missed alarm scenario. A dual analysis could be conducted
on identifying false alarm scenarios, which describe the sitnations where an alarm is raised
without the presence of an imminent danger.

In analyzing the scenarios involving a single target, we can use the subscripts o and ¢ for
the state variables referring to ownship and target, respectively. The following predicates

are used to describe properties of interest:

dome =416t phase,, = done_alarm A phase, = done_alarm
sep =def distance(o,t) > M S
alarm, =det alarm = true

track =% gatus, & {tawi, flythru} V status, & {tazi, flythru}

The semantics of the (non-trivial) predicates above are:
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done:  all updates are complete
track:  at least one aircraft is taking off or landing
7.3.1 A “memory-less” property
We start our investigation with the most sitaple interpretation of a missed alarm.
o “Is there a tracked state where minimum separation is lost and the alorm is off #7
o CTL: BF(done A track A ~sep A —alarm)

e Answer: YES.

LEGEND:
b i =t + A 2 =1 @ ownship position
ownships=taxi | | ownship==takeoff || ownship-

. . 74 target position
target=taxi targets=taxi target=taxi @ target p

distance>M$8 11 distance<MS$ distance<M$ " min.separation radius
alarm = OFF 11 glarm = ON = ]

NOTE: objects and distances

alarm not aged not at realistic scale

Figure 7.2: RSM: missed alarm scenario 1, at ground level.

A scenario that leads to a state satisfying this query is realized when the criterion
“distance is closing” is not satisfied in the current state. This is the case of the third

snapshot in Pigure 7.2. However, this situation might not be the result of an uvnwanted
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behavior, since the alarm might have been set in a previous state, more precisely in the first
state where the minimum separation was lost. The value of the alarm variable being set
also depends on whether the alarm is aged for a few more cycles or not.

Nevertheless, the situation is still of potential concern, even with aging of the alarm,
since the target can maintain a constant distance (at less than minimum separation) for
Jonger than the duration of the aging, resulting in a “bad state” in the round after the
alarm expires.

Note that the memory-less nature of the query influences the result. We looked at
the property in a particular snapshot in time, without considering the sequence of events
leading to the current state. To get a better understanding of the facts, we next investigate
the states of the system immediately after the minimum separation distance between two

aircraft is lost.

7.3.2 Analysis of the transition that causes loss of separation

o “Is there a state where minimum separation is lost by transitioning to the current state

and the alarm is off #”
e CTL: EF(done A track A sep AE[(—done) U (done A track A —sep A —alarm)])
o Answer: YES.

Note 7.3.1 The nested EU operator in the query (instead of an BX) is duc to the fact
that several transitions are required to finish the update of coordinates (3), status (1) and

to set the alarm again (1).
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A witness is shown in Figure 7.3, where ownship is in a landing or clinbout state and the
target 1s flying across the runway, faster than ownship, moving within separation distance
from the side at an angle. The condition for setting an alarm in this circumstance is
“distance less than minimum separation and target in takeoff/landing path”. The second
term is not satisfied, hence no alarm is raised. Note that aircraft can actually collide
(trajectories intersect in Figure 7.3), while none of the participants is ever warned. The

above scenario is the only one generating bad states for this query.

\@\ Horizontal 2-D section, at altitude > 0

LEGEND:
ownship=landing owtm}‘lip;:!‘a.nding @ ownship position
‘ target==flythru "

arget=fythr ) s rc target position
Z;Zﬁ;(ﬁ}ggu distance<<MS @ getp
a!Luin :/(S’P:P‘ not in landing path ! ¢ & min.separation radius

alarm=OFF in landing path
NOTE: objects and distances

not at realistic scale

Figure 7.3: RSM: missed alarm scenario 2, airborne.

This situation can be corrected by changing the criterion for this combination of status
values to “distance less than minimum separation and target in takeoff/landing path or
distance is closing”. As a result of our findings, the designers of the protocol have changed

the specification to accommodate this situation,
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Note that we included the predicate frack in both states (before and after the transition),
as we are interested in scenarios involving only takeoff and for Janding trajectories. However,
this additional constraint may mask some other undesired behaviors. Therefore, we next

ask a more general guestion.

7.3.3 A stronger safety property

e “Is there u tracked state where mingmum separation is lost which can be reached without

EVER previously selting the alarm?”
e CTL: E[(—alarm) U (done A track A —~sep A —alarm)];

e Answer: YES.

7.3.3.1 Counterexamples for strong safety

Example 1. (see Figure 7.4) Actors enter the stage taxiing (not aligned to the runway)
at close distance to each other. Once on the runway, one of them (say ownship) changes
direction and aligns itself to the runway. Thereafter, it is categorized as takeoff (or climbout,
if it becomes airborne). The other aircraft stays within minimum separation, but it does
not close in: it can be either behind owuship or, more dangerously, in front of the aircraft
that is taking off. There is no alarm raised in this state because the criterion “distance
is closing” is, again, not satisfied. If the distance between aivcraft at entry is very small,
even if the alarm is set on by closing in later, there might not be enough time for an escape
manoeuvre.

Figure 7.4 shows an abstract trace that contradicts the safety property. The trajectories

are shown for a horizontal section in the monitored zone at ground level. The third snapshot
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LEGEND;
to: y ) @ ownship position
ownghip=taxi .
target=taxi target=-faxi @ target position
distance- MS distance< M8
NQOTE: objects and distances

by dy 4 A not at realistic scale

ownship=-taxi
target==taxi
distance< M3

Figure 7.4: RSM: missed alarm scenario 3, at ground level.

illustrates the bad state: the two aircraft are within minimum separation distance, but no
alarm has been issued either for the cuwrrent state or any of the previous states in the

scenario.

Example 2. A similar scenario exists for airborne states that are not tracked (status
fythru): both airplanes enter as flying through (not aligned with the runway), cither at
close distance to each other, or they can lose minimum separation later, while both still
being in flythru state. The target aircraft turns and aligns itself to the runway, switching
to a landing/climbout status. Ownship stays within minimum separation, but not in front
of the taxrget (either flanking on the side, or zig-zagging behind, so that its status remains
fiythru). The condition for raising the flag in this state asks for distance less than minimum

separation and ownship in takeoff/landing path. The condition is not met, hence the alarm
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stays off.

Example 3. There are additional scenarios that do not satisfy the safety property,
where events are developing imnmediately after both planes enter a monitored zone, The
bad behavior in these cases i8 caused by the fact that the previous position is unknown
coordinates (0, 0,0) in our model —~- for both planes, hence distance cannot be closing in
the next stafe. If the airplanes enfer the zone simultanecously, at positions very close to
each other (e.g., both are trying to land), the alarm flag will not be raised. However, this
particular behavior can be attributed to the fact that the planes enter the monitored zone
already in a bad state, and the protocol is not responsible for monitoring the targets outside

the zone.

LEGEND:
o ty =ty + 24 @ ownship position
ownship=-taxi ownghip=stakeofl @ larget position
o et st axs target=taxi T . )
target==taxi uget=axl : min.separation radiu
distances=I distances=D sl
NOTE: objects and distances
' not at realistic scale

b=ty o+ A by = by -+ 3O

ownship==tasi ownship=-takeoff] ..,

tf;l]”g(:? t==tax i 1. a‘,‘-ge tztax i

distances=[) distance=D

Figure 7.5: RSM: missed alarm scenario 4, at ground level.
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To suramarize the common characteristics of all the above the scenarios, we observe
that the key factor is that both aircrafi are in taxi/fiythru mode at the moment when
minimurn separation is lost, hence the situation is not tracked (a potentially bad occurrence
is masked by a protocol specification). Subsequently, the predicate “distance closing” is
not validated, hence no alarm is issued, whereas the distance remains less than minimum
separation (maintained constant or even slightly increasing).

To further extend our discussion, we look at the possible continuations of the scenario,
after the bad state is reached. If, after a subsequent update, the distance is closing, then a
warning will be issued and the “missed alarm” situation will cease to exist.

The only way to perpetuate the problem is shown in Figure 7.5 which is an extension
of scenario 3. The target can stay within minimum separation radius for a longer period of
time if it “zig-zags” in front of ownship, and at each radar update, it has the exact same
distance to ownship. The target has to zig-zag to maintain the distance, since, if it follows a
parallel path to ownship, the algorithm will consider it as taking off. The alarm eriterion for
the new combination of operational states is “taking off in the same direction and distance
less than minimum separation”. Therefore, an alarm will be issued as soon as the target
stops zig-zagging.

The case when the target is not an aircraft (vehicle, service truck, etc.) adds an extra
degree of freedom for “malicious behavior” of the target (see scenario 5, in Figure 7.6).
Ground wvehicles are always in taxi mode according to the protocol, regardless of their
speed, heading, and physical coordinates. Therefore, like in scenario 4, the target may
follow ownship at close distance, but now it can also continue chasing, even after ownship

is lined wap for takeoff and accelerating. No flag will be raised for the same reasons as in
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by LEGENQ
ownship==taxi @ ownship position
targe tavge @ target position
distance s distancas=1.

alarm = OFF alacmz=OFP

Figuare 7.6: RSM: missed alarm scenario 5, aircraft vs vehicle,

scenario 4.

In an ulterior implementation of RSM, the designers have taken into account these facts
and eliminated the special treatrent given to ground vehicles. This addresses the situation
in scenario 5.

The situation in scenario 4 is of lesser concern, since it certainly falls into the category
of “freak occurrences”. At the same time, there is some benefit in exposing it: the designers
are aware of this low-probability event, and also, by the fact that it is the only remaining
unwanted behavior in the model, it serves as a validation of the decision procedure of phase

3 of the algorithm.

7.3.4 Conclusions

There were several lessons learned from our analysis. On the positive side, we concluded
that our formal verification approach has an undeniable value. At the end of six months

of work, most of which has been concerned with the modeling decisions, we have presented
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the designers with a list of important findings which were not exposed during the testing
activities (involving real aircraft) already underway at different airport locations. The merit
of our technique is that, besides being considerably less expensive, it is exhaustive (on the
constructed model).

We were able to analyze all possible sceparios in our model, with two outcomes, We
have found scenarios of potential concern that happen with extremely low probability that
are almost impossible to expose during either testing procedures, which usually afford no
more than a dozen test flights a day, or simulation sessions, which have the same nature
as testing, just that the analysis is conducted on a computer model of the protocol, but
still manages to analyze only a limited number of scenarios per session. When compared to
the actual state space sizes of the order of 10*® — 10%? states, this shows the need for our
exhaustive analysis. The second outcome of our experiments was that after identifying the
problems and suggesting modifications to the protocol to eliminate them, we have presented
the designers with our “certificate” of formal verification concerning missed alarms.

Secondly, we need to mention that, by engaging in this industrial-size project, we have
identified several areas of possible improvements and extensions to our technique, which
will be discussed in more detail in the next chapter.

With respect to the dual analysis of false alarms, this is still on the list of future research
plans. From a practical point of view, pilots are equally concerned with both types of
situations. Individual reports indicate that frequent false alarms can become a distraction
or, in the best cage, a nuisance factor in operating an airplane. It is also the case that a
system with too many false alarms will tend to be switched off or ignored, thus rendering it

useless. T'herefore the occurrence rate of false alarms has to be reduced, even though these
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are pot as critical as missed alarmg, which have to be completely eliminated. The designers
of the protocol had to come up with a balanced solution that trades the simplicity of very
“loose” requirements that raise too many alarms for the complexity of “stricter” conditions
that decrease the number of false alarms, but make the analysis more difficult,

Another aspect that was not discussed here was fault tolerance. We assumed that all
scenarios happen in the absence of faults in the communication devices, meaning that the
radars and data-links provide accurate and timely updates to all participants. A patural
extension of our analysis is to include faulty bebaviors, either of benign nature (in the
form of missed or late updates) or malicious/byzantine (such as inconsistent data between
participants). However, this type of analysis requires the inclusion of notions of probabilistic
nature {92}, which are beyond the scope of the logical analysis that Model Checking is

concerned with.
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Chapter 8

Future Research

“Basic research is what I'm doing
when I don’t know what 'm doing. ™

Wernher Von Braun (1912-1977)

The work presented in this thesis can be extended and complemented in many ways.
One direction is related to the idea of adding more automation to all the phases of our
verification process where applicable.

First and foremost in this category comes the need for automated partitioning heuristics
for the input models. As mentioned in Section 2.6.1.1, the variable ordering is critical to
the overall performance of a BDD-based model checker. Qur approach is subject to a more
complex discussion, since we are dealing with multi-valued variables, which have to be
ordered and grouped according to a partitioning procedure. Our current implementation
supports ouly a predefined partitioning of the model, which has to be part of the input.
This requives prior knowledge of the structure of the system, experience, and good intuition
on the part of the user. For some models of theoretical nature, such as those considered
in our experiments (except RSM), an optimal or nearly optimal partitioning is not difficult
to find, but in general the problem is far from trivial. Nevertheless, we believe that the

saturation algorithm is suited for customized partitioning heuristics, that work well with
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our approach. For example, an off-line static analysis of the events in the system can offer
hints for minimizing the computation effort of firing events symbolically and translate this
analysis in terms of minimizing a goal function. Taking into account the event locality
feature, a good candidate is the sum of ranges of (in number of levels that are spauned by)
each event. Formally, if V is the set of state variables in the system, n:V — {1,... K} is
the partitioning function that assigns each variable to a subrodel (level), then the problem

can formulated as finding:

min %; | Top .(e) — Boty(e)|

If we take into account the fact that operations on “taller” MDDs are more expensive, the
optimization function can include a weight factor, depending on the location of the affected
region in the MDD, Preliminary experiments in this direction showed very promising results.

Another direction considers an automated model eztraction technique that eliminates
from the description of the model those aspects that are irrelevant to the verification process.
Closely related to this is the antomated abstraction/refinement techuique: a model can be
further simplified with respect to validating or invalidating a specific property by using
data abstraction. If later the property is verified in the abstract model, it is also valid in
the original model, and the process stops. If on the other hand the property is false, the
abstraction function has to be refined in order to discern between a real counterexample
and an abstract but not original one. The cycle continues until a decision can be made.
This property-driven technique is well suited for our structural approach, but has not been
investigated yet.

Of significant matter is the issue of automated generation of all counterexarples or

witnesses in Model Checking (when applicable). As seen in the RSM example, certain
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properties may be invalidated by multiple groups of behaviors in the system. A wodel
checker usually provides a single counterexample for a given property under study aud this
can expose only part of the undesired behaviors. The modeler has to mask the behaviors
represented in the provided counterexample before further proceeding with the analysis.
From a practical perspective, automated syntax translators between the SMART jnput
language and other well known tools (such as SPIN [81], SMV [104], LOTOS [79], etc.) will
increase the exposure of our tool and also provide access to standard benchimarks of tests

that are widely used in practice (such as ISCAS and CADP).

In a second clags of imiprovements we include extensions and generalizations of our approach.

Of utmost importance is lifting the restrictions of Kronecker consistency. When this
requirement is not satisfied, the model has to be modified so that it does, by refining the
events or by merging subinodels. Both actions can lead to certain inefficiencies: the number
of events might become too large, which tends to make the exploration algorithm behave
more like an explicit one, or the submodels might become too complex, leading to ample
local state space sizes and, consequently, extremely large MDD nodes. The Kronecker
restriction can be lifted in different ways. One solution is to use a combination of incidence
matrices and MDDs to represent the next state functions, which is a middle ground solution
between the traditional techniques and the structural approach. The independent encoding
scheme for each event can be decided either during the modeling phase, by including options
referring to each event explicitly, or it can be done automatically, at run-time, as Kronecker
consistexzcy is easy to determine. The resulting approach is gracefully degrading, as it is

able to trade the excellent performance of Kronecker compliant techniques with the ease of
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use of the general approach.

Oue of the observations in Chapter 5 was that the CTL operator EG is not a good
candidate for a saturation-based approach. Despite this fact, we ave still interested in ways
to improve the computation of this operator together with the construction of corresponding
witnesses, The latter issue is clogely related to the problem of finding the strongly connected
components in a directed graph. Bfficient symbolic algorithms for this problem are useful
in other areas, including Markov chain analysis. We think that a similar approach to the
partial saturation introduced for the EU operator can be applied with good results to
constructing strongly connected components, and also to computing CTL operators under
fairness constraints [64].

There are some typical examples for which BDD techniques do not perform well, es-
pecially digital circuits such as multipliers, barrel shifters, and bit alternators. For these
cases, a substitute for the BDD technology are the SAT solvers (1, 9, 125]. SAT solving con-
sists in adapting the standard algorithms for reachability analysis to work with the classical
SAT resolution algorithms, by using satisfiability checkers. The resulting approach is called
Bounded Model Checking [9]. Even though SAT solvers are not fully automatic and are
not known to outperform BDDs, with the exception of the few typical cases listed above, a
direct comnparsion with our approach is of due course.

On a different note is the intent to extend the area of applicability of our approach. Since
our data structures and algorithms could be of a more general purpose, we consider that
an MDID /saturation library for public distribution would be valuable for the entire Formal
Verification community. Along the same lines of enhancing exposure, a new modeling

formalisrn in SMAKRT (e.g., similar to the Promela language of SPIN [81]), that is more
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adequate for the study of software, is of imediate interest,

Last, but not least, as the major bottleneck for symbolic Model Checking remains the
peak mewmory consuwmption, parellel and distributed versions of our saturation algorithms
could offer a valid alternative to the excessive memory consumption of sequential algovithros.
On an anecdotical note, we have to mention that this was in fact the original motivation
behind our entire work. The original design of the parallel implementation of the structural
approach to state space construction has sparked the ideas in the work presented here. We
still believe that parallel and distributed implementations are valuable, despite their earned

notoriety as “hard-to-parallelize” problems [138].
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Overview of SMART

SMART (Stochastic Model checking Analyzer for Reliability and Timing) [25] is a software
package that integrates multiple logic and stochastic modeling formalisms into a single
environment. At the heart of SMART lies the ability to define parametric models for which a
variety of measures can be computed. For the analysis of logical behavior, both explicit and
symbolic state-space generation techniques, as well as CT1
are available. For the study of stochastic and timing behavior, both sparse-storage and
Kronecker numerical solution approaches are available.

The SMART project is the result of a collective effort of several developers over the years,
starting in 1994. Currently, the C-+ source has over 100,000 lines of code. The author of
this thesis is responsible for writing the various symbolic state space construction algorithms

presented here and the entire Model Checking module, totaling over 12,000 lines of code.
The SMART Language

SMART uses a strongly-typed, computation-on-demand, declarative language with the
followings predefined types: bool (true or false), int (integer values, machine depen-

dent range), bigint (arbitrary size integer values), real (floating-point values, machine-
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=3

dependent range and precision), and string (character-array values). Sample declarations

are listed below:
bool ¢ 1= 3 - 2 > Q;

bigint i :»= 1000%*2000%3000%4000%5000;
real x := sqrt(2.3);

string s := "Monday";

Composite types can be defined using the concepts of sets (collection of homogeneous
objects: {1,2,4,8,16} ), arrays (multidimensional collections of homogeneous objects in-
dexed by set elements: a[3][0.2]1), and aggregates (analogous to the Pascal “record”:
p:3).

A type can be further modified by the following nafures, which describe stochastic char-
acteristics: comst: (the default) non-stochastic quantities, ph: for random variables with
discrete or continuous phase-type distribution, rand: for random variable with arbitrary
distribution. Finally, predefined formalism types can be used to define stochastic processes
indexed by time: continuous and discrete time Markov chains (ctme, dtme) and stochastic
Petri nets (spn).

The bagic statements in SMART' can be grouped in: declarations, definitions, compound

and option statements.

Functionn declarations

Syntactically, objects defined in SMART are functions, possibly recursive, and can be

overloaded;
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real pi := 3.14; /¢ a parsmeter-less function %/
bool c¢lose(real a, real b) := abs{a-b) < 0.00001;
/* a two-parameter function */
int pow(int base, int exp) := cond(exp==1,base,baserpow(base,exp~1));

real pow(real base, int exp) := cond(exp==1,base,basexpow(base,exp-1));

pow(5,3); /% returns 125, integer #/
pow(5.0,3); /# returng 125.0, real =/
Arrays

Arrays are declared using a for statement. Their dimensionality is determined by the
enclosing iterators. Since the indices along each dimension belong to a finite set, it is legal

to define arrays with real indices:

for (imt 1 in {1..5}, real r in {1..i..0.1}) {
real res[i] [r]l:= MyModel(i,r).outl;

¥

fills array res with the value of measure out1 for MyModel, when the first input parameter
ranges from one to five and the second one ranges from one to the value of the first parameter,

with a step of 1/10.

Fixed-point iterations

The approximate solution of a model is often based on a heuristic decomposition, where
sub)models are solved in a fixed-point iteration. This can be specified with the converge
E

gtatement:
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converge |
real x guess 1.0;
real y := fy(x, y);
real x := fx(z, y);

X

The iterations stop when two subsequent x and y values differ by less than e in either relative
or absolute terms. The values for x and y are updated either immediately or at the end of
each iteration. Both e and the updating criterion are fine-tuned using option statements.

The converge and for statements can be arbitrarily nested within each other.
Random variables

SMART can manipulate discrete and continuous phase-type distributions. Combining ph

types produces another ph type if phase-type distributions are closed under that operation:

ph int X := geom(0.7);

ph int Y := equilikely(1,5);
ph int A := min(3*X, Y);

pPh int B := 3#X+Y;

ph int C := choose(0.4:3%X, 0.6:Y);

ph real x := expo(3.2);
ph real y := erlang(4,5);
ph real a := min(3*x, y);

Model formalisms

A model is declared just like a function except that, instead of a return value, it specifies

a block containing declarations, specifications, and measures. Components of the model are
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declared using formalisio-specific types (e.g., the places of a Petri net). The model structure
is specified by using formalism-specific functions (e.g., the ares of a Petri net). Measures
are user-defined functions that specify some quantity of interest {e.g., the expected number
of tokens in a given place in steady-state), and are the only wodel components that can be
accessed outside of the model definition block.

For example, the model shown on the right is defined as:

spn mynet(int n) = {
place p5, p4, p3, p2, pl;
trans a, b, ¢, d, e;
arcs(pb:a,a:pd,a:p2,pd:c,c:p3,p3:b,b:p4,

p2:d,d:pl,pl:e,p3:e,e:pb);

firing(a:expo(1l.1),b:expo(l.2),c:expo(1.3),

b ¢
Jexp(LO] {exp. D] Jexp(i4)]

d:expo(1.4),e:expo(1.5));

init(p5:n);

]

bigint count num_states(false);

i

real speed := avg _ss(rate(a));
+;
for (int n in {1..4}) {
print("When n=",n," the number of states is ",mynet(n).count:2);

print (" and the throughput is ",mynet(n).speed,"\n");

where place and trans are formalism-specific types; arcs, firing, and init are formalis-

specific Functions; count and speed are two measures.
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The for loop outside the model produces the output
When n=1 the number of states is 5 and the throughput is 0.284920
When n=2 the number of states is 14 and the throughput is 0.456624
When n=3 the number of states is 30 and the throughput is 0.5563202

When n=4 the number of states is 55 and the throughput is 0.612783

where the measure calls cause SMART to perform the appropriate analysis.

Arrays and for loops are allowed within a model in the usual manner,

State space generation and storage

SMART' implements a wide variety of algorithms for constructing state gpaces, governed
by the choice of the # StateStorage option. Explicit techniques include AVL, splay trees,
and hash tables (option values AVL, SPLAY, HASHING). Symbolic algorithms require that
a partition of the model be specified, and are classified as either of pregeneration type
(option values MDD.LOCAL PREGEN, MDD_FORWARDING PREGEN, MDD_SATURATION.PREGEN), or
on-the-fly (MDD.SATURATION, the default setting when a partitioning is defined). The size of
a state space can be obtained in number of states, by using the function num_states, and

number of arcs, by calling the num.arcs function on a model.
Model Checking

CTL model-checking queries are available in SMART via a set of model-dependent mea-
sures. The answers to CTL queries are stoved as sets of states (the states that satisfy the
formula) using MDDs with shared nodes. A predefined type stateset is used for this. All

the algorithmns employ symbolic techniques, therefore a user--defined partitioning is required.

Table A.1 lists the functions available for Model Checking in SMART. P and p, or @ and
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Al(ss p, ss q)

{i:Veell,3m>0,n, ¢ QAVn<m,n, P}

SMART Set Logic
_______________ function HIeaning meaning
potential (bool b) {iesS : b(i)} atom
initialstate {s} atom
nostates { Jalse
complement (ss p) S\P ~p
intersection(ss p, 88 q) | PNQ pAg
union{ss p, ss8 q) rUQ PV g
difference(ss p, s8 Q) PN\ Q A g
includes(ss p, sz q) PoQ q e p
squal(ss p, 55 q) P D g
neq(ss p, ss q) PO ~(p & q)
EX{sz p) 1:djeN (i), 16 P} EXp
AX(ss p) {i:VjeN({),jeP} AXp
EF(as p) {i:djeN*(1),je P} Efyp
AF(ss p) {i:Vrell;,dn>0,m, P} AFp
EG(ss p) {i:dnrell, Vn>0,m, e P} EGp
AG(ss p) {i:VieN*(i),je P} AGp
EU(s= p, s8 q) {itIrelly,Im>0, 1 € QAYn<m,m &P} | Elp U g}

A [P i q J

backward(ss p)
forward(ss p)
reachable

addprev(ss p)
addniext (ss p)

alias for EF (p), backward reachability
alias for EFbar (p), forward reachability

EXbar (ss p) {i:3eP,jeN{)} EXp
AXbar (ss p) {(i:vie§8,jeN() = ieP)} AXp
EFbar(ss p) {i:FeP jeN"(i)} ETp
AFbar (ss p) {i:vrell;,In>0,m, P} AFp
EGbar (zs p) {j:3mel;,¥n>0,m, P} EGp
AGbar (ss p) {j:VieS,jeN* (i) = ie P} AGp
EUbar(ss p, ss q) {G:3nell;, Im>0, 7€ QAR M, 7, €P} | Blp U g
AUbar (ss p, 85 q) {j:vrelly, Im>0,mp, e QAVn<m, n, €P} | AlpU ¢
prev{(ss p) alias for EX(p), one step backward

next (sz p) alias for EXbar (p), one step forward

alias for forward(initialstate), the state space §
aliag for union(EX{p),p), zero or one step backward
alias for union(EXbar(p),p), zero or one step forward

card {ss p)
printset(ss p)

return [P], the number of elements in set P

print the elements in P, up to MaxPrintedltems

Table A.1: Model checking functions in SMART,
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¢, are the set and the formula corresponding to p, or q, respectively. 1; and I1; are the sets
of forward and reverse time paths starting at state i, respectively, and n,, is the '™ state on
path x. For conciseness, the abbreviation ss is used for stateset. Note that we extended
CTL with all the dual operators in the past.

The following example shows one possible way to check for absorbing (deadlocked) states

in a model, then verify some stability and safety properties:

i

stateset U reachable; /% reachable states */

stateset NotAbsorb := prev{(potential(true)); /+ states that have a successor */

3

stateset Abgorb 1= difference(U,NotAbsorb); /+ reachable absorbing astates #/
hool deadlock = neq(Absorb,nostates); /#* deadlock detection x/
bool proabs = printset{(Absorb); /# list deadlocked states */

stateset Good potential(expri);

-

stateset Stable EG(Good) ; /* there is an infinite good run */

i

stateset Safe AU(Stable,Good) ;

For further reference, a complete SMART User Manual [29] is available on-line, at:

www.cs.wm.edu/ " ciardo/SMART.
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Benchmark of Examples

B.1 Dining philosophers

GoFagy

Wairleft; WaitRight;

Cetleft; Getllight;

Huasleft;

Release;

Figure B.1: The dining philosophers, i** submnet.
g 1 3

This model implements the classical dining philosophers protocol, a paradigm for mutual
exclusion solutions. The philosophers (representing processes) are seated around a table,
with forks (representing the concept of shared resources) between adjacent philosophers.
Each philosopher is initially idle, but eventually, and independently become hungry. To be
able to eat, they have to obtain their corresponding right-hand and left-hand fork, which are

shared with their neighbours. When a fork is secured, it is not released until the philosopher

177
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has finished eating.

The SMART model {111} is composed of N subnets equal to the one shown in Figure B.1.
The net represents a philosopher and the philosopher’s right fork. The philosopher’s left
fork, represented by the dotted place Fork(iyymeq v, is part of the subnet for the next
philosopher and s depicted only to illustrate how the subnets interact. Note that the
model implemented here has two deadlocked states, corresponding to the situation when all
philosophers hold their right forks, or all hold their left forks, respectively.

The corresponding SMART code is:

spn phils(int N) 1= {

for (int i in {1..8}) {
place Idlelil, WaitL[i], WaitR{il, HasL[i], HasR[il], Forkl[il;
trans GoFat[i], GetL[i], GetR[i]l, Rellil;
firing(GoBat{i]:expo(1), GetL{i]:expo(1l), GetRlil:expo(l), Relli]:expo(1));
partition(1+div(i,2) :Idlel[i] :WaitL[i] :WaitR[i] :HasL[i]:HasR[i] :Fork[i]);
init(Idlefil:1, Fork[i]:1);
}
for (int i in {1..8}) {
arcs(Idle[i] :GoBat[i], GoEat[i]:WaitL[i]), GoRat[i]:WaitR[i], WaitL[i]:GetL[i],
Fork[1+mod(i,M)] :Getl[i], GetL[i]:HasL[i], WaitR[i]:GetR[i],
Fork[i] :GetR[i], GetR[i]:HasR[i], HasL{i]:Rellil, HasR[il:Relli],

Relli):Tdleli], Relli] :Fork{il, Rellil]:Fork[i+med(i,N)]);
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B.2 A flexible manufacturing system

The Petri net [32] in Fig. B.2 models a flexible manufacturing systemn (FMS). The system
consists of three types of machines, My, M,, and M3, There are three machines of type My,
that process parts of type Py, one machine of type My, processing paris of type I, and two
machines of type M3, that can assemble finished parts of type P and P together into a
single part. When the machine My is idle, it can also process parts of type /%. Completed
parts of all types are shipped and raw parts of the same type enter the system to maintain
a constont inventory (initially, there are N parts of each type).

The model is parameterized by the initial number N of tokens in Py, Py, and Ps.

Ipist
#PLs) #PLs)
e PlwM1 PIMI Pid
P; tI)]

#(P12s)

P12s PIIM3 P1I2M3 M3 pLowM

M3 P12

®
Ip2e

e T P25)

#(P12s)

P2wM2 P2M2

#pasy Tk

- #(P3s) -MBM%
P3s ipiy
~ . H P35y —

r3

Figure B.2: A flexible manufacturing system.
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spn fma(int n) = {
place P1, P2, P3, P12, P2s, P3s, Pls, Plis,
M1, M2, M3, PilwMl, P2wM2, P3M2, P12uM3,
PiM1, P2M2, P12M3, Pid, P2d, PilwP2, P2wPl;
trans tPl, P2, tP3, P12, tP1IML, tP2M2, tP3M2,
tP12M3, tPis, tP2s, tP3s, tP12s, tMi,
tM2, tM3, tx, tPle, tP1j, tP2e, tP2i;
firing (tPLrexpo(tk(PL)#max (1.0, div{3#n,2)/ kP +tk(P2)+tk(P3)+tk(P12)))),
tP2:expo (kP2 smax (1.0, div(3n,2)/(Gk(PL)+tk{P2)+tk (P3)+tk(P12)))),
tP3rexpo(th(P3)4max (1.0, div(3+n,2)/ (AP +RPD+tk(P3)+tk(P12)))),
tP12:expo (tk(P12) #max (1.0, div(3+n,2)/tk(PL+tk(PD+tk(PI)+tk(P12)))),
tPiMLiexpo (CR(PINL) /4), tP2M2:expo(1/6), tP3M2:expo(1/2),
tP12M3:expo (bR (P12M3)), tPls:expo(1/60), tP2s:expo(1/60), tP3s:expo(1/60),
tP12s:expo(1/60), tHM1:0, tM2:0, tM3:0, tx:0, tPle:0, tP1j:0, tP2e:0, tP2j:0);
weight (tMi:1, tM2:1, tM3:1, tx:1, tPle:0.8, tP1j:0.2, tP2e:0.6, tP2j:0.4);
arcs(PL:tP1, tP1:PluMl, PlwMi:tML, Mi:tM1, tM1:PiM1, PIM1:tPIM1, tPIM1:M1,
tP1M1:P1d, P1ld:tPle, P1d:tP1j, tPle:Pls, tP1j:P1wP2, Pls:tPls:tk(Pls),
tP1s:P1:tk(Pls), PlwP2:tx, tx:P12, P12:tP12, tP12:P12wM3, P12uM3:tM3,
M3:tM3, tM3:P12M3, P12M3:tP12M3, tP12M3:M3, tP12M3:P12s, P12s:tP12s:tk(P12s),
tP125:P1L:tk(P12s), tP12s:P2:tk(P12s), P2:tP2, tP2:P2uM2, P2uM2:tM2, M2:tM2,
TM2:P2M2, P2M2:tP2M2, tP2M2:M2, tP2M2:P2d, P2d:tP2j, tP2j:P2wPl, P2wPl:tx,
P2d:tP2e, tP2e:P2s, P2s:tP2s:tk(P2s), tP2s:P2:tk(P2s), P3:tP3, tP3:F3M2,
P3M2:¢P3M2, M2:tP3M2, tP3M2:P3s, tP3M2:M2, P3s:tP3s:tk(P3s), tP3s:P3:tk(P3s));
init(Pi:n, P2:n, P3:n, M1:3, M3:2, M2:1);
partition(P1:PlwMl:PIM1:ML:P1d:Pls, P12a:P1laM3: M3 P12wM3 :P12:P1wP2:P2wP1,

P2 P2uM2:P2M2:M2:P2d:P2s, P3:P3M2:P3s);
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B.3 Slotted ring
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Figure B.3: Slotted ring model, i subnet.

Figure B.3 shows the Petri net for a single node of a slotted ring network protocol [111].
The overall model is composed of N such subnets connected by merging transitions (i.e.,
Free 11y moa v and Used(j11) moq v really belong to the “next” subnet).

The following SMART' code shows a decomposition where each node of the ring is in a

different level.

spn slot(int N) = {
for (dint i in {0..N-1}) {
place pAlil, pBlil, pClil, pD[i], pE[i), pF[i], pG[il, pHI[il;
trang other[i}, owner[i), writel[i], golil, give[il, put{il], used[i], freelil;
firing(other{i] :expo(1), owner[il:expo(1), write[il:expo(1), golil:expo(1),
give[il:expo(1), put[il:expo(l), freelil:expo(1), used(il:expo(1));
partition(pA[i] :pBli]:pClil spDli] spElil :pF 1] :pG[i] :pHIil);

init(pClil:1, pElil:1);
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for (imt i in {0..N-1}) {
arcs(usedimod (101 ,8) ) :pAli), pAlL) tother[il, pAlil:owner{i],
froelmod(i+1,N)1:pB[i], owner[il:pBlil, pBlil:golil, pBLil:writel[il,
writel[i]:pb[il, othexr[i]}:pDLi], pD{il:put{il, goli):pHlil,
pHiYgive[i], givelil:pCli), put[il:pClil, pClil:freelmod(i+l,M)],
pClil:usedmod (i+1,N)]1, freelil:pFli}, used(i):pFlil, pFlil:givelil,

pFlilput[il, givelil:pElil, pE[il:freeli], put{il:pGlil, pGlil:usedl[i]);

1

B.4 A Kanban system

This model [131] consists of four stations that process parts. A patt enters a station only if
a ticket is available. The part is then processed, and if the work is performed correctly, the
part can move to the next station, otherwise it is sent back to be fixed. A part that passes
station 1 is gplit into two parts, one for stations 2 and 3 each, and when the two parts pass
their stations, they are joined and move to station 4.

The model shown in Figure B.4 is parameterized by the number N of tokens initially
in p1, p2, ps, and py. The following code shows a partition into four levels, one per kanban

station.
spn kanban(int N) = {
place pml, pbackl, pkanl, poutl, pm2, pback?2, pkan2, poutZ,
pn3, pbackd, pkan3d, poutd, pmd, pback4d, pkand, poutd;
trans tinl, tredol, tokl, tbackl, tin23, tredo?, tok2, tback?, tout2,

tredod, tok3, thack3d, tredod, tok4, tbackd, toutd;
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Figure B.4: A kavban system.
partition(pmi:pbackl:pkanl:poutl, pm2:pback2:pkan?:pout?,
pud:pback3:pkand:pout3, pm4:pbackd:pkand:poutd);
firing(tinl:expo(1.0), tredol:expo(0.36), tokl:expo(0.84), tbackl:expo(0.3),
tin23:expo(0.4), tredo2:expo(0.42), tok2:expo(0.98), tback2:expo(0.3),
tout2: expo(0.5), tredo3:expo(0.39), tok3:expo(0.91), tback3:expo(0.3),
tredod:expo(0.33), tok4:expo(0.77), tback4:expo(0.3), toutd:expo(0.9));
arcs(pkani:tinl, tinl:pml, pml:tredol, pml:tokl, tredol:pbackl,
tokl:poutl, pbackl:tbackl, tbackl:pmi, poutl:tin23, tin23:pkani,
Pkan2:tin23, tin23:pm2, pm2:tredo2, pm2:tok2, tredol2:pback?,
tok2:pout?, pback2:tback?, tback2:pm2, pout2:tout?, toutl:pkan2,
pkan3:tin23, tin23:pm3, pm3:tredod, pm3:tok3, tredod:pback3,
tok3:poutld, pbackd:tback3, tback3:pm3, pout3:tout?, toutl:pkan3,
pkand:tout?, tout2:pm4, pmé:tredod, pmd:tokd, tredod:pbackd,
tokd:poutd, pbackd:tbackd, tbackd:pméd, poutd:toutd, toutd:pkand);
init (pkani:N, pkan2:N, pkand:N, pkand:N);

};
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B.5 Randomized leader election protocol

The randomized asynchronous leader election protocol in [84] solves the following problem:
given a ring of N processors, the participants are required to designate a unique processor
as leader by sending messages around the ring. The ring is unidirectional, meaning that the
processes send messages to their unique successor (e.g. the one to the right), and receive
messages from their unique predecessor. It is known that if the processors are indistinguish-
able (no unique identifiers are assigned), then there is no deterministic algorithm to solve
the problem.

The randomized algoritbm works in phases. At the beginning of every round, each
process flips a coin to decide whether it will continne ranning for election or not. Initially
all processes are valid candidates. After choosing a value (0 = don’t run this round, 1 ==
run), this is communicated to the neighbour to the right. A process is eliminated from the
race only if it chose not to run and it’s predecessor chose to run. After being eliminated
from the race, a process never becomes eligible again (it enters the inactive state), and it is
used only to relay messages between active nodes around the ring. They do no initiate any
communication. Termination is detected by the active processes (at least one active node
exists at all times) by sending a token around the ring to count the inactive nodes. The
process that receives its own token with count N -- 1 is the elected leader.

In our model, each processes has 5 state variables:

status[i] ; {start, wait, active, inactive, leader}; // init start
preferencelil : {0, 1}; // init O
counter { i : 0..N-1; // init 0
sent [1] : {none, pref, counter}; // init none
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recv[i] : {none, pref, counter}; // init none
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Figure B.5: Statechart for the leader election protocol.

The state-transition diagram for the status of a process is shown in Figure B.5.
The SMART code for this model is:
spn leader(int N) := {
for (int i in {0..N~-1}) {
place st_choosel[i], st_wait[i], st_.active[il, st_inactivel[i], st_leader[i],
pref[i], clil, rec_noneli], rec_choiceli], rec_counter[i],
sent_nonelil, sent_choiceli], sent_counter[il;
trans pick_valueO{i], pick_valuel({i], send_pref[i],
recv_stay_activeO[il, recv_stay_activel[i], recv_become_inactive[i],
send_new_counter[i], recv_counter[i], become_leader[i],
i_recv_pref0[i], i_recv_pref1{i], i_send_pref(il], i_send_counter[il;
partition(st _chooseli] st _wait{il:st_activeli]:st_inactiveli]:
at_leader[i]:pref{i]:clil,
rec_nonelil :rec_choiceli] :rec_counter(il:
sent_nonel[il:sent_choicelil:sent_counter[i});

init(st_chooselil:1, sent_nonelil:1, rec_noneli]:1);
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for (int § in {0..N-1}) { trans inc counter[i1041; 3
}
for (int i in {0..N-1}) {
arca(
st choose[i] pick valueOlil, pick _valueO[i]:st wait{il,
sent noneli] :pick_valued[il, pick valueC[il:sent _noneli],
rec_nonelil :pick valueO[i], pick_valueO[i]:rec_nonelil,

praf{il :pick_valueO[i] :tk(pref{il),

s3t_choosel[i] :pick_valuellil, pick_valuel{i]:st wait{i],
sent_nonelil ipick_valuelli], pick_valuel[i]:sent _noneli],
rec_ nonelil:pick_valuel(i], pick_valuel[i]:rec_noneli],

pref [i] :pick_valuel[i] :tk(pref{il), pick_valuell[i]:pref[i],

st_wait[i]:send_pref[il, send_prefl[il:st_waitli],

sent_nonel[i] :send_pref{il, send_preflil:sent_choicelil,

st_wait[i]:recv_stay activeO[i], recv_stay_activeO[il:st_activel[i],
rec_nonelil irecv_stay.activeO[il, recv_stay_active0[il:rec_choicelil,

sent_cholceli] irecv_stay_active0[il, recv_stay_activeO[i] :sent_choicel[i],

st_wait{i]:recv_stay_ activell{i], rec_nonelil:recv_stay_activellil,
recv_stay_activellil:st_activelil, recv_stay_activellil:rec_choiceli],
prefli] srecv_stay_activel[il, recv_stay_activelli]:prefli],

gent_choiceli] irecy_stay activell[il, recv_stay_activellil:sent_choice[i],
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st_wait[i] ivacv_become_ _inactivelil, rec.nonelil irecv become_inactivell],
recv_become inactivelil:st_inactivelil, recv_become_inactivel[i]:rec_choiceli],
gent_choiceli] irecv_become_inactivelil], recv_become_inactiveli]:sent_choiceli],

pref [mod(i+1,M)] :recv_become_inactivelil, recv_become inactivelil:prefimod(i+1,],

st activeli] :send new counter[i], send_new_counter[il:st_activel[i],

sent_ choiceli] :send _new_counter[il, send_new_counter[il:sent_counter(il,

st_activelil:recv_counterlil, recv_counter[i]:st_chooselil,
rec_choiceli] :recv_comterfi], recv_counter[il]:rec_noneli],
gsent_counter [mod(i+1,N)] irecy_counter[i],

recv. counter[i] :sent_none[mod (i+1,07,

pref{i} recv_counter([i]:tk(pref{il), cli]:recv_counter[i] :tk{c[i]),

clmod (i+1,0) ] :recv_counter{i] :tk(clmod(i+1,N)]),

st_activel[il :become_leader{il], become_leaderli]:st_leader[i],
rec. choicel[i]:become _leader[i], become_leader[il] :rec_nonel[i],
sent_counter[mod (i+1,N)] :become_leader[i],

become_leader[i] :sent_nonelmod(i+1,M)],

clmod (i+1,N)] :become_leader[i] :N-1,

st_inactivelil:i_recv prefOlil, i _recv prefOlil:st_inactiveli],
rec. nonelil:i recv_pref0li], i_recv prefOlil:rec_choicelil,
pref[i]:i_recv_prefO[i):tk(pref{il),

clil:i_recv_prefo{il:tk(clil),
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st inactivelil i recv_ prefilil, i_recv prefilil:st_inactivelil,
rec_nonel[i) i _recv_prefi(il, i_recv_prefilil:vec_ choicelil,
pref[mod(i+1, M1 :i_recv_prefi[i], i_recv_prefili]:pref[mod(i+1,M)],
pref{il:i_recv prefilil:tk{prefl[il), i_recv_prefil[il:prefl(i],
elil:i_recv_prefilil:tk(clil),

st_inactivel[il:i_send prefl{il, i_send pref[i]:st_ inactivelil,

sent_nonelil:i_send prefli], i_send preflil:sent_choicel[il,

st _inactive[i) :i_send_counter[i], i_send _counter[il:st_inactivelil,
rec_counter[i] :i_send_counter{i], i_send_counter{il:rec_noneli],
sent_choicel[il:i_send_counter[i]), i_send_counter{il:sent_counteri],
prefli]:i_send_counter[i]:tk(pref(i])
)
for (imt j in {0..N-1}) {
arcs(
st_inactive(i] :inc_counter[il[j], inc_counter[i][j]:st_inactivel[i],
rec_choice[i] tinc_counter[i][j], inc_counter(il[j]:rec.counter[i],
sent_counter [mod(i+1,N)]:inc_counter{i] [i],
inc_counter[il [j]:sent_nonelmod(i+1,M)],
clmod(i+1,N}] :inc_counter[il1[jl:j, inc_counter[i][jl:clil:j+1);
}
inhibit(
pref{mod(i+1,N) ] recv_stay_activeO[i],
sent_none [mod (i+1,N) ] irecv_stay_actived[i],
sent_none[mod(i+1,M)] trecv_stay_activelli],

sent_none[mod (i+1,N)] :recv_become inactive[il,
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sent, none{wod i+l W) ] i recv_pref0[il,
sent_none{mod (i+1,10) 71 _recv_ prefi[i],
preflil :recv_become_inactivelil,
sent_choicelil irecv_counter(i],

¢mod (i+1,N)] :xvecy_counter[i] :N-1,
pref [mod(i+l, M) ] i _recy _prefOfil,

rec noneli]:i_send prefl[i]

for (imt j in {0..N-1}) {
inhibit (sent nonel[mod(i+1,M)] inc_counter{i](j],

clnod (i+1,8)] rinc_counter{i1 {31 j+15;

B.6 A round-robin mutual exclusion protocol

The protocol regulates the access to a shared resource (e.g. a communication channel) for
a ring of N processors [72]. The resource manager gives permission to use the channel to
each process in order, by moving a token around the ring. When a process has the token,
it reads in a message from the chanuel and stores it in its own buffer. It can then release
the token to the next processor before reading the contents of the buffer, or read the buffer
first and then send the token to the neighbour.

Figure 1.6 shows the subnet for process ¢. Each subnet is initially marked with one
token in place wait;, except for process 0 which starts with one token in reg;, rmeaning that

it is the first process to have access when the protocol starts.
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Figure B.6: The round-robin mutual exclision protocol.

spn robin(int N) = {
place Res;
partition(l:Res);
for (imt i in {0..N-1}) {
place
Rlil, bufidle[i], buffulllil,
pwait[i], pask[il, pok[il, pload[il, psend[il;
trans
task[i], tbufl[i], tlload[i], t2load[il, tisend[il]l, t2send[i];
partition(
i+2:pufidleli] :buffull il :pwait[i] :pask[i] :pok{i] :pload[il :psendi],
1:RL11);
firing(task{i] expo(1.0), tbuflil:expe(1.0), tiloadl[i]:expo(1.0),

tisend[i] texpo(1.0), t2load[i] rexpo(1.0), t2send[i] :expo(1.0));
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for (int i in {0..N-1}) {
arce (Res:task[i]l, paskli]:ta=k[il,
task[i1:R{1], taskli] :pokli],
Rii):vburlil, bufidlel(i]:tbuflil,
thuf [i] :buffall (3], tbuf{il:Res,
buffullli]t1load[i], pokiil:tiload[i],
tiloadlil:bufidleli], t1load[i) :psend[i],
buffull[i]:t2load{i], pload[i]:t2leadlil,
t21oad{i] :bufidlelil, t2loadlil pwait(il,
pokiil:tlsend[il, pwaitlmod(i+1,8)]:tlsend[i],
tisend[i] :ploadlil, tisendli]:pasklmod(i+1,N)],
psend[i] :t2send[i], pwait[mod(i+1,N)]:t2send[i],
t2send{i] :pwait[i], t2sendli]:pasklmod(i+1,M)]1);
+
init (Res:1, pask[0]:1);
for (imt i in {1..N-1}) {
init (pwaitlil:1);
}
for (int i in {0..N-1}) {

init(bufidlelil:1);
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