
W&M ScholarWorks W&M ScholarWorks 

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 

2004 

Structural model checking Structural model checking 

Radu Siminiceanu 
College of William & Mary - Arts & Sciences 

Follow this and additional works at: https://scholarworks.wm.edu/etd 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Siminiceanu, Radu, "Structural model checking" (2004). Dissertations, Theses, and Masters Projects. 
Paper 1539623441. 
https://dx.doi.org/doi:10.21220/s2-8tcm-na84 

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M 
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized 
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623441&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623441&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-8tcm-na84
mailto:scholarworks@wm.edu


Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

A Dissertation 

Prcsent;ed to 

The Facnlty of the Depn.rtment of Computer Science 

The College of Willia.rn and Mary in Virginia. 

In Partial PulfiUmcnt 

Of the Requirements for the Degree of 

Doctor of Philosophy 

by 

Ra.du Siminicean11 

2008 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPROVAL SHEErr 

This dissertation is Hnbr.nitted in partial fuHlllmenli of 

tlu~ requirenwnts for the degr<·)e of 

Doctor of P.l:tilosophy 

H.adu Siminir.ea.nu 

Approved by the Committee, December 200:~ 

~~-

·----~-----~-~L-~ .. ~-
BenedettO L. Di Vito 

NASA Langley HJ:sean:h Center 

u 
gen 

Department of Computer Science, UniverRity of York, UK 

ll 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

lll 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Table of Contents 

Acknowledgments 

List of Tables 

List of Figures 

Abstract 

1 Introduction 

1.1 Overview of Formal Methods 

1.2 

1.3 

1.1.1 

1.1.2 

Speeification 

Verifiea.tion . 

1.1.2.1 

1.1.2.2 

1.1.2.il 

Contribution 

Organ.izatiort 

Simulation 

Theorem Proving 

Model Checking 

2 State Space Construction 

lV 

ix 

X 

xiii 

xiv 

2 

5 

5 

() 

(i 

7 

8 

10 

11 

12 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

2J. 

2.2 

2.8 

2.4 

2.5 

2.6 

Discrete :;tate systmns . . . . . . 

2.1.1 Modeling with Petri Nd.s 

State spa.ces . . . . . . . . . . . 

Explidt st:a.te-spa.c.e gf:'nera.t.ion 

The state space explosion problem 

Explicit 1nethods . 

Syn1bolie methods 

2.().1 Sytnbolie encoding of states 

2.6.2 

2.().3 

2.6.Ll Binary decision diagrams 

2.fLl.2 Multi-w<w decision <.Hagra.ms 

1\H):Os and structured systems . . . . 

Symbolic encoding of next-state functions 

3 The Road to Saturation 

3.1 

3.2 

3.4 

3.6 

:t7 

:~.8 

:3.9 

Breadth-first symbolic state-space generation 

Kronecker encoding of the next-state function . 

An identity crisis 

Event locality . . 

In-plaee updates 

The saturation strategy 

Correctness . . . . . . 

Implernentation issues 

.H.esults ........ . 

v 

l:J 

14 

16 

17 

18 

19 

22 

ao 

38 

:18 

t13 

46 

48 

50 

53 

5!) 

61 

62 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

4 Saturation Urd:wund. 

4.1 Loca.ll'lt;<tte spaces with unknown bounds . 72 

4.2 IDxa.ruple . . . . . . . . 75 

4.:3 Irnplomnntatio11 issues 82 

4.a.1 Da1;a, structures for the next-state function 8. ') ., 

UneonHnned vs. confirmed stat.es 83 

4.:.ta Storing MDD nodes . . . . 85 

4.:~A MDD nodes of variable si:t.e 86 

4.3.5 Garbage collection .. 88 

4 .. :l.6 Overflow of potential local Btate spaces . !)0 

1.4 Resuli.s ............ . 91 

5 Structural CTL Model Checking 93 

5.1 Temporal logic ......... . !>4 

5.1.1 Linear time, branching time . 95 

5.1.2 The CTL *, CTL, and LTL temporal logics . 97 

5.1.3 Computing CTL operators ... 102 

5.2 Saturation-based CTL Model Checking. 104 

5.2.1 Tho EX operator . 104 

5.2.2 The Eli' operator . 105 

5.2.:l The ElJ operator . 105 

6.2.1.1 The EG operator . 109 

5.:~ H.esults .......... . 111 

VI 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

6 Count<::n·<:~xa.mples and Witnesses 115 

The <lil'tanee function . . . . . . 11() 

tLl.l li~xplicil; decision diagram eneodin~~ of st.a.te distances . 117 

6.1.2 Syrnbolic eneodiug of st<tf;e distances 119 

().2 }.,. new approach 121 

(i.2.1 J<Jdge-·vahwd l\1DDs . 121 

(L2.2 Ca.nonicity of gv+MDDs 

6.:3 Operations with EV+MDDs ... 125 

o.a.1 S""'t"' "'•)''('(' 'lTI'i (}1' "'tar•('(' <r"l''»"•t·l·(.)l'l 11"'1.11" ]:<'V+M'l')D~ .128. ~' .H""' t'\;:-;;'~\",t (At,-'.~(,, '" . ~Jr • ,J, 'J b'""·-·'-'""'·('~ l . '· CJ b ,_; V ,o , ~"' ., ~ • • • - • • .. 

Tt:a.ce generation using EV+.MDDs :un 

6.4 R.esults ................... . 

7 Application: the Runway Safety Monitor 137 

7.1 The Runway Ineursion Prevention System 137 

7.2 The Sl\41\HT model of RSM 140 

7.2.1 State variables . . 140 

7.2.2 Modeling the state transitious . 

7.2.2.1 The 3-D motion of targets 144 

7.2.2.2 Sta.tus definitions 145 

7.2.:3 State-space measurements 147 

7.2.4 Setting the alarm . 14.8 

7.3 1<[odel Clwcking RSM . . 15:3 

7.:.3.1 A "rnemory--lnss'' propcrt,y . 1G4 

Vll 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Analysi!'l of tho transition tlmt ca.usm.; losH of separation 

'l.a.3 A ~t:ronger safoty property ......... . 157 

7.a.a.l Couuterexan1ples for strong saf{~ty !57 

7.:~.4 Conclusions . . . . . . . . . . . . . . . . . . 1!)1 

8 Future Researeh 164 

A Overview of ~Wt:l' 169 

B Benchmark of Examples 177 

B. l Dining philosopher!-! . 177 

B.2 A flexible manufa.during system 17H 

B.a Slotted ring . . . . 181 

B.4 A Kanban system . 182 

B.5 H.andomized leader election protocol 184 

B.6 A round ·robin rnutua.l exclusion protocol 18!) 

Bibliography 192 

Vita 203 

viii 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

ACKNO'\:VLEDGJV1ENTS 

lowe my thanks to 1na.ny people who h:w1~ supported me during my studies. From the 
v<~ry beginning~ this work would not !mve been possible without the guidanee of my <:tdviser, 
Dr. Gianfranco Ciardo. His constant striV<) f()r excellnnce1 im.pec<:tthle work ethic and bril-­
liant ideas h<Wtl made it easier for me to achieve my goals. His tmdeniable meut.oring skills 
are reflected in the way every student Um'; worked wit:h him grew from <1 just good student 
into a go()d researcher. 

I am gra,t;eful to Dr. Gerald Liittgen i~)r my in.itiation in the finld of Fbruta,l Methods 
and for the internship t.ha.t. he entrusted me with so early in my studios. I truly adrninJ his 
resea,reh attitude and wrHing skillH. I a,rn equa!Iy grateful to the people a.t NA.S.A Langley 
Research Center, especially to Dr. Ben Di Vito, for f()stering our research idea.s and pro­
viding us with many opportunities, most importantly through their finandal support. 

I would like to thank my comnlittf~e, f{n· supporting ruy work and providing valuable 
comments, and the eollea.gues that I collaborated with: Andrew Miner, for jurnp-starting 
this whole body of work and whose design and implementation of SM'\J{f have made it. easy 
to pnt my ideus in pr<~.etice, und Robert Mannorstein, who provided figun~s and comnwnts 
for one of the chapters in this thesis. Speda! thanks go t;o Zvezdan Pet.kovic, who was 
always there for me with a. good advice on everything from technical support, to the myriad 
of every day life problems that I faced. I also am grateful to Carol Conner, Sandra, David, 
and the entire Wagoner family for t.heir magnanimous help in making a home away from 
home in America. 

On a personal note, my endeavor would not have been possible without the affectionat,e 
support of my whole family. My deepest gratitude goes to my parents, Lizeta and Ilie, 
whom I simply owe everything I am, and to my sister, Laura, who endured an ocean apart 
of dista.nee between us. 

Last, bnt not. least, my thoughts and love go to my sweet and generous wife, Valentina, 
who brings out the best in rne and makes lifo a.ll worth it. 

IX 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

List of Tables 

3.1 rrime for St(J,t(H'Jpace generation algorithms in S%'\H'T. . . . . . . . . . . 64 

:3.2 M.mnory consumption fiJr stnt(H:lpa.ee generation algorithms in gvwrr. 65 

a.:1 llesults for the saturation algorithm. . . . . . . . . . . . . . . . . . . . 67 

4.1 Generation of the state spa.<.:e: On-the-fly vs. pregeneration vs. NuSMV ~n 

5.1 Experimental results for computing EF aud EU: Sl\1'\RI' vs. NuSMV. 112 

5.2 Experimental resuUs for cornpuliing EG: Sl\¥\RI' vs. NuSMV. . . . . . 11~~ 

6.1 Experimental results for computing the distance funetion. . . . . . . . . . . Ul4 

7.1 

7.2 

7.3 

The state to-state transition matrix for RSM. 

State space measurements for RSM: number of states. 

State-space construc:tion time for RSM (in seeonds). . 

147 

148 

lt±9 

7.4 State-space generation rnem.ory consumption for RSM (in Megabytes). 149 

7.5 H.SM protoeol: alarm R<~tting crit•~ria. . . . . . . . . . . . . . . . . . . . 150 

A.l l'v:Iodel checking functions in SM!\f(['. . . . . . . . . . . . . . . . . . . . . . . . 175 

X 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

List of Fig11res 

1.1 Tho "m.ap" of Formal MethodB . . . . . . . . . . . . . . . . . . . . . . . . . 5 

2.1 

2.2 

2.4 

2.5 

2.6 

2.7 

2.8 

2.9 

3.4 

:3.5 

A small Petri net exautplo. 

'I'lw underlying discrete state model of tho Petri net in Fignro 2.1 . 

Algorithm for oxplidt state space exploration .. 

A BD D encoding of a boolean function . . . . . 

The effect of variable ordering over the BDD size 

The algorithm for binary operations on BDDs. 

An example MDD ........... . 

The algorithm for the union of MDDs. 

Image computation with MDDs. . . . 

'I'wo symbolic breadth-first generation algoritluns. 

Algorithm for symbolic bn;adU1-first search with chaining. 

.A produeer-comnnner model and its snbmodels. . . . . . . 

The local sta.tes of subrnodels in the producer-consumer modeL 

I<.roneckor cucodin.g of N fhr the producer-consunwr rnodd. . . 

Xl 

15 

1() 

18 

24 

26 

28 

:32 

:~.4 

36 

;~g 

4.0 

41 

4fj 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

l(ronecker vunms MDD encoding of the next st:I.te function. 

Algorithm for firing owmi;s with in-pla.ce npda.tf!S .... , 

The vs(mdocode for the Genm·at:e) Sat?tm.te algorithtns .. 

a.10 The pseudocode for SatP·ire and So.tRecP£1·e. 

4.1 

4.2 

4.3 

4.4 

·t6 

4.7 

Local st.a.te spaces built in i1<olatiou. . . . . . . . 

The Confirm procedurfJ for saturation on-the-fly. 

Sa.turat.ion by exarnple (part 1) .. 

SaJ.ura.tio.n by example (part. 2) .. 

Saturation by exampln (part a) .. 

Storage for t;he matrix nodes. . . 

Node and arc storage for MDDs. 

The hnplidt index 1 in reduced vs. qw1Si-redueed MDDs. 

4.9 .Example of potential, but not actual, overflow of a local state space. 

5.1 The eight bask CTL opcratorH 

5.2 The four basic fll'L operators . 

5.3 The traditional algorithm to compute EU. 

5.-1 'The satura.tion-ba.'led algorithm to compute EU. 

Gl 

57 

58 

72 

74 

76 

77 

78 

83 

86 

87 

90 

100 

101 

106 

107 

5.5 Comparing BFS and saturation order: distance vs. unsafe distance. . 1 Of~ 

5.6 'I':raditional and Hatatration-ba!-md EG algorHlnns. . . . . . . . . . . . 110 

6.1 

6.2 

Storing the distance function: ADD vs. forests of MDDs. 

Canonical and non canonical gvBDDs. 

xii 

118 

120 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

6.a Storing total and partial arithnwtic functio1w with EV+MDDs. 

6.4 The Union.t\:fin aJ.gorithm f(,r EV+MDDs. 

6Jj 

6.6 

ti.7 

7.1 

7.2 

7.~~ 

7.4 

7.5 

7.6 

An exa.mple of the Unionlvlin operator f(u: EV'1Jv1DDB. 

The pseudocode for B·!tildDistance, BVSatnmte a.nd EVfi'i1'e 

The pseudo-eode for B VRecPiTe. . . . . . . . . . . . . . . . 

The llnnwa.y Safety Monitor flow cha.rt. . . . . 

RSM: missed alarm seena.rio 11 at ground lovd. 

RSM: missed ala.nn scenario 21 airborne. . . . . 

RSM: missed alarm scena.rio :3, at; ground level. 

RSM: missed alarm scenario 4, at ground level. 

RSM: missed alarrn scenario 5, aircraft vs vt~hide .. 

B.l The dining philosopl.ters, ith subnct.. 

B.2 A flexible manufacturing system. 

B.3 Slotted ring model, ith subnet.. 

B.4 A kanban system ........ . 

B.5 Statechart for the leader election protoeol. 

13.6 The round robin mutual exclusion protocol. 

Xlll 

125 

127 

129 

l:JO 

13!l 

154 

.156 

158 

159 

161 

177 

179 

181 

18:) 

185 

190 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

ABSTitACT 

Tho introduction of symbolic approadws, based on Binary Decision Dia.gra.ms (BD.D), to 
Model Chc~cking has led to signifleaut im.proverrwuts in Fbnna.l Verification) by allowing 
the analysis of very la.rge Ryst.emH, such as cmnplex drcuit d<•signB. These were previously 
beyond the reach of traditional, explidt. n1ethods, dtte to the :;tate spac(~ e;cplosion phe­
nommwn. However, <:tfter the initial success, the BDD tedrnology has peaked, dm: to a, 
similar problmn, the lJDD explosion. 

We preseut a new approach to symbolic Model Checking t.hat. is ba::;od ou exploiting 
the systHm structure. 'I'his technique is eharact.ori:r,ed by several unique fbatures, including 
an (mcoding of sta.tes with Multiway Decision Diagrams (MDD) and of transitions with 
hoole;:m Kt·ouceker ma.t;rices. Tbis approach na.turally eaptureH the property of event loeal~ 
ity, inherently present in the dass of globaJly asynchronous/locally synchronous system.s. 

The m.ost imporl;ant contribution of our work is the sa,tnr·ation a.lgoritJnn f()r state space 
const.ruetion. Using saturation, the peak si;~,e of the MDD during the exploration is dras­
tically reduced, ofhm to sizes equal or C:O!llpa.mble to the fiual MDD size, which makes 
it. optimal in those terms. Subsequently, saturation can achieve similar reductions in run­
times. When co:mpa.red t;o the leading state-of-tho art t;ools based on traditional symbolic 
approaches, saturation is up to 100,000 times faster and uses up to 1,000 times less Jnernory. 
This enables our approaeh t;o !:ltudy mudtla.rger systen1s than ever considered. J:i'ollowing the 
success in state space exploration, we extend the applicability of the satura.tion algorithm 
to CTL Model Checking, a.nd also to efficient generation of shortest. length counterexamples 
for safety properties, with similar resnlt;s. 

This approach to autorna.tic verification is implemented in the tool SMART. We test 
the new tnodel ehecker on a real life, industrial size application: the NASA Runway Safety 
Monitor (RSM). The analyRis exposes a number of potential problems with the decision 
procedure designed to signal all hazardous situations during takeoff and landing procedures 
on runways. Attempts to verifY RSM with other .model checkers (NuSMV, SPIN) fail duo to 
excessive n1emory consumption, showing that our structural method is superior to existing 
symbolic approaches. 

XIV 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

S1'RUC1,URAL MODEL CHECKING 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Chapter 1 

Introduction 

.Johann Wolfgang von Goetlw (17•19-18~Y2) 

Today's hardware and software systems grow in size and complexity at, a. very fast pace. 

Unfortu:ruttely, t.he rapid adva.nce in technology sophistication is not ma.tched by the advnnce 

in the degree of certification of the deployed dcvi<:es. Therefixe, with every leap fi:>rwa.nl in 

technology, the risk for small and subtle errors to escn.pe undeteded in the process of design 

and verification with low-cost ernpirica.I methods increases substantially. At. the same time, 

1111 exhaustive verification process takeH considerable amounts of resources, in terms of time, 

human expertise, and money. The major obstadc in using computerized tools to verifying 

modern protocols is usually the state-space e:rplosion phenomenon. As the complexity of 

a systern increases, the memory and time required to store its combinatorially expanding 

state space ean easily beeome excessive. On the other hand, if appropriat.e measures are 

not take.n, the cost of errors eventually occurring during; opf'~ration can he enormous. There 

is a nmnber of (in)famous examples already 011 record: 

• The Pentium I proceHsor division bug [57], caused by a drcuit; design error, eost.ed 

Intel half a billion dollars in 1994. The discovery of the error was credited to Prof. 

Thoma.s Nicely, a mathematics professor at the nearby Lynchburg College in Virginia; 

2 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GHAPTBH .1. fNTBODUC:TlON 

• The explosion of the Arinne [) rocket during lift.ol:f, on .June 4 ln!W, due to rt Hon,t;ing 

point. conversion mTot' in a. software control moduk: (55], caused the Ji~uropeau Space 

Agency 1:1.11 nstin1ated los:; of seven billi.on dolln,rs rmd hm ynan; of development efforts; 

• Thn loss of the Ma.rs Polar I ... ander exploration probe in Deemriber 1!>99, due in pa,rt 

to an allcgr~d object initi<tliza,tion error in Uw touchdown sensing; software, whieh was 

not; eorred:ly t.est;ed [86], harl a. price tag of 120 million dolhus in equipment and set 

back au e:~ntire research program at the :Jet Propulsion Laboratory; 

• Tlu~ Y2K hug seare [71], whieh can be blam.ed on the eomput:er software iudnstry 

as a colleetivo, whose prevention eostt:~ worldwide are yet to be qua.nt.ificd, hut are 

estimated between. 500 billion and 5 trill.ion dollars; 

But most critical is the prospect of oven more ca,i,astrophic events, where human life is 

at stake, such as aireraft collisions or malfunetioning of 11ndear plant surveillance. Safety­

critical systems, such as flight guidance, collision avoidance, and early warning syst;erns, 

require a. high degree of as:mmnce of design correctness [2:.~]. Existing techniques for verifying 

safety properties still rely heavily on testing and simulation, which examine only a portion 

of the behaviors of the system. Sinee flaws can hide in the unexamined portious of the 

system, engineers need reliable means to design and operate increasingly large systems, 

despite their vast emnplexit.y. 

The field of .F'orrnal Methods is onn way to achieve this goal, by using rigorous mnthe­

mat.iea1 t.<:)chniques for tl1e s[JeciJication a.lHl ve1·~fica.tion of hardware a,nd software systems . 

. Model Checking is one direction in .Formal .Methods, concerned with the tasks of represtn:tt­

ing a system aH an automaton, usuaJly finite-state, and then showing that the initial sta-te 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTBH .1. JNT.HODUGT'!ON 

of this automaton s<:tHHfioH a tern:poml logic statement [lHJ]. l'vfodel Checking ha.s ga.itHld 

increasing attention since the developtnent of .symboli<: techniqmm, based on liina:ry da;iiJion 

diagnzms (BDDs) [:t 7]. Sym.bolic Model Checking [21] if' known to be eficet.ive for a nurnher 

of l'imple ten.tporal logics, such a.s CTL ( ComJmtation 'Jlrcc Logic) and UI'L (Linear 1'ern­

poml LO[Jic) unL ail it allows :(()[ the eflicient stora.g<~ and .manipulation of the laJ·ge S€~ts of 

states corresponding to t;emporallogie formulae. However, pra.etica.llimitat.ions t,o symbolic 

Model Checking still exist. 

• First, memory <md tirne roquirmmmts might; be excessive when tackling real systcn:.ts. 

This is especially true sinee the Hize (in number of nodes) of t:he BDD encoding 

the set of states eorresponding to a CTL fonnula. is usually much .larger dv,r·ing the 

fixed-point itemLions than upon convergence. This phenomenon can bo vi«e~wcd as the 

reincarnation of the state space explosion in the form of BDD e:cplotJion. This has 

spurred work ill two major dired.ions. Distributed and parallel algorithms for BDD 

manipulation [106, 137] attempt to alleviate the problem by corralling the tesources of 

multiple workstations. However, the parallelization of BDD algorithms iH notoriously 

innffect,ive, and the resulting algorithms ha.ve very little if any speed-up. Another 

direetion ha.s concentrated on verification techniques that try to reduce the number 

of expensive BDD computations in a.n attempt l;o avoid the rit;k of BDD expansion. 

This indudE)S the work in [24, 111, 126] that reduce the number of iteration steps 

needed to explore the sta,te space syrnbolica,lly, a.nd also the heuristics to better guide 

the exploration of states [12, 121]. 

• Second, symbolic Model Clweking has been quit.e successful f(n· hanlwa.re verification 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTBH. 1. IN'I'.HODUCTION 

but software) JU particular dist.ributed Hoftwarc, }u.ts HO n.ll' been COnsiderPd bnyond 

rf:;a.ch. This is boeause the state space of soft.wn.re is much larger, but also because of 

tlw widely-held belief tha.t syrnbolic t.echniqucs work well only in synchronous s!"ttiugs. 

In this work, w<~ attempt to dispel these myths by showing t.hat symbolic tvf.od('l Ch+~ek-

ing based on H!(l model st1"1.t<~t~J.re copes wdl with a. .. •;;ynchronous brJhavior and even benofitn 

from it. Furthermore, the techniques we introduce exeel a.t redndng the ·pcnk rncrnor·u con-

1w.rnption. in the fixed~point iterations, t;hus directly addrcs::dng t;lw issue of BDD explosion. 

1.1 Overview of Formal Methods 

As mentioned before, the field of Formal Methods indude~:; two areas, .'lpcc~{t:cation and 

verification, which we briefly overview next. The map of Formal Methods is sketcll.tlCl in the 

diagram of Figure l.l a .. '! a tree and our work is situat(')d along the highlighted path. 

Specification VerWCI'Ition _______ , ______ 
Simulation Mode! Checking Theorem Proving /' Automata Temporal Logic 

/"-. 
Explicit Symbolic 

F.igure 1.1: The "map" of Formal Methods 

1.1.1 Specifkation 

Specification (and/or rnodding) is the process of describing a re<.d~life syst.ern and it~; dei'irod 

propnrth)s in a formal way, by using a. specification langnage. The properties that need t.o 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GHAPTEH 1. JNTRODUCTTON 

he cxpresst~d tnay ra.uge fro.m fnnctiona.l behavior, tinting behavior, h1t:eru::d ~t;ructu.rx~ 1 t.o 

performance ehara.et;erist;ics. 

Z [128] a.u.d VDM [85] are the most popular langua.ges t{)r sp<~d(ying the 8equenUal 

behavior of state-ba.'led systems. States an~ described by means of rich structures sueh a .. s 

sets, relations, and fnn<:tions. The tnJ.nsitions bctwEmn st;;tt.e!l are given in terms of pre-

conditions aud post,~conditions logic fonuulae. 

Other rmrt;hods, like CSP [78], CCS [lOG], state-cha.rts [74), and I/0 a.ulicnnata. [102] 

foeus on specifying the behavior of concurTent systems. 

1.1.2 Verification 

Verification goes one step beyond modeling, by analy.·dng the spedfication of th(~ syst,em tor 

desired properties. The verification can be partial or exhaustive. Simulat;ion and test ease 

generation fall in the former category, while Model Checking and Theorem Proving are in 

the latter category. 

1.1.2.1 Simulation 

Excluded nowadays by purists, but widely used in practice, simulation and tesi, case gener-

a.tion were the only means of test.ing and validating hardware and software in the early days 

of syHte:rn design. Tho two rnethods are similar in that t.lwy attempt to cover, with a set of 

inputs, as many execution paths in the systern as posHible, mostly the ones that. prmmrna.bly 

contain errors. The difference lies in the fa.ct that simulation runs on a tlworetieaJ lilodol 

of the systern, while testing nms on a physieal prototype of the system itself. 

The main disadvantage of both rernains the inability to cover all the possible eases, 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTEH- 1. INTHO.DUC'T10N 

ht.mee t;he risk of miwsing llllwanted events that occur with very small probability. Good 

simulations are difficult to bnild and t:ime consuming. Their eff(ldiveness Hharply drops in 

thn late sta.ges of the dm;ign, when the muuber of errors is considerably diutinished. Tho 

time nece:;;sa.ry to discover bugs in the late phases h.ICrt!ases dramat:iea1ly. 

The sheer Hize of nwdem syste.rns is gradually making t;he tradH;ional m.othodK obsolete, 

as at t,he end of a simulation session. one is rwver fully sure of the validity of the modeL 

A suggestive example is the TCAS li systnm [G(}j for which t,he Feder<:IJ Aviation Admin~ 

istration has contract~K! th(~ Rannoch company to build scenarios for the aireraJt collision 

avoidance protocoL The (llld-produet of Rannoch comprised ::>00 encounter scenarios. Put 

in the light oft he a.ct.ua.l sta.te~spaee shr.e ( tl.w.t; the tool S.M V fails to completely build within 

1 Gigabyte of memory, n:fter constructing over 1020 possible states)~ the number of tested 

scenarioH is alarmingly small. The more so a._<; the system is a.ln;rul:IJ installed on all US 

eomrnercia1 aircraft as of .January 199"1 (and a worldwide extension, ACAS II, is promoted 

for equipping all aircraft by .January 2005). 

1.1.2.2 Theorem Proving 

Theorem Proving is the most powerful formal verification approach, in which both the 

system and its desired properti(~S are expressed as formulae in some mathematical logic, 

given as a set of axioms a.nd a set of inference rules to rnake deductions. The! process of 

finding a proof f()r a property starts fron1 the axiorns and t;hen uses the inference rules (and 

possibly derived definitions ;:tnd intennediate lemmas) t.o vH.lidate the init.ial assertions. 

Proofs ca.n be eonstructed by hand, but ma.chine-assisted proving has lJecorne more a.nd 

more powerful) although not; fully automated, remaining mainly interactive. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GIIAPTBH J. JNTHOJJUGTJON 8 

ln e(mtr::tst to .Model Checking, 'I'lwore.m Proving can deal with infinit<~ systmns, since 

it relies 011 more powerfttl kclmiques, like st;ructural indu<.~tion. Ilowevet\ the int;era.etion 

with a us<Jr results in a slow and sometin1e:-; error-prone pnlcess. DeiHmding on the degree 

of automation~ theorem provers can be classified iu t,hree grfmps: 

LP [f.i5], and ACL2 [8~)] a.re guided by user input, which is a scquenee of lemrm"'"' 

hut eac;h theorem is prowm automatically; usin~~ built-in heuristics. The m.ilcsto1te in 

this ea,togory has been the proof of G<idel's first ineomplctmmss theon:rn in Nqhtm by 

Boyer and Moore (J.1]i 

• Proof checkers: LCF [70], Nuprl [46], HOL [09], .LEGO [lOlj, and Coq ['18] are used 

t;o :l(mnaJize and verify problems in Mathematics and Program Verifkationi 

• Combination provers: PVS [110], AnaJytica [43), and STeP [10] eombine Theorem 

Proving with symbolic algebra) Model Checking, and interactive proof to verify a 

variety of probleins ranging from number theory to hardware design and fault-tolerant 

algorithms. 

1.1.2.3 Model Checking 

Model Checking is the formal v~~rification approach that relim; on building a finite nwdd 

of a system an.d exluutstively searching its state space to chock the desired properties. In 

principle, tJHJ syst,mna.t;ic search is guaranteed to end, as tho rnodd is fiuite. The practical 

limitations are, obviously, tht~ amount of available memory (on one or multiple processors) 

<1nd the running times of the required algorithms. Therefore, the challenge in Model Cheek-



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHA P'l'E.l"t .l. .lNTROD UGTlO N 

ing is devising a.lgorithms and d11ta 11truet.ures t:hat emd>lc handlin[~ of very large st,nt:e~sp:1,ee~; 

in a rca,sonablo amount: of time. 

In practice thern arc.~ two maiu apprmu:hes in Model Checking: (;ernporal and aut<mmta~ 

based. The ternpoml Jvfod(d Checking was cl<weloped independently in the 1980s hy Clarko 

;.md Emerson [:37] in the U.S. and quiell<; and Sifakis [11 !J) in. France. In this 11pproad1, 

systems are modeled a,,s finite state transition systems, and spedfieatious are expressed In 

a temporal .logic. 

In tllt) seeond approaeh, the specificat-ion i::~ given a .. "! an Uilttomaton. Then~ !;he syst;(:m 

whid1 is modeled aR an automa.ton itself is eompa.red to tho spedtimt;ion to determine 

whether it sa.tisties the required properties. The condusion can be drawn via l::mguage 

inclusion, refinement orderings, or observa.tiona.l equivalence. Va.rdi and Wolper showed 

how to translate temporal logic Model Checking in terms of automata, thus rna.king t;he 

connection between the two approaches [la:3]. 

Model Checking is fully automated and fast. Its main asset is the delivery of witnesses 

(and counterexamples) that show how stat;es where the desired property does (or does not) 

hold can be reached. Its major challenge is represented by the state-space explosion problem. 

This task has been addressed by the introduction of BDDs, partial order reductions, and 

semantic rninimi:tations. All of these methods either reduce the size the of tht~ .model by 

eliminating nnnceessary states, or compress the state-space representation itself. 

There are numerous Model Checking tools innse, the best knowu are listed below: 

• 'I'em.porallogic model chec.k.ers: EMC [87] and Caesar (lHJ], SMV [104] · · thtl firs!. to 

use symbolic tedtniqtHlS (BDDs), SPIN [81] ··· based on partia1 order reductions, Mur­

phi [54], tho Concurrency Workbench [45] -· baoed on p-ealculus, SVE [<HJ, FORMAT 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CJIAl:"l'B.n 1. lNTlU)DUC'I:fON 10 

[50], and CV [5::5] for hn.nlware verification, HyTedt [t)] for hybrid syHtc•n\H, a.nd 

:\.ronos t t I . ['"'""] f()r roal-t;ime syst,eins. 

• Combined checkers: Berkeley's HS!S [80] combines model checking with language in·· 

elusion, Stanf(ml's STeP [10] usns deductive u1ethods, VIS [Hi] employs logk synthesis, 

PVS [11 0] is a. t;hcorem prover with 'Niodd Checking a.bilitiet-~ :for ;H:aJeulus, while the 

METAFrn,me envirornnent. [12H] supports Model Checking in the entire softwa1·e clc· 

velopment process. 

1.2 Contribution 

This work contributes with a series of novel technique::; to the area of temporal logic Model 

(Jhecking. We have designed a new model checker, integrated in the ~:Joftware tool SJVW{I' 

[25] at the College of William and Mary, which features: 

• Multiway Decision Diagmms (MDD) [87] for compressed state storage of stnwttm:d 

discrete-state systems; 

• K1·oru.xker· rnatrix [6] storage f()r efficient representation of the tra.nsition rda.t;ion 

between states, based on a decomposition of the model into subrnodels; 

• Sat'ltmtion [27L a revolutionary iteration strategy for exploring state spaces and com-

puting fixed-point model checking; operators; 

e An on-the-fly algorithm (;bat performs an exact computation of local stat<l spacos of 

the decomposed model for ea.ch st.a.te variable of the system [28]; 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

(}HAPTEH 1. IN'I'HDDUCTJON 11 

tion thai, helps buildinf~ shortest; p:l.ths in readmbility graphs, with direct iluplicnt;ions 

in providing shortest. length cotmter(~xa,mples for ::Jafety properties In Model Checking. 

We call this new approach Stn.tctum,l Morlt'l Checking [31]. 

1.3 Organization 

The renu::tindf~r of this docunumt is organized as follows. Chapter 2 introduces 1.he hasie eon­

ccpts in discrete state rnodding and presenl;s various a.ltenmtivos to addressing the problern 

of efficient state space eonstruetion. Chapter :3 deseribes our eontributiom; and improve­

ments to the problem of state spaeo construction, lea.di.ng to our nws1, a.dva.need algorithm, 

based on the idea of .•wtumtion. An extension of the algorithm in a less restrictive context 

is presented in Chapter 4, where we also eompare t;he performance of onr algorithm irnple­

rnented in Sl\W{r with another st;ate-of-the-art model checker, NuSMV. Chapters 5 and 6 

further expand the scope of our saturation strategy to other areas of Model Checking, such 

&"l the effident computR.tion of temporal logic operators and the generation of counterex­

amples, along with the corresponding experimental results. Chapter 7 presents our findings 

regarding the performance and a.pplieability of our model checker to a. real-life example: the 

Runway Saf~>.ty Monitor. We eondnde by discussing ftthue rescareh plans in Chapter 8. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Chapter 2 

State Space Constructior1 

In this eha.pter, we first, look at the models most; frequently tmed in pradice and e:xamine 

their eommon ehara.cteristics. Wo then proceed with defining the 8tate space of a model, 

discussing t.Jw various existing t;edmiques to eoustruet H, and the 1najor d1a.llenges in un­

dergoing this task. 

Since thE~ introduction of automated verification tools in industry, the most popular 

systems to be analyzed were digital circuits, concurrent programs, distributed protocols, 

and reaetive systems. When talking about behavior, one should capture in one way or 

another the notion of t.ime nnd evolution. Therefore, the basic entities that all the 1nodels 

have to be built on are states and tr-ansitions (between states). The stal;es should be seen as 

snapshots of the parameters of the system at specific moments in time, while the transitions 

are a set of rules that describe the changes in the system state when an event occurs. 

Several frameworks have been proposed for modeling systems. We adopt tho following 

terminology. 

12 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTBH 2. STATE SPAG11; CONBTUUCTION 

2.1 Discrete stat(:~ systc~rns 

Definition 2.1.1 A. discr·ete-state 1rwdel is a tr·iplc lv.f ;::::: (S)-s,.l\1}, wher-e 

• S the set of potential states of the model,, specifying the at:IJ1H~ '' of the stnf:es. 

We indicate states with lowerca.sF bolt~{aee lett en;, i, j ... 

• s E S ·i..~ the initial state of the ·model. 

• N : lf ··+ 28 ·iH the rwxt-stat(~ funetion Hpecif:ying th1o state.'/ macha.ble fmm each st(1.tf~ 

'in a single .step. 

There exist a munber of variations to the abov(~ deHnitiou. One of them assumes a more 

general ease of a, t;et of init.iaJ states, So. This can be easily integrated in our definition by 

adding a, unique initial states and defining N(s) =So. 

The :next-state function N is sometimes defined as a binary relation N ~ S x S, sueh 

that (i,j) E N if and only if i can transition to j. In this ea.'le, N is called the transition 

r-elation. 

Another variation is the partitioning of N into a union of next-state functions [20]: 

N(i) = UecEJV;~(i), where£ is the (finite) set of events in the model. Then, Ne is the 

next-state fimction a.':lsociated with event e, i.e., Ne(i) is the set of states the system can 

enter when e ocenrs, or jiTe8, iu state i. An event e is said t.o be diBabled in i if Nf:(i) "-'~ 0; 

otherwis<~, it is ena.bled. 

Diserete-stat:e syst;erns are usually described in a fonnalism that allows the specilka .. -

t.ion of its states and transitions. Low-·level for-malisms explicitly define the entire set of 

states that tlw system can be iu, together with the complete transition relation. A more 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTBH. 2. SJ:4TJi; SPACE C'ONSTTUJC'liON 

convenient. a.pproadt is to use a high·lwuel fonnali:nn that recurs t.o n1or() sophist:katod math~ 

em.atical objeds t;o define the behavior of t.he system. 'I'his is dono by describing rules th::1t 

characterize gnnq>s of states :tnd <"vmlt;s togetlwr. 

2.1.1 Modeling with Petri Nets 

Introduced by C.A.Petri in 1!)62 [118], Petri nets are a.n elegant high-level rnathHmatic:a.I 

for.malisn1 that. lms been well studied and has Hince becom.e popular due to some of its 

practical properties. 

Definition 2.1.2 A Petr·i net N is a qu.intnple (P, T, D , J)l , p .. 0), where 

• .P i8 a finite tu~t of places; places can hold a. rw·rHU?fJldive number of tokens; an 

assi[Jnment fl. ; P -> N of places wah token.s ·is called a marking; 

• T ·is n finite .set of transitions (or· events), which 'ttJHla.tc the number of token8 in 

places; 

• Po : P -t N is an initial marking of places with tokens; 

• JJ+, D_, : P x T -+ N, descr·ibe the nt.le.s to a.dd and 1·ernove tokens fmrn places by 

firing tmn.sitions; 

Note tha.t a Petri net defines a bipa.rtil.e directed gntph, where the sots of nodes are P 

and T, and the set. of arcs A ~;. (P x T) U (T x P) is uniquely det,ermined by the two fundions 

lJ+ and lJ'". There is a.n are from place p t;o tram;ition t if and ouly if D' (p, t) > 0 and 

respectiv.::~ly from t top if and only if J)+(p, t) > 0. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CBAP'l'BH 2. STAT!!! SPACB CONS:I'HUCJ'TJON 15 

u 

Figure 2.1: A small Petri net; example. 

/\.. transition /: is said to be enabled in a n~tu:king p. if and only if Hs input pla.ees cont.ain 

at lca.st as rn<1ny tokens as the corresponding arc can finalities, '7p E P : p.(p) ~ D ·· (p, i:). 

Enabled transitions rna.y fire by removing the number of tokens indicated by tho .input are 

cardinality, and adding to each of th.e output places the number of tokens indicated by t.he 

output a:rc ea.rdinality. lienee, the .firing of au E:mablcd transition t changes a marking p. to 

a. marking ttl> whore w(p) = 11.(p) + D4 (p, t) D ····· (p, t). The firing is sometitmls written as 

Figure 2.1 displays a small Petri uet, with places P = {p,q,r}, transitions 1' ::::.~ {t,u.,v}, 

and arcs A= {(q,t),(t,p),(p,u),(·u.,q),(q,v),('11,'r)}. Ir- and J)+ take the va.ltw 1 for all 

existing arcs, and f.Lo(p) ::::.~ 2, !J·o(q) -::::.: 0, fl·o(r·) = 0. For a. more concise representaJ.ion, we 

will also use the superscript notation for markings: p0 = p2q0r 0 • 

Although there is a connection between the places and transitions of a Petri net, and 

the states and events in a model, it is now dear that the discrete state model that a Petri 

net defines does not coiudde with the net itself. In Fignre 2.1 for exarnple, the Petri net 

has three places and three t.nulSitions, while its discrete state model has six possible states 

and nino t;ransitions, aH shown in Figure 2.2. 

In tho urHierlying state model, the states are represented by a set; of markings, C NP, 

and the transition relation is define(! between markings: (Jtt,fl·;t) EN if and only if there 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHA.P1'Bn 2. STA'l'B BPACEJ ()()NSTHJJ()TfON Hi 

p2 pq q2 

Figure 2.2: Tho underlying discnlte state modd of the Petri net in Figure 2. I 

. t 'Ll I . . t . l /, ex1s;:;; an ena.u.ec trans1t.um · m ll·h an< /tl'""t/1·2· 

There are several extensions of ordinary Petri nets, sueh as inhibitor arcs, gua.l'ds, IW.u:k~ 

ing dependent are c:n.rdinalities (self n1odi(ying nets), firing times (St.ochastie Petri Nets, or 

SPNs), Colored Petri nets, and Hierarchical Petri Net:s [109]. 

Besides providing a modeling formalism, Petri nets ha.vtl also been studied as a. corn-

putation model, by means of their associated language [112]. The class of stamla.rd Petri 

not languages is a strict suporsct of regular languages and a subset of context-sensitive Ian-

gua.ges. Inhibitor arcs, marking dt~pendent are cardinalities and firing times add expressive 

power to ordinary Petri nets. In fact these generalizations have the same expressive power 

a.s Turing ma,chines [112] (they are Turing-equivalent). 

2.2 State spaces 

Given a discret-e state modellkf = ( g, s, N), Uw state srw.ce S <;;, is defined as the smalleHt 

set containing s and dosed with respect to .M: 

S {s} uN(s) uN(N(s)) u · · · ,.-:-, N*(s), 

where ''*" denotes the reflexive and transitive dosure of applying the function, and the 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Cl:lAP'l'l!iR 2. S'I:·~TB SPACE (}0N8TlUJC'J'JON 17 

application of N is ('xtendod tf> sets of statt~s: N(A:') U~c,1.N(8). 

An oquivalont ·way to defineS is as the smallel:lt fixed point of the equation 

S '"'"' fs} u N(S). 

Starting J~1rm tlH~Hf~ definitions, there are several algodthn1s to construct tho sta.te spaee 

of a system. They a:re distinguished by two ll.Hpects: tbe iter-ation .<Jtmtegy a.ud Uw data 

st1·uct'1J.r·es nsed to st:ore states. 

The iteration strategy sp~c)dfit~s a systematic mechanism to rliAcover reachable states) 

start.ing from Uw initial state a.nd firing events N,., in a, specific order. A funda.menta.l ro:ml.t 

was established in [uti], by showing that, the state spaee can be constructed by firing the 

individual events in an ar·bitmr-y order, as long as each event is considered often enough. 

from the st;;tte storage point of view, state space generation algorithms can be classified 

in two categories: explicit and implicit. (or symbolic). Explicit techniques store each state 

individually, hence the space needed to store some representation of the state-space is 

at least linear in the number of constructed states. Symbolic techniques instead repres<mt 

states itnplidtly, using advnnced data structures to compactly encode and manipulate entire 

sets of states at. once. 

2.3 Explicit state-space generatio:n 

Iu traditional <:1xplidt stat<~-lipace generation approaches, st.at:eH are discovered ouo by OIW. 

Figure 2.a shows a geneml algorithm that storm; the unexplored states in ft set. U. If U 

is rnana,ged as a. qneue, the exploration is breadth-fi.rst. If U is managed as a stack, the 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTBR ;?. 87~<\'I'B SPJ1CB C<)NSTRUGTJON 18 

exploration h; depth-first. Stat.(mH:mt 11 .is perf(Jrrrwd as Ht<).n:y t..irnns as Uwre are r:;tatn-t;o-

state t;ransitifms betwe('m reachable st.ates 1 thus an effkkmt search data structure, such a::; 

a ha.sh table or a :;;eardt tree, must be use!l to organize the sta.tes in S. 

Eaeh st;at.e requires a number of bytes for Hs storage, so it is effidm11; to -inde:c st;a.tes 

witlu.dunctimu/' : S -"> NU {null} sueh that '1/J(i) """ i E: { 0, ... , 181--l} ifi c: Sand '1/;(i) ""' null 

if i (/:. S. A na.tural definition f!:.n· ·tjy is to assign increasing indices to new states in the order 

they are f<nmd, starting from 1j;(s) = 0, <u> shown in Figure 2.:3. 

: .~tateset 

Compute 8 <;::;§starting from s by repeatedly applying .N. 
··--·-·-~-------······------.. ·----.. -----

1. declare S,U:sta.teset, 'ljJ:stateset-tNU{null}. 
2. S +- {s}; 
3. U .:- {s}; 
4. ·lj;(s) <· .. - 0; 

5. while U # 0 do 
6. choose a state i in U; 
7. if N(i) has been exhausted 

8. U *- U\{i} 
9. else 

10. j f- next element in .N(i) 
11. if j (/:. S then 

12. ·~;(j) *- lSI; 
13. 8 {- s u {j}; 
14. u {- u u {j}; 
15. return S; ---.. ------

• known statel'l 

• urwxplorod known st;;:tl;es 

• 0 is t;}w index of t;lw first state 
• still sta.t;es t;o explom 

• remove i from U 

• if j is a. new state .. . 
• ... assign the next index to it, .. . 

• ... add it; t;o S, a.nd .. . 
• ... remember to explore it la.t;er 

Figure 2.3: Algorithm for explicit state space exploration. 

2.4 The state space explosion proble1n 

The size of the state space S is a. fa.dor t.ha.t influnuces in a. r:adieal measnre not only the 

efiicim1ey of verification, but also the very feasibility of the whole process. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GliAPTEJR 2. S~1:4TB SPACE CONS'lTHIC:TION 10 

For exatnpl<1, if the coinpmHmts of n, system are "loosely eoupkd" i.e., t.hoy can evolve 

independently in an asyw:hronons fa.shion the n1nnber of possible global :-Jtates is given 

by the number of possiblf~ comhinat;ions of loca.l states f()r m1.d.t emupnuent. If there are J< 

subcomponents, each taking up to ni values, for 1 :::; i :;:~ :K, there could be as many as 

n1 · n2 · ... • ng different combinations of va.hJCA. This number ean ea."lily become t.oo large 

t.o handle. The st.a.t<:J.·spaee growth is t.ltcrdiJre exponential, 1:1s for a. system that; is regular 

(i.e., ni ·=-"" n, for all i) and sca.la.ble by K, the upper bound of lSI is nK. It i::; then utterly 

justified to call this phenomenon state-space c;cplosion. 

Using unsophisticated algorithms that; represent the model with explicit storage for 

states and transitions, each state consuming a n1.unbor of bits, orw will only rna.nag{~ t.o deal 

with very snu:~ll systems. As thf) models cannot exceed in size the memory capadty of a 

eomputerjrwtwork of workstations) this usually means the maximum. Htat.e space Hize that 

ean be handled is of the order of millions of states (107 ·- lOR). Therefore, only systems 

with just a. handful of (not very complex) subcomponents can be analyzed. 

The question that naturally arises is bow to deal with larger and more complex systeins? 

In the following we enumerate the most important methods devised to cope with state space 

explosion [ 41]. 

2. 5 Explicit 1nethods 

Partial order reduetion. 'rhe lJJethod eonsistH of constructing a reduced version of the 

state space [82]. It is most suitable for concurrent systems where events rua.y be independent, 

hence tho order in whkh these events are considenxl may be irrelevant to the evaluation of 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Cli.APTBR 2. S'J)1TJ~; SPA.OB CONS'l'IHlCTION 20 

properties. For exa1nph), if a. soqmJuce of n tntnHitio:ns has t:lw smne offed when pxeeuted in 

any order, the total number of possible interleaving;:; \.hat ha.ve to be considered is ri!, whik 

tlH:) number of intennedia.t.e states i::l 2n. If i l; were po:>:>iblt:1 to choose ow• representa,t;ive of a.ll 

int;erleav ings, then w·e havt>, to consider jnst 1 pnrrnutatiou <:u1d n ·+· 1 stfl,(;()S. Th(~ eondit.ious 

under which thE~ rednction is applicu.ble axe thnJ, the transitions involved eormnnf.(:l a.nd do 

not disa,ble ea.ch oth.or [~1, 67, 82, 1a2, l~l4], a.nd t;his is somet,imes quitn n!Htriet:ivl3. 

Structural equivalences. This technique is dl:~signed to replace large portions of 

the sta.te-spacc with smaller struetures that ha:ve the exact same properties with respoct 

to f(wmulae that are checked. To achieve t.his goal, a. notion of equivalence between two 

structures is introduced, namely the bisim·ulation relation [45]. The most challenging task 

in exploiting the structural equivalences is searching for those structures that m.ay he bisim­

ula.ted by smaller st;ructures. In partknlar, it is often desirable to find a minimal equivalent 

of a (sub )model. Tho algorithm that checks for the largest bisinmlation relation bet;ween 

two structures is inspired from checking the equivalence between languages. In many eases, 

however, the maximal equivalence is found to be the identity, hence the original model 

cannot be reduced. 

Syrrtmetry. A similar approach is targeted at exploiting the internal symmetry of 

certain ntodels. If there is some symmetry in a. model, an equivalence relation can be 

iutrodncQd between groups of states. The rest of the verification is performod ou the quotient. 

rnodel induced by fhat; equ.iva.lenee [a8]. As in the previous eases, the qnotienting is not 

allowed to change the behavior of the original system. A typical class of examples are Uw 

token-ring-like syst.m.ns. Tbese consist of a set; of behaviorally equivalent ''cells" arranged 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

OliAPTEH 2. S'J~4TE SPA(i.l'J CON8'1'1W(J:ff()N 21 

in a drcle and tnunbr~red modulo n. Then, mw st<1tc in each cell orbits through the whole 

ring, hence the qnot;ient. model may be .reduced by a f~H.:tor of n in the nlunber of fltates. 

Cor.npositioual reasoning. The strategy is to check local proportios nsi:ng only the 

part of the system they actually a.fti::ct.. Th(:m, a (;omposition step follows in which the local 

propt>,dies are put t;ogethm:. At, any time, only a. portion of the global systmn is consider(~d. 

The a.sHetnbling must lead to ~.n equivalent spedfica.t;ion of the original model ['12, 75, 97]. 

A rdated approach is compositionaJ minimi:r.ation. The state~space of a eoncurront 

system h:; built stepwise, one parallel component tlt a time, and the space is minimized at 

Hvery intermediate step aceording to behavioral congruences [72]. 

Abstraction. Thh; approad1 is dfeetiv<~ at; the system description level, hence hef()re 

the model is even constructed. Then::f()re, it avoids the generation of large, unreduced 

rnodels from the very beginning. There are two well~known techniques based on abstraction: 

the eone of influence reduction and data abstractiou [7, ·17]. 

The cone of infinence ·re(htetion attempts to reduce the number of variables tha.t are 

taken into consideration from the original model. Starting from the variables that a.re 

directly referred to in the specification and going backwards through a chain of dependeneies, 

all the variables than remain outside the chain can be disearded from the model, a.s they 

have no .infiuenee on the outcome of the verification part. This approach is straightforward, 

but in rr1any Cl.t.<Jes it rnay find very few or oven uo redundant variables ai. all, hence little 

reduction is possible. 

Data abstro.ction targets the doma.ins of the variables. The size of a dorna.in may be 

redw:ed by mapping it. t;o a smaller (abstra.et) domain that cortta.ins only those values t.hat 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTBH 2. STATJ•J SPAGB CONST'HUCTTON 

are significa.nt: t;o eiitahlish a pn>p<~rty. For e:xau.tpln, an integer varit:1hle v nw,y tak~1 any vH.hw 

from the domain 'D.l' '"'~ ;z:; """ { ... , 1,0,1, ... }. But, if the specification o.~creH only a.bout the 

sign of v, the domain Dv can be simply changed to tlw abstract dornain 1J.;~1 {·u . , ·o0 , v+ }, 

via the mapping o. : 'Du --+ TJ;;1: 

The origim~l model is then collapsed into a reduced, abstract; rnodel t:hat simulates the 

original om!, and is much smaller. As a result, whatever properties eau be establi8hed f(n· 

the original model they will also be valid in the abstract modeL Note that; by using this 

method, only formulan over the abstract set of propositions can be cheeked, so the user has 

to make sure in advance tha.t it is possible to express properties of the original model in the 

abstract form [51]. 

Induction. The induction t;edmique allows for reasoning on infinite families of finite-

state systen1s. The most typical examples are the systems pm:ameterized with a "free" 

variable. Finding an invariant reduces the verification process to one, arbitrary, me1.nher 

of the infinite family. To extend the validity to all the systems, au inductive a.rgunwnt is 

considered acceptable. 

2.6 Sytnbolic tnethods 

The eomnwn characteristic of all explicit apprcm.ehes is they att:e.t.npt, to reduee tlu~ number 

of states that need to be explored fi)r veri(ying or invalidating a certain property. An 

alternative is off<·~red by symbolic methods, which, in contra.st to the e:xplkit methods, 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

OJJAPTEH 2. 8'1:4.'1'1D SPACB CONSTIUJCT'ION 

reduce the sizf~ of Uw representation of the st;atm:L By using n. eompad, sub"lhH!ar encodin.g 

of large sets of st,ates with advanced da.ta-strudures, such aB Binary Dedsion Di11.grmns, 

symbolic: techniques rna,ke it; a.fforclablc to store the e.ntin~ state space very dficiently. 

Binary Deeit:;ion Dia,grams (BIJD) have taken I\:1odol C~heeking by storm, ever since 

their rediscovery in the mid 19808, thanks to a. pap~;:n· by It Bry<mt [16]. BDDs have b(~On 

previously used iu boolean logic to efficiently store function!'> [:3, 98]. But so i.mportant 

was the impact of BDDs in M.odel Chcddng, that they luwc uow hc<m ('borrowed" by 

dozens other fielch;. A. simple seareh for the keyword BDD on several on-line refenmcn sites 

produced more than 2000 W.les, in over 50 different journaJs and conf(~rcnces, in the last 

decade only. At, the Sf:tme time, Bryant's paper on BDDs is now the most c:ited paper in 

all Computer Science, with more than 1300 references, according to the webt:dte Cif:eseer 

(http: I I ci teseer. nj .nee. com/cs). 

What made BDDs so sueeessful is that they work at a low level, on the storage scheme of 

states themselves. They exploit the internal structure, symmetries and common properties 

of the co:mpouents of the system by default, without additional analysis or prior knowledge 

of the syst.em. Hence, no heuristic is needed to reduce the number of states and in some 

eases sets of the order of 101000 states can be stored effi.eiHntly in as little as a few megabytes 

of memol'Y· Moreover, sinee partial order reduetion, equivalences, a.nd abstraetion are com­

pletely o:rthogonal to the actual representation of the states, any of the above may Htill be 

applied to an already efficiently stored state-space. 

To 8y:rn.bolically represent; a modd, one needs a, scheme t;o store it.s states, and another 

scheme to store its transition relation. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTEH .2, STAT'l.~ SJ>AGE (70NSTRUCT'JON 24 

() () (l () 

() 0 I 0 
0 0 0 
0 1 l 
l 0 () () 

1 () l 
0 (l 

J I 

(a) (b) 

(c) (d) 

Figure 2.4: A BDD encoding of a boolean function 

2.6.1 Symbolic encoding of states 

2.6.1.1 Binary decision diagrams 

Description. A binary decision diagram represents a boolean funetion of n binary vari-

ables, f : {0, l}n -+ {false, tr'ne}, as a directed acyclic graph (DAG), with a unique root 

node and two terminal nodes corresponding t.o the boolean values false c~nd true (or 0 and 1 

f(lr simplicity), Non-terminal nodes are labeled with variable names Xi, 1 ::; i ::; n, and have 

two outgoing arcs, kft and right, corresponding to IJw two possible values of the boolean 

W!Tiablc, 0 and 1, To fJvaJuate a function for a givnn input, one f.oHows the path fi:·om t;he 

root to a, terminal node corresponding to the truth assignrnent of variables to 0 and 1. The 

termimd. node indic<\.tes the value of the function for t.he given trnth as::lig;nmcnL 

A non-terrninaJ node whose two successors a.re equal i.s called rcdnndant; two 1wdcs 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GHAP'JT£R 2. Sl'ATB SPACB CONSTHUCTlON 25 

with identical children (1,}'() calJed dvplieate or no·n··lmiqtH:. rrho <:On1pact:n\.)8S of the HD.D 

repn~sentat.ion is aehiev~Jd by merging duplicate nodm; into a single copy. and diminat;ing 

redundant uodes. 

Figure 2.4 shows the transfornw.tion of Ut<~ function f ('c1 , :J:2 , :x:;'i.) '='' (xi:r:2 + xl):r~l gi von 

a,,c;; a truth. t.a.ble into several hltcnnf•dia.te formi'l lm:1ding to a, redueed ordered BDD, by a 

sm-ies of reductions: (b) is the initial ordered binary tree, the non-uniquo tm:mhmls and 

uon-terrninals an~ merged in (e) and (d) respectively, and redundant nodns a.re dirnin<.t!i<~d 

in (e). 

There is a dear relationship between the set of BDDs with nodes labeled with identifiers 

:r:,i, l S i s n (call it BDD11 ) and the set of 'rH:H'Y boolean functions, {0, l}n -+ {0, 1}. An 

a.rbilirary DAG frcnn BDDn truly n~presents a fundion only jf there a.re no t.wo distinct; 

paths labeled with tho same truth assignment of variables and leading to different terminal 

nodes. 

To make the relationship biunivocal, a canonical representation is needed. That is, two 

boolean functions that are logica1ly equivalent should be represent;E~d by isomorphic BDDs. 

This can be achieved by imposing three restrictions on a BDD: 

(BDDl) Th.ere is a total order over the set of identifiers a; 1 < :r-2 < ... x 11 , such that the labels 

along every path are conforming t;o this order; 

(BDD2) There are no duplicate nodes (terminal or nm1.-terminal); duplicates arc merged into 

OlH; single eopy of all such nodes; 

(BIHn) There a.re no redundant nodes; 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHA .. P'l'BH. 2. 8'"1:!'\TB SPAOB CO.N8THUCT10N 26 

(a) (b) 

Figure 2.5: The eHi:~et of variable ordering over the BDD si:t;c 

The abow~ restrictions also give a simp!<~ algorithm that transforms an initial binary tree 

into a reduced and ordered bina.ry dceision dingram (ROBDD), which is a canonical form 

for representing functions. In Figure 2.4, the fiual stage (e) is a ROBDD. 

If rostriction (BDDa) is dropped from t;lw requirement list and replaced with the con­

straint (BDD:J') t.ha.t all arcs connect 1wdes on consecutive levels, the decision di;;tgrams are 

called qttasi-rcrbu:ed (QOBDD) [98]. In our example this corresponds to the intermediate 

step (d). It is easy to see that this form is also canonical. QOBDDs may contain redundant 

nodes (which are additional nodes compared to the ROBDD form). On the other hand 

QOBDDs possess a handy property: every node has its successors labeled with the same 

variable name, henee the whole diagram is structured in n "levels", with arcs connecting 

only nodes on adjaeont levels. In the reduced version, arcs may skip levels. 

The step from storing functions to storing set.:,; is st;raight.forward, as the characteristic 

function of a set U ~ {0, l}n is au n-ary boolean function: xu(:c) = 1 if and only if ::r: E U. 

Most·, of our discussion ou decision dingra.tus will be concerned with representing sets. 

The variable ordering is a critieal factor in reducing th.e size of a BDD. A compelling 

case is the class of n-bit-eompamtors. For n = 2, the analytical forrn is f (:c1, :r2, :Y1, Y2) := 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

OIIAPTEJH 2. S'.l.WFE SP.4C'B CONSTHUCT£0N 2'l 

(?c{· · m· ·+· :x:1 • yJ)(:i:~;· · Yi ·+ :t:z · Y2)· As shown iu Figure 2.5, f(lr the ordering :~:1 :~;z < ~11 < '!12 

(a.) the BDD lu~n'! nine nm.t--termina.l node1-1, while for the ordnriug a:: 1 <. 1/l < :c2 < 1/2 {b) 

the number of uon-tennina.ls is jnst six. In faet, f(lr the gt~neral east~ with n bit:s, the first; 

ordering produces a (2n -· 1) non-terruinahl and the second an, a logarith.rnie reduction in 

size. 

Finding an optimal variable ordering is au hlt;raetahl~) problem. gven dHl(~king l:hat a 

particular ordering is optirnal is NP .. complete [::~]. Pnrtr1ennore, certain da.ssfm of hmetio.us 

have exponential size for an:IJ variable ordering [17]. 

Thn only solution in such situations is to look for a, "good" ordering. 'I'he intuition 

behind most heuristics is that, variables that cl<~peud on eaeh other should be placed in dose 

vicinity (62, 6a]. When no obvious rule e:::u1 be <:.tssessod about a. good ordering, a dynmnic 

r-eonlering teehnique [124] which periodically rearranges the variables to reduce the number 

of nodes can give reasonably good results. 

Operations with BDDs. We next explain how to perform various logical opera.tions 

using BDDs. The basis for combining two BDDs is the Testriction operator: in an n-ary 

booloa.n function f, if the variable :r;i is bound (restricted) to the constant b E {0, 1 }, we 

obtain 

Give.n the ROBDD for f, thE1 ROBDD for the restrid:ion can bo obtained by redirncting 

all the a.rcs that; point t.o nodes labeled Xi to the b·deseendant of that node. Tlwn, sttlp 

(BDD3) of the definition is perforrued to eliJninatc a.ny newly introd.ueed redundant nodes. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

G.HAPTB.H 2. STATIG SPt\CE OONSTHUCTTON 28 

The resulting BDD has mw vari<tble less than the original, as :x: 1: wa.s elimirmtnd. 

The reverse operation is called (Shannon) e:cpansion: 

Based on t.hls divi(h~·a.nd~eonquer-like technique, one Cctn write a. n:cnrslve algorit;hm to 

build the BDD f(n· a.ny binary operation f * g [16], as listed in Figure 2.(). Note that, f()r 

QOBDDs, the test :.c '"' :y in line 7 ho.lds in every recursive ea.ll for BDDs of the same height 

defined over the Harne ordered set of varia.b.les. 

BDD a,pp.~!{ (~_:_?l!.:~(~~::~::.L.:~~~~!:dL: .. ~.r,~r.D ... :~~.(~'~"·-···-·~··-·-·~·····-··········"•"''''"''''''""-''' 
The recursive algorithm to compute a generic f * g 

1. let ;r; and u be the variables corresponding to the roots off and g 
2. if both ::r: and 11 represent terminal nodes 
3. return val(:x:) * va.l(y) 
4. else 

5. fo ~- f!xf-0; h -0-- .fl:c,·-1; 
6. go +- flyHl; f/1 +- flu<-1; 
7. if :x = y then 

8. return x · BDDa,pply (*, fo,go) + x · BDDar1ply (*, !J,gJ); 
9. else if x < y 

10. return J; · BDDapply (*, fo,g) +a;· BDDapply (*, h, g); 
11. else 

12. return y · BDDapply ( *• f, go) + y · BDDapply ( *, f, g1); 
-----

Figure 2.6: The algorithm for binary operations on BODs. 

Since each caU to BDDapply may generate two other recursive calls, the algorithm <ts 

shown ha.<; exponential titne complexity. By using a.n auxiliary data structure, called cache 

to store all thn a.nsw<~rs to already computed subprohl~:1ms, the eom.plexit;y is reduced to 

polynmnial time. Indeed, the number of distinct pairs that ean be f<.1rmed with roots of 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CIL4P'J'IiJR. 2. ST'l(l'B SPACJIE CONSTWJO'liON 

subdiagrams from f and g is t:ll8 product of tho mnnber of nodes in ea,eh BDD [17]. 

Extensions. There exists a multitude of I3DD gmwraJiza.tions [r)fi]: 

• By using dm:omposition rules other than S1mnnon's to obtain Ordered Functional 

Dedsiou Diagn1ms (OFDDs): exautples an~ t.he positive and nega,t.ive Da.vio df:com­

position [52]. All thn throe rulos (the two Davio and Shannon) may thon be combirwd 

in the I\.roneeker functional decision (Uagranls (OKF'DDs), which allow di!fort~nt ch~­

eompositions at; different n<J<ieH. A canonical fi:mn of OKF'DDs ean be obtained by 

fixing the rule for each variable. 

• By relaxing t;he ordering eondition: these are the Free BDDl-l. 

• By representing arithmetic functions instead of boolean fnuctions: 

Multi-terminal BDDs (MTBDDs) [8, :$f)], are extensions of lJDDs used to represent 

binary functions of the type f: {O,l}K--+ {O,l, ... ,m, -1}. MTBDDs have rn 

terminal nodes, corresponding to the rn possible values of the function. This definition 

can be further extended to arithmetic functions, where eaeh variable may take a finite 

set of inl;eger values, instead of binary values: f: {0, ... , n1 -1} x {0, ... , nz -1} ... x 

{0, ... ,nK -1} --7 {0, ... ,m -1}. The resuH.ing form is called Multi-wa;y Decision 

Diagrams (MDDs). They arc presented in detail in the next section. 

• By introducing edge labeling, t;o obta.ht the Bdge Valued BDDs (EVBDDs) [~H]: in 

this category also fall the Binary Momnnt, Diagrams (BMD), Multiplicative BMDs 

(~BMDs) (18], and Zero Supressod BDDs (ZBDDs) [83]. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GIJAP7'BH 2. S'J.'A.TB SPA(}ID CONSTlUJOTlON ao 

2.6.1.2 1\IIulti-wa.y decision diagrams 

The very first symbolic model dw<:ker, caHed SMV [104], W<ts successfully employed in 

the vm:ifieation of digital drcnit.s, as BDDs :u·e suitable for modeling this type of sysl:ems. 

Signals are naturally represented by boolna.n variables and the con1binatiou of gates in the 

circuit can be encoded as a large boolean function. 

However, for a.rbitrary asynchronous systerns, BDDs .have rnany difficulties espedally in 

n~present:iug integer fundions. A variable Xk that takes nk values, ca.n be encoded using 

['log2 nA:l binary variables. However, the height of the dia.gra.m may heem:ne very large, 

and therefore hampers the eHideney of diagram manipulation, a.'! tht.~ complexit;y of BDD 

operations depends on the number of BDD nodes. 

One way to cope with this problem is to use Multi~wa.y Decision Diagrams to efficiently 

encode functions of the type 

f: Sg X ... 82 X St -+ {0, 1} 

where Sk = {0, ... ,nk 1}, for 1 ~ k ~ K. 

Originally introduced in [87), MDDs are natural extensions of BODs, more suitable for 

modeling complex asynchronous systems, since they allow discrete variables to take values 

over arbitrary finite sets instead of requi.ring boolean variables. The quasi-reduced version 

of MDDs we now deflne is a naturaJ eomhination of the multi~ way extension with the quasi­

reduced ca.uonkal format introduced f(:n· BDDs in [90]. 

Formally: 

Definition 2.6.1 .41< -variable qtw . .<Ji··'f'f'.dw~ed ordered rn:u.lti-wa;y deC'ision diagr·am, O'T' A:tDJJ 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

aJ 

• Nodes an~ organized into K -1- J. levels. VVe 'WTile (kiJ>) to denote a node at level li:, 

where .fJ i.'J a u.niqtte index for that h"oel. 

• Level K contains a single non-terminaJ node (.K lr), the root, whereas levels K -- 1 

throngh l cont:a.in one or mon: non-terminal nodes. 

• Level 0 con8ists of t:wo terminal node.'!, (OjO) and (Oil). 

• A non-terminal node (kip) har;; nk arcs po·inting to node.<; allt;vel k -· L {f lhe ·ith (L1'C, 

for· 1: E Sk, is to node (k--llq), we write (klp)[iJ == q. Duplicate nodes an; not allowed 

but, unlike red·nced order·ed Jv!D D.s, redundant: node.<; wher·e a.ll ar·cs point to the sam.e 

node are allowed (both versions are canonical). 

Notiee the inverse indexing of levels, from K down to l. This is justified by the conven­

tion that the terminal nodes should always be at level 0. 

Given the above definition, we can extend our are notation to paths. The index of the 

node at levell- 1 reached from a node (kip) through a sequence (ik, ... , it) E Sk X··· X 81, 

for K 2 k > l 2 1, is recursively defined <l..<; 

The substatos encode<:! by, or "below", (A:Ip) are then 

B( (kip)) == {!3 E Sk X · • · X S1 : (klp)[/1] "'"' ] } 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CllAPTBn 2. 8'1"!1TB SPAGB CONBTH.UCTlON 

...4( (lt:jp)) = {o:: E 81\ X · • · X SA;+I : (Kir")(c~J p}. 

For a.ny nodt) (A:!p} o.n a pa.tb from the root (Kir) to {Oil}, the sflt of (gl.oha,l) states 

B((A:Ip}) x A((klp)) is a subsnt of the set of (global) states eneoded by tho MDD, which we 

eau writf:~ as B((K!r)) or A((fljl}). 

84 {0, I, 2, ::1} 

83 {0, 1, 2} 

s:>. '" {o, 1} 

S1 "" {0, 1, 2} 

S ::::c {1000, HJlO, 1100, 
1110, 1210,2000, 
2010,2100, 2110, 
2210, :3010., :3110, 
:5200, :!201) :3202, 
3210, 321 [, 3212} 

Figure 2. 7: Ar.1 example MDD. 

We reserve the indices 0 and 1 at each level k to encode the sets 0 and S~;: x · · · x 

S1, respectively. Such nodes do not need to be explicitly stored; this saves not only a 

small arnount of memory, but also substantial execution time in the reeursiv() manipulation 

algorithms. Figure 2.7 shows a four-variable MDD and the set S it encodes (the node 

indices an~ in boldface and have been chosen arbitrarily, except f()r t.hose with value 0 and 

1). To see whetlwr state (1,2,1,0) is encoded by this MDD, begin with the root; node (4J5) 

and f()llow t,he path: (4j5)[1] =' tJ, (i3j4)[2] =:. 7, (2J7)[1] = 4, and {1J4)!0] ~= 1: sinee we 

reach th<; tennina.l node 1, the state is indeed encoded, i.e., (1,2,1,0) (;: B( (415) ). On the 

other hand, we can det:ermiue in a. single operation that no st;a,t,e of the form (0, i3, i2, it) i::; 

encoded by the MDD, sinee (4J5)[0] '"" 0 nud, by convention, node (:3j0) is known to encode 

the empty seL 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CIIAPTF.JH :?. BTATI'J SJ>ACB OON8TWJOTJON 

To illustntl.e how UtJiug quasi-redm:ed MDDs sirnplifies Uw nw.nipnla.ti.on n.lgol'ithms, awl 

how our convention Oll tho meaning of the indiees 0 aud 1 improves efJkien<:y, we show t:he 

pseudocode f(n· perf(mning a union opemtion on two MDDs, in Figure 2.8. Wn use the type:; 

level, inde:r:, and local ti>r MDD levels, MDD node indices wi!;hin a level, and local state 

:indkes: respectively. Function Nf:m1Node(k) alloeates a. new MDD node (kj:r:) n.t hwd k with 

all arcs (kj:c)[-i) 0, for all i E .. 'h· SetAn(k,p,·i,y) sets (kJp)[-i] to 1Ji Chcc'kln(k,rJ) searches 

a ·tmiqne table at kwel k for a node (,Z:,;Jq) with the same nk arc valnes as {kJp}; if it fiudl:l sneh 

a node, it deletes the duplieate node (kip) and returns q~ otherwise it inserts (kip) in the 

table and returns p. Cached( UNION, k, p, q, u) searches an opemiion r;ache at level k usiug 

the hash key ''UNION (au integer code), p, q"; if it finds the key, it; sds u t.o the associated 

cached value and returns tme, otherwise it returnH falHe. PvUnOache( UNION, k, p, q, u) 

associates the value u to the key "UNION, k,p, q" in the level-k operation cache. 

2.6.2 MDDs and struetured systems 

In an unstructured system, the states are opaque and no internal information is given 

about their properties, only their inter-depewleneies via the transition relation. Struetured 

systems, on the other hand, give more detailed information about the system states and 

their internal properties, such as variables types, ranges, and other functional dependencies 

between them. 'I'his information can be exploited in devising techniques to bdt;er store a.nd 

rnanipula .. te large Bets of states [108]. 

A cornmon d~~:u·act;eristic of the high-1ev!d models we eonsider is that they ean be pa.rti .. 

tioned, or Blr"u.durcd, into interacting subrnodd.'J. for a model composed of K subnH)dds, a 

global system state i can be written as a K-tuple (iK, ... , h), where ik is t.ht~ local state of 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GHAP'rJ:;u 2. STA'J'B SPACE CONSTRUCTION 

1. declare u: inde:,!:, i: local; 
2. if p q 

3. return p; 

4. else if p = 1 or q 1 
5. return 1; 

6. else if 'P '"" 0 
7. return q; 

8. else if q = 0 
9. return p; 

10. else if k :::::: 0 
11. return p V q; 

12. if Cached( UNION, k,11, q, n) 
13. return ·a.; 
14. tt +~ NewNode(k); 
15. for ·i :;;:· 0 to nk -· 1 

: indr~:t 

16. 8eUin:(k, u, i, Un·ion(k -- 1, (kjp)[·i], (kjq)[i])); 
17. ·u, ..(-- Chet:kln(k,'ll.); 
18. PutlnOaehe( UNION, k,p, q, 11.); 

19. return 1t; 

• l3( {kjp)) u B( (kjp)) """ B( \kip)) 

• exploit 8]J(~cia.I mem1ing of (/..:jl) 

• exploit SJH1C.inl JJl<w.n.ing of (kjO) 

e oxploit spoc.i<111ucm1ing of (kiO) 

• don't redo work 

• Cr<:)rJ.tc a. new node at level k 

• insert; (kj·u} in unique t.Nb.le 

• rmnewber 1·esult; 

Figure 2.8: The algorithm for the union of MDDs. 

submodel k, for K?: k;:::: 1. Thus, the potential state space Sis given by the cross-product 

SK X ... X sl of K loca.l state spaeeH, where sk contains (a.t least) all the possible local states 

for submodel Jc. For example, the places of a Petri net can be partitioned into }( subsets, 

so that the marking can be written as a vector of the K corresponding submarkings. In 

software :modeling, a variable ean be considered a component, and its range is one of the 

sets Sk. In both circumstanc<:lS, the mm·to-one corresponchmce between submodels a.nd 

MDD levelA is st;raightforward, and the partitioning of the system allows us to exploit the 

system structure by means of new a.nd improved algorithrns. 

Rettn.·ning to the issue of indexing, jtwt as eaeh readmble global state i is mapped t.o a 

natural number i in the cxplieit approach, one can map local st::ttes as welL Assuming for 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHA.P'I'ER 2. STATB 8./)A(:B C10N8TR[JC'1'10N 

now that <~a.ch local state sp<:~eo .. 'h is knowrt a priori, Le., can be built considering the A;th 

submodel in isola.ticml we define K mappings ·tfrl~ : Sk -~ {0,1, ... , n~c -1}, when: nk is the 

size of t;he local ~:State spaee Sk. 'Then, a global struetured :;t;at;e (ig, ... , it) can bH m<tppcd 

to a veetor (ir<, ... , ·ii) of indices. 

2.6.8 Syrnbolic encoding of next-state functions 

The next~stat;e function N' of a model ea.n also be oncodcd using a, decision diagram, siuee 

a binary relation Gl.tn be viewed as a set of pairs of st<1tcs. Therefore, for representing 

t;ransitions between stat.es, twice as nmny va.ria.blcs as the decision di<tgrarn encoding !:he 

stat;es a.re needt~d. In tho ease of MDDs, this u1eanH encoding the eharaetcristi<: fundion of 

the transition relation with a 2K~variable MDD. Rather thi:Ul nmnbering the variables from 

2]( down tu 1, we distinguish them as "from" and "ton variables, and mm unprimed and 

primed integers for "from" and "to'' levels, respectively. Also, we prefer a double-bracket 

notation to distinguish these nodflS from those of K -variable MDDs encoding set:-; of states. 

Thus, {(5'lp)) is a "to" node associated with the 5th submodel, and ((5'jp))Lis] = q means 

that t.he arc labeled with loca.l state index j5 frorn this node points to ((4jq)), a "from" node 

associated with the 4th submodel. 

If the MDD encoding N is rooted at ((J<jt)), we have 

In principle, any permutation of the 2]( variables could be USiXl, but nwst common is 

that the va.riabl.es a.re interleaved, so Lhat the "from" and ''to" variables for a given level 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 2. 8'1~1\'J'l<J SPA.CB CONS'l'HUCTION 

1. declare T, .'1, t : inde:r:, i : local 
2. if p = () v q ;;;,:::; 0 
3. return 0 
4. if A: 0 
5. return q 
6. ·r <- Nt!WNode(k); 
7. foreach i E. {0 ... nk ····· l} 
8. ,'; -(-- ((lcjq))[£1 
9. foreach ,i E {0 ... n~:,- l} 

; inde:r; 

10. t +·· lma,qe(k- 1, {kjp)[·i], {{k'js))[j]) 
11. Set:Arc(h,T,.i, Union((k!r')[j],i;) 
12. r· +-· Clu~ckln( K, r'); 
13. return ·r 

• si,a.t;cs not. encod(!d or no even/: 

• r~!tllm ompty 
• !'cached t(~rmilwl 

• ftJllow the "fi:om" 

• recursive call "'"'"'''"" 
• ::u:ctlmnhlt;e now states .in (kl·r) 

Figure 2.9: Image eornputation with Ml)Ds. 

a.:ro next to ea.eh other1. There are a,i. lea .. 'lt two good reasons for this. Fir::;t, it is widely 

acknowl<:!dged that interleaving is often the most; cfficiont order in terms of nodes required 

to stem~ the next-state function. Second, the symbolic state-space generation algorithms 

we consider next can be easily expressed using recursion if interleaving is used. Indeed, a 

very important third reason related to the above is that traditional symbolic approaches 

to represent N f.~l.il to explo.it the large number of identity transformations (i.e., ik "'~ iU 

present in the class of systems we address. 

Iu order to construet a, complete BDD-ba.sed approach for state-spaee construction, the 

only missing pieee is an algoritlnn to syruboliea.lly compute the next state fnnction on sets 

of states. This .is traditionally rcf(,:rred to in the literature as image computation. 

The :recursive algorithm in Figure 2.!) takes a.t input a node at kvol k in the g .. Jevel 

t·we a.<:;sunul that. levd k is above level 1.:', since we store the fo·rward next-state frmctio11 N. However, 
symbolic nwdel-dweking [21] also makes US!.l of tho backwaTd or 1n·evim.M-stnte function /'J"·l aud, in this 
case, we would have level k' above level !.. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GHAJ'TZDU 2~ 8'11'\TB SP1~CB CONSTHUCTJON 

MDD encodi.ng Uw "frorn" st.a.tes, (kip), a eorrc::;pomling node ((k!<J)} a,!; level 2k in. the 

2K-lcvel MIJD cncodin.g tho next state fnnetion, :\nil. combine::; them to extmd. from tho 

2K-level l\JDD tlw COITCI'lpmHling "to" states. The function is recursive and at. each Bt;ep 

it deseends OlH~ level in the "frm:n'' MDD tiynchronized with a. descent of t.wo levels in the 

2K-level MDD. Dnring a call, the "from" states pnttorn is tnakhl':)d against the interlc:wed 

encoding of N, and. aJl the results of executing the transitions are collected in the node 

(klr·). An Image(K,p,q) ca.ll at level K applies the global next-sta.te function to .B((Kip)), 

while a eall at a lower level, k < J(, computes the restriction of the next-state fundion to 

l;hc subdomain encoded by the sub-diagram rooted at ((klq)) (for brevity, this is denoted as 

N\\kiq/) ). 

For asynchronous systems, it is often advantageous to store the r1ext-state function as a 

disjttnction [20]. If the events £. are implied by the high-level tnodel, as is clearly the ca .. 'le 

for Petri nets, where ea.ch t·m:nsition e in the net eorresponds to exactly one event in e, we 

simply need to store eaeh Ne a.s a separate 2K-variable MDD (of course, an MDD fon~st 

should be used, so that these MDDs mn share common nodes [117]). 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Chapter 3 

The Road to Saturation 

In this chapter we introduce our now state-space exploration stral;egy, :'!l),tumtion. This 

carne at the end of a series of improvements on the traditional brea.dth~Jirst algorithrn, 

which is still used in most modern model checkers. We present these improvement:; in 

chronologiotl order, starting with alrea.dy exis1;ing heuristics in Section. :ll and continuing 

with our contributions in the remainder of the ehapter. 

3.1 Breadth-first symbolic state-space generation 

The simplest and most widely used symbolic: state-space generation algorithm is shown at 

the top of Figure 3.1. An alternative algorithm, shown at the bottom of the same figure, 

is conceptually simpler a.nd closer to the definition of the state space S as a fixed-point. 

Both ven;ions will halt aff;er exactly as many steps as the maximum. dista.nee of any state 

from the initial st;at,e s. The main computational difference is the cost of applying the 

next~st.at;e function; the tradit.iona.l algorithm applies N. only to the ?.t.ne:I:plored :Jtates U 

which, at iteration d~ consists of a.ll stat;e::; a,t diRta.nce ea:actly d frorn s, while the a.lteruative 

algorithrn applies N to (ttl known states, t:hat is, all st.a.t.es at dbtance at most d from s. 

38 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

C'Hi\PTBR. :J. THE ROAD TO SATURATION 

S ~;, g starting from s by repeatedly applying N in breadth-first fashion. All sets 
stored using MODs. 

1. declare S,U, ;t': stnteset; 
2. S t .. - {s}; 
3. U <- {s}; 
4. while U ¥ 0 do 
5. ;y ~- N(U); 
6. U <!··· ~"1:' \ S; 
7. 8 -l·~ SUU; 
8. returnS; 

• known states 
• ll.!Wxplored known 

• there ;.u·<! st.ill mlHxplorod 

• possibly m~w 
• t:ru.ly new 

: sta,te, N : stateset -·> 28tat.I'Het) : statesllt 

dedare S, 0: sta.ie8et; 
S <:·- {s}; 
0 {···· 0; 
while 0 # S do 

0 +-- S; 
s +-- ouN(O): 

returnS; 

• 

• test il:Jr tlw 
• sn.ve old 

• lJ.pply N t;o ent;ire 

Figure 3.1: Two symbolic breadth-first generation algorithms. 

While it would be wasteful to apply the next-state function to the same sta.te more tha.n 

once in an explicit setting, the cost of applying N to a set of states encoded a-" a.n MDD in a 

symbolic setting depends on the mtrnber- of nodes in the MDD, not on the nmnber of stcdes 

encoded by the MDD, so it is not dear that the traditional algorithm is better, nor why 

the alter:nal;ive version appears to have been neglected in the literature. Indeed, Section :3.9 

reports exptlrimental evidence suggesting that; the set U of states having exactly distance 

d is o:fte.n not a "nice" set to be encoded as an MDD. Fu:rthennore, the traditional versiou 

of the breadt;h-fi.rst generation algorithm incurs the addit.ional cost of the set-difference 

operation required to compute the "truly new states" .1:' \ S. However, our rnain rnotivation 

({)r discussing AllB.fS.'iOen is that it introduces a different way of applying the next-state 

fundion, i.e., one that does not distinguish betw<:~(m now and old states. This is one of tho 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

C.l:L4PTB.H :t THE .rtOAD TO SATURli'I'ION 

: stal:cM:l 

S ~. g starting from s by incrementally applying each .JV:~. All sets are stored 
MODs. 

L declare S, U : .statt~."!et; 
2. S +-- {s}; 
3. U +-- {s}; 
4. while U ¥ 0 do 
5. for each e c; f. do 
6. U +~ U UNe(U); 
7. U +- U\S; 
8. S +--· S UU; 
9. return S; 

• known st:at:os 

• 1.me.xplored known sttttos 
• t;lH:•.re are sti.ll Tm.explomd statns 

• ;,tdd to possib.Iy 1ww stlttes 

• truly new states 

(s: 8t(de, NaEt: :statcset. ~ 2&ir~tcNel): :·dateset 

S, 0 : staf:e8et; 

{s}; 
0; 

0 i~ S do 

e E E do 

<·· S u N:,(S); 

• known st;ttes 
• old st;ates 

• test; for the fixed point; 

• SfJ,ve old sta.te space 

• ttpply Nr" to entire str.tf;e space 

Figure 3.2: Algorithm for symbolic breadth-first search with chaining. 

charadoristies of the a1gorithms we introduce in Section 3.6. 

A sceond variation of symbolic breadth-first state-space generation, which introduces 

the idea of chaining [123], is shown at the top of Figure 3.2. Its key advantage lies in that 

the states in N::(U), i.e., the (possibly) new states reachable in one firing of event e from 

the currently unexplored states U, a.re added to U right a.wa,y, instead of only a:ftf~r having 

explored each event in isolation fron1 the same original U. In other word11, ifj(l) E.:: ~,(Jl(i), 

e:Pl, e(2), ••. , e(d), ChS.q(Jcn finds all the states iu this pa.th in a singlo iteration, while both 

BfSsGen and AllBJSsOen would require d iterations. Note that st;aternent f) iu ChSsGen, 

just like statement 6 in AllBfSsGen, applies l:he next-state function to the same Htates more 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

C.HAPTE11. :1. 'THJ:tJ HOAD '.1'0 S.A.'T'UIV\TION 41 

tha.n once. Hmvevcr, it doeH 80 only t;o states in (;he Het U being built. Tho dimln~ao) 

between explored a.ud unexplored Rti~tes is still kept in the outnr while~loop. An algorithm 

merging the ideas in AllBfS8Gen and ChSsGwn is shown a.t. Uw bottom. of Figure a.2. Wn 

believe that this is t;he most straightforward st;a.t,e-spnce g<nwra.tion a,lgoritlnn when N is 

disjunctively partitioned into evont.s, and dw results of Scetion :U) ~:~how that its performa.nee 

is competitive with respect to that of .l~fS.sGen, AllBfSliOen, and ChSH(Jen. 

CMi,CJGen and AllChS,<;Oen <tr(~ 1imdamoutaJly different frorn BjS.-,Oen ancl AltBJS.sOcn in 

oue way: U~ey do not find .9tatf~.s in st·rict brendth-firBt orde·r. This is a second charaet.eristic 

of t;he a.lgoritluns we introduce in Section a.6, where we a.lr:;o discuss the importance of the 

order in which events are considered. 

'!'his concludes the smnma.ry oftraditional tedt.niqnes. \Ve proceed with the presentation 

of our contributions, not bef(JI:e int;rodudng a running example that will serve to the hc~tter 

understanding of our techniques. 

Running example: a producer-consumer model 

Figure 3.3: A producer~consumer model aml its submodels. 

As a. running ~~xampl(~, consider Figure a.a, showing a. simplified producer-consumer 

system represented a.s a Petri net. This model illustrat;es the concept of mutual exclusion 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPT'EJH. :;. THB ROAD TO SAT'UlUtTION 

Submodell 

Figure 3.4: 'I'lH:~ local states of submodels in the producer-consumer model. 

on a shared resource, stored in place r-. The producer creates a resource, by firing event 

a, when the place p holds a token and place r- is empty (this is enforced by the inhibitor 

arc from place .,. to transition a). If the consumer has not used an existing resource yet, 

transition a cannot fire. After ereat;:in.g a resource, the produc<:\1' enters the idle state, with 

a token in place q. It can later go back to the ready state, by firing event b, and this can 

occur independent; of the status of the eonsurner. The consumer is ready to get the resouree 

when tJHn:e is a token in place .s. If there is an available token in pla.ce 1·, it is removed by 

firing tra,nsition c. Thus, the consumer releases the access to r and enters tho idle state, 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTfGU 3. THB ROAD TO SAT'UH.ATlON 

with <:t token in plac~;) 'l. The process ma.Y continue indefinitdy. 

rJ'he lUOdel has eight. reaehah]o (global) staJ,es: 

8 {(pi qo 1.o8 t to),(pt qo7.o .. pt: 1. )
1 
(pOql'tl.:ho),(po q1r1 8ot 1), 

(p1 q0r l s 11:0 ), (p 1 q0T 18°t:1), (p0 q1T0 il 1t0),(p0 (/ r.l) 1·/lt1)}. 

Wo decompose the model into the t;hree suhmodels shown h1 Ji'igure a.:3, each corresponding 

lio exactly one non-terminal level of an MDD. Thtl re11.ehable local states of the example rue 

shown in Figure 3.4. Subm.odd 1 has two local states, submodel 2 has f(mr, a.ncl submodel 

3 has two. 

3. 2 Kroneeker f:3neoding of the next-state function 

The encoding of sets of states using MDDs instead of BDDs has no immediate advantage 

in itself, since the two data structures are very similar, except for the number of levels. 

However, the advantages of MDDs becom(~ apparent when we consider our encoding of the 

next-state function and how this encoding is exploited in fixed-point computations, which 

we discuss next. 

We adopt a representation of N inspired by work on Markov chains, where the in-

!init.eshnaJ. generator mat;rix of a large eontim.Jous-tirne Markov dmin is ~meoded through <t 

Kronecker a.lgebra exrn·c.'!sion [6) on a set of srnall matrices [HJ, llG]. In our setting, this 

corresponds to a two-dimensional deemnposition of N: by events a.nd by sub.rnodels. 'I'his 

is possibh~ when the deco.mpositiou. of the .model into submodels is Kronecker· con .. si.'ltent, 

that is, when we can find K · If I functions Nk,e : Sk -+ 2/11", describing Uw (loutl) effoet of 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CllAPTfEH :J. 'l'JlB ROAD TO 8ATUUNf'lON 

a part.ieular event e on a particula.r BnbsyHtem k. Formally, this rrwans that, fhr each ewnt 

e E E and (global) sta.te (if{, ... , i 1 ) E: S~ 

Thus, it must btl posl:lible to f~xpn>.st'l the effect of firing an event; e in a glohaJ state as 

the cross product of the loe<l1 efl£cts of e on each subrnodel. 

The loea.J next-state funct;ions Nk,<; ea.n be en.coded as inddcnce rnatriees N A;,e E { 0, l Y'"' :<nk, 

where 

Thus, ev<mt e is locally enahkd in local state i E Sk of the kth submodel, Nk,e(i) i' 0, iff 

not all entries of the ith row in Nk,e are zero, Nk,e.[i, ·] :f.: 0. 

The overall next-stat.o function N is then encoded as the incidence matrix given by the 

(boolean) sum of Kronecker products 

N= L @ Nk,e 
eEE 

The Kronecker encoding of N for the producer-consumer model is shown in Figure :3.5, 

as full rnatriees. ln general, the Nt.,e matrices are extremely sparse (for Petri nel;s, each row 

contains a.t; Inost. one nonzero entry), and are indexed using the sam.c maJ!ping 't/lt.~ mmd (;o 

!<or srnne formalisms, such as ordinary Petri nets, the Kronecker consistency requirement 

is always satisfied, regardless of how the model is partitioned into sulnnodels. In other: 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CfL4.PTFJU 3. 'l'Hl£ HOAD 1'0 SA'l'UHATIOIV 45 

Figure 3.5: Kronecker encoding of N f(Jr t.lw producer~comnuner modeL 

formalisms, not aU decompositions will be Knmecker consistent.; however, we can always find 

a consistent. decomposition by refining the events or coarsening the partition into submodds. 

Nz.e Nt,c•' Nt,e" 

~l~l~J ~5E ~a~ 
N1.e 

() 1 

~51~ 
Nl.c 

()() 01 10 11 

~-
Figure 3.6: Satisfying Kronecker-consistency requirements. 

Consider tc)r examplo Figure :J.6l where a. model consists of two boolean variables x1 

and a:2 a.nd the partition assigns each variable to a different snbmodd. If an event; c 

swaps the values of a:1 and :c2 but is enabled only when :r.1 /:: :c2, the partition is not: 

Kroneeker consistent;. If it Wf)ro, N2,c and Nt, 1: would have to sa.t.isfy 1 E N2,e(O) and 

1 E Nt,e (0). Howewr, .Kronecker consistency would also imply that (1, 1) E N~,e(O) x 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

01JA.PTBR :1. TlW H.(l4D TO B.ATUUktiON 

Nt,(~(O) "'" Af'::(O., 0), while a transitim1 fron1 st;a.t.o (0, 0) to state (l, l) ::~honld not he aJlmw:<L 

'Ib ad.tieve Kronecker consist.em:.y, one ea.n t}Hm either split event; e into e' and e'', which 

allows us to tr(~at tho two <.mablirtg statos, (0, 1) and (1, 0), separately, or nwrg<>, Uw t;wo 

levels into a single level with four possible local states. 

3.3 An identity crisis 

f:'Jvent e is said to be independent of level k if Nk,<: = I, the identity mat,rix, that; iH, if 

its oceurrenee is not affected by, nor it afft~ds, the local state of the kth subrnodel. Our 

approach neither stores nor processes !Jwse identity tna.t;riees. ThiH resuli.s in large savings 

especially when dealing with a.syndu:onous systems, where most of the N r.:,e matrices are 

identities. 

On the other hand, a dedsion diagram representation of N does no~ efficiently encode or 

exploit these identities. The variables (levels) not affected by an event e are still represented 

in t.he decision diagram by "identity p11tterns". These are wasteful both in terms of mernory, 

1:11:: they require nk + 1 nodes per variable along each corresponding path in the diagram, and 

in terms of time, a.s these additional nodes are processed during the image computation, 

just like any other node. The compactness of a BDD representation is characterized by 

the degree of merging of duplicate nodes and the number of redundant nod()S that are 

elimi:naJ,(~d aud replaced with arcs skipping levels. However, when mpresenting N with a, 

BDD, a.n arc that skips levels k and k' (the "from" and "to' variables corresponding to 

the kth snbmodel, respedively) n1eans that, after an event fires, the A: 1•11 con1.ponent. ean 

be either 0 or 1, regardless of whether it was 0 or 1 before tlu~ firing. The more natural 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPT'EH :J. THB HOAD TO SA'l'UHATTON 4'7 

belmvior is inst.mtd the mw where a 0 renl.a,inR a 0 and a 1 rmw1in:> a. 1, t.he default: in our 

Kronecker encoding. 

Kronecker rnatrices: 
(/, b c d 

~m§~-l~~c~ 
Monolithic MDD: 

:.:l 

2 
I 

2 

1 
I 

1 

Disjund,ions of MDDs: 
}/(1, 

') 

~ 
,) 

I 
·~ ,) 

~@J t) 
~ 

I [['] 2 

l X I 

1 l 

N;: N;l 
:3 

I 

3 
') .., 

I 

2 

1 
I 

1 

Figure 3. 7: Kronecker versus MDD encoding of t;he nexl; state function. 

,, 
,) 

I 

i3 
') 
'" 

I 
2 

l 
I 

1 

-:> 
<.l 

I 
') 
,) 

2 
I 

') 
~ .. 

1 
I 

1 

Figure :3.7 shows Kronecker, monolithic MDD, and partitioned MDD representations 

of the next state function for our running example (for brevity, the matrices are in sparse 

notation and the MDD arcs pointing to 0 are also excluded). 

For the Kronecker representation, the total number of nonzero entries is nine and five 

out. of twelve K.ronecker matrices are identities. This is not; a rmnarkahle ratio because 

the rnodd is smalL For .many asyuehronous systems, however, tho number of event;s grows 

linearly in I\ but most, if not all, events are described by a eonst;ant number (independent 

of K) of non-identity matrices. Thus, while the Kroneeker description potentially requires 

O(K2) tllitLriees, O(K) rnatriceH suffice in practice, whieh is a huge improvmnent;, On the 

other hand, the monolithic MDD encoding of N, requires 1!) nodes, while the partitioned 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

<'!:8 

MDD encoding requires iS nodes each f(Jr /'Ia, J\li1, and N~,, and lO nodes for N,1 (in total 

only 8 ·t· 8 ·+· 8 +· 10 - :1 :::::: :JJ notles are required, since the three nodes at .kvds 1 a.nd .f.' f(,r 

lo.fa. and .N'b can be sharod). 

One reason for the larg<~ 1nnnber of nodes in tho MDD encoding is t.he explidt repre­

sentation of identity tran::>forrnatiom:l, corresponding to patterns where a "from'' node (kJp) 

with nk distin<:t; d1ildren (k'JqCi)), such t.hat (k'irl0l)[O] = · · · = (k1 jq(n~.:-l))[nk -· 1], showu 

with bold lineR in the figure. In the partitioned MDD case, these patterns m:e den:dy visible 

because all other a.res (k'Jq(i))~j], f()r .i 'f i, have value 0. In the monolithic MDD case, some 

of these patterns ::~.n:~ harder t.o recognize beea.t1se the level-k' nodes ntnl)' have addit:iona.l 

nonzero arcs, as is tho case for tb.e ident.ity pattern nt levels 2 aud '21 in our figurfl, while 

other identity patten1s are deHtroyod when performing the union of the next-st:ate functions 

for multiple events, as is the ease for tlw identity patterns at levels :3 and 3' of N,: and 

Nd. However, these tra.usformat.ions are still encoded in the MDD, and they can occupy a 

non-negligible amount of memory. 

3.4 Event locality 

In large globally-a..'lynchronous locally-synchronous systems, most events are independent of 

most levels. Then, iu addition to effici<~ntly representing N, the .Kroneeker encoding is also 

able to dearly evidenee event locality [2f), 107], that is, identify which events afl:i:l<;t which 

levels. 

Let 1,hp(e) and Bot(e) denote the highest a.ud lowest levels on which e depench;: 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GHAP'l:TEH. :J. THE' H.OAD TO SATURA.TION 

lf events tha.t are independent of all lev(1ls (hence do not: affect the tnodd's behavior) ar<l 

ignored, these ntaximtun a.nd minimum levels exist,: that is: 

VeE E, I\~?: Top(c) 2: Bot(e) ?.:: l. 

We~ can then partit;iou E into K da.sses, 

where some &k might be empty. 

We ca.u use this locality information to avoid unnecessary work [26]. When firing an 

event e, we do not have to start, at the root of the MDD, since we know that all state 

components from .K down to Top(e) + 1 arc not going to change anyway. Rather, we ca.n 

"jump-in-t;he-middle" of tho MDD by directly accessing each node at level k = Top(e) and 

fire e in it and, recursively, on its dese<:mdants, up to nodes at; levell =Bot( e). Of course, 

this requires that MDD nodes be organized and stored in such a way th~:tt provides easy 

access by level. Conceptually, for each node (kip), we can compute a node (kif) eneoding 

the efl<xt of firing e in it: 

identity fundions 

Then, we can wnbstitntc node (kip) with a. node (kl'n), where 1t is the value returned by the 

call Un£on(k,p, f), that is, 

B((klv,)) ==- B((klp)) U B({klf)). 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTBH :J. TH.B HOAD TO Sll'l'UHATTON !50 

''l''l· · · 1· · · · f' ' · S" I • A r ( • ') · · · · 1 1 t • · _., 1 • · t · l ... .us 1s corred: .Hicanso, 1 . 1 E= .. ;m, J <:.: ;v 1: 1 , we ean cone l.H (! tJmt J c t..> a.n< ~, n1 pm· ;1.<:u ar, 

if i E A((kiJJ}) x B((klp)) 1 t;hen .i E A.((klp)) x B((kjf)), and substil;utin~ (k/p) with (A:I·n) 

will indeed ndd. ::my such sta.tEl j. 

The efficiency of jumps-in-the-middle is due to two factors. First, we a:void work in. 

nodes at lovels fro.rn K to k + 1. Second, any a.lg;orithm that fires e stm:ting fi.·om (;he MDD 

root would ruach (kip) and <.tU.cmpt to fire e in it a.s 1n:tny times as the lmmlJ{lr of incoming 

arcs pointing to (kjp) front level k·t-1. Of com·se~ aU but the first time the <:~ffed of this firing 

is retrieved from the operation eadw, but the cost of these cadw lookups is not negligible. 

With jump-in-the-middle, instead, we ouly need to consider (kip) once. 

One complication wit.h this approach, how<wer, is that substituting (kip) with (kl'u) 

requires us to rediTect all incoming arcs so that, t.hey point; to (klu) instead of (kip). Thus, 

in [26], wo pair jump-in-the-middle with another improvement, in-plac(~ 'U.1Jdatcs of MDD 

nodes, which not only avoids the explicit comput;a.tion of node {kif), but also greatly reduces 

the need to redireet ares from nodes at level k + 1. 

3.5 In-place updates 

The idea of substituting (kip) with (kltt) we just discussed can be further improved by 

realizing that, instead of computing the result of firing e in (kip) a,s a separatn node (kif) 

and then computing the union node (klu), we can incrementally rnodif:tJ the arcs of node 

(kjp), so that, when we are done, they point to t;he same nodes that the arcs of node {kl'l.t) 

would have pointed, had we have built it explicitly. 

'This is described in Figure :3.8, which provides the pseudoeode for functions Fin~ and 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

OHAP'J'BH .'J. THB HOAD TO 8AT'URA'l'JON 

: -indc:r: 

Fire e in (kjp), where k c::::: 1'op(e), using in-place updates. *When pipelining is used, return 
;z: such that *B((!.:J~r;)) :;;::; 

1. declare f, u : inde:r;, i, .i : local, L.: : set of local; 
2. £ ,_, {ik (:: Sk : (kjp)[ik] f.; 0 !\ Nk,,Jib ·] =f: 0}; 
3. while £ ¥= 0 do 
4. pick and remove ·i from £; 
5. f ~- RecPire(e., k -1, (kjp)[i]); 
6. if f cf' 0 then 
7. foreach j s. t. N k,(Ji, j] ::::: 1 do 
8. 'u. t··· Union(k 1, j, (J.:jp)fj]); 
9. if uf.o(kjp)[:i1 then 

10. (kJJ))Li] .:··~ u.; 

11. if Nk,cl:i, ·] -j 0 then 
12. c. ,_ c. u {.j}; 
13. p <i- Checkln(k,p); 
14. return p; 

: inde:r; 

Recursively fire e in (ljq), where t < Top(e). 

• opUom1J: fbr pipelining 

• opf;iorw.l: lbr pipelini.ug 

• reinsort (kjp) in unique (;able 

--------· ~---·--"'~·~~.--~---~~~~=-~-~fl~' ·~---~~~-"""'--~ ..... ~ .. -.. ~-~ .... ~~-~ 
1. declare f, u, s : irule:~;, ·i, j : local, £ : set of local; 
2. if l < Bot(e) then return q; 
3. if Gached(FIRE, l, e, q, s) then return s; 
4. s +- NewNode(l); 
5. C. <-- fit ESt: Nt,e[ill·] f- 0 !\ (ljp)[iz] f- 0}; 
6. while £ f.; 0 do 
7. pick and remove i from £; 
8. f +- RecFire(e,l-1, (llq)[·i]); 
9. iff f.; 0 then 

10. foreach j s. t. Nt.e(-i., .i] = 1 do 
11. ·v, <-·- Union(l-- l, f, (lls)Lf]); 
12. if ·uf.; (ljB)[j] then 
13. (lis)[i] +-·· u; 

14. s f.- Checkln(l,s); • insert (lis) in unique tab1c 
15. PutlnCache(FlRE, l, e, q, s); • remembe1· result; 
16. return s; 

Figure 3.8: Algorithm for firing events with in-pla.ee updates. 

Gl 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CJV\PTBH ;s. 'l'HB HOAD TO SAJ'UH.t1TJON 

llecPire, F'lrnet.ion Fin~ i:-~ called t.o :fire event e in nodes {kll') 1 with k "'" :nJp(£-:L nnd it 

updat.es .its arcs (kip) LJ] in place. 'I'he recursive fund.1on Rc(:Pirc is ea.llod t;o fire r:~ on node::> 

(liq}, with Top(e) > l 2:: Bot(c), but it does not modi(y tbose nodes. lnst.nad, it cn~ates a 

node (lis) that, encodes the local effed of firing e on node (llq) <tnd its descendants. The 

call:4 Cached(FIRE,l, e, q, .s) and PutJnOache(PlRB,l, e, q, 8) a.rc exactly a.mtlog;ons to those 

used in Union, except that., when the keyword is PIRB, the seaJ·ch key is now a.n event, e, 

and a node index, q, instead of the two nodes required for a union. It should be noted that. 

only the firing of an event e on nodns at levels below Top (e) are cadwd. This is beca.ust:, by 

npdat.ing node (kip) in place, we keep changing (increasing) the set; of Hl;;t.tes it encodeH, thus 

the cached va.lue for the effect; of firing e in {kjp} beeomcs obsolete after every update. Note 

that., in a. t.raditiona.l a.pproach without ln-p.la.ee updn.t.es, we need to eadm this infornw.tion 

only to deal wit.h the situation when (kip) has multiple incoming arcs; each in-ph:t<:(l update 

in our ea.<;e is equivalent to creating a new node (or a sequence of new nodes, if Pire uses 

pipelining) in the traditional approach, and thus there would be no caehed value fiJr such 

uodes, unless they are duplicates of existing nodes. 

By using in-place updates, Fire achieves a chaining eff(~ct: if two loeal states i and i' 

"locally enable" event e, i.e., Nk,e[i, ·] # 0 and Nk,e[i', ·] ¥0, ifNk,c(i,i'] = 1, and i is pieked 

before i' in statement 4, the dfeet. of firing e in (klp)[i] has already been incorporated in 

the updated node (A:jp) (t.hat is, in the node pointed by (kiJJ)fj]), by the time j is picked. 

Thus, (klp)[i] will include the effect of firing e, zero, mw, or t.wo ti.mes. This pi}>elinin,q can 

be carried oven further by adding t.he last two stat.ernents in Fir·e, rna.rked optional in the 

pseudocode: if we add the new loea.l states j back t;o the sel; £ of local states to explore 

(statement 12), the order in which the elements in £ arc picked does not matter, and the 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CJHAZ'TE.ll .:J. 'r'If.B ROAD TO S'i\'l'UUA.TION 

n1sult is a "full'' pipnlining: cv<mt ~~ is !ired iu the loeal st.;tt.m{ of (kjp) <l.H long as doing 

so discovers new states. Therdon~, the c:c~.ll F'in.~(e, k,JJ) updates (kip) in-ph1.co so that; it 

encodes .1\f,: ( B( {kIP))), w lHH't), for notational convenim1cc, we intnrprel: the avpliea.!;ion of 

a, global m~xt~sta.te function to a. set. of substates iu the obvious way: Ne.(t3( (kip))) really 

means N~~:.1 .• x .. · x Nt,e(B({kiiJ))). 

In addition to creating and destroying fewer noctes, in··placc upd<1teH have the advantH!4tl 

t.hat. t.he nodo (kip) being npda.tcd is seldom deleted, so that its ineoming ares do not ueed 

to be redirected. In other words, .if the value of (k + llq)[i] wasp before a call Pire(c, k,p), 

the valno should rerna.in p. Redirection is needed only wlH:n, after having been modified in 

place, node (kip) becomes a duplicate of an existing node (kid). In this case, (kip) must. 

be d<~leted :-md its incoming ares must be rcdiroctod to (kid) (in other word:;:, we must. set 

{k + llq)[·i] to d). In [26], we do so by using either urMI:rea:m arcs or for"wa.rYling an:s. In 

the fi:mn<:lr case, we actua.lly maintain pointers from each node (kjp) to any node (k + llq) 

having pointers to it. In the latter case, we place an arc in the node (kjp) to be deleted, 

pointing t;o its active duplicate (kid); (kip) can then be actually deleted only once all the 

references to it have been f()l·warded to (kid). 

3.6 The saturation strategy 

An irnporta,nt advantage of using decision diagrams t.o encod.e N lies in the ability to 

obtain an entire set of new states reachable frmn the current set. through a single syrnbolie 

Rtep. This approach works well in practice f()r the analysis of mostly syilehronous systems. 

However, in rna.ny practical examples, the state spa.eo explosion phenornenon that hampers 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GHA.PTEH ;l, THE HDAD TO S.A'l'URA'J'.ION 

explicit tedmiqucs, n~sha.pes itspJf in the form of a new olmt.aclo for Rymbolic rrwtht1ds: 

''the BDD node (~:x:plosion1'. ThiR usually u1anifests midway through symbolic nxplora,t;ion, 

when the nmnl.H:~r of nodes in the decision diagra.ms1 eHpedally fbr h~v\~ls in the utiddl(l 

seetion, grows extr£?mely fast;, be.f~>re contracting to the final configurahon, whieh is usually 

rnueh more eom.paet. The pe(l.k of the deeision diagram (nwa.'lnred in hytt>.s or nodes) 

is frequeni;ly hnndreds or thousands of times larger than the final /:11:.ze, placing enormous 

strain on t;he storage and computational resoureeH. 

A funda.ment.n1 goal of any exploration strategy, then, should be a ::nnaJl pea.k-to··final 

size ratio. Attempts have been made .in this direction, but most of them are still tied to the 

idea of breaxlth-first search through the use of globa.l iterations and ha.ve ha.d limited success 

in redudng peak Inemory r<cKptirements. The algoritluns in [111, 12(i] a.im at reducing the 

mm1ber of iterations needed to reach all states, by producing a pipelining effect; using a. 

statie eausa.lity analysis, events can be ordered so that their firing increasos the chance of 

finding new states at each step. Other approaches attempt a partia.l symbolic traversal on 

certain subsets of the newly reaehed states in the first; stages and dela.y the exploration on 

the other portion, only to complete the full search in the end. The high density approach in 

[120] targets those subsets that have the most compact symbolic representation t;o advanee 

the search in the early stages. The technique in [24] computes, in an initial learning phase, 

the activity vrofile8 of eacl.t BDD node in the t.ransition relat.ion and uses (;his infor.rua.tion 

to prune t.he decision diagrams of the inactive nodes. The guided search in [121 uses user­

defined hints to shnplify tho transition relation, but this requires a priori knowledge of the 

system l;o predict; the evolution of the BDD. 

Our a.pproach sta,rl;s by identifying nodes that contribute to the peak MDD size and a.re 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTBJt :t 'JTIB HOA D TO EIA'I'l .. TH.ATIO.N 

eventually eliminat,<'d, n.s oppot-ied to rwdos that; a.t'e r;t;ill (Ukely to be) present ht t;he fimd 

MDD. To this end, wn defi.ne a l'()Sia:ietion of l;ho next~state funGt.ion to the set of events 

affecting hwel A; n.ml hHlow: 

e: 'lhp(e)$k 

Then, the following condition gives a necessary, but not suffidm1t, condition f(n: a node to 

be in the final MDD. 

Definition 3.6.1 An MDD node (kjp) at le'llel k: is said to be saturated iJ it represents 

a fixed point with r·elipect to the firing of any event that <~[fects only levels k and below: 

It can be shown by contradiction that any descendaut; of a satnrated node must; be 

saturated as well. Also, since N-sK is simply N, we can conclude that 

B((Kjr·)) = N*(B((Kj,.))), 

when the root (.Kjr) of the MDD is saturated. F'urthermore, if s E B( (Kj·r) ), we have 

B((Kjr)) N*(s). Thus, ifwe initialize the root node (.KjT) so that it encodes exactly the 

initial sta,te, B( (I< IT)) ·'""' {s}, and if we saturate (Kj1·) without ever adding any unreneha,ble 

state in iff\ S to B({.Kjr)), the final result will sat;is~y B((.KIT)) = S. 

This the idea behind our saturation algorithm [27]. We greedily transforn1 unsa.tu-

rated noch~s into Ba.turated ones in a. way that; minimizes the nlmlber of unAa.turated nodes 

present in the MDD. When working on a node at level k, only one MDD node per level 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GHA.P'l'IDH .:1. TlJl<; HOAJ) '1'0 SATURATION 

il:l unsaturated, n.t level::-~ J( through k. Wo fire events mHh:-wi::-~e and exha.nstivnly, itwt.ead 

of level-wise and just; once per itemt:ion, and in a specific IJalW"tllion or·der tha.t; guarantees 

that, whmt satura!;ing a nod() at level k, all nodes at lovels below k are already saJ.urat.ed. 

In oth(~l' words, sta.rtiug from tho MDD encoding Ute initial stat.e, we Lirst. .fire ali events in 

t;l oxhaustivt'lly in the node at. level 1. Then, we saturate the nod~l a.t level 2, by repoat.edly 

firing a.ll events in f 2 • If this creates nodes at; level J, they 11re ir.n.rnediately sahu:atod, by 

firing a.ll events in £1 on them. Then, we sat.urate the node at; level 3, by exhaustively !iring 

all events in £:1. If this ercates nodes at levels 2 or 1, we saturate them inunedia.t.ely, using 

thH corresponding set of eveuts. The algorithm haHs when we lw:ve satm:ated the root node 

at level I(. A detailed example of how the saturation algorithm works is presented in the 

next chapter, where we extend it to a nwn~ general ea."le, henet1 the given flX<nnple serves 

both causes. 

While we assume a single initial state s, thus a single unsaturated node per level in t.he 

initial MDD, it is trivial to extend the algorithm to the case where there is a set of initial 

states encoded by an arbitrary MDD. Also in this ease, the number of unsaturated nodes 

never increases beyond the initial count. Thus, except for those initially unsaturated nodes, 

only saturated nodes contribute to the peak size of the MDD. These saturated nodes are not 

guaranteed to be present in the final MDD, as they might become disconnected when ares 

pointing to them are redirected to other (saturated) nodes eneoding even larger sets. But. 

they have at least. a. chance to be present in the final MDD, sinee they sat.isfy the necessary 

condition: they are sat.urat.ed. 

'.l'lw pseudocode for the saturation algorithm is shown in Figures 3.9-:3.10. Just as 

in traditional symbolic st.ahH>paee generation algorithms, we use a un·iq'11.e ta,ble to detect. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CII.A.PTBU. :1. T1Jl!J JtOAD TO SA'I'URATJON 

Or~nemtt:; /'v : ... ~" --·> : indc;c 
.~~~~·-~--·---·-·····-0···-····· .. ~····-···~·-~-·-······"""''~~·""'"''"''-·-·-··~-

Build an MOD rooted at (Kir·) encoding N"(s), return ·r. 

1. declare r, 1.1 : inde:c, A: : level; 
2. Ti f-- l; 
3. for k: l to J{ do 
4. r· -<-· NewNorle(k); 
5. (kl1')[0) <··· p; 
6. Sat·wrate(lc, -r); 
7. Chm:kbt(k, r'); 
8. p <- -r; 
9. return r; 

c E ek do 

(B((klp) )). 

chng -{- rhng V SatFir·e(e, k,p); 

E'igure 3.9: The pseudocode for the Genem.te, Saturate algorithms. 

duplicate nodes, and operation cacht:s, in particular a nnion cache and a firing cache, to 

speed-up computation. In our approach, however, only saturated nodes are cheeked in the 

unique table or referenced in the caches. In particular, the Union function of Figure 2.8 

operates correctly without; having to know whether the nodes it operates upon n.re saturated 

or not. This is because the result of the union of two saturated nodes is going to be saturated 

by definition: 

::::} B((kjp)) u B((A:jq)) =;;c N$k(B({kjp)) u B((kjq))). 

The saturation strategy has several important properties. H: is very flexible in al-



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

OIIAPTJER. ,:J. 'I'.lln: ROAD TCJ SATU11A.Tl(JN 

: event, k : 

1 (.~~ (B( {kip)))). 

1. declare f,tr,:·inde:l:, i,j:local, C:set of hH:al chng:bool; 
2. chng +... false; 

3. £ +-· {1:k E Sk : (kjp)[·ik] ';/; 0, NA:,e[iJ.:, ·] # 0}; 
4. while £ 1' 0 do 
5. pick and remove i from £; 
6. f -<-- SatRecPi1·e(e, k~·l, (klp)[-i]); 
7. if f j: 0 then 

8. foreach j s.t. N.~.:,~Ji,j] = l do 
9. u '\-·- Union(f.>-1, f, (k!p)[j]); 

10. if tt f- (klp)[.j] then 
11. (kip)[,i] +-- v.; 

12. chng +-- true; 
13. if N~r.,~;;[j, ·] i 0 then 
14. £ -1~ £U {}}; 
15. return chng; 

return .s. 

1. declare .f.'u,s:index, i,j:local, £:set of local, chng:bool; 
2. if l < Bot(e) then return q; 

3. if Cached(FIElE,l,e,q,:;) then return .s; 

4. s +- Nc'WNode(l); chng +-- false; 
5. C +- {it E Sz : (llq)[it] f- 0, Nt,e[il, ·] f- 0}; 
6. while£ ::f: 0 do 
7. pick and remove i from £; 
8. f +-- SatRecFino(e,l-1, (ljq)['i]); 
9. if .f ::/= 0 then 

10. foreach j s.t. Nt,e[i,j] = 1 do 

11. ·u +-- Union(l-l,f,(li.s)[j]); 
12. if 't}, :f. (lls)[j] then 
13. (ljs)[j] ;,-.... n; 

14. chng i- true; 
15. if chng then Sat·amtc(l,8); 
16. Checldn(t, s); 
17. PntlnO(u.:he(PlRE,l, e, q, B); 
18. return s; 

Figure 3.10: The pseudocode for SatFire <Lnd Sa.tRecPire. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CJJA.PT'EH. ~1. THB H.OAD TO SA.Tl!R..ti'rTON 

lowing a. "<'haotk" ordQr of :!iring events, as dictat.ed by th<• dynamics of cre:~ting JWW 

nodes. Moreover, all firings of events are very lightweight opmations, with locali?.od and 

eha.ined/pipelined ef:Iild.s, as opposed to Uw monolithic heavyweight image computation of 

traditional breadth-first, strategies. Storing and managiug only saturated nodes has a.ddi-

t.ional benefits. Many, if not rnost, of UwHe nodes will st,ill be present on the fiual MDD, 

while l:he uusatuntted nodes are gnamnteed. not t:o be part of it:. 'rhf'Se properties lead to 

enormous time nnd 1nernory savings, as illustrated in the results sm~tion: saturation is up to 

Jive orders of magnitude faster and uses up to three orders of magnitude less mernory when 

compared to ot;her stat,e-of-the-art tools, sueh as NuSMV [a:lj. The <~xpt~rimental studios 

for saturation also show that, at times, saturation is optimal, in the semm that the peak 

and final numbers of nodes differ by a small constant. 

3. 7 Correctness 

Theorern 3.7.1 Con.<~ider· a node (kip), K ~ k ~ l, with saturated childr-en. Moreover, 

(a) let (ljq) be one of its child'ren, satisfying q /:: 0 and l = k-1; (b) let U stand forB( {liq)) 

before the call SatRecFire(e,l,q), .fm· some event e ·with l < Top(e), a'nd let V repr·esent 

B((l!f)), where .f is the value returned by this call; and (c) let ..-l:' andY denote B((kip)) 

before and after· calling Sa.tm'(J,te(k,p), respect-ively. Then, ('i.) V N;;tCN.,(U)) and (ii) Y = 

N~A:(X). 

Dy choosing, for node (h:ip), the root (Kir·) of the MDD representing the initial system 

state s, we obtain Y = N~I< (B( (KI1·) )) .::c: N~I\( {s}) = S, a::> desired. 

Proof. To prove both statements we employ a sirnulta.neous induction on k. .F'or t;he 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CIJAPTEH :.l. THE R.OAD T'O 8A.'T'URAT10N 

induction baS(\ k 1, we have: (i) Tho only possible ca.ll Sa.t}(.ecF'in; (e, 0, 1) itnmcdiately 

returns 1 because of the test on l (cf. lirw 2). Then, U .-:::: V {()}and { ()} ./V:~o(M:.( { ()} )). 

(ii) The call Sahmxte(l,p) repflatedly explores event.s in E~, in every local state ·i for which 

N1,e1 (i) 0 and for which (llp}[·i] is dther 1 at the beginning ofthe "while£ i W' loop, or 

has been modi1iod (d. line 10) frorn 0 to L which is the valne off, hence 11., since lilw call 

SatRec.FVm(e, 0, 1) returns 1. The itcra.t;ion stops when further att;ompt;s to fire c\ do not 

add any m.)W stat.t: to B( (lip)). At this point, Y = N£
1 
(,Y) = N;~J (X). 

For the induction step we assunte t.ha;t the calls to S(ti•amte(A: ~-1, ·) as well as to 

SatllccJi'in:; ( e, l--1, ·) work correctly. H.(Jeall that, l = k - 1. 

(i) Unlike SatF'ire (cf. line 14), SatRecF'ir·e dons not add further local states to C, sinee 

it modifies in··place the new node (ljs), and not node {ljq} describing the states from 

where the tiring is explored. The ea.ll SatRecF'in:(e, l, q) can be resolved in three ways. 

If l < Bot(e), then the returned value is f = q and M,e(U) :::.: U for any set; U; 

since q is saturated, B((ljq)) = N~1 (B((llq))) = N~1 (JV:~(B((ljq)))). If l ;::: Bot(e) 

but Sa.tRecPire has been called previously with the same parameters, then the call 

Cached(F'IRE, l, e, q, s) is successfuL Since node q is saturated and in the unique 

table, it has not been modified further; note that in-plaee updates are performed 

only on nodes not; yet in the unique table. Thus, the value B in the eaehe is still 

valid and can be safely used. .Finally, we nef)d to eouRider the ca .. 'l<l where the eall 

SntRecPin~(e,l, q) performs "real work." First, a uew nod~~ (fl.c;) is ereatod, having nll 

its ares initialized to 0. We explore the flring of e in each sta.t.e i satisfying (llq) [·i] f 0 

a.nd .Ni,e(i) f. 0. By induction hypothesis, the J"E)f:lll'l:.live call Sat.Rec.Fire(e, l--1, (llq)(i]) 

rehtrnsN$1~1 (MJ(B((l·-ll(llq)[i])))). Hence, when the "while£#(/)" loop terminates, 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GHAPTJTJR .'3. THEJ ROt1D TO 8;\'TUltATlON 

Thus, nll childnm of nodt:~ (ll.<i) are saturated. According to the induction hypothesis, 

the call Snl:nmtc(l,ll) correctly saturates (lis}. Consequently, we hiWf~ B{(li.:J)) 

is locally enabled in i E Sk; it calls SatilecFir·e(e, k-1, (klr)}['i]) that, as shown a.bove 

and since l = k ---1, returns N5k-l(~:(l1((k~lj(kjp)[i])))). Purther, Satu.·rate(k,jJ) 

terminates when fi.ring the events in Ek = { e1, ez, ... , e,11 } does not add any new state 

to B( (kjp) ). At t.his point, the sc~t Y eneoded by (kjp) .is the fixed~-point of the iteration 

initialized with y(o) +-- ;t'. Henee. Y = N.~- 1.(.,-Y). as desired. 
' ~':::': \i } 

0 

3.8 Implementation issues 

Garbage collection. MDD nodes can become disconnected, i.e., unreachable from the 

root, and should be removed. Disconnection is detected by associating an incoming-arc 

cmmter- to each node (kjp). Reeyeling disconnected nodes is a. rnajor issue in l;raditional 

syrnbolic: state- space generation algorithms, where usually many more nodes become clis-

connect.ed. In our algorithm, t;his phenomenon is rnuch less frequent, and t.he best runthne 

is achieved by removing these nodes only at the end. vVe rdi:~r to this polky as LAZY policy. 

We also impletnented a STRICT poliey where, if a node (kip) becomes disconrwcted, its 

"dek~h'l-··fiag" is set; and its arcs (klp}[i] are n~·-<lireetod to (k-.. ·110), with pos::;ihle recursive 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAP'TB.n 3. THE ROAD 'l'O SAJ'{JltA'f'JON 

dl'eds on the nodm; downstream. When:~ hit in tho cadu~ returns a.n index ,'1, thiH entry is 

considered st:a.k if Uw delete Oag of node (!~Is) is set By keeping a per levd count of the 

nodes with delete/Hag :;;et., we ca.n decide in routine NewNode(A:) wheth<)r to (a.) allocate 

new memory for a node at level k or {b) recyde the indices and the physical rnernory of 

all nodes at level k wHh delete .. Hag set, after having remoV\ld all t.l1e entries iu the cache 

referring l;o them. The threshold that triggers reeydiug can be Ret in. t<~rmR of nwnbcr of 

r.todes or bytes of memory. The pnlicy us.ing a threshold of one node, denoted as STlUCT(l), 

is optimal iu terms of rnernory consumpt;ion, hut: ha • ..:; a higher overhead due to more frequent 

clea.n·ups. 

Optimizations. First, observe tha,t the two loops .in Sa.ttt.mte ensure th.at firing some 

event e E f~c does not add a.uy new state. If wc1 alwayR com;ider these events in the 

same order, we can stop it-orating <1.<; soon as IEkl consecutive events have been explored 

without revealing any new state. This saves lfkl/2 firing attempts on average, which trans-

latcs to spend-·ups of up to 25% in our experimental studies. Also, in Union, the call 

PutfnCache( UNl01'V',p, q, s) records that B( (kjs)) = B( (kjp)) U B( (kJq) ). Since this implies 

B((kjs)) = B((kjp)) U B((kjs)) and B((kjs)) = B((kjs)) U B((kjq)), we can, optionally, also 

issue the calls Cached( UNlON,p, s, s), if 8 ::/- p, and Cached( UNION, q, B, 8), if s ::/- q. This 

.speculative union heuristic improves perf(n·mance by up to 20% in sonw .models. 

3.9 Results 

To evaluate our saturation algorithm, Wf) .have chosen a. t-mite of examples with a, wide range 

of d1aracteristies. Their dfltailcd description is given in Appendix B. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHA.PTEH :1. 'l'HJD R.OA.D TO SATlJn.A1'10N 

In all e<:tS<lS, th(>. state Rpace sizes depend on a pa:ranwtm: N. 

• The dininf} philosophers and slotted r-in[J ?nodcls [2{1, 111] are obtained by conwxt;ing N 

ident.kal safe subnets in a. dreular fashion. ri'he MDD has N/2 MDD levels (two 

subuets per level) for the former model a .. nd N kwcls (ouc subnet per level) for the 

la.t;ter. Events are either local or synchronize adjaeent sulmet.s, thus t.hey span only 

two levels, except for tbose sym~hronizing subuet N with snbnet 1, whieh span the 

eutire M.DD. 

• The round mbin rnnte:r: pmtocol t.nodel [72] also has N identical safe HnbnetH plaeed 

in a circular fa"'>hion, whkh repres<mt N processes, eaeh mapped to one MDD level. 

AnotJwr subnet models a resource shared by the N processes, giving raiRe to one 

more level, <:tt the bottom of t.he MDD. There are no local events and, in addition 

to events synchronizing adjacent sulmets, the model contains events synchronizing 

levels nand 1, for 2 ~ n ~ N + 1. 

• The fle:r:ible nwrvufactur·ing system (FMS) model [107] has a fixed shape, but is pa­

rameterized by the initial number N of tokens in some places. We partit.ion this model 

into 19 subnets, giving rise to a 19-level MDD with a moderate degree of locality, as 

events span from two to six levels. 

We conducted two :-;eries of experiments. In the first, we compared the various oxplo·· 

ration algorithms presented in Section 3.6, which we implemented in our tool Sl\1AKJ' usin!!; 

MDDs and Kroneeker matrices. 

To the le£1; of Tables :u.-:.1.2 are t.hc model parameters (Nand ISJ, the state spaee size), 

while t.he runtinJes an.d memory requirements for six different cxplomtion strategies are 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CFIA.P'l'JER .l THE ROAD T'O SATUHATlON (14 

listed in the right blocks of coltmuis, respoetively. The strat;egioH considered ar<~ thn two 

variants of breadth-first search, BfSsGen and Alll~f.)s(}en, thf) two variants of DF'S \Vith 

eha.ining, ChSsGcn and AllC:hSsC:en, the in~plaee updatn ftpproaeh of [2G] (Pwd), and the 

sa.tnra.tion a.lgor.ithm [27] with LAZY garbage collection policy (Sat). 'I'he last column in 

T'able :3.2 lists the rm~rnory need.ed by the final M.DD, encoding the entire Htat.e space, this 

qna.ntity being independent of tho algorithm used. 

-R-··- ····-rrelidH1bl<~-1==== . . -~·~--·'rTrr!~~-(8;;;;r··-··-·-·· ........ ~-----··---··· 
--·~~ stat(~.,_· _JJ!Z:~::.I~2!~!:?!!:~]~QJi:77~J~!!Il.~Z~~:CC1.'!~:~=J~-.s·c~~-

mning .Philosophers: K ::::::. N l ISk l = ~Jtl fiJr all l.; 

~·. so 2 .. 2x1. o.·~ ... J3'f6~ .. ·r--··:itrlf'~--1.:·r-···1:-[··-·· -o.lOIJ.·-100 s.ox Hl62 644.1 630.4 5A s.a o.a 0.2 
1000 9.2x 10626 895.4 915.5 4.6 1.1 

10000 -1.~~x 106269 .. . m 704.0 8'-1.4 
Slotted Rir1g Net:w~;rk~··J(" ·N;··jS~;;I = 15 for aUk·· ·---
·-····~·· ................................ r........... . . . -·----.... - .. ·--·-·--· 

5 5.3xl0 0.2 0.~~ 0.1 OJ. 0.0 0.0 
10 8.3x10° 24.1 2 .. 1 1.2 0.1 0.0 
15 1.5x 1015 771.5 18.5 8.9 0.5 0.1 
50 L7x Hf32 120.3 2.9 

100 2.6x 10105 4!)76.1 21.6 
Round Robin~J( N+I~fs;~ f?uillk -~~cept-IS;f::;-;:;"N+ f"' ........... ~ 

- 4 1.0 2.3x10 0.2 o.a 0.1 0.1 o.o o.o 
20 4. 7x 107 2. 7 4.4 o.:3 o.a 0.1 o.o 
30 7.2xl010 16.4 26.7 0.7 0.7 0.3 0.1 
50 1.3x 101'1 263.2 427.6 2.9 2.8 l.O 0.2 

100 2.9x 10:12 22.1 19.:3 7.7 1.2 
200 7.2x1062 58.1 10.9 

FMS: K::;-;:;T9;·rs;I~Nf.lfor all k cxeept ISJ71=4, !s;;l=3, 1871=2 
............. _ .. _(1--· - --- __ .. . ....... 

5 2.9xl(Jl 0.7 0.7 0.1 0.1 0.0 0.0 
10 2.5 X 101> 7.0 5.8 0.5 (L$ 0.1. 0.0 
15 2.2 X 1011 4.LO :30.5 1.9 l.() 0.2 0.0 
20 6.0x 1012 183.6 126.0 5.:3 2.~~ 0.5 0.1 
25 8.5xl013 ti77.2 437.9 12.9 G.l 1.0 0.1 

150 4.8x 10n SA 

Table 3.1: Time for state-space generation algorithms in SllvJAl'rl'. 

The results show a steady ped()l·nu.mce gain that "chronologica.lly" follows the series of 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GHAPTF;n :J. 'l'IfB ROAJ) TO SA.TURATfON 

-y;;;~"--IIr~;;~-;Ii"f;J;T;·;-I·--··-~---~-~-----~~~-~---···w .. w~··-··M€l!r1o1:y-·(MH)'""······~-----· .... ., " .................... ·-·:··-

.... _____ ....... -~~5:~os J=·---zJE.~=: .. ~[~2~E~!E:.L~'!.0~.J~:~~1E!E!1: .. I.I~~~:I.§!i~~I}[~~~~ 
Dining Philosophers: K N, IS~c I :.l4 J(:rr all k 

·; ~~; ~: ~~}:;:; :-1> ~-;! .. ~!:~·-·r·~-~~·~xl- ~:~ ·--·-~-:~-1--""~:~l. ..~.):~ ---i~--:~c 
1000 9.2 x 10°2(' . .. 895.2 89f>.o o.s oA o.a 

1oooo 4..a x 10('269 ---- 5.5 a.n :.L 1 
--Si~)tt(;(r Ring-:Net::w;;i-1~-~t<·;~ N', ISt,; 1 :0% .~r;-r;:;-[-;),rn;---~-- ··~~ ............... ., ..... ., .... -----

··rr.:rx·TcP -.. ---·-·ci~H- ··-··"u o'])-- --ini., ..... en> 
10 8.3 X l()!l :39.0 4[>.0 0.0 0.0 0.0 
15 L5 >< 1015 a44.:~ 375A a5.1 0.1 0.1 o.o 
50 L7x1052 -1.2 2.2 OJ 

100 2.6 X 10105 /,~4.5 14.8 OA 
Ii~)l~J:1<nl<:)l>i11~--'ir- N +1, !:9A1:~}>r a.ll x:. except ~~~E,.:E:±.J: ·-·----·-- ... --... -...... 
-·-Jo z.axi(yr ... ·-- o.6 1.2 o.1 o.1 o.o -o:o· --(>:"li 

20 4.7xHfi 5.9 12.8 0.5 0.5 0.0 OJJ OJ) 
30 7.2x 1010 22.7 '18.2 1..~~ 1.1 0.1 0.0 0.0 
50 l.:!xl0 17 126.7 257.7 :1.:3 :3.8 0.2 0.1 0 . .1 

100 2.9xlon 22.1 20.0 0.7 OA 0.4 
200 7.2x l01i:.! 2.7 1.4, 1.4 

PMs: It~T9, IS~;;I=N+l for aiCA; .... e:x·<:.ept !St7I='C1s~~r~=--:r;Ts;, 2 
s 2.9 x 1o·rr····... ·-·ci:::r 0.2- -· o.i:l'"' "'()])"' o.o 

lO 2.5 X 109 18.2 14.7 2.3 1.3 0.0 0.0 0.0 
15 2.2xl011 61.9 48.8 8.0 4.8 0.1 0.1 0.0 
20 6.0x 1012 154.0 119.-1 20.2 10.3 0.1 0.1 0.1 
25 8.5xl013 319.7 2-15.3 42.7 21.2 0.3 0.2 0.1 

150 4.8 X 102:{ 30.7 15.8 

Table 3.2: Memory consumption for state-space generation algorithms in SMAHT. 

irnprovenwnts presented in this chapter. The chaining tedmique improves on traditional 

BPS, the in-pla.ee updates and locality improve on chaining, while the saturation strategy 

is vastly superior to all predecessors by several orders of n1a.gnitude, both in terms of time 

and mernory consm.nption. 

On the is:me of using just the MOD encoding of front.ier sot (strictly new states) versus 

the encoding of the entire current set in the BFS ilerat.i.ons, we found a rather: surprish1g 

fact. Not only does the uuanhnous preference for the frontier set apprmtch semns t;o be 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CI:lAPTB.H. .1 TIJE R(IAD '1'0 SATURATION ()6 

unjustified, but, H,t; Ien,st for the Gla.':ls of asyncln·onouH syHtmns studied hmo, tlw ~wcond 

approach that; uses all st;atcs performs consiHtently better (even f(Jr the dining philosopher 

model, wh<Jre CJhS.<iGmt and AllChSsGen have silnilar timing periormfmee, AllChSsOen usPs 

substantially less peak tnemory). This is countm·intuil:ive only in the eoutcx(; of explicit 

methods. Decision diagrants exploit st.rudure in the encoded sets, whieh seems t;o be poor 

in the frontier set. 

In the second experim.ent (Figure 3.:3) we corupare tlrme variants of our now algorithm 

using both the Iu\ZY policy and. t;he STRICT policy (with thresholds of 1 or 100 nodes per 

level). f''or reference, we a.lso compare t;hem with the RECUR.SIVF.} algorithm in [107] l'md 

the FmtWAH.DING algorithm in [26]. On the left eolnmn, Figure :3.3 reports the size of the 

state space f<:n: each rnodd and value of N. The graphs in the r.nidclle and right c:o.lumns 

show the peak and final number of MDD nodeH and the ClPU time in seeonds required fur 

the state- ·space generations, respectively. 

li'or the above models, saturation is up to two orders of magnitude faster than [107] 

and up to one order of .tnagnitude faster than [26]. These results are observed for the 

LAZY variant of the algorithm, which yields the best runtimes; the STRICT policy also 

outperforms [107] and [26]. Furthermore, the gap keeps inereasiug as we scale up the 

models. 

,Just a.s important, the saturation algorithm tends to use many f~~wer MDD nodes, hence 

less memory. This is most apparent in the FMS model, wh.erc the <lifferenee between the 

peak and the final number of nodes is just a eonstaut, 10, for any STlUCT policy. Also 

notable is the reduced memory consumption for tho slotted ring modd, where the STIUCT(l) 

policy uses 28 times fewer nodes compared to [107], for N =' 50. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GHAPTEH :1. 'I'EII~! ROAD TO S.ATURAT'JON 

Model&size 

Diniug phil. 
N .. ·--·-~7r···-· 

--:f(i()- ,i_!)( ·10-u::r--
200 2.47·1012'; 

400 6.10·1021'0 

GOO l.51·10~m 
800 3.72·10501 

1000 R18·10(i)l{) 

Slotted :dug 
rr~··r-

-nr ··s.2!)~ 
20 2.73·1020 

~10 l.0-1·JJP1 

40 '1.HH041 

50 1. 72 ·1052 

Round robin 
N S 

-·To· 2~=~6Io'r·-
25 1.8!).1011 

50 1.27·1017 

100 2.85·1032 

150 4.82-1047 

200 7.2310()2 

'---'------·-
FMS 

N s 
5 2.!J().l()fi 

10 2.50·109 

25 8.54·101:! 

50 4.24·1017 

75 6.98·10lf) 
100 2. 70·1021 

Peak&: fiual MDD uod(:~S 
6000 r·~·-···,, ••. ,,_,,,,, ........... "'''-"''"'"'IF"''""'"'''Clil 

5000 

4000 

3000 

2000 

1000 

o.-~~~ .. ----•----h-·-'·-..... ~ 
200 400 600 800 1000 

80000r-~-···r··~·~·-·~-~-····"r'~ 

70000 
60000 
50000 
40000 

soooo 
20000 

10000 
0 .._.ili'.~i~:::i:l;;;~.;.;:L.:~:,;ii3 

10 15 20 25 30 :l5 40 45 50 

45000 ...---.----....,.---,--
40000 
35000 
30000 
25000 
20000 
15000 
10000 
5000 

50 100 150 200 

60000 ,.......-...,-..,-""F'_,--,--,---,··-r-·1 

50000 . 

40000 

30000 

20000 

10000 

o k~ric:::C::t=..._.__ ... ---L..J 
10 20 30 40 50 60 70 80 90 100 

Key lazy ··· • ·•· 
strict(1) .... ,. 

sttict(100) · .,. · 
forwarding ..... n .. 

recursive ~ ><·· • 

final · -0 ·· 

Generation Hme (sec.) 
1000r···"~T-"'"'f"'~--~~~~"T""-""1 

100 

10 

0.1 

200 400 1300 800 1000 

1000 

100 

10 

15 20 25 30 35 40 45 50 

1000 

100 

10 

0.1 

om ___,_ _ __~....._~.....~.. _ ___. 
10 50 100 150 200 

1000 

100 

10 

0.1 

0.01 LL-L.-L...-L...-i........J..-L.....L....L.-.J 

10 20 30 40 50 60 70 80 90100 

lazy 
strict(1) .,.. .... 

striot(100) .. *· 
forwarding · "' · 
recursive ..... 

Table 3.3: Results f(H· the saturation algorithm. 

07 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

OHAPTEn, ;£. 'r'HE .HOA.D TO 8ATURA'J'!ON 08 

In a nutshell, rega,rd1ng generation time, the best algorithm is LAZY, f()llowed by 

STIUCT(lOO), 8TRICT(l} 1 FOHWAU.DING, aud H.ECURSIVE. With rm;poct to mem.ory con­

smnption, the best alg;orithn.t is STIUCJ'I'(l), followed by STIUCT(lfJO), L1-\ZY, FOI!Wld\JHNG, 

and RFXJURSIVB. Thus, our new aJgorithm is eonsistently faster and uses less nwmory than 

previously proposed <:tpproaehes. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Cl1apter 4 

Saturation Unbound 

In devising the algoritlum; presented so far, we have assumed tha,t t;he model is partH.ioncd 

so that the state space of each suhmodol can b.:~ generated in isoll'J,tion. This practice requires 

careful addition of const,raints (such as inhibitor arcH for Petri nets) to ensure correct loca.l 

behavior without afl'ecting the global behavior. Traditionally, tho burden of this task has 

been placed on the nser, and this is often a diffi.eult and error-prone endeavor. 

In eireuit verification the possible values of eaeh :~tate variable are known: they are 

simply 0 and 1. For arbitrary systems modeled in high-level formalisms, such a.s Petri nets 

or pseudocode, determining the range of the state variables is more challenging. One can 

argue that this problem is as hard as const.ructing the global state-space itself. 

In this chapter we introduce a new algorithm that merges an explicit, on-the-fly con­

struction of the local state-spaees, Sk: with the symbolic global state-space generat;ion. The 

algorithm produces an MDD reprosontation of the final state-space and an exact represen­

tation of the "minimal'' local state spaces. This relieves the modeler from. worrying about 

the behavior of snbmodels in isolat;lon. 

Symbolic analysifl of unbounded discrete-event systems has been considered before. In 

most ea,":l(!S, the goal is the study of sy::rtems with inJinit;e but 1'Cff'ldar st,ate spaees. For 

69 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CIIAPTBH 4. SATt.THA.TIC>N UNBOrJND 70 

exa.mple, tlw Quoue IIDDs of [G8J aLlow one to model Byst.~'rns with a finite munber of 

boolean varia.hles plus one or more unbounded queues, as long as the content.s of the quene 

can be represent.ed by a deterrninh;tk finit;o automat.mL rl'he J\:lON.A system [76] impimnent.s 

rnonadic .'ier:mul·onlwr loaic a.ml ean be used to vcri~y parametric systems without, relying 

on a proof by induction. These types of approadJ can he generally das~;ified lllHkr tlH' 

urnhrdla, of Reg·alw· Model Checking [l:Jj. 

Here, we ta.rget n different problmn; t.he analysis of bounded rnodds with unknown 

bounds of the ::;t.a.te variables. 'Ih1dit.ional symbolic stl.ttc-spa.ce generation a.ssumeH that 

eaeh local statA Rpace is known a. priori. One could argue t.hat this is reasonable for BDD­

baHed methods, since each boolean variable t<tkes simply values in { (\ l}; however) this 

requires a. similar assumption, i.e, that we know how many bcJOlcau variables are needt~d 

to represent some ::;ystmn variable, such as an integer variable in a software module being 

modeled, or tllf~ number of tokens in a Petri net place. In other words, we need to know t)<tch 

Sk, and in particular its size nk, so that we can set up either the correct; number pog nk l 

of boolean variables for it, if we use a, BDD, or the correct size nk of the nodes at level k, 

if we use an MDD. 

The algorithm we describe in this section ean be used for Hymbolie state-space generation 

when all we know (or need to assume) initially about Sk is that it has a finite but unknown 

size. The main idea is to int(lrleave symbolic generation of the global state space with 

explicit, "'on-tho-fly" generation of the smallest local state spaces (plus, posHibly, a small r'i'ln 

of additional local statei:l that aro diHearded a.t t;lw end). Starting only with t.he kuowlod.ge 

of Uw initial state, the algorithm discovers new local st.a.t;es at; each level. As n,,, increases, 

the size of the .M.DD nodes at level k increases a.s well (if we used BDDt>, the number of 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CllA.P'I'E.Jl,1. S.A'I'UnATJON UNBOflND 71 

}(•vnll:l would have to increase instead). 

Typical applications of this algol'ithm are found in modeling d.istribnt;ed soft;wmo, one 

of the most cha1lengiug cases for syrnbolie methods. For this type of systems, oven though 

the state spacos are finite, the highly "irregula.r" nature of the loeal spaces makes it: difikuh; 

to a.pply Regular Model Checking methods. 

For a given high~level f(.>rrnaJi::;rn 1 we can a.tternpt to r:.wegenerate the ~,;th local st:al!e space 

Sk with an (lxplidt traversal of the local st<1l:e-to-st.<tte transition gra.ph of the kth sub:r:nodel, 

obta.imxl by eonsidHring all the variables associated with that suhmodel and all the events 

affecting those variables. Unf()rtunately, this may create spn1'iou.9 local Btates. For example, 

if the two plaees of tho P~Jtri net; in. F'igure 4.1 (a) are pa.rtitioned infio two subr;ots, the 

corresponding f!ubnets, (b) and (c), have unbounded loeaJ state Bpaces when considered in 

isolation. In Sllbnet; (b), transition '/1. can keep adding tokens to place a since, without. t.he 

input arc from b, u is always locally enabled. Hence, in isolation, a may eontain arbitrarily 

many tokens. The same ean be said for subnet (c). However, S = {a1b0,a0b1}, so we would 

ideally like to define S2 o= S1 = {0, 1}. This ean be enforced by adding either inhibitor ares, 

(d), or eomplementary places, (e). Consider now the Petri net of Figure 4.l(f), partitioned 

into two subnets, one containing c, d, a.nd e, the other eonta.ining f a.nd g. The inhibitor 

ares shown avoid unbounded local state spaces in isolation, but they do not ensure tha.t 

the local state spaees are as srm111 a.s possible. l''or exampl<~, t;he local state space built in 

isolat.io.n for the subnet contn.ining f a.nd g is {f0!/\ f 1r/\ f 0gl, j 1g1 }, while only the firHt 

three states arc actually reachable in t.ho overall net, sinee f and g can never contain a. 

token at t.he same timo. This is corrected in (g) by adding two more inhibitor arcs, from 

9 t.o v and from f to w. An analogous problem exists f()r the other subuet as well, a.nd 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAP'I'BH 4. SA.TUH.ATION UNBOUND 72 

Figure 4.1: Local st;n;t:e spaces built; in isolation. 

correcting il: with inhibitor arcs iw even more cumb<mmnlo. 

Thus, there are two problems with pregeneration: a. local state space in isola.t.:ion rnight; 

be unbounded (causing pregeneration to fail) or it. might eouta.in spurious states (causing 

ineHiciencies in the symbolic state-sp;tco genera.t;ion, since nk iHlarger that needed). Asking 

the rnodeler t.o cope with these problems by adding constntints to the original model (e.g., 

the inhibitor ares in Figure 4.1) is at best lmnlensorne, since it requires a. priori knowledge 

of S, the output of state-space generation, and at worst da.ngerov.s, sin.ee adding the wrong 

constraint. might hide undesirable behaviors present in the original model. 

4.1 Local state spaces with unknown bounds 

We now deseribe an on-the-fly algorithm. that. intertwines explicit generation of the local 

state spaces with symbolic generation of the global state space and, as a. result, builds the 

smallest local state spaces Sk needed. to encode t.he correct global state space S ~;~ 

SK >< • • · x S1. Ideally, the additional time spent exploring loca.l state spm:es on-the-fly 

should be compar<~,ble to that spent in the pregeneraJ;iou phase of our previous algodthrn. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GH.APTER. 4. S.t\TUHATlON UNBOUND 

Th.is is indeed Hw easn :for our new algorithm, whieh incrmnentally discovers a set: '"~A: of 

locally-1·elwhable local st.a.tcs, of which a subset S~;; i::< known to be al:-Jo globally reachable. 

Our algorithut co11jinns that a local state ik E s:, is globally :twtdta.ble when it appears as the 

kLh cornponent of sonw sta.te encoded by the .MDD rootfxl a,t (KIT). Sinee ·uncmijh·merllocal 

stat;es in §,. \ Sk a.re limited to a "rim." around the confirmed ones, and since unconfirmed 

states do not afl'cct the size of t.he MDD nodes, there iB only a. srnall merr1ory ftnd thne 

overhead in praetke. 

In this on-the-fly version of the saturation algorithm, the ares of the MDD nodes <JJ:e 

labeled only with confirnwd stat.es, while our Kronecker encoding of the lH'!Xt-state func-

tion must describe all possible transitions from confirmed local states to both confirmed 

and unconfirmed local staJ,es. Thus, we only explore global symbolic fir·in!)s origin<"tting; in 

confirmed states. 

The on-the-fly algorithm follows exactly t.he same steps as the pregeneration one, except 

for the need to confirm local states. llather than providing the entire pseudocode for this 

modified algorithm, we show procedure Conjlnn in Figure 4.2, and list the three plaees 

where it should be called from the pregeneration pseudocode of Figure 3.9. Between lines 

3 and 4 of function Generate we add the statmncnt 

Conjinn(k, 0); 

to confirm each initial loca.l state, since we nu.mber local states starting at 0, that is, 

'1/;(sk) ·:::::: 0 f()r all submodels k. Betwecm lines 10 and 11 of function SatPire we add the 

statement; 

if j t¢f. Sk then Con.finn(k,j); 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GHAPTEH iJ, SA.TURATlON UNBOUND 74 

aud betwe(~n linr:s 12 a.nd 1:1 of fnnd.ion SatRecPire we add the statement: 

if .i r;::· St then C(mJirrn(l,j); 

t.o eonfirm (:~ach local. sta.te .i (if not a.lrea,dy conflrmed) aft;er it. has b~~en determined i;hat a 

globalBtate with .i as the kth, or tth, component can bo roached through a, syn1.bol.ie firing. 

Add local state index ·i to Sk and build the corresponding rows Nk,e[i, ·] for all matrices 
Nk,e =l I. 

"~""="""""""~•~~,.,,~~"~~"'~m,,,.,.,,,,.m•<>•n»«<'~~·><o-.~rrrm=»~ .. w•~n~~•=""'~~.....--<mwnmo•~m~~~·~~-~~~n=•"""m~m<<'"~'"'""~"''"n""""'"'rrv.<"'''-"""'''' '''''""'""'-'"Q'-"~"~""'"'~~""~"'""''"'"''''"'''ro•·=•·"m"'""'""'''"''""""'' 

1. declare c : event, j : local, n : int, i~;;, ,it,; : stale; 
2. ik f-. '11/'"

1(·i)· i·'k ' ' 
3. foreach e s.t. N~;,e :/I do 
4. foreach jk E .Nj,,,~(ik) do 
5 . } ,.. ~flk (j A;); 
6. if j = null then 
7. '1h(j;.) +- lgkl: 
8. j +- lgi:l: 
9. ...~: +- ~~: u {jk}; 

10. Nk,e[i,j] -<- 1; 
11. sk -<-- sku {ik}: 

• access .higlJ-level model 

• jk ¢ ~., new locn.J state 
• a.."'s.ign next loct:l.l index to jk 

Figure 4.2: The Confirm procedure for saturation on-the-Hy. 

The firing of a,n event e in a local state i for node (kJp) nmy lead to a state j E Sk or 

j E fh \ S~.:. In the former case, j is already confirmed and row j of N k,c has been built, thus 

the local states reachable from j are already in fh. In the latter case, j is unconfirmed: it is 

locally, but not necessarily globally, reachable, tints it appears a.s a column index but has no 

COITeBpo:nding row in NA:,<;· Loca.l state .i will be confirmed if tl.w globaJ sy1nbolk tiring tha,t 

used the entry Nh:,e[i,.i] is actually possible, i.e, if e can fire in an MDD path from 1'op(e) 

to Bot(e) passing tf.trough node (kip). Only when :i is corr[:irmed, the eorresponding rows 

N k,c Li, ·] (for all eveut;s e that depend on /;;) are built, using one forward step of explicit local 

reacha.bilit;l} analysis. This step n1u.st consult the description of t.he tnodel itself, and thus 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTliJR 4. SA7'URAT10N UNBOUND 

works on actual sulm1odel variabks, not; ~1ta.t;e indices. This is the only operation !;hat mny 

discover new unconfirmed local stat<!S. 'l'hus, l.lw on-t.he-fly algorithm usei:l "redanguJa.rn 

KromJeker ma.trices over {0, 1 }s"' . In other words, only con.Jirnwd local st.at.os "know'' 

their suee<:~ssors, confirmed or not., while uncon.fit·Jned states appear only in the cohmms of 

the Kronecker matrices. 

·4.2 Exa:rnple 

Figures 4.:3-4.5 illustrate the appliea.tion of the on-the-fly a.lgoritlun on our running examplH. 

The net is partitioned into thre<l snbnet;s, defined by sets of plaees {pJ, {q,r}, and {s,t.}, 

respect.i vely. Accordingly, the ewnts are partitioned into Ea '"""" {a, b}, £2 = { c}, and £1 c:" 

{d}. In each snapshot. we show the eurrent status of the MDD on the left, and of tho 

Kronecker matrices and local spaces on the right;. Local states are described by tho number 

of tokens, listed as superscripts, for each place in the subnet. Their equivalent indices, that 

is, the mapping 1/', is also given (:::::), and confirmed local states a,re underlined. Saturated 

MDD nodes are shown in dark background, light; foreground. For the matrices we adopt 

a concise description listing only the nonzero entries, in the format mw:col. This is very 

dose to the aetua.l sparse storage representation we use f()r each Kronecker matrix. 

(a) The algorithm starts with the insertion of the iuitialsta.te (0,0,0), encoded with one 

MDD node per levd. 

(h) The initial local states, each indexed 0, are coulh·nwd. Their corresponding rows in 

the Kronecker matrices are built by consulting the model. This leads to the discovery 

of new local states. In subspace ... 9;~, local state p0 , indexed 1 is obtained by firing 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHA.PTBR 4. SA'l'UlV\TlON UNBl)[TND 

(a) Initial Couflguration: 

2~} 
2 0 

2 () 

a 
2 f·"'"C""+"···•••·~~·~f~~4 

l 

(c) Satm·ute (ili2)(Firc (t): 

2:;1 
2 3 ! 

2 

2~JI 
2 3 J 

2 

.3 
2 

(e) Saturate (213/(Firtl c): 

2~}1 
2 3 I 

2 3[) 

2~) 1 
2 3 1 

2 30] 

3 
2 
1 

S:: {pt,1P,p2 } {!J,,l,2} 
S:l {qcr-ro, 11Jrt,qOr1, 11 tro} :::c: {ll,,l,'J,aj 

S.t " { §.:l:, i>~.tD {il, l) 

J:i"'igun1 4.:3: Saturation by example (part. I). 

7!1 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAP'I'EH. ·1. 8ATfiHA'l'lON UNBOUND 

(h) Confirm q1 ·,-o :l: 

e d 

~~"~F'"-+~-~~-+j;f~~~ 

(i) Confirm p0 ::;; 1: 

2t:ll 
2 $ I 3 

2 3 

(.i) Continue Saturating (:il2)(l''ire b): 

(k) Confirm cP'I'1 ::;; 2: 

(I) Saturatn (2!4)(Fh·(~ c): 

2rvl 3 2 
2 4 3 I 

2 3 

(m) Union (212) and (21·1): 

2irJ 
4 3 

2 ;I 

3 
2 ~~,-,~~~··1·-o·;~'i'~c·+··~·":~c~;~·l-~--1 

1 

Figure 4.4: Saturation by example (part 2). 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

C'HAP'TE:H 4.. SATrTHA.TJON UNBOUND 

(n) Continuo Saturlttiug (:112)(Fire a): 

3 
i! 
1 

(p) Union (2j:3) and (215): 

2~)1 
4 s 

2 3 

(q) Continuo Saturating (:ll2)(l!'ire b): 

b 
I 0:2,1:0 

I 1:2,:3:0 
I I 

(r) Union (214) and (216): 

2~1-6 5 

.\ 

(s) Disca.~:"d unreachable local statc'ls: 

6.!~­
~ 

I 
1:3,2:0 - 0:1 
---~ ~ 

rl 

~q 
id 

Figure 4.5: Saturation by exa.rnple (pari; :l). 

78 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Ol::lAPTBH ·L SAT'VR.ATION UNBOUND 7!) 

evout; n1 n.nd loca,l stat<~ 1'2, hHloxed 2, by firing event b. SirnUa.rly, in Hubspa.ees ~92 

and 5'1, loea,l states q1·r 1 and .:./1t 1 are discovered fron1 tl:m initi;:tJ local st:n.t.e, and art 

eaeh indexed l. 

(e) The satma.lliou process starts with the bot.torn node (112), I(JJ' which no event is en­

abled, hence it. is marked saturated. The sa.mc holds fbr node (212). Moving up, we 

begin saturating the root node, (:3j2). FJvent a, is enabled a.t level 3 by loeal sta.l;e 

0. Sat:F'i1·e(a, 3, 2) calls SatRecFin:(o., 2, (al2)[0]), which creates a. new node, (2!:.>). 

Since local state 0 at level 2 euables a, t;he recursive call continues dowustream with 

SatRecFir·e (a, 1, (212)[0]). This returns index 2 = (212)[0), since l < Bot(a). 

(d) Upon return, an arc is sot; from (2j:3)[1] t.o (112), mea.ning the uneonfirnted local sta.te 

q1 r· 1 ::::: 1 has been globally reaehed ami the Conjinn procednre iH ea.Ued on substa.l;(~ 

q11· 1 . As a. result;, two new local states, (/'r1 and £/r0 , a.re discovered by locally firing 

evc,lnt.s b and c, respectively, a.nd indexed 2 and ~~ in S2 . The pairs 1: 2 and 1: 3 are 

added to the corresponding matrices, N2,b and N2,c· 

(e) At this point, SatRecPire(a, 2, 2) has the result of firing a below level 2, encoded by 

(21::3), whieh we need to saturate. The only event in £2 , c, is enabled by local state 1, 

and moves subsystem 2 to local state 3, according to N2,c· SatPir·e(c, 2, 3) makes t;he 

reeursive call SatRecPire(c, 1, (21:3)[1]). This creates the node {113), and set;s it.s arc 

{lj:~)[l] to (Oil), the b~s<~ ease result of SatRecPire(c, 0, 1). 

(f) Local state 8°t1 = 1 lms been globally reached aud ha.s t;o be confirmed in S1• The 

only possible move discovered from this stat.e is via event d, a.nd leu.ds subrnodel 1 to 

th<~ aln~a,dy known local state .s1 tP :::: 0. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

C!HA.PTB.H 4. 8ATURAlriON UNBOlOIND 

(g) Since (11:3) is a new node, it is imnwdiately saturated, hy firing event d, the only 

ehmtont; of £1. This adds the arc (ll:~)((l'l to point, to t.he ter.minal rwrle (Oil). Lnea.l 

state 0 a.t level 1 is an old stn.te, hence it does not ueed to be confinnod again. Node 

(l.la) is dedm:ed sat.umted an.d returned as tho result of Satliec.F'ire(c,l, 2). An rUT is 

s<~t from (213)[:J) to (11:~) to represent the loealrnove £hnn local state 1 t.o locnl state 

3 in g2, as demanded by N2,c-

(h) Local stat.o q11·0 ::::: :3 now has to be confirmed. It leads t~o the already known state 

q01·0 0 via b, and a new local state (Pr-1 , whieh is indexed 4, via a. Node (2!:!) is 

uow saturated and it is returned ::1s the result of SatR(~cPire(a., 2, 2), which started in 

snapshot (e). 

(i) Arc (312)[1] is set; to point to (2!:3), signifying that local state .rP :::::: l ha.s been reached. 

The confirmation of it in S:.~ adds one entry in the Kroneeker matrices: to p1 = 0 in 

N3,b· 

(j) Th.e saturation of node (:3!2) contimws with the firing of the other event in &3, b. 

SatFir-e(b, a, 2) is enabled by both local states at level 3 represented in the node, 0 

and 1. The first subsequent eall, SatRecPire ( b, 2, (312)[0]) finds no local states at level 

2 enabled in node (312)[0] :=.: (2!2). The recursion stops and returns index 0, signaling 

the failure to fire event b fro.m this p;:uticnlax cornbina.tion of local states. The second 

ea1l, 8at:RecF·in:. ( b, 2, (al2)[l]) is sueeesshtl in firing b, based on the enabling pattern 

(1, 1, *), and creates node (214}. 

(k) Since local state ({!T1 = 2 is rea<:hed in this firing, q0 r· 1 needs to bo confirmed in s;. 
The only rnove discovered is to q0 r·0 0, via event c. The corresponding element, 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CH.APTBH ,1. SATUlVl'I'ION UNBOUNI) 81 

(1) AH.er setting the a.rc (21z,1)[2] to (l]:J), node (2]4) has to be sa(;nrated. gvnnt c is 

enabled, and its firing canses uode (21·1} to be updated by setting its arc (214)[0] to 

(112). No other firings produee ch<mg(3fi t.o tho node, which is returned as the re~mu 

of SrttR(:cFire (b, 2, (a]2) [1]). 

(m) Upon return, nod<l (3]2) is updated in~place to iw~orporatH the (•fi(~ct of the n~enrsiv<~ 

ealh;. This roquires a union operation between it:H existing child in posit.ion 0, (2]2), 

and {214). The result of the union i.s (2]4). The arc (312)[0] is updated aceordingly, 

causing node (2]2) to become disconnected and, therefore, removed from the diagram. 

(n) .BJvm1 though both events a and b ha.ve already beon fired in (~~12), tho saturation of the 

root node is not complete, siuce both firings produced new states. The loop continues 

and event a. is fired again, which induces the creation of node \215) at level 2. 

(o) Node (2]5) is saturated by firing event c, and adding in-place the are (2j5)[3] to (lj~l). 

(p) The union of (2j3) and (2j5), required by the in-place update of the root, is node (2j5), 

which is known to be saturated, as it represents tJw union of two Haturated nodes. 

Node (2]5) is the new successor of the root along arc l. The old successor, node (2j:3), 

becomes disconnected and is deleted. 

( q) Finally, we fire event bone more time and sot (:lj2) [0) to the result of t.he union between 

(2]4) and newly crea.tcd (2]6). 

(r) The union of the two nodes is encoded by (216) . .E<\uther attempts to fire a orb in the 

root; do uot discover any other new states, hence the root is finally saturated. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CfiA.I'TE.n 4. EUtl'UIU\TION UNBOUND 8') 
,,,.f.,J 

(s) 'I'he a.lgorit;hm condtH.h~s by discarding all local states st.ill uneontinned. T'hefw are 

4.3 Irnple:rnentatio:n issues 

':1.3.1 Data structures for the n<:~xt.-state fu:uction 

\'Ve st.ore tho next-st;a,t,e fuuetion /v of the model using a sparse tmttrix N, whose entries 

are t:hm:nselveR sp1use matrices. The rows of N correspond to the levnls of the model. 

ThE) columns of N corre:;pond to the events of the model. Ea.eh entry of N contains a 

sparse matrix Nk,e describing the effect ou level k of firing event o. Storing N as a, full 

two-dime:nsional array would wasto a significant amount. of memory, since most; N k,c are 

identities, so we: use a. sparse encoding wh.ore <.t m.issing entry means "identity", not "zero". 

We provide sparse aeeess using linked lists by columns (so that we can eflkiently access 

all levels affected by an event e), and by rows (so that we can effident;ly access all events 

affecting a level k). These two types of access are required by the most common and 

expensive operations of state space generation, firing an event and confirming that a. loeal 

state is globally reachable, respectively. The resulting data structure is shown in Figure 4.6. 

Each node in the figure consists of a poiuter to the data structure storing Nk,-;, plus 

pointers to the next, elements along its row and along its eolmnn. Each N~,:,rs, in turn, is 

stored as a. sparse row-wise matrix [114], since the only required access to Nk,e is the retrieval 

of all loc.::tl sta.te .iudiees j sudt tha.t Nk,e['i,j] = 1, f()r a. given i. The only implementation 

difficulty iR that the matrix size must be dyna.mic, since as we discover local states on-l.he-

fly, we need to add new rows to it (adding uew columns is not an issue, since, in a. sparse 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTlV.H 4. SAJ'URATION CTNl30£1NO 

Figure t!.6: Storage for the nu~trix nodes. 

row-wise reprosonta.tiou, eolumn indieet~ appear only a:·: vahlflS in the entries f(>r eaeh row). 

4.3.2 Unconfirmed vs. confirmed states 

With the exception of the first local state for each level, which is assigned index 0 and is 

confirmed by definition, any other local state we find is always unconfirmed at first. Yet, 

this nrH:onfirmed state jk must be rd<mmeed as a column index j = 1/IA~ (jk) on a eonfi.rmed 

state 1'0\V i, that is, we need to be a:ble to set Nk,~:,[i, .i] = 1. It is natural and efiicient 

to assign increasing sequential state indices to the states in sk' but, unfortunately, not all 

states in ~ will be necessarily confirmed. Worse yet, even those that will be confirmed are 

not guaranteed to be eonfir.mcd in the order they are discoven~d. 

We could ignore this problem and simply index local states using 't/Ji. : ~: --+ {0, ... , nk -

1} everywhere, where nk = IS~tl, obv.iously for the currently-known S~:· This would be indeed 

correct, but ineflh:ient in two w~ws. First, the sparse row-wise storage of ea.eh Nk,c would 

require fi;k pointers to the rows, while wH know that only nk = !SkI rows corresponding to 

the confirmed local states need to b<~ built and accessed, thus the nmmining 1~k ··· n~c row 

pointers would simply be null. Second, en,ch MDD node at level k would require i,;k ares, 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CiiAPTBR 4. S~l1TUH.ATTON UNBOUND 

while, ag:Lin1 we know tJmt only tlm subset corresponding to .st;d;es in Sk rnay be poiutiug 

to nodes other t;ha.n (k ··· 110}. Th.is :-;econd problm.u can potcmtiaJly lw.ve n large itnp~l.d: 

since it nuw snbst;antially increase the mornory requirements, dt~pending on how tlw :MDD 

nodes are stored. 

'To avoid these ineffieieneies, we then use a second mapping ~Pk : {0, ... 1 'Pi:~; -· l} -l' 

{0, ... , nk - 1} U {null} from "unconfirmed ind.ices" to "eonf1.rrned indices". A local stat€~ 

jf., then, has an unconfirmed index .i := 1/Jk(h), which is used exc.lusivoly for colun:m indices 

in Nk,e· Once it is confirmed, tl1ough, it; a.lso has a confirmed index j' 

used as a row index in N~.:,~ and as au are label iu the MDD nodes at level A:. Thus, to test 

whether a local fltato j/,; E S is eonfirrned given its unconfirmed index ,i, we only need to 

test wheth(ll' <Pk(j) #null. 

Wh<m sta.te-spa.ce generation .is cornplet.e, we know that any m1confinned st,atc can never 

be reached, so we: 

411 Discard the states in 13,.; \ skl keep only those in sk. 

• gxamine the matrices Nk,e and, for each of them, delete any entry Nk,c[i, j] such that 

<l>k(j) =null. 

411 Switch from uneonfi.rnHxl to confirmed indices in the eolunnt indices, i.e, change Uw 

entries of each Nk,e so that; N~.:Ai, cf)k(j)) = l if Nk,e['i,jJ was L 

• Discard the array used to store t.he <J'lk mapping. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GHAPTBH. 4. S.ATUHATION UNBOUND 

4.3.8 Storing MDD nodes 

To store the state ~:~pae1.! 1 we use a. qunsi··reduced M.DD, which naturally knds its(~]f to a 

level-orient.od node storage. In our implmnenta.tiou, the data for au M.DD node (kip) is 

divided into two extensible arrays nodes~.; and arcs1,: assodated with level k (Figure 4.7). 

gntry 11.odesk[p] occuph~s the same nun1ber of bytes for each node (a.t, any level) and stores 

the fi:lllowing data.: 

• an integer ojf'>et into extensibltl army o.rc.'ik, 

• an integer ilize describing the length of the portion array used by the node, 

• a count of .inemning ares, 

• and the boolean flags satur·o.tcd, sha1'ed, spanw, and deleted (tho first two a.re required 

only when 814\!li' manages multiple MDDs on the same potential state sp;~ce S, e.g., 

for Model Checking). 

The data for the ares of node (kip) occupies instead a variable-size portion of array a.TCSJ,;· 

If nodesk[p] . .span>e = true, the arcs of node (kip) are stored in 2 · nodesk[p].si;:e entries of 

arcsk starting in position nodesk[p].offset, as pairs of local a.nd index values, meaning that 

(kip)[local] = index. If instead nodesk~1].sparse =false, "truncated full" storage is used, 

that is, aTcilk[:J.:] ;;::::; q if (kjp)[~c ···· nodesA:[p].o.[f:set] = q. However, not. all nk ares need to be 

is set to 'n1;; "~ 'tn. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTBR 4. Sl1TURATION UNBOUND 

KEY: 

<dfset size 

Figure 4. 7: Node and arc storage for MDDs. 

4.3.4 MDD nodes of variable size 

\Ve keep tra.ek of the index of the last node in node.s1,: and of the last used position in ar·csk. 

Requests for a new node at level k are satisfied by using the next available position in these 

arrays. Thus, the node being saturated is always at tho end of the array, and so are its arcs. 

This is particularly important wit.h saturation on-the-fly, where we do not know bd(Jrelmnd 

how rna:ny entries in a.rc;sk are needed to store tho arcs of a. node being Haturatcd. 

A fundamental property of our encoding is that a. saturated node (kjp) rerna.ins saturated 

a.nd encodes the same set even after a new state i is added to ,.<h. This is beea.use, reg~.trdlefls 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTE.R 4. SA.TUlV\.'J'ION UNBOUN.D 

of whether the node is using wpn;rse or tnmcated full storage, it will lw aut<mmtk<1lly and 

eorreet;ly int.erpr<~l;ed as ha.vin::~ (/i:lp) [il tl However, the possible growth of 8k implins 

l:ha.t it bemm<~s hard to exploit Uw speei;1l n1ca.ning for node (k!l), which, we recall is 

B( (kll}) = S~r, x · · · x 8 1 . With pn!genera.tion, this optimi~a.tion speeds up computation 

whenever node (kll) is involved in a. uuion, since we irnnH~~dia.tely eondude tha.t .B({k!l)) U 

B( (kjp)) = B( (kjl) ). Purthcr, such nodes need not; be explieitly stored. 

Figure 4.8: The implicit; index l in reduced vs. quasi-reduced MDDs. 

'Ib reserve index 1 f()r the same purpose with the ou-t.he-Hy a.pproa.eh is possible, but 

problematic, since, whenever a new sta;te is added to S1, for l ~ k, the rnea.ning of B( {kjl)) 

implicitly changes. This is one of t:he reasons that led us to use quasi-reduced instead of 

Ted·aced MDDs. The latter eliminates redundant nodes and is potentially more efficient, 

but its ares can span multiple levels. As discussed in (26], sueh arcs are more difficult to 

manage and ean yield a slower state-space generation when exploiting locality. With the 

on-the-fly algorithm, they create an even worse problem: they beemne "incorrect" when a 

loeal st;a.te spacn grows. For example, both the redueed and the quasi-reduced :3-levcl MDDs 

in Figure 4.8( a) and (e) encode the s(;a,t(l space 

s "'" { (o, o,2), (O, 1, 2), (:t, o, 2), (1, 1, 2), (a, o, 2) }, 

when Sa, -- {0, 1, 2, :J}, S2 -· {0, 1}, and 8 1 ·-- {0, 1, 2}. If we want to add global state 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTEH 4. EUtl'UlVlTlDN VNBOUND 88 

(:J, 2, 2) to S, w<~ need to arld local state 2 t;o S 2 awl Het are {21·1)[2] to (117). Howover, 

while the rosult;Jng quasi-reduced MDD in (d) is correct, tlH:l mdueed one i.n (h) is not, 

shtnl now it, al::;o encodes global st:atns (0~ 2, 2) a.nd (1, 2, 2). Tb Hx tht:~ problen1, W(! eould 

reintroduce Ute f(mnerly-redundant node (218) so tha.L the nQw reduct~d and quasi-reduced 

MDDs coincide. While it; would be possible to modify the MDD to obtain a correct reduced 

ordered M.DD in thit; manner whemwor a local state ::>pace grows, tlul cost of doing so is 

unjustifi.ably high. Of course, we can still reserve iudex 0 f()r t;lw empty set, <~nd exploit the 

relation 8( \kiO)) lJ B( (kip)) B( (kjp)), since the repres~mtation of the mnpty set, does not 

change a.'3 the local state spaees expand. 

4.3.5 Garbage collection 

If a. node (kip) becomes disconnected, we ''m;u·k it f()r deletion" by Rett.ing its tlag nodesk~J]. 

deleted to tnu:.. However, the node itself remains in memory until the garbage colleetion 

manager performs a dc~a.nup. Such a node can then be "resuscitated" by simply resetting 

this flag. This occurs if a. reference to it is ret;ricved as the result of an operation cache 

lookup. Of course, if a dcanup is issued after marking (A:jp) for deletion and prior to the 

cache lookup, there will be a eache lookup miss, since all entries ref.(m·ing to nodes marked 

for deletion are eliminated when these nodes are actually deleted. 

One problem with MDD nodes of variable sizes is that the "hole" left in (t7'C.'3k when a 

node iH deleted ca.n be smaller than what. is needed for a new node, thus it. eanuot; be easily 

"reeyded". However, tlw use of separate norleHk and arcsk arrays affords us great llexibil.it.y 

in our garbage colledion st;ra,t;egy. I11 particular, we can ''cornpad to the loft." tbe entire 

aresk array any time the memory used by its holes exceed some threshold (standard vaJue 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

OHAPT.lCH 4. 8A'I'V1V1TION UNBOUND 89 

.10%) without having to HCCf~!:ls uodes a.(; oth<!I' level:;;. 'I'hJl space frned at tll<·J right end of 

a.rcl?k ean then be reused for mrw node:;. This COlllpaetion only requires to re-adjust Uw 

values of E~aeh nodeHt.;[p].olf.w:t, fo.r ead1 levd~k node. There HHl sevm:al ways to do this. 

One approaeh is to store, together with the chunk for (kip} in (l.t'C8k, a. back pointer t:o 

the node itself, i.e, the value p. This ;:dlows eon1pactiou of m·csk via a linear scau: valid 

values may bt.: shift.ed t.o Ute left over invalid values until all holes have bmm removed. 

Sirnultanecmsly, using the back pointer p, we a.ceess a.nd update the value nodesk[TJJ.oifsel 

after shift:ing the corresponding arcs. With resptlet to our previous prcgencration imple­

mentation, when~ mTa:y ctrcsk is not used because the ares are stored directly in nodesk 

<ts arrays of .fixed-!:dze nk, this requires 12 additional bytes per u.ode, for offset and size in 

nodesk a.nd f(Jr t;he back pointer in a·rcsk· However, it can a.lso sn.ve memory, since we ea.u 

now employ sparse or truncated full storage. 

A better alternative is to build a. second, temporary, array tmp when eornpaeting the 

ares at level k by scanning the nodes sequentially and copying the arcs of each non-deleted 

node frm:n arc.sk to tmp. When we are done copying, tmp becomes our new compacted a.TC!Ik 

array, and the old ar·cs k array is deleted. This additional array tmp ternpontrily increases 

the memory requirements, but avoids the need for back pointers, saving four bytes per node. 

In addition to compacting the arc8~;; array, we also need to regularly, and independently, 

eompaet the nodes h array. This can l.lJso be done by "co.tnpading to IJw left" over nodes 

marked for dclet.ion but, thiB now means tha.t what was nodP (kip) is now node (kjq), with 

q < p. When perf(xrning t:hi::; eo.mpaction, we build a temporary indirection army oldft~new 

of size equal to the old number of nodes, so t.ha;(; old2new[p] "'"' q. Then, once compaction 

is completed, we sea,n the arcs in the level a.bove, ar·cs k+ l , and change ea.ch occurrence of 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTBB. 4. SATURA'JTON UNHO UND !)() 

p into q using a lookup into olrl2new. Finally, old2m~w i"l dul:ltr(lyed when this 14G<tn h11R 

completr~d. 

~"'igure 4.9: E.xamplc of potential, but not actual, overHow of a local statn space. 

4.3.6 Overflow of potential local state spaces 

Our new algorithrn. elintina.tes the need to specify additional constraints for auy formalism 

where each state ean rea,eh a finite number of states in a single step. A subtle prohl(ml 

remains, however, if an infinite number of stat;es ean be reached in one step. For example, 

in Generalized Stochastic: Pct.ri Net;s [2], irnmediate transitions, such as v in Figure 4.~), 

are processed not by themselves, but a.s events that ean take pla.ce instantaneously after 

the firing of timed transitions, such as t and tt (somewhat analogous to intcr·nal events in 

process algebra). In Figure 4.9, we partition the net into submodel 2, containing place p, 

and sulnnodel 1, containing places q and r. 

The initial local states are (p0 ) and (q1
T

0), reHpectively. When the latter state is eon­

firmed into 81, an explicit local exploration begins. 1\-a.nsition t ean fire in submodel 1 in 

isolation, leading to marking (q21·0). This omtbles innnediate tranHition ·v whid1, processed 

right away as part of the firing oft:, leads to 1narkings (q2r.l), (q2 r-2), (q2T::l), •.. and so 

on. Thus, t.he l~xplidt loeaJ. exploration fails with an over.flow in place r, while a traditional 

explicit global exploration would not, since it would never reach a global marking with two 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CJJAPTEH 4. 8.ATU1t4T10.N UNBOUND Hl 

Table 4.1: Gen.eration of the st<tte space: On-the-fly vs. pregenerat.ion vs. NuSMV 

tokens in q. This situation is quite artifi1-ial, however. It can occur only if the forrna.lism 

allows a. state to reach an infinite number of states in one "timed step". 

4.4 Results 

We corn pared the space and runti.me required by our uew algorithm with thm;e of its pregen-

oration predect;ssor [27] and of NuSJMV [3~3], 11 syrnbolic Vf~rifier built on top of the CUDD 

library [127]. The benchmark of exmnples indmle: dining p.hilosophers, slotted ring, round 

robin mntual exclusion, and Hexible rnannfacturing system (FMS). 

Ta.ble 4.1 lists t.he peak and final mmnory and the runtime f(>r these algorit;hms. Frn.· 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CilAPTE.:n 4,. SJ11'UR~ATION UNBOUND ~J2 

eornparison's sake, wo a.ssume that a BDD node in NuSMV uses 16 b,vt:es. 'l\1 lw fuir, wo 

point out that our memory c;onHurnpt;ion I'flf(U'S to the MDD only, while we believe that trw 

number of nodes rcport<ld by NuSMV indudQs also t:hose for i;he Iwxt:-r;tate funct.iorL How­

ElVElr, our Kronecker encoding for N is extremely dlident;, requiring at most :lOOKB in a.ny 

model, \!Xcept .fbr the model with 5,000 dining philo!::loplwrH, wh<lre it requires 5.2MB. 'I'lw 

memory for the operation eaehes is not iududed in (:Jithor our or NuSMV results (for our 

algorithms, caches rwvc0r exceeded 201'v1B on these examples). !3oth the on-the-Hy and the 

pregenera.t.ion MDD algoritlnns are :.~ble to handle signifka.ntly larger models than NuSMV. 

We show the largest value of N f(>r each of the four moddR where gfmerat.ion was possi­

ble, in t.he penultimate row for N uSMV a;nd the last row for Sf\1A.rrr. Whon cornpa.risons 

with NuSMV ca.n be made, our algorithms show speed-up rat.ios over 100,000 and memory 

reduction ratios over 1,000. 

The results also demonstrate that the overhead of the on-the-fly algorithm versus pregen­

eration is acceptable. Moreover, the additionall2-byte per node memory overhead required 

to manage dynamically-sized nodes at a given level k can be offset by the ability to store 

nodes with m < nk arcs (because they were created when Sk contained only m states, or 

because the la.':'!t nk- rn arc::; point to (k-110) and are truncated). In faet, for the FMS 

model, this results in smaller memory requirements than with pregeneration, suggesting 

that the use of sparse nodes is ad vant.ageous in rnodels with large local st;ate spaces. Even if 

our mH;he-fly implementation is not yet as optimized as t;ha.t of pregen<:~ration, the runtimP 

of the on-the-fly algorithm is still excellent, at most 70% over that; of pregeneration. 'This 

is a good tradeoff, given the increase in modeling ease and ::mJet;y afforded by not having to 

worry about local state space generation in isolation. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Cl1apter 5 

Structural CTL Model Checking 

H<:wing defined the abstract concept of a model and its 8la.te spnce in Cha.pter 2, next we 

need a theor·11 that makes the model meaningful, by assnrting some type of observations 

a.bout the eoustrueted model. These assertions will be evaluated in the form of truth or 

falsehood, therefore the theory will be called logic. Moreover, wlwn tlw evolution of the 

model in time .is studied, this is called temporal logic [22, 59. 95, 100, lOa, lHi, 118, 1~2]. 

The simplest and most intuitive mathemat.ieal structure that captures t.he above ele­

ments is a Kripke structure [91]. This is nothing but a discrete state model endowed with a 

labeling function of its states with a.tomic pr·oposit·ion.s. The propositions can be viewed as 

basic properties, evaluating to tnw or false, that can be observ<~d of each state, hence they 

are given as axioms bef()re the verification process starts. Formally: 

Definition 5.0.1 Given a finite set of ato·m.ic proposit:ions P, a .Kripke ~trueture i.':J a 

q1tadr-uple (g,s,N,L), consisting of the discrete state sy.stcm (g~s,N) and the labeling 

.fnnction .L : --+ 2·p, that as1n:,qns to each st(lf;e the Bet o.f pmposiiions satiHjied btJ that state. 

Definition 5.0.2 A eomputation of a .K1·ipke stn.tct·ur-e ( ... CJ, s, N, L), is !t path (a u;quence 

of states) 'IT= i0 i1 ... pt S'IJ,Ch that i0 = s and if+i E N(ii), for· all 0 :$ j ·< 'tL 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Def1:nition 5.0.3 rl'hc reachability set; of a K1·ipkt: t:dructtm~, i.9 the 8et of states S ·~ 

{ i E S' I e:1:ists o. fJath. n from the initial st(/.tt: s to i}. 

The tradit.ional defi.nition of a Kdpke ::;tructure n~quires t.hat the next st;at;e function /V 

he total (in the ~mnse that for each st~tt,f~ i !;here always flxists <:t successor for it, N(i) t" 0). 

We omitted t;his requirement from the definition, sln<:H this is ra.thor rmniniscenl; front the 

:madiVf) ::;ystcms, where the evolution of the system is eonsid<>.rcd infinite (through a. set of 

finite sta.t,es, though). Vlfc h.ave generalized the da.ssicaJ definition to a.rbitrary transition 

reln.i;ions, since one can a.lwa~ys int;roduce bnck the infi.nite paths by adding self loops to 

absorbing states. 

5.1 Ten1porallogic 

Given a Kripke structure ( S, s, N, L), over a set of propositions P, there is a tempor-al 

Telotion -< that can be established over the set 8'. We say that; state i precedes states j, 

i -< j if t.here is a sequence of transitions that leads from ito j. This temporal rela,tion is only 

transitive, but not .r.tee<~ssarily refiexive, symmetric, or antisynunetric, since the reachability 

graph may contain cydcs. If i is the current; state, the "future" states are all those that can 

be reached from i by a sequence of transitions (transitive closure of N). Conversely, the 

"pa.st" state::; of i are all tho::;e that; can reach i by some,~ sequence of transitions. 

Next we can introduce tense opcmtm·s [95, 116J that a.re spedfically devised to make 

statements about changes in time. lnforrnn.lly, a tense f(mnula. i::; of the forrn CJp, wlHH"fl p is 

a. bool(;a.,:n predicate and q is a, t;(mse opera.t.or, which is evaluated only in the present stael,<::. 

In tlH:~ following, the symbols -,, V, /\, denote the negation, disjunction and conjunction 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

C.HAPTEH .5. STJUJCTUHAL CJTL MODJIJL CHBCKlNCi 05 

operatorfl from propositional logie" 

• EventuaJly (in the future): l!'q is true in Uw present. state1 if q .is true in Rome future 

state, and there is a. path that conneets the two si;n.tes; 

• Event;ua.lly (in the JHtst): Pq is true in tht~ present state, if q has held at some prede-

ccssor state in t.h(:~ past; 

• Generally (globally or a.lways in t.l1n fut,ure): Gq is tnw in t;he present state, if q holds 

in aU future stat;cs. 'I'his is alHo equivalent to -,F-.q; 

• GeruJra.lly in the pa..'it (or hjstorieally): Hq is true in the present state, if q has been 

true at aU moments in tho past. Equivalent to ··,P···q; 

• Until: p U q holds in the present, state, if p holds from the eurreut state until a state 

in the future where q hol<k As a special ease, p U q holds if q holds in the present. 

state. 

A tense formula ads like an open sentence with one free pa.rameter, representing the 

present state. In that way, there is a bijection that can be established between states and 

formulae: 

- Eaeh forrrmla is determined by the set; of a11 states in which it :holds; 

- Ea.eh state can be labeled with the set of tcmnulae that are valid in it. 

5.1.1 I .. inear time, branching time 

There ex:ists a relationship between. the characterization of tlHl temporal relation -< and the 

set of ax:ioxns that ean be used in a siniilar fashion to the inference rules from tlH.' proving 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHA.PTEll 5. STHUCTUH.A.L OTL 1\:10DBL GifE'GKING 

teehniqmls of Iuat:herna.tiea.l logk, to reduce a desired property to another. 

For exa.rnple, tJm following axioms exactly characterize a. pa.ri;ial ordnr (transHive and 

antisymmotrie) rPla.tion ·< [22]: 

G(p '* q) ~ (Gp ::'} Gq) 
H(p o:c> q) ::::}' (Hp "* H9) 

p ""'*' GPp 
p :}- HFp 

To make -< t;obtl (i.e., for a.ny two states either i -< j, 

a.xioms are needed to fully chanJ,eterizo -<: 

(FPq) =*' 
(PFq) ::::;} 

(PqVqVFq) 
(Pq V q V Fq) 

j, or j -< i, two additional 

This setting corresponds to a. view of linea't l;ime, f(>r whieh all t.he states an' linearly 

ordered according to their oeeurrenee in tinw. In praetice, time is modeled as a discrete 

sequence, measured by int.egers. In this conunon case, each state ha.s an immediate successor 

and an inunediate predecessor. :Formally, a state j is an immediate successor of state i if 

i -< j and there is no other state in between, lJi' : i -< i' -< j. This property can be enforced 

by adding two more axioms to the linear time frame: 

p/\Hp :::.-:;:. FHp 
pi\ Gp * PGp 

Within the discrete time frame, it is useful to define the next time operator: Xp is t,rue 

in the pr<~sent state i when there is an immediate successor of i in which pis true. The dual 

operator, X corresponds to the predeees~mr. 

The a.bove fra.m(~works are very intuitive, but they lack the notion of non-deterrninisrn. 

This hapr)ens when a state may have nmltiple successor and/or predecessor states. With 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

(.!ffi\PTI~n 5. STJH.!Crl'UHAL GTL MODl.~iL CHBCKING 07 

t.he a.ddit.ion of nmHloterministk choke with respect t;o the fut.ure only, !Jw t.mnpora.l order 

-< defines a tret) tlutt bra,nchos towards the future. Any state has a unique pa.st, but. mHhlter­

mined fut.ure. The bra.nching fram~: eonte:) natura.I t;o ma.ny pral:ti<:a.l models, lilm reactiv<~ 

syl:ltenlH (which n~ceive unpredictable input from the outside world), or non-detcnniniNtk 

programH. 

Ponna.lly, lwanching tim.e can be obtained from the linear t:ime by dropping the a,<;sump­

tion (PF(z) :::;> (Pq V q V Fq), which orders the future. 

5.1.2 The CTL*, CTL, and LTI. temporal logics 

Next, we will introduce three of the most popular temporal logics, each h;.wing a dillt·Jreut 

expressive power. 

The CTL* ( Compv.tation 'J~·ee Logic) temporal logic. [37) is a convenient subset ofthe }mulch­

ing time f~1mily. CTI/ formulae use two types of operators: 

• Modal operators (or path quantifiers), which can be either A (on all paths) orE (for 

some path). 

• Tense operators: F (future), G (generally), U (until), or X (next), which were previ­

ously defined. 

Notice that Uwro are no past operators. They are dropped f(Jr reasons of symmetry, 

as any :reasoning frmnr. in tenns of past time can be mirrored baek in order to get Hs 

counterp.art in terrns of fut;ure time. 

Forrn.ally, for a set of a.tomie proposit.ions T' and a. Kripke strudure ( S, s, N, L), the 

set of CTL* forrnula.e can be introduced by induetive definition. Note that CTL* formulae 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAP'J'EH 6. STRUOTUIV\L GTL 1\IIODB.L ClfEJCJ.I<JNO H8 

may refer· to either a. state, hem:e they are callf!d Htat<~ forrnulae, or to a path. dms eaJled 

path formulae. 

Definition 5.1.1 State formula,c: 

1. 1;f p E 'P, then p ill a Btate .for·nmlr~; 

:e. if p, q are state forrmtlae, then ""'P, p V q, p 1\ q, p "-'? q, p -¢'4> q an: state .formulae; 

/J. if p 't8 a . .zmth for-nmla, then E1J, Ap em~ state fonnulae; 

Path fonnulae: 

4. 'if p is a 8tate fonnula, then p is also a path foTm:ula; 

5. ·if p, q a.re path for-rnv.la.e, then -,p, p V q, p 1\ q, p "* q, p ¢'} q, X71, Fp~ Gp, p U q am 

path fommlae. 

Next, we formally define the [= ("satisfies") relation, between states and formulae. This 

relation can be further extended to paths, as shown later. Let IIi denote the set of all p1:1.ths 

starting in state i, and f()r a path 1f = i0i 1 ... , 1fiA: represents the suffix of 1r starting at 

I)osl.ti'orl k· "'" - 1·k1•kH '· . "lk ·-·· .... 

Definition 5.1.2 Pm· a K r-ipke stnu:ture ( S, s, N, L) , the state i is said to sati8.f.1J the 

CTL* for-m?J.la f ('w1'itten i F" f) if one of the .follow·ing cnses holds {for clarit:y we tJ •• ~c 

p .for alorn·ic pr-opositions .from 'P, .f, !J, h denote state fonmtlae, while g, !Jl, 92 a.re path 

fonrwlae): 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CIU\PTBR 5. S'I'J~UCTUHAL C'l'L MODBL CHECKING 

1. i p <:::; .. 7' E~ D(i) 

2. i -~,j {:::)> i ~· f 

8. floh ~ (i F' it) o (i h), for· cm:ij operator o E {V, 1\, ~} 

4· i Eg '¢:} E IIi 8ttch that ·Jr g 

5. iF Ag ¢;;. '<hr E: Ui> 'lr g 

6. ~rr f '¢'::> 1r E Ili and i ~" l 

'l. 1f F' -·,g {'? 'Jr II: g 

8. 'if [Jl 0 (/2 <=> (1r !Jl) o (1r !J2L for- any opemtor o E {v, /\, {:}} 

.9. 1f Xg {c} 'lql F!J 

10. 1f Fg <=> 3k ?. 0: 1rlk g 

11. 1r Gg {':} Vk? 0: 7rlk F g 

12. 1r f= 91 U 92 ""* 3k? 0: 1rlk r= 92 and VO 5 j < k, 1r!i f= Sll 

Lemma 5.1.1 Adjacent path qwmtijieTs ar·e legal. However-, th·is is a pun:ly syntacticnl 

loophole, as semantically: 

for any ccnnbinat-ion of ]Jath q'll.antijieT.'J qi E {A, E}, 1 5 ·i 5 n. 

Proof. The key observatioiJ is that the quantifier adjacent to the predicate "cancels" the 

effect of the other quantifiers, based on !;he conversion of path f(mnulac~ to state fi:mnula,e 

and the definition of the property in this case. To prove tlw above sia.tement for n ::.:-: 2, we 

have to show that C:J.JQ 1g ·*"~ Q 1g. Sinee path quantitiers are a.pplied only to path formulae 

and Q19 is a st.a,te f(mnula, this ha.s to be intf~rpreted back a.'S a. path f(mnula. according 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CJHAPT'l~JR. 5. STJlUCT'URAL OTD 1'v101Jfi]L CHBCl<JNCi 100 

E[pUql 

) 

APp AGp A[pUq] 

Figure 5.1: The eight lmsie CT.L operators 

to item 6 in Ute above definition. Hence, i rc"" Q2Chg ..:,.;.. 3/'•:hr E Hi ·rr ~,::., CJig. But. since 

The claim can be easily extended to n quantifiers, by induction. 

The CTL temporal logic [87] is a subset of CTL*, in which temporal operators appear 

only in pairs. The first is a path quantifier, A or E. The second is the tense part, which can 

be F, G, U, or X . .H.enee, besides excluding the past tenses, then>. is one more restriction: 

path quantifiers cannot be combined directly with tht~ propositional pa.rt. This leaves only 

eight possible combinations for a valid CTL pair. 

Their intuitive meaning is described in Figure 5.1 on small examples, where Hw root 

node of each branching tree is a st;at:e satisfying the listed property. 

For convenience, we can determine ::m even smaller subset of CTL operators tha.t can 

be mmd to express any other eomhi.nation (a. complete subset). If the snbset is miuinml, it: 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GHAPTBH 5. S'l'H.UCT'URAL GTL .MODJEI, OHl!JCKlNG 

Xp 

Ji]J (}-{)-·U-"·M·.(J- ... 

Gp. ·• ··-4-··-··· 
pUq ·~· .. ·•-.-a-... 

Figure 5.2: The four basie LTL operators 

tOl 

is called a genemto1·. One :-;ueh set is {EX, AU, EU}, as the rest of the op(irat;ors ean be 

obt.ained as follows [:37): 

Lemma 5.1.2 
A:Xp 
AFp 
EFp 
AGp 
EGp 

-- ··,E:X·,p 
- A(tTue Up) 

E(tnu: Up) 
~ ··E( tn},(l U .. ,p) 

.. ~,A(troe U "'P) 

Another generator set; frequently used fi)r CTL is {E:X, EG, EU}. 

In t.he Linear Ten1poral Logic IJTL [64], a different view of the behaviors of the system 

is assumed, in whieh the branching of the outgoing paths is not; irnportant. A property 

is considered satisfied by a state if all possible intorleavings of future paths veri~y it. The 

relation between different executions (such a.<; existing common suffixes, prefixes, etc.) is 

not relevant in LTL. 

The interlea,vh1g of the branches is consistent with only one path quantifier, A, which 

is always assumed at the beginning of an LTL f(mnula. Therefore the path quantifier can 

be discarded, k11wing four possible choicf!S for LTL pat.h formulae: Xp, J:!'p, Gp, and p U q. 

On the other hand, the connectors may be combined in a.ny order (a.s opposed to the st:riet 

pairing of CTL). 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GIIAPTE.R 5. STllLT(}'l'URAI) OTL lviODB.L CIJliJCiKJNO 102 

The ('Xprcssivmwss of the three tenl.JlOt:a.llogi<:s that. weH' iut.roduced are not; r•qttiva1ent,. 

The IJJ'L formula FGp (mea.ning; that there is somo state in the future from whkh p will 

hold forever) has no equivaJent. in t;lw CTL syntax. On the other hand, tla! C'I'L forrnnla 

AG(EFt.>) (rneaning that on all paths, there exists a, bra,nching path along whieh p wm 

eventually hold) is uot expressible in L'TL. 

If we cornbinc tlw two above formulae, say A(FGp) V AG(EFp) we obta-in a, for.mula 

that is not valid in either IJI'L or CTL syntax, but it is va.lid in C'I'L~. 

More details about the logic hierarchy can be found in [:i·l, 58, 96, lOa, 116'1· We 

implement: C'I'L, as itR simple synt:u is expressive enough to f()rmulate mo::;t propHrties of 

int.erest. 

5.1.8 Cornputing CTL operators 

Given a set of CTL formnla.e :F, anrl a Kripke structure ( S~ s, .N, L), solving the spedfieation 

:F means labeling each state i in S with those formulae of :F that are satisfied by i. In other 

words, ea.ch formula is identified by the set of states that; validates it, therefore solving :F 

iB reduced to building subsets of reachable states. 

Working with sets is very practical, since CTL properties can then be characterized 

as fixed points of appropriate functionals [:35]. The lattice over which th1~ fnnctiona.ls are 

defined is £ = ( 28, U, n), th.e laUice of subsets of S, with set iuclus.ion as the partial order 

relation, a.nd set union and :mt intersection f(}r infimum and suprennu:n of two elements. It 

is well krtown that, i()r a finite , the lattice C is complete, hence c:t,ny tn<mot;onie functional 

f : z.S -~>- 23 (for which 'P :;;; Q irnpliEJB .f(P) ~~ f( Q)), is also continuous with respect; 

n.J('Pi). In this ease, by 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CF:filPTBR 5. STlUJCTVRAL CI'L AiODBJ~ CHEJGKING 10:> 

'T'a.rsld's t.heornrn [1:30], any nlonot<mi(· fmtctional f has [t lna~t fixed point fl,f Ui;;;:.o ,ti(!IJ) 

and a greatest; fixed point 11 f ;;:;:; ni;,o Ji(g), 

We are now .ready t;o give tlw fbwd poi.nt chara.cii<~rhm.tion of a. genen1,tor set of CTL 

operaton;: 

Theorem 5.1 [37] For a JinHe Kripke structur<~ ( S, s, N', D) and two CTL predicates p 

a.nd q (corresponding to the sd;s of states P and Q): 

provided h : 2~<; --t 28, h(X) = { i E S' j 3j E "1:' : j E N(i) }, the functional that computes 

EX. 

Corollary 5.1.1 Ji'or· ccnnpleteness only, the fia:ed point chanu:ter·i,w,tion of the rernain·ing 

CTL opcmton.; is: 

.1. AFp p.X.j4(X), where j4(X) = P U h'(X); 

2. AGp := tiX.f.::;(X), wher·e fr,(X) = P n h'(X); 

S. A(p U q) ~"' p .. Y.f6(X), ·where fG(X) Q U (P n h'(rY)). 

p1'0vided h' : 2g ~; 2S', h' ( ,1:') :::c" { i E S' I j E: N ( i) '"';. j E ,{:'}, the .ftm.diO'Iwl l:hat computes 

AX. 

Intuitively, properties that look for a property that; event·ually holds build a lea.st. fixed 

point by finding in each iteration more states to add to the initial set 1/J, and properties t:ha.t 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CliA.PTFJH .5. STHUGTUIVU, GTL j\JfOD11JL GHFJGKlNG 104 

eheck that: a. property holds globally build a greatest fixed point by gmdually eliminat;ing 

states fron.t the initinJ set !§. 

5.2 Saturation-based CTJ .. Model Checking 

Given U1e (J:xeellnnt ped'onnance of thn sat;uration stmtegy, wo next invest;lga.te how to 

extend it to improving t1w cornputation of the CTL operators [31]. As said above, only a. 

gene1·ato'f· subset needs to be implemented in a. model checker, <1l:l the remaining operatorB 

can be expressed in terms of those in the set [41]. {EX, EU, EG} is such a set, but the 

following discusses also EF for da.rity. 

5.2.1 The EX operator 

( "f=" means "satisfies") 

In our notation, EX corresponds to the inven;e of function N, the previous-state func-

tion, N--l. With our Kronecker matrix encoding, the inverse of N:! is simply obtained by 

transposing the incidence rnat.riees Nk,e in the Kronecker product, thus N 1 is encoded as 

To compute the set of states where EXp is satisfied, we can follow the same idea used 

to fire ev<?nts in an MDD node during our state-spaee generation: given the set P of states 

satisfying formula. p, we ean a.cctulllllat,e t;he effect of "firing backward" each event N-1 ('P) =:: 

Ue<:e N;;~ 1 (P), and take a.dvm1tage of locality. This results in <1,n efficient calculation of }}X. 

CompuUng its reflexive and transitive closure, that, is, the backward reachabilit;y operator 

EF', is a 1nueh more difficult. c!JaHenge, whieh we consider next. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CIL4PT'J'JH ,r:;, S~J:HUC:rl'URAL (.":TD MODHJJ, OHBC:.KTNO 105 

5.2.2 The Bl? op<~rator 

In our approach, the construction of the set, of states satisJ~ring EFp .is a.na.logous to 

the saturation 11lgorithm for st:at~!-sp::tce genera.tiou, with two difl'erences. Be:;idns nsing 

the tra.n~posed incidence matrices N((;,, Hw exeeut.ion starts with the Bet P, not a. singlt~ 

state. These difienmces do not atl'ect the applkabi.lity of saturation, whkh retains all its 

substa.nt.ial time and rnemory bcn1efits. 

5.2.3 The EU op<~rator 

Semantics: i 0 ~::::: E[p U q] iff ::in? 0, ::li1 E N(i0), •.• , ::JF! E N(in-l) such that in q and 

im p for all m < n. (in particular, i q implies i F"'· Erp U q]) 

The traditional cornputa.tion of the set. of states satisfying E[p U q] uses a least fixed point 

algorithm. Starting with the set Q of states saLisfying q, it iteratively adds all t.he states 

that reach them on paths where property p holds (see Algorithm EUtrad in Figure 5.3). 

The number of iterations to reach the fixed point is 

ma~ (min { n I 3 i0 E Q 1\ v 0 < rn::::; n, 3 im E N' J wn~ 1) n p 1\ i = in}) 
iES 

Applying saturation to BU. 

The du:tllcnge in applying saturation arises from the need to "filt.<~r ont'' states not in 

J:Y (line 5 of Algorithm EJUtnul): as soon as a new predecessor of the working set "1:' is 

obtained, it must be intersected wit.h P. Failure to do so can result in paths t.o Q th<lt 

stray, even temporarily, out of P. However, saturation works in a highly localized Ula.mt(C)r, 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GHAPTEH 5. STlU1C'l'URAL CTL }v.fODI'JL CHli;(JKING l06 

'P, Q : siettesel) : stnl<:~sel 

1. declare ,y, Y : stateset; 
2. ,1,' +~· Q; • init.i:dizl) tt' witll nll stnl:fJS in Q 
3. repeat 
4. .)J {·-· .1.'; 

5. .-t' +~ ,y U (N· 1Un n 'P); • ;,1.dd prt.lcleees:::;ors of states in ;r that an.! in 

6. until :v = X; 
7. return ;t'; 

Figure 5.3: The traditional algorithm to compute ElJ. 

adding states out of brHadth-first-search order. Performing an expensive intersection after 

each Hring would add enormous overhead, since om firings are very lightweight operations. 

To cope with this problmn, we propose a. "part.iaJ" saturation thai; is applied to a subset of 

events J(n which no fi.lt;ering is needed. These are the events whose firing is ,91ta.ra.nteed. to 

preserve tho validity of fbnnula p. For the rcrua.iniug events, BFS with filtration mnst be 

used. 'I'he resulting global fixed point iteration interleaves these two phases (see Figure 5.4). 

The following classification of events is analogous to, but different from, t.he v·isible vs. 

invisible one proposed for partial order reduction [4]. 

Definition 5.2.1 In a. discrete state model (S, s,N), an f.~vent e is dead with respect to 

a sot of states X if there is no state in .1' from whieh its firing leads to a state in X, i.e., 

N;.;- 1 (,-t)n.-1:' = 0 (this includes the cast) where e is always disabled in X); it. is safe if it is not 

dead and its firing cannot lead from a. state not in A:' to a state in X, i.e., 0 c: ~- 1 (.-l') s;:: ,-1:'; 

[] 

Given a formula. E[p U q], we first dassi(y tho safety of events through static analysis. 

Then, ea.ch EU fixed point iteration consists of two backward steps: BFS on unsafe evonts 

followed by saturation on sa.fe events. Since sal.t.rration is in turn a. fixed point computation, 

the resulting algorithm computes a. nested fixed point. Note that the operators used in bot.h 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAJ'T'E'JH 5. STRUCTURAL CTL .MODEL CIJBCKTNO 107 

Cla8m;f.yBvcnts(in .1': statest~t,out e:u,fs; set of event) 
1. fs <·-· (/); fu +c· 0; • initi:tli:.w s<d(J t.UHl uw.ml€:1 i·>nts of ev<mL'i 
2. for each event e E: t: • determino sal(! <.md mlsaf(;• evenl;s, tlle rest are dead 
3. if (0 c .N:;~ 1 (.l') ~;,: ,1:') 
4. Es +, Es U { e}; • sal() Men/; w.r.t;. ,.1::' 

5. else if (N(:··l (,:t') n ;t' 'f: 0) 
6. Eu "1'- t:u U { c}; • tmsa.f(• ovnnt w .. r. t. ,;t,' 

BUsat(in 'P, Q: Nf:aleset) : .<Jlatt~.<;et 

1. declare .t, ).' : .'!ta.lf~Beti 
2. declare Eu, :set of event; 
3. Cla8sify.l!}uents(P U Q,Eu,£s); 
4. ,.l;' <- Q; 

5. Satttr·ate(.:t', fs); • initi;dize ,,{' with all sta.tos at; ur1sa.f(! dist:m1ce 0 iinm Q 
6. repeat 
7. Y \·· rl:'; 
8. A:' <(-· ,-1;' U (N1[·J (:t') n ('P U Q) ); • perform one unsaf(~ ba.ckw<JJ:d BFS slop 
9. if .;r :f).' then 

10. Saturate(X, Bs ); • perform wm s:J.fe backward snt1m1tion sl:op 
11. until Y ~:: ,1;'; 

12. return .1:'; 

Figure 5.4: The saturation-based algorithm to eompute EU. 

stops are monotonic (the working sot ,l;' is increasing), a condition for applying 8aturation 

and in-plaee updates. 

Note 5.2.1 Dead events can be ignored altogether by our EUsat algorithm, since the 

working sot X is always a subset of P U Q. 

Note 5.2.2 The Sat·amte procedure in line 10 of BUsat is analogous to the one we use in 

Chapter :3, exeept that it 1::; restricted to a subset &,r:; of events. 

Note 5.2.3 ClassifylEvents h<J.."l the same time c:omplexit.y as one EX step and is called 

only once prior to th.e fixed point iterations. 

Note 5.2.4 To simplify the description of EUsat, we eaJl ClctssifyBvents with the filter 

'PUQ, i.e., E:,· = {e: 0 C Ne- 1('PUQ) ~ 'PUQ}. With a slightly tnore complex initialization 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GHAfJT'EH 5. STJU!C'I'l.JHAD GTL MOf)JiJL GHJiJCJ\JNG 1.08 

in fiJUsat, we could use instna.d the srrmller: filter 1', i.e., t's {c : 0 c: J\(~·-l ('P) C~ P}. In 

praetice, both Hets of events could be computed. 'I'lwu) if one is a strict superset of Uw 

other, it sh.ould be used, Hince the larger Es is1 the mo.re lEUBa.t behaves like our efficient, 

El'' saturat:knl.; otherwise, some heuristic rnust he used to choose between t..he t.wo. 

Note 5.2.5 'I'he mnnber of EUsat ite.mtion::~ ls 1 plus the ''ummf(.l distance fr01n 'P to Q", 

nl<tXicp(rnin{nl3i0 E::: 7~1,.(Q) 1\ vO < rn 5 n,3im E 1"-/;.{'Ru(.im··l) n P) A i =.:in}), where 

'R.s(.l') = Ucf~E:; N~;~l (.-1:') aud Ru(X) '=~ UeEfu N~ 1 (<'-\:') are the sds of "safe predecessors~' 

and "unsa.f~·l predecessors" of .1:', respeetivnly. 

Lemma 5.2.1 Heration d of BUsa.t finds all states i at unsafe distanced from Q. 

Proof. By induction on d. Base: r.l ::::~ 0 =::;}· i E 1\'.f,( Q) which is a subset of ,y (lines 

4,5). Inductive step: suppose all states at. unsafe dista.nce m 5: d arc added to ,.yin t.he n~th 

iteration. By definition, a. state i at unsafe distance d + 1 satisfies: :H0 E R:s ( Q) AvO< rn 5: 

d+ 1,3j7 n E 'Ru(im·-1) nP,3i111 E R?,.(Jm·), and i = i(l-1-l. Then, im andj7n arc at unsafe 

distance nL By the induction hypothesis, they are added to X in iteration m. In particular, 

irl is a new state found in iteration d. This implies that the algorithm must execute another 

iteration, which finds jd·H as an unsafe predecessor of id (line 8). Since i is either j(l+l or 

ean reach it through safe events alone, it is added to ,'\:' (line 10). 

Theonnu 5.2.1 Algorithm EUsat returns the sot ;.\:'of stat.es satis~ying E[p U q]. 

Proof. It is imrnedia.te t.o seo t.ha,t .l'il!sat tm:miuates, since its working set is a rnonotoni~ 

ea.lly increasing sulmet; of S~ which is finite. Let Y be the set of Htates satisfying :ID[p U qj. 

We have (i) Q ~;. .:t' (line 4) (ii) every state in ,.-'\:' can. reach a ::;tate iu Q through n path in 

X, and (iii) X~ P U Q (lines 8,10). This implies .:1::' ~ y, Since any state in Y is at smne 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTBH 5. STHJ.JGTUHAI, GTL MOJ)J:!iL OliBCJ\DVG 

Lmsaf~~ distarH.:e: 0 

distance: 0 

Figure 5.5: Compttring BFS and sa.tura.t.ion order: dist;ance vs. unsafe dista.neo. 

finite unsafe distance d from Q, by 'Lcnmm 5.2.1 we conclude tha.t Y s;:,: rt'. The two Ret 

inclusions imply ,1;' Y. 

Figure 5.5 illustrates how our exploration differs from BF'S. Solid aud dashed ares rep-

resent unsafe and safe transitions, respeetively. Th.e shaded areas eneirde the explored 

regions after each iteration of .BUscd, four in thi8 case. BUtnul would iust;ea.d require seven 

iterations to explore the eutire graph (states are aligned vertiea.lly according to their BFS 

depth). 

Note 5.2.6 Our approach exhibits "graceful degradation". In the best case, all events arE) 

safe, and EUsat perf(lrms just one saturation step and stops. This happens for example 

when p V q = true, whieh inelndes the special casP p : tnw. As E[tnte U q] = EFq, we 

shnply perform backward reac:hability from Q using saturation on the entire set of events. 

In the worst ease, all events are unsafe, and EUsat performs the same steps as EUtrad. But; 

even then, locality and our Kronecker encoding can still substantially improve tlH~ efficiency 

or the algorithm. 

5.2.4 The EG operator 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 5. BTH.UC:TUIV\D CTL MODJ:iJL CilB(iKING 

BGt.nul(in P; stateset) : .'lla,te.'1d 

1. declare "Y, Y: .~tateBet; 
2. :t <"·· P; 
3. repeat 
4. y ·f-- ;\:'; 

5. ."l' ~- N·- 1 (,t:') n P; 
6. until Y = "t'; 
7. return "1:'; 

'---·····--·-·····---··-·"-··~·-.... -_._ .... ~----~-.-..J 

BChwt(in P : stateset) : Htate8ct 

l. declare ;l;', Y, C, T : statc:;;et; 
2. C ~··· BUsat.('P,{it:;·p: icN'(i)}); 
3. T , ... ,1; 
4. while :Ji E 'P \ (C U 7) do 
5. .:\:' -t-· .EU.wtt(P \ C, {i} ); 
6. Y +~· BH.•wt('P \ C: {i}); 
7. if l.:l' fl Jll > l then 
8. c +· c u ,.1;'; 

9. else 
10. T .f·- Tu {i}; 
11. return C; 

Figure 5.6: Tra.ditional and satura.tion-basr!d EG algorithms. 

110 

In graph terms, consider t.he rea.eha.hility subgraph obtained by restricting the tra.usition 

relation t;o states in 'P. Then, EG7J holds in any state belonging to, or reaehing, a nontrivial 

strongly eonneetcd component (SeC) of this subgra.pb. 

Algorithm EC:itmd in Fignre 5.6 shows the traditional greatest fixed point iteration. It 

initializes the working set X with all states in 'P and gradually eliminates states that have 

no successor in X until only the sees of P and their incoming paths along states in Pare 

left. Tho number of iterations equal::,; the maximum length of any path over P that does 

not lead to such an sec. 

Applying saturation to EG. 

EC:itmd. is a greatest fixed point a.lgoritlnn, so to speed it up we must elim:inate unwa.n.ted 

states faster. 'J.'he criterion fhr a state i is a. rxmdnnction: i should be eliminated if all its 

successors are not in 1·'· Sinec it considers a. siugle event at a time and 1nakes local docisimJs 

t,hat must be globally eorreet, it would appear that saturation cannot be used to improve 

EGtmd . . However, Figure 5.() shows a.n a.lgorithm for EG which, like [11, 1iHi], enumemt.m-; 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 5. STnUGT'URAL CT:L .l\:tODliJL CHBC!lUNG Ill 

the SCCs by finding forwanl an.d backward r£~;whable s<:>ts frmn a st;at;e. Howev<.'r, it; lll'l<m 

saturation, instead of breadth-first sea.rch. Iu lim~ 2, Algorithm ECJ.~a.t disposPs of sdHoop 

stat(~S in P and of the sta.t.es roaching them through paths in P (self-loops ca.n bt~ f(>und hy 

performing :mx. using a m.odified set of matrices Nk,c where off-diagonal entl'iea are set. to 

zero). Thm1, it chooses a single state i E:~ 'P and builds the backward and forward readmble 

sets fro.m. i restrid;ed to P, usiug EChwt a.nd BSso.t, \.vhere ES is the dua.l in the pa.8t of 

EU. BSsat differs from EUsat only in that it does not. transpOS() t.he nmt.rices Nk,e· If X 

and Y ha.ve more tha.n just i in cormnon, i belongs to a nontrivial SCC and all of X is part 

of our answer C. Ot;herwise, we add i to the set T of trivial SCCs (i might nevertheless 

reach a nontrivial sec, in y, but we have no easy way to tell). The process ends wheu 'P 

ha.'l been partitioned into c' containing nontrivial sees and states reaching them over 'P' 

and T, containing trivial SCCs. 

EGsat is more efficient than EGtnul only in speda..l cases. An example is when the 

Elf sat and ESsat ealls in EG.5a.t find each next state on a long path of trivial sees through 

a single lightweight firing, while EGtrad always attempts firing eaeh event a.t each iteration. 

In the won;t ease, however, EGBal ean be much worse than not only EGtnul, but even an 

explicit approach, since it enumerates a.ll SCCs. }or this reason, the results section disr:nsses 

only EGtTad, which is guaranteed to benefit fi:om locality and the Kronecker encoding. 

5.3 l=tesults 

We compared our new Model Gheddug algorithms implem.cnt.ed in SM/\RI' with those in 

NuSMV [a:~]. In a.ll experiments, the time neeossa.ry to build the encoding of N is not 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

N lSI 

0.2 
1.0 127 

Table 5.1: I<Jxperimental results for computing EF and EU: srvwrr vs. NuSMV. 

1 t 2 

induded in the tables. While this time is negligible for our Kronecker encoding, it ean be 

quite substantial for NuSMV, at times exceeding the reported runtimes. 

Ta,hles 5.1-5.2 show tlw state-space size, runtime (in seconds), and peak memory con-

sumption (in megabytes) for the five models, counting MDD nodes plus Kronecker matrices 

in Sl\ll.ART, and BDD nodes in N uSM. V. 'I' here are three set;s of columns: stali(Hlpaec~ gener-

ation (a.na.logous to EF), EU, and J<JG. 

NotE~ tl.mt in N uSMV it is possible t.o evalua,te EU expressions without. explicitly build-

ing the stat,o space first; however, this substantially inerea.ses the rnnthm~, so that it ah.nost: 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GIJAP'J'.E.R 5. STRf)C'J'(JR,A.L OTL 1\JODBL CIJECKJNG 

X 

8.29x109 

1.46x1015 

3.oaxlo105 

'Table 5.2: Experimental results f()l' computing EG: SN!A.If.I' vs. NuSMV. 

equals the sum of the state-space generation and EU entries. The same holds f(n· EG. 

In srvw{r, the state-space construction is always exeeuted in advance, hence the memory 

consumption includes the MOD for the state spaee. We show the largest parameter for 

which NuSMV can build the state space in the penultimate row of each 1nodel, while the 

la:st row Hhows the largest parameter for which SMA.rrr ea.n evah1atn the EU and EG. 

Overall, Stv~L\RI' outpodbnns NuSMV time- and In(unory-w.ise. Saturation exeds a.t 

state-space generation, with improvements f)Xceeding 100,000 in time and 1,000 in rnemory. 

For EU, we can see the effect of the data struct;ures and of the algorit.lnn separat.dy1 since we 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

ClJ.AP'l'BB. r;, STRUC'TUHAL C'l'D MODBij OHBGKJNG 114 

report for both E Utrad and BUs at. When eornpar.ing the hvo, the latter reaches a, fixed p1Jint 

in f(Jwer itm:a.tions (n~eaH J.i'iguro 5.5) a.nd uses loss memory. While each EU:wt iteration is 

more cornplex, it also operates on smaller 1-tDDs, one of the berwfits of saturation. The 

perf(mnanee gain is more evident :in large lll(Hleis, where ElJtnul nms out of !ll<'imory before 

eornplet.ing the task and is up to 20 tirnes slower. 'I'hc eompariHon between our .BUtnul, 

EXltm.d and NuSMV highlights im::tead the differences between da.ta st.ruct;urm;. SMN~r i11 

still faster and uses much less mmnory, suggesting that. the Kronecker roprtlst.nrt.ation for thfJ 

transition rd.a,tion is rnuch more eflidonl; than the 2K-level BDD representation. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Chapter 6 

Counterexamples and Witnesses 

One of t;he most at;traetive features of Model Clwddng b; its ability to provide~ eouHterex­

amplos and witnesses fi.)r t.he propert:ies that are cheeked, as this allows the user t;o inspect 

execution traces in the model for debugging purposes. Tlw two notions are dual: whenever 

a formula Jn·efixed with the universal path quantifier, A, is not valid, the model dwckcr 

provides the user wit;h an execution trace that proves t:lw negation of the formula (a coun­

terexample). Similarly, for a valid formula prefixed with the existential path quantifier, E, 

the model checker delivers a witne88 to that. 

In many eases, however, this feature is the most time and space~consnming stage of 

tho cutin::~ verification process. For example, [40] shows bow to construct traces for queries 

expressed in the temporal logic CTL [36] under fa.irness constraints. A difienmt approach 

is taken in SAT-based Model Checking [1]. The search for counterexamples is conducted 

incrementally, by looking for execution traces of increasing length, <:tnd using a sa.tisflability 

checker instea,d of BDDs to verify the de:;;ired properties writt;<m as propositional logic 

t(mnulae. The resull:htg method, called Bounded Model Checking [0], is able to provide 

the shortest connl;erex~:unples. On the other hand, the method is incomplete, in the sensf~ 

that it cannot: give an answer when no counterexa.mples exist, and it is .limited in practice 

115 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

OHAPTB/1 (). COUNTI,:RlGXAJ\ilPDBS AND W1TNI<;B8EJ8 lHi 

to fl.nding errors wit;h short conntercxa,mplm;. 'I'he SATlH.lsed <lpproach lH'<~mnes colnpldn 

when appropriately cornbincd ·with the BDD · b<:1.sed approach, resulting in :1, hybrid method. 

Sirwe a, trace is usually meant: to bt~ exa.mined by a human, it i:.; particularly desirable 

for a model dwddng tool to comput;e a minimalleugt;h trace. Unforl.unat.cly, finding such 

t.ra.ee is a.u NP-compk~te problem [80], thus <t sub optimal trace is sought in most cases. For 

so1ne operators, finding winimallength witnesses is instead easy in principle. An example 

is the EF operator, which is closely rdat<xl t,o the (backward) rcadmbility relation: a. state 

satisfies EFp if there is an execution path from it to a st;ate wher<) property p holds. IDveu 

using sy1nbolie encodings [21], though, the generation and storage of the set;s of states 

required to generate an EF witmJss can be a major limit~ttion in p.raetice. 

ln this seetion we investigate th(! possibility of using the saturation strategy to build 

shortest-length execution traces for reaehability queries. This is based on the definition of 

the distance function between states/sets of states, which we introduce next. 

6.1 ,..The distance function 

The distance of a reachable state i E S from the initial state s is defined as b'(i) = 

m.in { d: i E Nil(s) }. We can nat;urally extend r5 : S -+ I''ll' to all states iu g by letting 

o(i) = t')O for any non~reachabk; state i E g \ 8. Altermttively, given sueh a fnnetion 

8 : g--+ Nu {oo}, we ca.n identify S W:> the subset of the domain where the funetion is finite: 

c• {. v::::: lE : o(i) < oo}. 

The f(Jrmula.tion of our problem is then: Givon a description of a structured discrete·· 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER, fi. COUNTEH.B.XA.lV:lPL.BS ANn WI'l'NE'SSES 117 

sta.te ~;ystmn (g·, s, NL deterrninc the distance l,o a.ll reachable st:n.tes, Le., compnt:e ami 

store i) : g -·t N U {oo} (note that the reachable state space S is not an input, n:tthor; it 

is implieitly ;tn output). This ca.n be view<:Jd as a. least fixed··point computation fiJr t:he 

functional (1:1: D ~+ ·v, wlwre '[)is the set of functions mappingS onto N U {oo}. More 

precisely, ~TJ rcfinos an approxima.tion of the dist;a.nce fnnct:i.on from the initial !)[OJ E V, 

def1ned a.c; t5[0l(i) = 0, if i = s, 8f0l(i) :='X) otherwise, via the ilim:ation 

Note that t.ho stat.e··spar.e construction is itself a fixed·poiut computation., so we seek 

now to efficient;ly combine the two fixed point operations into one. Before showing our 

algorithm to accomplish this, in Section G.2, we first describe a few approaehe1:1 to compute 

distance information based on existing decision diagrams technology. 

6.1.1 Explicit decision diagram encoding of state distances 

Algebraic decision diagra.ms (ADDs) [8] are an extension of BDDs where multiple terminals 

are allowed (thus, they are also called MTBDDs [44]). ADDs can encode arithmetic func­

tions frmn g to lFtU { oo }. The value of the function on a specific input (representing a state 

in our e;~"le) is tbe value of the tcrmin.al node reaehed by following the pa.th enc:oding the 

input. While ADDs are traditionally a ... <;soda.ted l;o boolean argument variables, tJxt,ending 

the argm:nents to finite int.eger sets is straightforward. 

The conlp<tdness of tho ADD ropres~mta.tion is related to the merging of nodes, exploited 

to a certain degree in a.ll deeision dia.gram8. In t;his case, there is a tmiquf~ root, but having 

many ter urinal values cau grw1tly reduce the degree of node merging, especially a.t the lower 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

118 

i2 () 0 1 1 0 0 l 1 

'tJ. 0 1 0 1 () 1 0 1 

Figure 6.1: Storing t,he dh;ta.nce funetion: ADD vs. forests of MDDs. 

levels, with respect to t.he NV.pport decision d£agmm, i.e., the MDD that encodes S s; g·. In 

other words, the number of (;erminal nodos f()r the ADD that encodes 6 : S -1 N U {<X1} 

equals the number of distinct values fiJr <5 (hence the "oxplieit'' in th<~ title of t.his section). 

If we merged all finite "valued terminals into one, thus encoding jnst S but not tho state 

distances, nmny .ADD nodes may be merged into one MDD node. 

An alternative explicit encoding of state distances ca,n be achieved by simply using a 

forest of MDDs. This approach is derived from the traditional ROBDD method, by ex-

tending it to multi··valued variables. gad1 of the distance sets Nd(s) = {i E S I 8(i) ""' d} 

(or {i E S I 8(i) S d}, which may require few<'lr nodes in some ea...::;es) ean he encoded using 

a separate MDD. Informally, this reverses the region whore most sharing of nodes occurs 

compared to ADDs: the roots are distinet, but they may be likely to share nodes down-

stream. 

The range of the function is critie<tl to t;he cnrnpact.ness of either representation: the 

wider tlu:~ range, tho leHs likely it is that nodes arc nH?rg(KL Figure 6.1 (a) and (b) show 

an example of the same distance function reprcsent<~d as an ADD or a~:\ a fbrest; of MDDs, 

respectiv<:!ly. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

(ill,APTEU. (}. COUNTBB.EXAMPDBS AND WJTNBSSBS 1W 

6.1.2 Sy:rnbolk encoding of state distane(;~S 

In this section we iutroduce a new da.ttt st.ructur("J that iH able to ston~ l;he dit>ta.nee function 

more effidtwtly. Th.is cfm be achieved by ~'clist.ributing" t.he va.lue:..; of the tenninalr.1.odes in 

thn ADD as the composition of Heveml IH!ln<:rkal values a,ssoeiated t;o thn arcs along pn,ths 

in the decision diagra.T.n. This is ba.Hed on lilw intuition that scattering tlw va.lue that was 

previously "concentmtcd" in a. single terminal node would increaBe the degree of nwrging 

of nodes, ::;o tlwt t;lwy share eomm.on ares. 

The idea of a.ssociating numerical values to the edges of regular BDDs was proposed in 

[93; 94], resulting in a. new type of decision dia.grams, ndge~-va.lued BDDs (EVBDDs) 1• 

Definition 6.1.1 An EVBDD is a direeted aeyclie graph that encodes a. total function 

f : {0, l}K -+ Z as follows: 

1. There is a single terminal node, at level 0, with label 0, denoted by (0)0). 

2. A non-terminal norte at level k, K?: k?:: 1, is denoted by (kjp); where pis a unique 

identifier within level k, and has two children, (kjp)[O].child and (kjp)[l].child (eorre-

sponding to the two possible values in S;J which are nodes at some (not necessarily 

the same) kvell, k > l?: 0. 

:3. Th(~ l-edge is labeled with an integer value (kjp)[l].vo.l E Z, while the label of 

(ki1~)[0].va.l is always (impli<:itly) 0. 

-·--~~ ... "--~"'""""""'"',.,-,""'""'""'''~"'~~·~•""'''''~~"n+<••••><"<>nmo•»J>'-""'~""""'"'-'~' .. "'"'~' 

1 We observe t;ha,t; also bina.ry rnorxwnt diagrams (BMDs), indepeudeniJy introduced in ll8j, asso-
ciate vahum to ()dges. For BMDs however, ev<~luating t.he function on a particular a.t:gmrwnt requires 
the trav<·rsal of multiple paths, as opposed to a unique path for EVBDDs. Thus, while very effective 
for verifying circuits such as a multiplier, IlMDs are not as suited for our approach. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GH.APTEll (i. GOUN'tBRFJXA:MPLBS AND WI'l'NEBSES 120 

iz 0 0 1 l 0 0 1 1 

i.l 0 1 0 1 0 1 0 l 

Figure 6.2: Canonical ;:md non canonical. BVBDDs. 

4. There is It single mot node (k1-l'r), for some /(? k,. 2 0, with no iucoming edges, except; 

f()r a "dangling" edge labeled with an integer va.lm.! p E 

5. Ca.nonidt;y restrictions a.na.logous to those of reduced ordered BDDs a.pply: 

ttniqwmcss: if (k!p)[O].chilcl = (kjq)[O].child, (kjp)[l].child ·- {klq)[lj.ch:ild, a.nd 

(klp}(l].val '"'' (k:!q}[l].val, then p ""' q; 

Teci?J.cedness: there is no nxlundant node (kjp) satisfying (kjp)[O].child :::::.: (klp)[l].child 

and (k!p}[l]:val = 0. 

The function encoded by an EVBDD uodc (kjp) is recursively defined by 

f ( · : ) ...... { i(kip)foJ.ch·ilrJUz, · · · , i J) 
{k!TJ) ~b ... '1.] - ' . . . . ' ' fu~:lp)(t].child(~r, · ·., ~1) + (kjp}[l].va.l 

if i~c = 0 
if ik = 1 

where l a.nd.,. are the levels of (ktp)[O].ch:ild a.nd (klp)[l].child, respectively, aml .f(olo) ::::.: 0. 

The function eneodt.ld by an EVBD D edge, that is, a (value, nodt;) pair is then simply 

obtai.ned by adding t.he eonstant ·ualtJ.e t;o the function encoded by the node. In p<:trt.ieHiar, 

t.he function encoded by the Ji~VBDD is f p + f(k,.ir)· 

Note that the n.odes a.re normalized to enfi:.Jrce canonicity: the value of t.he 0-edge is 

always 0. If this requirement were rnla .. 'Xect tlH'!re would be an infinite number of EVBDDs 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CIIAPTBH a. COUNTEHBX.AJI.:fP.LbJS i\.ND WlTNIEBSEB 121 

representing the sauw function, obtained by rnrtrra.nging the c}tl[.!;e valtws. An examplo of 

multiple ways to encode the function of Figure 6.1 with no.1.1 canonicaJ EVBDDs is shown 

in Figure 6.2 2. Only t;hol~VBDD inl<'igure G.2(a) is nm.·malir.ed. This node norma.li.:t,ation 

implies Hmt p -"'= .f(O, ... , 0) and may require fhe Uf1e of bot.h negative and positive edge 

More importa.ntl.y, if we want t.o represent functions such as our dist;;uH:o o : 8' -·t N U {oo}, 

we can allow edge values to be oc;; however, if 6(0, ... , 0) c:: oo, i.e., st,ate (0, ... , 0) is not 

reachable, we cannot enforce trw required uonnali:.mtion, since this impli~~s that pis oo, and 

f is identically oo as welL This prornpted us to introduce a. .tnore general normalization 

rule, whkh we presont; next. 

6.2 A new approach 

We use qua.si··reduccd, ordered, non· negative edge·-valued, multi way decision diagrams. 

To the best of our knowledge, this is t;he first attempt to use edge· valued decision diagrams 

of any type in fixed-point computations or iu the generation of traces. 

6.2.1 Edge-valued MDDs 

We extend EVBDDs ln several ways. Tho first extension is straightforward: fi·mn binary 

to multi·valued variables. Then, wn chango the normalization of nodes to a slightly more 

general one m~ed(1d for our task. Finn.Hy, we allow t.lw value of a.n edge to be O<l, siuee t;his 

is required to describe our dista.nce fundions. Note that the ehoiee t;o nse qua.si· reduced 

2The edge values arc written in Girded boxes on the corresponding arcH. Also, for better read­
ability, a rniBsing edge-vahw has to be int,erpret.ed as 0 the neutral element of integer addition, and 
the arcs labeled with cXJ are completely eliminated. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTB..lt 6. COUNTl~;H}iJXA..MPDBS AND W1T'NB8S.B8 

instf)a.d of n:dncnd decision dhtgra.lllH h:; nut dkt:<.l.ted. by limitatkmfl in tho deHcriptive pow<:r 

of EVBDDs1 but by effideney nmsidera.tiom; in the sa.t:mation a.lgorithm. 

Definition 6.2.1 Given a. function f : S ~·> Z U {oo}, an :EV 1MDD for f i cx1 is a. direded 

acyclic graph with labeled edges t.bat satisfies the fi)llowing propertief'l: 

l. 'I'here is a single terrnimtlnode, at level 0, with label 0, denoted by (OIO). 

2. A non~terminal node at level k, K:;;::: k :2: 1, is denoted by (kip), where pis a unique 

identifier within the level, and lw .. 'l n~;; ?.. 2 edges to children, (kip)[i,Jchild, l<tbelcd 

3. If (klp)[ik].val = oo, the value of {kjp)[ik].child is irrelevant, so we require it. to be 0 

for canonicity; otherwif.;e, (klr>)[ik].cldld is the index of a. node at. level J,; l. 

4. There is a single root node, (Kir), with no incoming edges, except f(n· a "dangling" 

incoming edg<~ labeled with an integer value p E Z. 

5. Each non--terminal node has at least one outgoing edge labeled with 0. 

6. AU nodes are unique, i.e., 

Figure ().~l shows two J<JV+MDD:> storing a total and a. partial:; fi.1nction, re::;pectively (the 

total funetion nncoded is that of Figures (U <tnd 6.2). Not.e tlmt, unlike th(! normalization 

""'"~~~<----··~-~~-~--~---~~--.. ---..-~--~··0~-----~ 3By "partial, we 1nean that. some of it,<.; values can be oo; whenever this is Uw casr\ we omit the 
corresponding value aucl edge from the graphical represental;ion. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAP'I'BH 6. COUN~l'BHBXAMPLBS AND lVITNg8SBS 

'tj 0 0 0 0 l l. 11 

iz 0 0 11 0 0 11 ·hOOll 0011 

il 0 1 () 1 0 1 0 1 •t:) 0 1 0 1 0 1 0 1 

:Figure 6.3: Storing total 'md partial arithmetic functions with gy·fMDDs. 

for EVBDDs, our nonna.liz::.1.tion requires tha.t the labels on (non dangling) edge:; be non-

negative, an.d at least, one per node be :~.ero, but not in a pre·dct;ennincd loeat:ion; compare 

the EVBDD of Figure 6.2(a) with the equivalent; BV+MDD of Figure tl.:~(a). The fund.ion 

eneoded by the EV+lVIDD node (kip) is 

and we let f(ojo) = 0. As fbr I<JVBDDs, the function encoded by the EV+MDD (p, (Kir·)) is 

f = p + .f(Kir)· However, now, p = min{f(i) : ·i E Sk x · · · x Sl}. In our application, we 

encode distances, which are non··negativc, thus p = 0. 

6.2.2 Canonicity of EV+MDDs 

Lemma 6.2.1 From every non torminal EV+MDD node, there is a.n outgoing path with 

a.ll edges labeled 0 reaching (OIO). 

Corollary 6.2.1 :F'unction f(kjp) encoded by node (kip) is non~nngative and min(f(kjp)) = 0. 

Definition 6.2.2 The graphs rooted at two EV+MDD nodes (kip) a.nd (klq) a.re isomorphic 

if tbere a. bijection b frmn the nodes of the first graph to the nod()S of the sceond graph 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CFliiPTE.H (i. GOUN'I'EHBXAJ\IfPDBS AND WlTNBSSEJS l2tl 

sueh UmL, for each node (lis) of tho first gra.pb and eadt ·i~, E S1 (with k ~~ l 1): 

b({ll-~))[il].child '"'' b((l!s)[it].chil.d) and b((ljs))[iz].val = (ljs)[·it].val. 

Theorem 6.1 (Canonicity) If two liJY1MDDs (p1, (Kjr1)) and (p2 , (I<jr·z)) encode the 

same function .f : S -1 r':;j U {c,o}, then p1 :.:.·" p2 and the two labeled graphs rootl'~d at: 

(Kj·r1) a.nd (Kir·2) a.re isomorphic. 

Proof. It is easy to see that, siuec the value on tho dangling edges of the two I<JV+MDDs 

equals the minimum value p the eneoded function f can assume, we must ha;vo Pl = P2 == p, 

and the two nodes (K!r1) and (KjT2) rm1.st nueodfl the sa.me funct:.ion f ·- p. We then need 

to prove by induction tlmt, if two gPneric gv+MDD node8 (kjp) and {klq) encode the same 

function, the labeled graphs rooted at them are isomorphic. 

Induction base (k = 1): if (lip) and (llq} eneode the same function f : S1 -> N U {cx1}, 

(ljp)[il].child = \llq)[i1].child = 0 and (ljp)[it].1J(tl = (llq)[il].val = f(ii) for all i1 E St, 

thus the two labeled graphs rooted at (lip) and (llq) are isomorphic. 

Induction step (assume claim true f(n k- 1): if (kip) and (kiq) encode the same funetion 

f : sk X . X St -7 N u { 00 }, consider the function obtained when we fix 'ik to a partir:ular 

value t, i.e., fiF"'·· Let g and h be the functions encoded by (klp)[t].ch:ild and (k!q)[t].child, 

respectiwJly; also, let (k!p)[t].val = o: and (kjq)[t;].val ~·.~ /1, and observe t.lmt the functions 

n + g aud f? +· h must coincide with .fik "t· However, because of Corollary ().2.1, we know 

tha.t both the g and h evaluate to 0, their minimum possible valm~, for at leaHt one choice 

of the arguments (ik-1, ... , i 1 ). Thus, the minimun1 of values n + g and ;3 + h can have are 

n a.nd /1, respeetively. Since a + g and fJ +· h a.rc the same function, they must have the 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

o.::~ then return (!1, q); 

2. if (1 :::.;::. oo then return (o:,z,); 

3. if k = 0 then return (min(o:, {3), 0); • the onl,Y node al; lovcl k = 0 llns .iadox 

4. if Oa.ched(.IEVtL.nion,k,p,q,o tJ,(J,u.)) then • .mal;cfl (k,p,q,ct (3), retum h~·n} 

5. return b+min(o:,/3),H); 

6. 'It f-- NewNodc~(k); • creat!J zww uod<:J at; lovol k wit;h edges sol; to (oo, 0) 

7. It f.- min{ or, {1); 

8. for ik 0 tonk 1 do 

9. p' +- {kip).child[i,;]; r.:l +- o:- fl· + (klp).vallifJ; 

10. q' +~" (klq).chilcl[ik]; f-J' ~··- J] -· ft + (kiq).va.l[·ik]; 

11. (klu.)[-ik] +- UnionMin(k-1, ((i,p'), (13', q')); • conUww downstream 

12. Chcckb1.(k, tt.); 

13. Pt.~t.lnCache(ET.lumion, k,p, q, o; (3, (p., u) ); 

14. return (p., ·u); 

Figure 6.4: The Un-ionMin algorithm ix)r FJV+MDDfi. 

same minimum, henco a = (3. This implies that g = h and, by inductive hypothesis, that 

(klp)[t].ehild and (k!ql[t].child am isomorphic. Since this argument applies to a generic child 

t, the two nodes (kjp) and (kjq) are then themselves isomorphic, completing the proof. 

6.3 Operations with EV+MDDs 

We are now ready to discuss manipulation a.lgorithms for EV+MDDs. We do so in the con· 

text of otu state spa.ee and distance generation problem, although, of course, tJte Union.Min 

function we introduce in Figure 6.4 has general applicabilit.y. The new types used in the 

pseudocode of Figures ().4 and 6.6 are val·ue (for edge va.lues) and edge, denoting a pair 

(val·ue, iruie::c) (i.e., the type of (klp)[-i]). 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTBn 0. COUNTBJU:CX.A Ml'DfilS AND v1'1TNEJS81~S l:W 

'l'he UnionMin algorithm comput,cs Uw tnininurm of Lwo partial fur1ctiou~. 'l'his adt1 

Hko a dual operator by performing tlw ur1i.on on the support set::> of stat;mJ of thn two 

op<~ntmh~ (whi<:h must be defined ovor tho sanw potential s1;ate spnce ,g), and by finding 

the tniltinmm value f(,r the emnmou dmneuts. The algorithm stru·ts at t.h<~ roots of the t;wo 

operand EJV·I MDDs, and rm:ursively descends along nJ.ntehing <~dgns. If a.t some po.int: o.rw 

of the edges has value oo 1 the recursion stops and n~turns the other odgo (sinee CX) i::t tho 

neutral value with resped; to the rninimum). If the other edge has value !XJ as woH, the 

returned value is ( oo, 0), Le., no states arn added to the union; otherwise, if tht) other edge 

has finite value, we have just; found states reachable in one set but not; in the other. lf tho 

recursion reaches instead all tlw way to the terminal node (O!O), the returned value is nw 

minimum of the two input valnes a and (3. 

If both f~ and (1 are finite andp a.nd q are non-termina.l, Union.Min "keeps" the minirnurn 

value on the incoming ares to the operands, p., and "pushes down" any residual vaJue a~ Jt, 

if It = {3 < a, or lJ - Jt, if p. := a < (3, to the children of p or q, respectively, in its 

recursive downstream calls. In this ea.se, the returned edge (p,, u.) is such that p, + f(klu) = 

min( a+ f(klp),/3 + f(klq))· 

An example of the application of the UnionMin algorithm is illustrated in Figure 6.5. 

The potential state space is Sa X ~'h X sl = {0, 1, 2} X {0, 1} X {0, 1}. The functions encoded 

by the operands, f and g, are listed in the table !.o the left, along with Hw result function 

h = rnin(f,g). 

Len:una 6.3.1 The eall UnionMin(k,(a,p),(/:J,q)) returns an edge (p.,v,) such that f'· "'" 

min(cv, f:J) and (k!·n} and its descendants satisfy property 5 of Definition 6.2.1, if (kjp) and 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

C'JiAPTg.n (;. COUNT'BltEJXAMPLBS l1N1) W1TNB88E78 127 

·iz () 0 1. 1 0 0 1 1 0 0 1 1 

ii 0 1 0 1 0 1 0 1 0 0 1 

f 
g 
h 

Figure 6.5: An nxarnple of the Union.Min operator for gy+rvrDDs. 

(klq) do. 

Proof. It is irnmedia.te to see that p -= min( a, ,6). To prove that (kiu) sa,t;isfies property 

5, we use induction: if k = 0, there is nothing to prove, since property 5 applies to non-

terminal nodes only. Assume now that the lemma is true for all calls at level k- 1 and 

consider an arbitrary call UnionMin(k, (cv.,p), (fJ, q)), where the input nodes (kip) and (klq) 

sati8~Y property 5. If n or ~1 is Xl, the returned node is one of the input nodes, so it 

satisfies property 5. Otherwise, since JL ::::: miu( n, /1), at least one of (l' - JJ. and {J -· 11. 

is 0; sa.y o: - p. =~ 0. The values la.bding the edges of (k!·n) are cornputed iu line 11 of 

UnionMin. Since (kjp) Rati:-;fies property 5, there exists i~c E {0, ... , n~c ···1} such tha.t; 

{klp).val[i,.:] = 0. Then, for the corresponding iteration of the for"loop, n' is 0 and the edge 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GHAPTgH. 0. C!OUNTE.TU~iXAlv1PL1IJS AND Vv'I'I'NESBES 

returned by Un·ionMin(l,; ..... 1, (ct', rO, (1-J', q')) i:" (miu(n:1 ,/:11
), u/) 

satisfies property 5 by indnction: tlms, (1•:!·u.)[ik]·val is set. to 0. 

128 

(0, ·n'), whem (k llu') 

We eondude the discussion of UnionM·in by obsE~rving that the hash key for tlw ent;ri.es 

in til(! union/min eaehe is fonued by the two nodes (pas~:~ed as level, indea;, inde:e, sinct:l 

tl~t; nodes arc at the sa.uH~ level) pluH t.he differenee (.~ j:J of tho vah1es lttb(;ling two 

edges pointing to t:host:J nodes. This .is better than using th<l key (k,p, q, o:, fJ), which would 

unneeessarily dutter the ea.che with entries of the f(Jrm (k,p, q, (.t + r, fJ + r, (p. + r, u)), for 

all the values of r arising in a rmrtkuhu execution. 

6.3.1 State-space and distance generation using ~JV+MDDs 

Our fixed point a.lgorithrn to build and store the distance fund.ion li, and implicitly the stat,e 

spaceS, is described by t,he pseudo code for BuildDisiance, EVSatumte, and EVRo:Pin~, 

shown in Figures 6.6~(i.7. Given a model (g,s,N) we follow these steps: 

1. Encodes into an initial I<JV+MDD node (KIT'). This ean be done by building the MDD 

for s, then setting to 0 all edge values for edges going to tr·ue (called 1 in the MDD 

tenninology of [27]), setting the rema.ining edge values to oo, eliminating the terminal 

node fo.lse, and renaming the terminal node l1"Ue as 0 (in EV+MDD terminology). See 

[27] on how to build an MDD when s eont.a.ins a single state. In general, the MDD 

encoding of s wlll be d<~rived from some other syrnbolie computation, e.g., it will be 

already ava.ilahle as the result of a temporal logic query. 

2. Call BnildJJ·is tance ( K, r·). 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

(}HAPTEn fJ. COUNTB.HBXAMPLBS .AND Wl'l'NE8BBS 

BttildDi8tance ( k : le·ud, p : indca:) 
1. if k > 0 then 

2. for ik 0 to n~r. - 1 do 

3. if (k!p)[·iJ.:].vnl < oo then lJnildDistance(k- l, (klp)[-i~;:].child); 

4 . .EVSot~tmte(k,p); 

E VSatur"(J.te ( k : level, £1 : 'inde:1:) 
1. repeat 

2. r)Ohanged +- false; 

3. foreach e E t:k do pOhanged +- 11Changed V BVFiTe(e, k,y)) 

4. until 11Clumyed = falBe; 

5. Cher;kln(l.:,p); 

VPim(e: event, k: level,p: index) 

1. pClumged +- f<dse 

2. £, ,_ {'ik : Nk,t:( i1;) ::/= 0 1\ (klp)[ik]· val :;£coo} 

3. while £, f: 0 do 

4. pick and remove ·ik from £; 

5. (o·,f) +- EVRecPir-e(e,k·-1, (klp)[iA:]); 

6. if o ::}= oo then 

7. foreach jk E Nk,c(ik) do 

8. (f),v.) ~-- UnionMin(k-l,(a+l,f),(kip)[j~r,]); 

9. if ({3,u) =f.:(klp)[jk] then 

10. (klp)[jk] <(-- ((3, tt); 

11. pChanged +·- true; 

12. if Nk,cCik) :P 0 then £ <~ DJ{jlc}; • rcmem/wr to explore Jk later 

li'igure 6.6: The pseudocode for BttildD'i8tance, BVSatu:rnte and EVl~'ire. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CFVt.PTE.ll 6. (iOUNTm:U<JXA.MPLlDS .AND WITNBSSBS 1:m 

EVRecF'in:(c: £mcnt, k: level, (n, q) : ndge) : edge 

L if k < Bot(tl) then return (1v., q); 
2. if C(l.ched(.lEVFJllE,k,q,e,(t,s)) then 

• .leve.l k .is not; t:dfcctcd hy evant. e 
• mal;cil (k,q,t:), rel;urn ('Y,s) 

3. ( ) return 'Y +· o·, 8 ; 

4. s <-- NewNode(k); • crcttte new 11ode a.t .leve.l k w.it.l1 edges set to 0) 
5. BOha.ngcd +~· falsr:; 
6. £ +·· ik: Nk,<,(irJf01\ (kjql(i~.].vttl;f,cx:;} 
7. while L: :I 0 do 
8. pick and remove 1;11: from .C.; 
9. (</>,f) +- BVRecFire(e, k- J, {kjq)[·i,.;]); 

10. if rf> ¥· ex:; then 

11. foreach Jk E Nk,~;('tk:) do 
12. (!3, tt) <:·· UnionMin(k-··1, ((p,J), (kjs}[jk.l); 
13. if (/1, ·u.) f. {kjB)[jk] then 
14. (kj.<J)lfk] f- (fJ, ·u); 
15. .'!Changed f- trw;; 
16. if sChangcd then FJ1l8atnmte(k, 8); 

17. 1 ~- Nomwlize(l.:, s); 
18. s +- Cfu~ckln(k, s); 
19. Pv.t!nCache(.l£v'FIRB, k, q, e, ("!, .s)); 
20. return (I+ a, s); 

"-~---""""_, __ ........ ,,.,,.,,, ... ,,,,,,,,.,.., __ , ______ .~--~----~---··-~--~·------· 
Figure 6. 7: The pseudo-code f(>r EVRcc.'Pim. 

The uew function Norrnab:ze(k, 8) puts node (k:l.s) in canonical form by computing tt 

min{ (k!s)['ik].'Val : 'lk E SA;} and subtracting p, from each (ki.<J)[iA:].vaJ (so that at least one of 

them becomes 0), then returns ft.; in particular, if all edge values in (kjs) are cx1, it returns 

oo (this is the case in hue 17 of EVRecf?irc if the whil~loop did uot manage to fire e from 

any of the local states in£). 

'I'lw hash- .. key for Lhe firing eaehe does not use the value a on t.he incoming edge, 

because t.he node {kl8) eorresponding to the result; (r, s) of FJVRecP·iTe is independent of 

this quaut;ity. The edge value returned by EVRccFin~ depends instead on o~: it is sirnply 

obtained by adding the result of Nom1.al1:zc(k, s) too:. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

OHAP'l'BH ti. COUNT'EHBXi\t\.:lPLBB AND WITN.fi:SS.BB 

BVRecPirc may push nx:em1s vahws upwards when nonw\.lir-iug a node in line 17~ tha,t; 

.is, residual values are movt3d iu tiw opposite direction as in l.htionlkfin. However, the 

nomw.lize~.tion procedure iH c~a.lled only once pt~r no(l<J (when the node ha.r;; been Hal;uratHd), 

UHn:ofore excess values are twt bounced bael<: a.nd f()rth repeat:edly along edges. 

6.3.2 ,..I'race generation using EV+MDDs 

Once the EV+l\fDD (p, (K!r)) encoding 8 and S is built, a. short<)st; lengt.h trace from any 

of the states ins to one of the statteJs in a set; .:t' (given at input a.s an MDD) can be obtained 

by backtracking. For simplicity, the following algorithrn does not, output; the i<l<mtity of tho 

evonts along the t;race, but this option could be easily added, if desired: 

1. Transform Ute MDD for .::t' into au EV+MDD (fJ:1:, (.Kix)) encoding ..,.y and <5.r, using 

the approach prcviou~;ly described for s, where Sa:(i) ~..., 0 if i E X and S,r,(i) ';,";;;; oo 1f 

2. Cmnputc Inter·sect·ionMa.x:(.K, (p, T), (px, x)), which is the dual of UnionMin, and 

whose pseudo··eode is exactly analogous; let (p., (Kim.)) be the resulting EV+MDD, 

which encodes ,:\;' n S and the restriction of <5 to this set; (JL is tht1n the lcugth of one 

of the short.est·paths we are seeking). 

il. Extract from (ft, (K!·m.)) a state j[l.t] ( .[p.j ·[I"]) ' ,. l·'i 1 ·· · tl f' (v'l· ) JK, · · · ,J 1 CUCO( U >y d. pd. l .. rom .r\ rn 

to (OIO) labeled with 0 values (j[Jl] is a sta.t<~ in ;\;' a.t the desired. minimum distance p. 

froin s). The a.lgoritJun proceeds now with an oxplicit Havor. 

4:. Initialize 11 to It and iterate: 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTl:iJH r;. OOUNTl~RBXi\.MPLBS AND VV.l'l'Nl~SSB8 

(a) Find all states i E S Hueh that j[:.1] c N(i). With our boolean Kronncker encoding; 

of N, thh;; '(one step baekward'' is ea,sily performed: we simply ha:vc to usc the 

transpose of t.lw matrices Nk,c· 

(b) For t:m .. eh such Htat~c i, eon1pute 6(i) using (p, (Kjr)) and stop on the first i Hrtdl 

that 6(i) 11- 1 (t;lwre <:xists at lea .. 'lt one such stat;e i"'). 

(c) Decrmnent; ll. 

The cost; of obt~.tining :i[p.l fl..'l the result of the lnter·section.Ma:r: operation is O(ff.(.KJ7·) · 

#(KJx:)), where# indicates tho number of BV+MDD nodes. The complexity of !;he rest of 

the algorithm is then simply O(p. · .M · K), where M is tho maximum number of incoming 

ares to any statE'! in the reaehability graph of the model, i.e., M = rnax{jN·- 1(j)l : j E S}, 

and K comes from traversing one path in the EV+MDD. In pra.etice M is small but, if 

this were not the ease, the set N··-l (jl"'l) could be computed symbolically at; ead1 iteration 

instead. 

Generating the same trace using traditional symbolic apprmtches could f()llow a similar 

idea. If we used ADDs, we would start with an ADD encoding the same information a.s the 

EV+MDD (p3;, (.Kj:r,)), cmnpute the ADD equivalent to the FJV+MDD (tt, (.Kim)) using a 

breadth--first. approach, a.nd pick as j[P.J any state lnading to a terminal with minimal value 

p .. If we used a forest of MDDs, we would compute 1;, "''c mi11{d: N<i(s) n ,-\:' f. 0}, a.nd pick 

as j[tt] any state in N't II,.{'. Tlwn, the backtracking would proceed in exa.ctly the same wa.y. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

In either case, however, we m·e diseovering states Ryinholkally in hnm.dth· first onlm·: 

thus we eoulcl dtoose to perf(>rm an interseetion with ,{.' after finding each additional set 

of sta.tes Nd, and st;op as soon as lfd(s) n ,i:' :f: 0. Overall> we wouhl then have (~xplornd 

only {i : r5(i) :::; ;.t}, which might. he a. strict. subset of tho entire state Hpace 8. Howevtlr, 

t.wo obsm:va.tionw are in order. J4'irst, while this ''optimization" rm~na.ges fewer stateii, it may 

well rnquire rm:tny Inore node~s in the symholie representation: decision diagrams are quit;e 

count;erint.nitive in this respect. Second, in many verification applications, the state::; in 

,l' satisfy some property, e.g., "being a d€l[tdloek", aud they can only be rcaehed in sonw 

obscure a.nd tortuous way, so that; the minimum distance ,,~, to any state in ,.y is in pmdicc 

do::-;e, if not equal, to the maximum distance p to any of the states in S. 

Tho advantage of our approach is that, while it must explore the entire S, it can do 

so using the idea of saturation, thus tlH; resulting dodsion diagran1H a.re built much more 

efficiently and require much less memory than with brendth-,first approaches. The following 

seetion confirms this, focusing on the first and expensive phase of trace generation, the 

computation of the distance inf(mnation, since the baektra.cking phase has negligible eost 

in comparison and is in any case essentially required by any a.pproach. 

6.4 R,esults 

To stress the importaucc of using a saturation based approach, we compare Lhe three types 

of encodings for the distance function we have discussed, EJV+MDDs, forests of MDDs, and 

ADDs, .h:.t cor~junction with two iteration st.ra.t:egies, based on breadth first and saturation, 

respectively (Hee Table 6.1). Since only breadth ·first is a.pplica.blf~ in t.he case of forests of 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPT.EH (). COf1N'l"BHEXAMPLl~i8 AND WJTNB8S.l!JS 

Table 6.1: gxpodnHmta.l r()sults J(n· cmnpnUng the dist;ance funetion. 

--·r _:: ___ ,~'· 
~-~ ..... ·· · .... ~ -·'.f'i1t1(;····· ··-··-~--·-·T-·--· .. ·· ~--·-.. ···"'·~-- NurrJ)e! ~)( tlod()s .... · · ··-·--·-- ··--.. ~-

~-t§-Il~~~l ~y;:)Jl~ .. ~~-:~]~::.rt~.~~~:;;;J -~1~:1 -~~~ .. ~r~F~~;~~[]~~-cX~~y .. :~r~:~-r~~-~1~;~~ 
Dinin~ p~ 

5 L. 
1ilo~opher::;: lJ:;;::. 2N, K IN 2 , ISk I i~·4 for all k <'Xcept. IStl'·"" g whf'n N is odd 
·-1\3 -"-""' . . . . ·:--· -·-···· -·-·~.,.....-----,~ 

3· 10· 0.00 0.01 O.ol. 0.01 0.03 11 83 i\8 11. 172 '.18 ·1;H 
10 9·10!i tUll O.Of> 0.05 0.12 OAG 21 25fi 170 21 G05 6<14 2iJ8 4022 u 
20 :3.5· 10 1"- 0.01 O.:l4 0.28 UH 0.00 't6 1100 740 ,i6 2990 ::107!) LW3 H8942 
25 4.7· 101s 0.01 0.59 OA7 4.00 26.08 fil 189i3 1178 61 5215 5:.1:)4 HJ:38 79()74 
:m GA· 10t8 o.o2 o.sG o.7o ·1.:m 56.80 11 2545 :tno 7225 7364 2788 140262 

1000 9.2·1 oo26 OA8 
Kanban s r-a e:" 

,), " 

'.Ystem: D ,;-u,v; J?':;:;:; 4, ]s:1 
-~s.Iir CJ:o1 ·cr.1n o.o2o.0:~1 .........:,~".....;;..~~~:::0· 464··~284 ·--3I3:3 

5 <>·106 0.02 0.14 0.12 0.24 1.55 f) 57 1.156 77ti 1:~241 2.~::: 

7 4. 2·107 0.04 0.51 0.42 0.94 7.7!) 11 8,!8 !Ki 2112 216fi 1600 35741 
lO J·l09 0.16 2.10 1.68 'LG8 ·i8.8(::i 14 1673 lf)2 4041 4Hi0 :361G 98848 Lf 
12 51::: ·< )·109 0.~~4 4.:l4 :3.115 11.08 129.46 16 23fi8 518 218 !563:1 5805 5585 lG59:18 
50 Ul· l()lfi 179.48 -·"· 58 2802 

~:Ff<.;x :rrli1:t 
~---:r-·-4 

' .~' 

rur syst.:D ;;-nz .. r:R =co T9~·~:~~~r;;:']\Y.~B()i="'i;ifn:· (lXCOpt JSI71 = •:l,l~\21 ~;:r,-,5;z·r~2 ~--·-·-·· 
9·10' o.oo o.12 o.0.9 ""iY. 1I"s'f-2o75 37657 

, _ _,_ ___ _,., '~"~' 

2G 1.58 88 1925 ll!H 116 5002 ' ' 
5 2*~ 9·10Ei O.Cll 0.42 O.M 0. :1693 4908 179577 88 11.78 149 5MO 298H 211 15205 H 
7 G. , 6·107 0.02 1.05 0.85 2. 37tll 9027 j)23223 08 65.32 222 12070 57~19 :.326 32805 3~ 

10 2.~::: ;:dOH 0.04 2.96 2AO G. 86-1!} 17885 1681625 7!) 608.92 354 28225 11894 536 7()()7(i .. 
I 

140 2.0· 
Rouncl .. n 

102a 20.0~{ 
)biri ... tn1'lt:ex-'p-r._ot_o,L<:c-.)l~: -::::D = 8N -·6, ]{. = N + 1, JSk 1 =::1.0 for all k except !StT;, 

...... ~ --- .. -=~~_2 .. 12 ..... 52864 ~"·~u< 

' 

10 3-:to' om. o.rJ6 o.o5 "''"(f22 -:w7 1898 "'I?i18- ... 121o 9245 2.~ 

15 1. 1-106 o.rn o.l5 o.I4 1.00 212 ·1774 4885 a;~os M897 
20 ""'·107 o.o2 o.32 o.:n 3.10 322 0210 9467 6!:)01 921110 4.t 
25 8-10° 0.0:3 0.59 O.M 7.89 477 156a6 1594<1 12:364 198839 1.. 
30 7.2· 1010 0.05 0.95 0.89 16.04 637 24122 24566 20072 376609 

200 7.2· 1062 1.6:3 1292 
---'----·-" _ ................ -.L...........~..L.....------1 

MDDs, this leads to five cases: EV+MDD with saturation (B8 ), EV+MDD with breadth-

first (Bb), forest of MDDs with brearlt.h first (lvh), ADD with saturation (A.~), and ADD 

with breadth-first (A0). Note that only Mb aud Ab have been ur;ed in the literature before 

[8, :39], while .B8 and Bh use our new da.ta. structure and A$ applies the idea of satumtiou 

to ADDs, thus it is also a new approach. 'I'he .ADD algorithms are conceptually s.imiln.r to 

the EVl-M.DD ones with several differences in the UnionM·in and l?ecF'ire procerlures. The 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Clfi\P'l'B.H a. COUNTEIU~Xi\.1\.iPDBS AND WI'T'NES81'JS 

ba.se ca.scs for the .A.DD version of Union1'vfin(k, p, q) a.re 

if p = q V .'P \X) return q; 

else if q oc return p; 

else if k =" 0 return min(p, q); 

For t.lw ADD version of the RecJi'in~(<~, l, k,p) procedure, we obs(wve that, for allilrings, thH 

recursive calls have to reach the terminal nodes on all oecaHions, hfmce they no longer stop 

at level Bot(e). 'J'he b:1.se case is them 

if l ::".::: 0 then return p + 1; 

We irnplmnented the five algorithms in g_ti,Wti' and used them to generate the di::;tanee 

function for the entire state space. The suite of examples is chosen from the same bendnna.rk 

we used in previous experiments. For ca.d.1 model, we list the maxhmun distance JJ, the 

number K of levels in the df~cision diagram, and the sizes of the local st;:1to spaces. For each 

experiment we list the maximum distanee to a reachable state, which is also the number 

of iterations in the breadth·"·first approaches, the runtime, and the number of nodes (both 

final and peak). 

In terms of runtime, there is a. clear order: E8 < Et1 < Af0 < As < A/J, with Es easily 

managing much larger systems; .B8 , B1, < Mb < A8 , Ab dearly attests to the effectiveness 

of the data structures, while E'8 < E'b and A8 < A0 attest to the improvements obta.:inahle 

with satura.t;iono· based a,pproaches. 

\Vit;h gy·+MDDs, in particular with EH, we can scale up the models to huge para.nteters. 

'l'he other two da,t,a structures do not scale up nearly 1113 well and run out. of memory. lu 

tenns of .memory consumption: Es < A 8 < Eb P::J l'vfb < Ab for Hw peak m1mber of nodes, 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

whi]() E'$ E'b <: A8 A11 :::::t. ll:h for tho final muuber of nodes. The key obs£~rv~:~t:ion is tha.t 

Es substantially outperforms all other methods. Comparfld to Af1, it is over 1,000 tiu1es 

t~.1ster and uses f<Jwer peak nodes) also by a. factor of 1,000. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Chapter 7 

Application: the Runway Safety 

Monitor 

In this ehapter, we present the rosnlts of applying our new mod<:~l checker to a real-life 

industrial-size a.pplieation: the Runway Safety Monitor. The applica,tion was made avail.able 

to us through a collaboration with NASA Langley Research Center. 

7.1 The Runway Incursion Prevention System 

The Runway Safety Monitor (RSM) is a component of NASA's Runway Incursion Preven­

tion System (RIPS) research. Designed and implemented by engineers at Lockheed Martin, 

RSM is intended to be incorporated in the Integrated Display System (IDS), under devel­

opment since 1993. IDS also includes other aircraft and ground--bai-led incursion detection 

and prevention algorithms, sueh as TCAS (60]. The IDS design rna.kes it easy for RSM 

to exploit t,he existing data con1munieations facilities, displays, Global Positioning System 

(GPS), a.va,iktble ground surveillance system infonna(,ion, and data links. 

Collision avoidance protocols already exist and operate. TCAS has beeu in use since 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTB.R 7. AP.PIJCATION: THE RUNWAY' 8.1\F:l~TY MONITO.H. 

1994, and it Is now<uh~yB required by FAA. on all commercial US a.ireraJt;. 'T'CAS h::1.s a. full 

formal spodfication, but it has been verified only partially, not; fully, due to ib; eomplex.ity 

which arises ruostly fnnu modeling the trajectories of planes with trigonon1etric f.\md;ious 

and linear equationH. 

lJnlikt:l TCAS, the goal. of HS.M is not to p1·event hazards, but mther l;o dett:d them. 

The runway incursions are defined by the :~bdeml Aviation Adn1inistn'ttion [7a] <4": 

"any occurrence at an airport involving au aircraft, vehide, person, or object 

on the ground, that erea.tos a. collision ha.:;r,ard or results in the loss of Sflpar:ation 

with an aircraft taking off, intending to take off, landing, or intending to land". 

The prevention part is provided by other components of RIPS in the .tbrn1 of a r.rumber of 

IDS ca.pa.bilities: heads up display (I:HJD), electronic moving map (EMl\ri), cockpit display 

of traffic infonna.tion ( CDTI), taxi routing, and others. 

Experimental studies conducted by Loekheed Martin [73] showed that "incursion sit­

uations are less likely to occur wheu IDS technology is employed on aircraft, but in the 

ev(mt. tha.t IDS fails to provide complete situa.tional awareness, RSM plays an even more 

important role." 

Figure 7.1 shows the high level architecture of the RSM algorithm. RSM runs on a 

device, installed in the coekpit, t,haJ is turned on before takeoff' and la.nding procedures on 

airports. The traffic is monitored in a ;r.one surrounding the runway where the takeoff or 

landing is to take pl<tc(~. The zml(' is a thre(~""dimensional volume of space t.hat runs 220 

feet laterally from Uw edge of the runway, np to 400 feet of altitude above the runw::ty, a.nd 

1.1 na.utkal miles from the runway ends. The 400 feet altitude corresponds t.o a glide slope 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CFJAPTEJH 7~ APPDlCATION: T'HFJ RUNWA1r SAFEJ:l'Y MONJTOH 

IDS 
Traffic 
Monitor 

1 

End• ltllffk '·"' 

RETURN I Tt-.stiup; m)t requh{"d 

I Owllc<llip n<>t ln Z<>rlt 
'--~r-~r----' 

No Incursion 
clear alert flags/data 

IDS 
Runway Safety 

M.nnitor 

! 
Start!Stop/Contimw 

l.ncun;ion Testing 

Track all Tmffic 
inlncursion Zone 

1 
Opc~ratinnal Slates 

Mntrix 

Test Own-ship in 
h11:ursiun Zorw 

Test Traffic in 
lncurskm Zmw 

Figure 7.1: The Runway Safety Monitor flow chart. 

of i3 degrees for takeoff/landing trajectories. 

The protocol refers to the aireraft that is operating on as ownship, a.nd to other aircraft, 

ground vehicles using the same runway, or even physiea.l obstacles, snch as equipment, as 

targets. 

The protocol, written in the C language, consists of a repeat loop containing three major 

phases. In the first phase, the device gathers traffic information from radar updates (coming 

through a data-link). It identifies each target JW'Sent in the monitored zone and stores its 

3-D physical eoordinates. lJpdn,t,es may not be received with a constant frequency, but 

rather irregularly, a.nd can oven be faulty. The implications of data link errors or lack of 

input are not addre:;sed in thh; study, as it is a challenging task in itself. It has already been 

the subject of smne experimenta.J xneasurmuents, and the analysis of faulty beluwior carries 

a stochastic/probabilistic Ilavor, not. captunxl in our present model, which is eoneemed only 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CJiAJ)'I'ER 7. .APPLZCAT'ION: TJ:JB lUJNn:AY SA z,>gTY .MON.IT'OU 

with logicnl o.rrms. 

In. thH seeond phase of m:wh iteration, the algorithm assigns to each target a stat'ttS, from 

a, pre-determined t:>d. of values that includes taxi, prP-talmofr, ta1woff, dim.!Hmt., landing;, 

roll-out and fly-through modes. The definition of these states is describ(ld iu detail when 

discussing our m.odel of the sy~:>tenL 

The third phase is respom-1ible for deteeth1g th.e incursions, and is pm:fo.nned for eaeh 

target bt:'l.."'ed on the eornbination of physical coordinates of ownship and t;he htrgf:lt (position, 

heading, etc), and some additional conditions. Table 7.5 shows the operational state matrix 

of the testing for incursions phase. Our analysis is fi:>cused on eertifyiug that this dedsion 

procedure is able to deted all possible incursion sctmarios. 

The model of the ItSM protocol in our tool Sl\Wtf is described next.. 

7. 2 The SJ.VWtr model of RSM 

The process of extracting a Petri net model from the specificat.iom; of RSM is a typical 

software engineering task, which starts with identifying the relevant variables to describe 

the states of the system and the events that transition t.he system from one state l:o another. 

At t'he end of several iterations of refinement, our model included the variables discussed 

below. 

7.2.1 State variables 

The nu.rnber of tracked t;argets, n·lmLlargctB, plus ownship as target mnnber 0, gives t.he 

number of subsystems in the model. l<"'or each subsystem, the relevant attributes are: 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CIIA11TBH 7. .APPDlCAT'ION: 'rlilC JlUiVWAY SAFJVT"~{ MONI'TOH .141 

• loet•tlon : tlw :3D eoordinat.es, a.H a. vector of three vm.·iahJes ({c, y, z), where the X -nxis 

iR across the width of the rnuway1 the Y-H.xis is along the length, and the Z··axi!'l is on 

the vert.ieal; 

• speed a.ud heading: packed together itt a spHed vector, for which we rwed three more 

variables, (tJ;r;, vy, vz), 

• acceleration along tlw runway: one variable a11 , liJr whi.ch only its sign (positive, 

negative, or zero) is relevant; 

• st.atns : one va.ria.ble; 

• alarm flag : one variable; 

All other varia.bles can be removed from Uw model, which helps in significantly reducing 

t.he size of the stat.e-spac(~. 

Since SMNII' operates on discrete-type systems, a.bstraction (by discretization) is needed 

to cope wit.h continuous-type variables of RSM. Coming up with "good" representations 

of the va.riable domains can start with the "roughest" possible discretization that can be 

extracted from the protocol specifications, and then refined to an aeeeptable solution. As 

modelers, we had to ta.ke into eonsiderat;ion a balanced solution between a very rough 

discreti:r,ation (which potentially hides too many meaningful behaviors by merging distinct 

stal:es into a siiJgle representative), and <'1 disereth;a,tion that is too fine to allow an effkieut 

state-space generation (the state-space explosion problem). At the end of this decision 

tna.king process, the domains were chosen <t.,"J follows: 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

• 'rlw a .. [) coordinates: may he as simple a.~ iJ:, y, z 

viduity, or on the rnnwa.y, but. a bet.ter representation is: 

{ 

:l.: E {0, ... , r.no.x .. a:.} 
11 E {0, ... , rna:r. -:IJ} 
z E {0, ... ''ITUtX-Z} 

• Speed: the only releva.nt inf(mnation in the specifkat.ion is thH taxi speed thrnshold, 

which is used to classify targets that; move slower than 45 knots a.s being in taxi mode; 

hence, variables vx, vy, vz ea.n simply be assigned l;o t;lw dornai.n 

v:J:, vy, ·oz E {0, :1::1 ,.._, "slow", ±2 ,...,, "fast"} 

Again, a more general representation is { --max_speed, ... , 0, ... , rrwa;_spee.d}, usmg 

another adjustable pa;r·a.metcr ma:J; _.speed. 

• Status: enumerated type, { o~tt, taxi, pTetakeo.fJ, takeoff, climb, land, rollout, j1ythnt }; 

e Alarm: boolean. 

The aeceleration variable, which helps discern between the status to.keo.ff and status 

rollov.t, can be eliminated altogether at this point, since its value can be computed ou the 

spot, based on the variation of the vari}tble speed: the acceleration along the Y-axis is 

pot-Jitive in the current. state if there has been an increase in vy compared to tlu) previouH 

update, negative for a. decreasil in the value of vy, and zero, otherwise. 

At the mHl of this first design stage, onr Petri net model consists of a rnunher of iden-

tical sub:nets (one for each target and own ship) with one place for each wtriuhle. F'or t.he 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

G1L4P'I1~H 7. APPLICATION: THE lllJNvV;rY' 8AFBT'/ MONITO.H 143 

varia.ble. For the representation. of the spend, howevm:, 11inco a placo cannot hold a negative 

1nunber of tokens, the vaJues of v:r: 1 vy, a.nd vz can be obt::tiued from the rnarldug of t.he 

correspondh.tg pla.ees with tokens by subtracting ma1: ... <Jpccd: a number of tokens in the in­

terval [0 .. ma:1: ~s1wed 1] represents (t negative speed, rrw:1: _speed tokens represent:; no speed, 

and the interval [ma.:LBpt~ed + .L2 * 1na:c, .. speed] eneodos all positive ::;pond vaJ11es. 

The sta.tus varia.ble c<ttl be modeled with a single place holding from 0 t.o 7 t.okens, 

eneoding one of its possible emunerated values. For lH~Uer readability, we adopt an equiv­

alent emending with eight different. safe places (holding 0 or 1 tokens only): sLo-ut, sLta:r:i, 

sLpr'Clake<~ff, sLt(J,keojJ, .~Lcl-imb, stJand, sLmllmd, st .. .ji;IJthn.t. In each sulmot, exaetly 

one of these places can hold a token at, any moment 

To cornplete onr struct.ura.I approach, we ha:vc to define a Kronecker consistent parti­

tioning of tho net. Since the modeling of transitions iufluences this decision, we discuss this 

issue in Section 7.2.4. 

7 .2.2 Modeling the state transitions 

The events in th<>, model can be gTouped in three categories, corresponding to the three 

phases executed in each iteration of the algoritlun: 

1. Update aircraft data from the n1dar scans; 

2. Update the status of each t;arget; 

3. Set. or reset alarm ( f()r each targ(~t); 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTEr? 7. APT'IdCATION: T'JU"J HUNWAY Si\li'FJ'1'Y MONITOR 144 

This CX(Jeut;ion flow suggests that the ntodel displays <t globa.lly ~~;;:ynehronow; / locally 

synchronous behavior. The updat;(JS on each t.arget can be pE!rformed concurrently and 

independently of t)ctdl other, while ovc!ry ph,~,.-:;e ends with a wynehroniza.tion t'll;ep, to ew:Jure 

t.ha.t, before assigning the st.atns to every target, all com:dlrmtes have been read, and also 

that before taking the decision to raise a.n alarm or not, t.tw sta.tuH ha!:l IHlen upcbtted. and 

is consistent. with th(~ physica.l c:oordina.tes. 

Tb estahliHh this exeeuUon flow, we iutroduee orw tnort) va.ri:tble per target, plwse E 

{ph .. ro.daT, piL8tatw;, tJh_alann}, that governs the three phases. 

7.2.2.1 The 3-D motion of targets 

By introducing a, discret-ization function, we ha.ve practically divided t.he monitored volunw 

of spaee into a number of smaller volmnes arranged in a throe-dimensional grid. As a result, 

tlw positions of the aircraft are identified only by a finite number of positions iu the grid, 

from the discrete donmin {0, ... , ma.:L.:c} x {0, ... , ma:Ly} x {0, ... , max_z }. Similarly, tho 

continuous trajeetories are identified by an abstract, discretized trajectory traversing the 

small volumes of the 3D grid. This abstraction technique is frequently used in practice to 

deal with eontinuons type variables. 

We use some additional modeling rnles: 

• Lo<.:ation (0, 0, O) represents all positions outside the zone. A target. tha.t exits the 

zo11e or has not entered .is assigned this position. No other location can have a 0 value 

for x, y or z. 

• As a.n alternative, wo could use an outer layer of sta.t;es surrounding the ext.ended :.1one 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

<7l:lA.PTE11 7" APPLICAT10N: TlJJ]J HllNWA'r' BAFBTY .MONI'l'OR 145 

to further (li~tingu.ish hnt;weml locations outside Uw zo1w, bnt this would umwcnBsar~ily 

increase the state space wit;h entrie:-~ of the type ((t y, z), (::c, 0, .z), and (:r:, 1f, 0), all 

representing the Rame state: not monit:ore<l 

• Movement is allowed only between adjacent "cubes", and consistent with t:be heading: 

eoordinat:e :t cannot d(:creaso if va: 1s posiUvc (unless it; b<lcomes 0 upon exiting the 

zone), ea.nnot inerea.se if 'V:z: is negative, and the oquivalent rules for the other axes. 

• When a target e:nters the zonf~, its position is uon-deterministieally chosen on thn 

frontier oft: he volume (i.e., :t: E {1, ma:1: .... :.c} or y E {1, ma:x: <IJ} nr ;;; '"~ tna::r; _;r;). However 

the entry spnm1 parameters have to be consistent with the point of entry. For Pxa.xnple, 

one ea.nuot; enter from the ldt (Le. crossing tho 2-D plano :t; = 1 from au outside 

position) with a negative 'U:D. Also, out of the six 2D planes of the frontier of the zone, 

only five can be actually crossed (no entry is possible from. "below ground~'). 

Note that the model might include unrealistic trajectories. This is acceptable in the 

verification process as long as all realistic behaviors (ail the behaviors we are interested in) 

are covered by the model. Consequently, if a universal property holds in the abstract model, 

then it rnust hold in the realistic model. If a property does not hold, then the provided 

counterexample has to be checked to determine whether it represents a .nlal counterexample 

or not 'This is <t i,ypieal procedure w.hen working with a.bst;raet;ion techniques. 

7.2.2.2 Status definitions 

The va.luo of the status variable for each target is set in tJw second phase of the execution 

loop. Using our model variables, we define each v<~.ltw of this varia.hlc as follows ('J'S demotes 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CfTAPTBH 7. APPLJC~ATJ(JN: ',!'liB HUNv\lA. Y SAFETl' 1k10Nl'I'()Jl 

the taxi Hprmd threshold of 45 knots): 

1. out: not in the monit.ored zorw 

(a: """ O) I\ (y = 0) I\ (;;; "'" 0) 

2. ta.1;i: on the ground and (a.t low Hpeed or not. runway hElading) 

(z =' 1) 1\ ((Jv:r:l :5 TS' 1\ jvyj ~~ 'tS) V (v:r: # 0)) 

:~. takcojf..roll: otl the ground, ru1nvay heading, aecclera.t;ing 

(,s; = 1) I\ (lvul > T8) I\ (·o;c = 0) I\ (a.y > 0) 

4. mllotd: on the ground, runway hea.ding, decelerating 

(z = 1) I\ (jvyj > TS) I\ (11:c =: 0) I\ (a11 < 0) 

5. climllo·nt: a.irboriH:l, runway heading and positive vertical speed 

(z > 1) I\ (v;c = 0) I\ (vz > 0) 

6. landing: airborne, runway heading and negative vertical speed 

(z > 1) I\ (vx = 0) I\ (1;z :50) 

7. fttJthnt.: airborne and not dimbout or landing 

(z > 1) I\ (v:L: ¥: 0) 

Note t;ha.t predicates (z = 1) and (z :> 1) autorna.tieaJly imply that a:> 0 a.nd y > 0 by 

the way we designed the outside zone to be represented by a single state, not a "rim'' of 

states. 

As a derived isr:;ue in our analysis, we investigated whieh st:a.tus-to-sta.tus transitions a.re 

never possible in the RSM model. Ta.ble 7.1 shows this iu the form of a mat,rix, whern, for 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CIIA.PTI:iJH 7~ J\PPLJGATION: T'HB lHJNWAY ,'{APETY ;\lONITOH J<l7 

Pach row /tXllumn <:onibination, an "X 11 t:~igu nH~a,ns Ll.te transit;ion is possible, and a dash 

meam; it is not 

Table 7.1: The sl;a,t(>""towstate transition matrix for RSM. 

7 .2.3 State-space rneasure:~ments 

The model that inc.lud<~s t;he first two pha..'ies of the prot;oeol can be us<~d as a building block 

to further c:ondueting the analysis. The third phase, setting t;he alarm, ean be added into 

the model as actual transitions, or alternatively, the value of the alarm variable can he 

implied by the eornhination of status and positioning after the second phase. 

Up to this point, the constructed model exhibits strong ewmt locality. This also allows 

for a flexible choke of partitioning of the modeL A natural choice is to group variables 

ref€Jrring to the same t:arget together. However, asHigning all variables to the same partition 

leads to <'~xtremcly huge local. state spaces: 

2 · :3 · 8(max_;c + l)(m.a.:r:_y +~ l)(maa: .. 2 + 1)(2rnax .... spt:ed + 1)3 

possible local states, whieh is unacceptable. A better choke is to fmther split the subnets 

into even srrutller ones. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAP'I'BH 7. APPlJJCA.TTON: TIJB JUJN~t:Al:' BA.FBT'l.l\10NJTOR 148 

This decision is l:!t:rougly infhwnced by t.he need to sa.tisfy the Kroneekor consist;cury 

requirom~mts for each event 'l'his prov()d to be t.he m.ost challengi.ug part, of the modeling 

phase. As far <ts t.Iw eve.uts in the flrsl; two ph<tHes are c~onr.tlrn.:;d, a. pn.rthiouing of places into 

fiv<~ sub nets por target. yidded very good results. We arranged the vnxiables in 't1:urrLtargets + 

l clusters, as follows: 

subnet 5 1; + 1 : plu·o.dar'['iJ, ph_sta.tu.s[i], pl~.-slatu.<J[•i} 
subnet 5 * ·i + 2 : .'>Lont[·i], sLtu:t:if.i], ... , .<!Ljlythrn[i], a.la·,.rn[i] 
:mbnet; 5 * ·i + 3 : :r;(i], v:r[·i] 
suhnet. 5 ·¥ i + 4 : y[il, vy[i] 
sulmd 5 * ·i + 5 : z[i], vz[i] 

We took rnm:JBuremeuts on the generated state spaces fclr difl'erent input pa.ramet;ers of 

the model: n1unber of targets, decomposition grid sb::e, thresholds of speed. 'I'he state space 

size, runt;iuw, and memory consmuption are listed in Tables 7.2 -7.4. 'I'hc resuli;s show that 

the reaehability set ean be constructed for multiplfJ targets, a fairly large size of the grid, 

and multiple thresholds of speed in a matter of minutes, using under 100MB of memory. 

'l ;-r-· 1 1 target _ gn~~:_1ze.. speer s 
I.oxiorr ~lx5x3 2 

5xl0x5 2 4.1 X 1014 

10 X 10 X 10 2 7.6x1010 

:~x5x3 5 2.7xH)H 
5 X 10 X 5 5 8.3x 1015 

10 X 10 X 10 5 1.4x1017 

2 targets 3 targets 
3.4 ")(i()TII -:--·----..,6-

l.lxl02 ' 

8.4 xlO 21 1.7x1029 

6.6xlo2a 5.8xlo:n 
4Ax10.t1 7.2xHl28 

7.6x102a 6.!)x1031 

5.0x 1025 L8x1034 
--'--· 

" 

4 targets 
-lfx1082-3. 
a. Gx 10:~6 

5. 
1. 
6. 
6. 

Ox1039 

2x :to:3' 

3x10a9 

7x 1()12 

Table 7.2: State spa.ee Uleasur(mwnts for RSM: uumber of states. 

7.2.4 Setting the alarm 

'l'he third, and most important, pha.se of the RSM a.lgoritlun is setting the a.larrn Hag f()r 

every target. In p~endo, eode, this corresponds to a single variable a.ssignnwnt stahmwnt;: 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CH1lPTBH 7. A.PPLJCATION: TliBJ H.UNW/tY SAF'BTY MO.NlT'OH 

------:-+---·---~,..,-1-·--·-··"-,-···c···-~+ 
:{x5x:~ 

5 X 10 X 5 
10 X 10 X 10 

5 
5 

12.91 
28.45 

2.9~~ 
8 '}'"' < • .,/ 

20.58 
6.51 

19.07 
42.84 ---

4.!H 
1:3.91 
a4A2 
10.08 

25.42 82.05 
57.25 L 71.75 

Table 7.3: State-space construction time for RSM (in seconds). 

:.:.·:·~ .. ~·=·~.~EI~t ... :if~~-·-1·~··"·····~-....,,--,..-
axsxa 

5xl0x5 
10 X 10 X 1() 

ilx5x~l 

5 X 1() X 5 
10 X JO X 10 

:3~~1]_:':!~. 
4.00 

l4Al 
'1:1.72 

8.4A 
~}0.95 

79.45 

_!~~Egcts 
4.~)!) 

uun 
52.15 
10.55 
:38.6~1 

99.:31 

Table 7.4: State-space generation memory eonsumptiou for RSM. (in Megabytes). 

set the (boolean) value of alarm ha..9ed on different combinations of the current values of 

the other variables, as listed in operational state matrix. in Table 7.5 [n]. 

Modeling this rather complex assign statement in a Petri net is difficult because of 

two factors. First, predicates sueh a.s "distance is dosing" or "in the takeoff path" that 

involve geometry and linear equations are diflieult to express in a discretized modeL Second, 

the Kronecker consistency requirements will force splitting of events into many finer~grain 

events. For exm.nple, the predicate "t;a.rget i is in takeoff/landing path of ownship" can ho 

expressed a."i: 

(:ci :::;;: :!;o) 1\ (((vyo > 0) 1\ (Yi >Yo)) V ((vyo < O) 1\ (:t/i <Yo))) 

Since variables Yi and 1/o are not in the same partition, ea.ch term involving the two must 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GHA.T)T'Bll 7. APPLfGi\TJON: TJig IUJN\VAY SAZ:i'liJ]'Y .Zv10NITOR 

·n~.r:g;;:;t:-·:::;· ··r;~ke(;Ir·'"-;Iiini;~;~·~'t··r-y;.;:Y:;·(r· ···-;:(:)ff();!c· ·~·····-·-·t'!y:t::t~n"i·~······ ... ··· 

.~2-~:~:!:i,.E.± .... ~ .......... " ... "' ...................... j .................................... f ................................ l taxi ···T·;ar 1/\ ::~ J\--6~ --~-~ .. ~·--·~---······~--
protakeoff 2 1\ tl yes yes yes 2 1\ :3 

takeoff 1 1\ 6 4 V 5 ·1- V 5 4 V t> 1 V 4 2 1\ :3 
dimbont. 1 1\ 6 4: v 5 4 v 5 4 v ti 4 v 5 2 1\ a 
landing 1/\ {i 4 V 5 'tv 5 

lV4 
4V5 
lV4 

1V4 
4V5 rollout ll/\ ill\() l V 4 

fly- thrn - 2 1\ ~J 2 1\ a 2 1\ a 2 1\ a 
·rr{1518t;~;:1~:<:c) a;:;8Ing····- ....... _ ..... _...... ·-·-·-···-" ..~-............. -... ··~·'·-~--~~~-------1 
(2) In takeoff/la.nding pa.th 
(3) D.istanee less than minimum separation 
('1) Ta.kooffjh1nding in same diroction H,nd distanee less than minimum separation 
(5) Takcofi/landhig in oppcmite dircd.iou and dosing 

J0_ 'I'f.~:~~~~~~~:!:~~:r.~:~:r:.r.~?.~~~-::~~~:r: ... :~:~~-~~~~~-····· .. ~~ ............................................. ·-······~ .. ~-·-··---·-····· 
'!able 7.5: RSM protocol: alarm setting criteria. 

be split to satiRfy Kronecker consistency: 

VC11 E [Lma:r ... J/]: 

(a:i = :ro) 1\((vyo > 01\ Yi = C11 1\ C11 >Yo) V (vyo < 01\ :Ih = Cy 1\ Cy < Yn)) 

The same procednr(~ must be applied to :co and :z;i, by further splitting terms: 

VC11 E [l..rna:.r;_y]: 

(:r:.i = C:c) 1\ (:ro = G':r:) 1\ (vyo < 0) 1\ (Yi :::::: C11 ) 1\ (C11 <Yo) 

This generates 2 · m.ax .. :r, • m.a.:L?J events from a single original event. 

tno 

In general, the number of event::; needed to model the third phase necessitated over 2000 

lines of a.dditiorml S£\1\HT eode, conlptn·ed to just. 500 lines needed to model the fin;t; two 

phases together. 

An excerpt from the actual model that illustrates this procedure is listetl bdow: 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CIIAPTJJJH 7. APPLICATION: THE JUINWAY SAFETY MONJTOH 

I* +H .. I+ Ala:nn for owm1hip rollout & target taxi +++++ :t./ 

:for (bit jx bt {2 .. rnax_x-1}) { 

} 

for (int jy in {2 .. max_y-1}) { 

} 

trans alarm_roll_taxi1[i] [jx] [jy], 

alarm_roll_ taxi2 [i] (j x] [j y] ; 

firing(a.larm ... :r:oH ... tax:il[i] [jx] [jy] :expo(1), 

alarm_roll_taxi2[i] [jx] [jy] :expo(1)); 

arcs( 

ph_alarm[i] : alarm_:r·oll_taxil [i] [jx] [jy], 

ph_alarm(i]: alarrn_roll_taxi2[i] [jx] [jy], 

alarrn_roll_ tax:i.l[i] [j x] [j y] :ph_ radar [i] , 

alarm_roll_taxi2[i] (jx] [jy] :ph_ra.dar[i], 

alarm_roll_taxi1 [i] (jx] [jy]: fl_alarm[i], 

alarm_roll_taxi2[i] [jx][jy] :fl_alarm[i]); 

guard( 

alarm_roll_taxil[i] [jx] [jy] :tk(st_taxi[i])>O & tk(st_rollout[O])>O & 

tk(x[OJ)~~jx & tk(y[O])==jy & tk(vy[O])>max_speed & 

tk(x[i])>=jx-1 & tk(x[i])<=jx+1 & 

tk(y[i])>=jy & tk(y[i))<=jy+1, 

alarm_roll_taxi2[i) [jx] [jy] :tk(st_taxi[i])>O & tk(st_rollout[O])>O & 

tk(x[O])=:jx & tk(y[OJ)~~jy & tk(vy[O])<max_speed & 

tk(x[i])>=jx-1 & tk(x[i])<=jx+l & 

tk(y[i])>~jy-1 & tk(y[i])<=jy); 

151 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GHAPTEH 7. APPLJCNI'ION: 'I'HB UWV\·V.AY SAFI~JTx· 1v10.NITOH 

I* +++++ No ala:rm :for ownship rollout & ta.:rgot taxi +++++ *I 

for (int jx in {2 .. max_x-1}) { 

} 

trans noalarm_:roll_ taxix [i] [jx]; 

firing(noalarm_roll_t:axix[i][jx]:expo(1)); 

arcs(ph_alarm[i] :noalarm .. roll_tax.ix[i] [jx], 

noalarm_roll,_ taxix [i] [jx] : ph_radar [i]) ; 

guard (noalarm ... roll_ taxix [:i] [j x] : 

tk(st_taxi[:L] )>0 & t.k(st_rollout [0] )>0 & 

tk(x[O])~~jx & (tk(x[i])<jx-1ltk(x[:l])>jx+1)) 

for (int jy in {2 .. max_y-1.}) { 

} 

trans noalarm_roll_tax:i1[i](jy], 

noalarm_roll_ta:x:i2[i](jy]; 

firing(noalarm_roll_taxil[i] [jy] :expo(1), 

noalarm_roll_taxi2[i][jy] :expo(1)); 

arcs(ph_alarm[i]:noalarm_roll_taxil[i][jy], 

ph_alarm[i] :noalarm_roll_taxi2[i] [jy], 

noalarm_roll_taxil[i] [jy]:ph_radar[i], 

noalarm_roll_taxi2[i] [jy]:ph_radar[i]); 

guard( 

) ; 

noalarm_roll_ taxil [i] [jy] : tk(st_taxi[i]) >0 & tk(st_rollout [OJ) >0 & 

tk(y[O])="'jy &: tk(vy[O))>max_speed & (tk(y[i])<jy I tk(y[i])>jy+1), 

noalarm_roll_taxi2[i] [jy] :tk(st_taxi[i])>O & tk(st_rol.lout[O])>O & 

tk(y[O])"'=jy & tk(vy[O])<max_spe(~d & (tk(y[i])<jy-1 I tk(y[i])>jy) 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GHAPTBH 7. JiPPUGATION: TUE .HUNW/1 Y S.AFBTY MONI'f'OU 

At !:he end of this process, Uw 1nost signifka.nt dmngn in i;he modd was a dranmtie loss 

of event locality, leading to a slowdmvn in generation t;ime and, most importa..ntly, a n1uch 

higl11.1r memory consmuption. The peaJ< MDD size incn~a.<Jed t.o over 1000 times la.rgur than 

the final, causing our modt:.~l <:hecker to run out of memory for large panmwters, induding 

1nultiple t;arg<:.ts. However, wo were still abk~ to build tlu~ stat<:' space for one target and a 

medium sh:e of the grid., within l GB of memory and less tlw.n 5 mhmt;es. This was enough 

to expose seveml pot;entia.l problems with the decision procedure of the protocol. 

7.3 Model Checking ltSM 

The goal of our analysis is t.o exhaustively check wheliher tho operational matrix in 1.~\.ble 

7.5 is able to detect all incursion seena.rios. A situation where two aireraft get too dose t;o 

each other, within the minimum separation distance (MS) of 900 feet, without the alarm 

vari1:1ble being set is called a missed nlarm scenario. A dual analysis could be conducted 

on identifying false alarm scenarios, which describe the situations where an alarm is raised 

without the presence of a.n imminent danger. 

In analyzing the scenarios involving a single target, we can use the subscripts o and t f(n· 

the state variables referring t.o ownship and target, rcspeetivcly. The following predicates 

are nsed to describe propert.if)S of interest: 

d =def I i l l f l .. one 1' wse0 cone_a ann 1\ p W.'Wt 1 .one_a .. a;nn 

'<·<>p ,,,def l·i t r e (o t) ''> ~1- S' "' ci.s .a· u: . , , ~· 1v , 

l ,,,,def z , a.arrn ___ a arrnt :.= ,;rue 

track ;:..=dd 11tat·us 0 ¢ { ta:J:i, flythnt} V statu.<; t ¢ { ta~~:i, jlyihr"u,} 

The semantics of the (non-trivial) predicates above are: 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

C:HAPTEH. 7'. APPLlC/ATION: THl~ HUNH!f\ Y S1\FBTY JHONITOT?. 

done: all updates am complete 

tmd:: at least; one aircraft. is taking off or landing 

7.3.1 A ''memory-less" property 

We start. our investigation with t.he most simple iut.crpreta.tion of a .missed alarm. 

• "ls there a tn~dced state when; mim:mnm .~eqmm.tion iH lost and the alarm ·l,~ olT 

• CTL: EF(done A trllck A ·-,,sep A ··a.la.nn) 

• Answer: YES. 

to: 
ownshipc=taxi 
target=taxi 
dist.ance>MS 
alarm"' .. OFF 

f;1 = 1.0 + 6..: 
ownshiP""'takeoff 
targnt'·"'ta.xi 
<list.anee<:Y1S 
alarm o:= ON 

alarm not aged 

tz = to + 26..: 
ownshiP'"takeol.f 
target=ta.xi 
dislance<MS 
alarm""'OFF 

LEGEND: 

e ownship position 

~ target position 

min.separation radiu 

NOTE: objects and distances 
not at realistic scale 

.Figure 7.2: RSM: mis~wd alarm scenario l, at ground leveL 

A sc<mario tha.t leads to a. state satisfying this query is rea.Liv.ed when the criterion 

"distance is closing'' is not sa.t,is1iod in tht~ current st.a.te. This is the case of the third 

:ma.pshot .in Figure 7.2. 'However, this situation might not be the result of au 1.mwant.ed 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CJ1AP'l'B.H 7. ltPPlllCi\'l'ION: 'l'.HE RUN'vV:t\Y' SAFWCY NfON.ITOR l[i5 

behavior, since tho ala.rm rnip;ht have bE;eu sot i.n a. p.reviou::l state, rnoro precisely in t.he first; 

state wh<~re the minimum separation was lost. Tho valne of tho a.larm variH.ble being sd 

also depemh; on whetJwr tlm ala.rm iH aged for a f:(lw mort~ cyclf~S or not. 

Nevm:th<lless, Uw situation is still of potential eor1eern, even wiU1 aging of t:.he ahu~m, 

since the targ(lt c;.m 1na.intain a. constant 1list.am:c (a.t kss than m.inimum separation) for 

longer th.a.n t:he duration of the aging, resulting in a "ba.d state" in the round <tfter the 

alarm expires. 

Note that. the 111emo.ry·lcss nature of tho query influences the result. We looked at 

t;he property in a, particular snapshot in time, without considering the sequenee of events 

leading to the cnrnmt state. To get a better understanding of the fa.ets, we next investignte 

the statei:l of t.lw t~ystern immediately after t.he mininnnn separation distance between two 

aircraft is lost. 

7.3.2 Analysis of the transition that causes loss of separation 

• "b; there a state wheTe minirn:um separation is lo8t by transitioning to the cur·r-en.t state 

and the alann is off ?'' 

• CTL: EF(donc 1\ tnlck 1\ sep 1\ E[(•done) U (done 1\ track 1\ -.,<;ep 1\ -.alann)]) 

• Answer: YBJS. 

Note 7.3.1 The nested EU operalor 'tn the queTy {instead of an BX) ·is due to the fad 

that swue'ral tranB'itions an; rtxpuircd to fini.sh the upda.te of com·dinate.s (3), sto,tus (1) and. 

to set the alarm again ( 1}. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Cf:lAPTBH 7. APPLl(JAT~lON: THE IHIN\V:A Y 8ilPE~TY MONITOR 15(} 

A wit.ncas is s.h.own in Figure 7.a 1 where ownship is in a la.ndin.g or dhnbout sta.tr~ <md the 

target is Hying aeross the runway, fa ... <;ter t.han ownship, n1oving within separation distance 

from the side at an angle. The condition for setting an a.lanu in this eircumstn.nee is 

''dista.m~e less than minimum separation and target in takeoff/lauding path". The second 

term is not sa.iiisfied, hence uo nlan.n is raised. Note that aircraft ean a.dua.lly collide 

(trajectories intcrseet in Figure 7.3), whiltl ltnne of the pa.rticipants is ever warnod. The 

above secmario is the only one generating bad states for this query. 

Horizonta/2-D section, at altitude> 0 

ownship=landing 
t.arget=fiythru 
distanee>MS 
alarm= OFF 

ownship=:la.nding 
target,:d!y-thru 
dio;tance<MS 
not in landing path ! 
a.larm=OF'F 

NOTE: objects and distances 
not at realistic scale 

LEGEND: 

• ownship position 

@ target position 

. min.separation radiu 

~ in landing path 

Figure 7.3: RSM: missed alarm scenario 2, airborne. 

This situation can be corrected by changing the criterion for this combination of status 

values to "distance less than minimum sepm·a.tion aud target in takeoff/landing path or 

distance is closing". As a result of our findings, tlw designers of the protoeol have changed 

the speeification to accommodate this situathm. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CIIAPTB;H, 7. APPLICATION: 'I'HFJ JUJNWA'r' SAF'BTY MONITOR U\7 

Note th;tt we included the predicate tmr:k in. both l:!tates (bekn:o a.nd afLnr t,hf! t.ran:-;ition), 

as we are interested in l'lGonarios involving only takeoff a.nd/or landing trajoctorim;. However, 

this additional eonstra.int may ma.sk some other nndf'lsired belmvion;. Theret()rc, we next 

ask a, more general question. 

7 .3.3 A stronger safety property 

• "L'> them a tm,ckr:d state wher·e rninim·wm sepamtion is lost which can be reached without 

BVBR previou.:;ly setting the alarm?'' 

• CTL: E[(-·ala.nn) U (done 1\ tmck 1\ •8CJJ 1\ •alarnt)]; 

• Answer: Yl~S. 

7.3.3.1 Counterexamples for strong safety 

Example 1. (see Figure 7.4) Aetors enter thf} stage taxiing (not aligned to the rnnwa.y) 

at dose distance to each other. Once on the runway, one of them. (sa.y ownship) changes 

direction and aligns itselfto the runway. Thereafter, it is categorized as takeoff (or climbout, 

if it becomes airborne). The other aircraft stays within minimum separation, but it does 

uot dose in: it can be eithflr behind ownship or, more dangerously, in front of the aircraft 

that is taking off. There is no alarm raised in this state because the criterion "distance 

is closing" is, again, not, satisfied. If t.he distance between. aircraft. at entry is very sn1all, 

even if the alarm is set. on by dosing in later, thern might not be enough timH for an eHcape 

manoeuvre. 

Figure 7.il: shows a.n abstract trace that contradicts the safet,y property. The trajm:tories 

are shown f()r a horizontal section in the monitored zone a.t; ground level. The thinl snapshot 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GHAPTEH 7. .APPLIGA'I'ION: 1'HB .IUJNVVAY SAFlJJTY A~tONJTOH 

to: 
ownship:::c;taxi 
target"'" taxi 
distmt<:P< MS 

l1 to + ,:\; 
ownshiP''"taxi 
target"'" t ax.i 
dist.a.uee<i\18 

target"'' taxi 
(\iAtauee<MS 

LEGEND: 

• owns/1/p position 

@ target position 

NOTE: objects and distances 
not at realistic scale 

Figure 7.4: RSM: missed alarm ~eena.do a, at g1·ound leveL 

158 

illustrates the bad state: the two aircraft am within minimum separation dist.ance, but no 

alarm ha.s been issued either for the current sta.te or any of tho previow; states in the 

scenario. 

Exarnple 2. A similar scenario exists for airborne states that. are not track(~d (sta.t.us 

flyth1'u): both airplanes enter as flying through (not aligned with the runway), either at 

close distance to each other, or they ean lose minimum separation latf~r, while both still 

being in flythru sta.te. Th(: ta.rgd aircraft turns and aligns itself to the runway, switching 

to a landingjclirnbout status. Owuship stays within rninimmn separatiou, but not in front 

of the ta1.·gct (eitlwr flanking on the side, or zig-zagging behind, so tha.t its status ren.mins 

flythru). The condition for ra.ising the flag in t;his st.a.t.e asks f~:~r distance kBs than .minimum 

separation and ownship in (;akeoffjlaud.ing path. The condition is not met, hence the alarm 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CETAJ'TiiJH 7. iU'l1LlONI'ION: THE HUNWA Y 8AF'E~'I''l 1\:fONlTOR lfl9 

st.ct.vs off. 

Example 3. There a.n; additional scenarios that do not satisfY tlw s<.~fety property1 

where events are developing innnedia.toly a.ft;or both pl<tnos enter a, rnm.l.itored zone. 'Ihe 

had behavior in thesf' eases is caused by tho fad tluLt; tlm previous position is unknown 

coordinat.es (0, 0, 0) in our r.uodd fhr both plarws, henee distance cannot be dosing in 

tho rwxt; state. If the airplanes enter the zone simultaneously, at positions very dose to 

eaeh otlwr (e.g., both arc trying to lr1.nd)? the ttln.rm fla.g will not, be raised. However, this 

part:kula.r behavior can be attributed to the faet. that t.he planes enter the rnor.litored zone 

already i.n a. bad stat~~, and the protocol is not responsible for 1nouitoring the tnrgets outside 

thn zone. 

to: 
ownship==taxi 
target=taxi 
disbtnce'"~D 

it=io+~: 
own;;;hip=taxi 
target.::ota.xi 
d.istance.c.:" D 

t:1 ='~ to + :J.:.l: 
ownshi p:~: . 
Ci.ll'getc:,t.axi 
dista.nce='D 

LEGEND: 

• ownship position 

~ target position 

min.separation 

NOTE: objects and distances 
not at realistic scale 

. .. 

Figu.re 7.5: RSM: missed alarm scenario 4, at ground level. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

1()0 

'I'o suHml.ar.ize the <:onmwu dJaractcristics of all t:h(~ above the HCm~a.rioH, we obsm·v<.l 

that; the key factor is U1a.t both aircmfl. axe in ta;x.i j flythru tnode at; the monwnt when 

minhnum Hepara.tion is lost, hence the situation il'l not; tracked (a potnntially bad oceurr<~ueo 

is masked by H, protocol specification). Subsequently, the predicate "distance dosin1f is 

not validated, hence no ala.nn iH issued, whm·eas the dista.nce nmw.ins less tlmn 1ninirnum 

sepa.rat.ion ( maintairwd r:ons1;a.ut or even slightly iuen~asing). 

'I'o f'ln'ther extend our discussion, we look at the possible continuations of the scenario, 

after the had s(;a.te is :r<~adwd. If~ a.ft.er a. subsequent update, tlw distance is dosing, then a 

warning will be issued and the "missed aJann" situation will ce<:t.<>e to exist. 

The only way to porpetuah• the pmblem is shown iu Figure 7.5 which is an extensiou 

of scenario 3. 'l'he target can stay within miuimuru separation radius for a longer period of 

time if it "zig-zags'' in front of ownship, and at each radar update, it ha.<S the exact sa.mc 

distance to ownship. The target has to zig-zag to maintain the distance, since, if ii, follows a 

parallel path t.o ownship, the algorithm will consider it, as taking off. The alarm criterion for 

the new combination of openttional states is "taking off in the same direction and dista.nee 

less than minimum separation". Therefore, an alarm will be issued as soon a.s the target 

stops zig-zagging. 

The case when the targ(~t, is not an aircraft (vehicle, service truck, etc.) adds an extra 

degree of freedom for "malicious behavior" of the target (stle scenario 5, in F.igm'(l 7.{)). 

Ground vehicles are always in t<:txi mode according t;o the protocol, regardless of their 

speed, hmtding, and physical coordinates. Therefore, like h1 scenario 4, the target rnay 

follow ownship at close dista,nce, bnt now it ca,n also continue chasing, even a.fter ownship 

is lined up for takeoff and accelerating. No flag will be raised for the sarne reasons a.s in 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. APPL!Ci\'t'lON: Tim .HUlVvVAY BAFBTY MONITOH. 

scenario ,1. 

lo: 
ownship,~tn,xJ 

target,:::;ctaxi 
dixtam;c,::D 

alarm '"'" OFF 

t1, "" t0 + k · ;:;., k > 0: 
ownnhip::::;.takculf 
t<trgef,;::ct:axi 
di!!tancn~"D 

alarrn"~OFF 

LEGENQ.; 
e ownshfp position 

ta.rget position 

F'igure 7.6: RSM: missed alarm scenario 5, aircraft vs vehicle. 

HH 

In an ulterior implementation of RSM, the designers have taken into account these htct:s 

and eliminated t;he special treatment. given to ground vehides. This a,ddres~ms the situation 

in scenario 5. 

The situation in scenario 4 is of lesser concern, since it certainly falls into the eategory 

of "freak oecurrenees". At the same time, there is some bene.fit in exposing it: the designers 

are aware of this low-probability event, and also, by the fact that it, is the only remaining 

unwanted behavior in the model, it serves as a validation of the decision procedure of phase 

;~ of the algorithm. 

7.3.4 Conclusions 

There were sovora1 lessons lt>arnnd from our analysis. On the positive side, we eoncluded 

that; our f(n:mal verification approach has an Ulldeniable value. At the end of six rnonths 

of work, rnost of which ha.s been concerned with the modeling decisions, we have presented 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAP'l'Bl1 't. APPLKJATlON: 'T'JUg lU.l.NVV/\.Y SAFJ.:TY I\JONtl'OU 1()2 

t:ho dt'Si~nm·s wHJ1 a. liKt of important. Jindiugs which wcce not; exposed duriu.g the tesl;ing 

activities (involving real aircraft) alrea.dy underwa\}' at <lifl(mmt airport; locations. Tho merit 

of our t;(~ehnique i:; that, hesid(JS being considerably lesH <lxpensiv~~, it: is exhaustive (on the 

constructed model). 

We worn able to analy!l\e all possible scemt.rios in our model1 wHh two onteornes. \\l'e 

have found scenarios of potential concern that happen wit;h extrmnely low probability tha.t 

axe almost. il::npossible t.o expose during eith.er testing procedures) whkh usually ::1:rl'ord no 

more than a. dozen test flights a <lay, or t:~imulat;ion s<,:ssions, which have the ~:~anw nature 

as tcRtiug, just that the analysis is conducted on a computer model of the protocol, but 

still manages to analyze only a limited nurnlwr of seena.rios por session. When comp<m~d to 

the actual state space sizes of the order of 101:j ...... 10'12 states, this shows t.he need for our 

exhaufltive analysis. Tho soeond out.conw of our experiments was that af!:er identifying the 

problems and suggesting modifications to the protocol to elhnina.t.e them, we have presented 

the designers with our "certificate" of formal verification eoncerning missed alarms. 

Secondly, we need to mention t;lw.t;, by engaging in this industrial-size project, we have 

identified several areas of possible improvements and extensions to our technique, which 

will be discussed in more detail in the next chapter. 

With respect to the dual analysis of false a.lanns, this is still on the list of future research 

plans. !::<):om a. practical point of view~ pilots are equally <~oneerned with both types of 

situations. Individual reports indicate that frequent fn.ise a.la.nns can become a distmction 

or, in the best ease, lct nuisance f~tctor in operating an airplane. It is also t.he case that n, 

system with too many false alarms will tend to bB switchBd off or ignored, thus rendering it 

useless. 'I'herefore the occurrence rate of f:J.lse alarms ha.'l to be reduced, even though these 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7. i\Pt'LlCi\'l'JON: THE JU./N~:1Y 8AI~'.BTY !VlONri'OU 

a.r(~ .not as erit.kal as tniSS(ld a1m.·ms, which hrw{~ to be complctel:IJ eliminated. The designers 

of t:he protocol had to come up with a ba.la.nced solution tha.t t;ra.des the simplicity of very 

"loose1
' n~quirement;s that raise too many aJarms for the complexity of ''stl'idi:H''' conditions 

tha.t dcen:ase the number of false alarms, but. makf1 the ana,lysis more diflicult. 

Another aspect tha.t was not discussed here wa.s fiudt tolerance. We assm:ned th:.Lt all 

sctmarios happen in the absence of fa.nlts in the communication devices, mHaning that the 

radars a.ud da.talinks provide accurate and tim.ely updat;eR to all pa.rtidpautfl .. A nat,ma.l 

extension of our analysis is to include fhulty beha;viors, either of btHlign nature (in the 

fonn of :missed or late updates) or rnaJidous/byzantine (such as inconsistent, da.ta between 

participants). However, this type of analysis requires the inclusion of notions of probabilist;.ic 

nature [~n]: which are beyond the seop<.l of the logical analysis that Model Checking is 

concerned with. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Chapter 8 

Future Research 

"IJa.9i<: r·c.sear·ch i.s what l'm doing 

when I don 1t know what rrn doing. '1 

Wcrnhor Von Braun (lfH2-1977) 

The work presented in thiH thesis can be extendt~d and complemented in many ways. 

One direction is related to the idf~a of adding more atttomation to all the pha.sos of our 

vorificat;ion proeess where applicable. 

First and foremost in this category comes tho need for k1utomated par·titioning heuristics 

for the input models. As mentioned in Section 2.6.1.1, the variable ordering is critical to 

the overall performance of a BDD-based model ehcckE~r. Our approach is subjeet to a more 

complex discussion, since we are dealing with multi-valued variables, which have to be 

ordered and grov.ped aceording to a partitioning procedure. Our current implmnentation 

supports only a predefined partitioning of the n:wdel, which has to be part of the input. 

This requin~s prior knowledge of the structure of the system., experience, and good intuition 

on the pa.rt of the user. !<_,or some models of theoretical nature, such as those considered 

in our experiments (except RSM), a.n optima.! or nearly opt.irnal part.itioniug is not difikult 

to find, but; in general the problern is far from trivial. N€lvcrt..hnless, we believe that the 

saturation algorithm is suited for w.stomized partitioning heuristics, that work Wflll with 

164 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

(JHAP~l'BJ? 8. li'tl:CUltl:!J IUiJ8B.AH.Cl1 lG5 

our a.ppr(m.ch. For ex<:mtple, a.n off~line static a.rmlyHis of the ev£mts in the system can offnr 

hints for rninin1izing the computation effort of firing evtmt.s symbolically and tr<tiJSlatt: this 

n.nalyKis in tenns of miuimb:;ing a goal funct.ion. Taking into account the event locality 

feature, a good candidat.e is the sum of ranges of (in m1mber t>f levels that are spanned by) 

each event. Formally, if V is t.he set of state vm·iables in tht~ system, 'lr : V --r {1, ... K} is 

t;he partitioning function that assigns <lach variable to a suhrnodel (level), then the problem 

can formulated a .. <; finding: 

lf we take into account the fact tlutt operations on "ta.ller" MDDs are more expensive, the 

opl;imization function can include a weight factor, depending on the location of the ltffech.!d 

region in the MDD. Preliminary experiments in l;his diroct;ion showed very promising results. 

Another direction considers an automated model e;ctraction t;echnique that eliminates 

from the description of the model those aspects that are irrelevant to the verification process. 

Closely n:~lated to this is tlH~ automated abstmctionjr·ejinement technique: a model can be 

further simplified with respect to validating or invalidating a specific property by using 

data abstraction. If later the property is verified in the abstract model, it is also valid in 

the original model, and the process stops. If on the other hand the property is false, the 

abstraction function has to be refi.ncd in order to diseern betweEm a. real counterexample 

and an abstract but not original one. The cycle continues until a decision can be m.ade. 

This property-driven techniqne is well suited f(n· our struetm·aJ a.pproa.eh, but ha.H not betm 

investigated yet. 

Of significant rnatter is the issue of automated generation of o.ll counterexa.rnples or 

witnesses in Model Checking (when applicable). As seen In the RSM example, certain 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

GHAPT'.'BH. 8. Ffl'f'l)RB RBSBA.HCU l.6G 

propt!rties rww be invalidat<)d by mnHiplo groups of beha.viors in tho systmu. A 1nodnl 

checker usually provides a single emmterexu.rnple f(n: a giv(m property Imdtll' study am:l t;his 

can t•xpos<~ only paJt of tbe undesired behaviors. Tlw rnodoler .ha.s to ma.sk tho h<~havior:s 

represented iu t;he provided counterexample bd(>re further proceeding with the analysis. 

From a. practical perHpoetive, a.utoruated synh1.x tmnsln.to:rs between the SMAHT input 

language and other well known tools (such as SPIN [81], SMV [104], LOTOS [79]~ ntc.) will 

increase the exposure of our.· tool and also provide a.ecess to standard IHmclunarks of teg1;s 

that are widely usf~d in practice (such as ISCAS a.nd CAIJP). 

In a second cla.ss of improvements we include e:~;terv;ions a.nd ,qerwrnlizatioru1 of our a.pprcntch. 

Of utmost impo:rta.nce is lifting the restrictions of Kmnecker consistenc:IJ· \Vhen. this 

requirement; is not satisfied, the model haH to be modifi<~d so that it does, by retlning the 

events or by merging submodels. Both actions ean lead to certain ineffi.dendes: the number 

of events might beeome too large, which tends to make the exploration a.lgoritlun bduwe 

more like an explicit one, or the subrnodds might become too complex, leading to ample 

local state space sizes and, consequently, extremely large MDD nodes. The Kronecker 

restriction can be lifted in different ways. One solution is to use a eombination of incidence 

n1atrices and MDDs to represent the next state functions, which is a middle ground solution 

between tho tra.diHonal tedm.iqnes and the structural a.pproaeh. The independent encoding 

sche.rne for each event can be decided either during the modeling phase, by including options 

ref()rring to each event explieitly, or it can be done automatically, at run-time, as Kronecker 

consistency is e<:l.sy to dotennine. The result.ing approach is graeefully degrading, as it is 

able to trade the exedlent performancE~ of Kronecker compliant techniques with tho ease of 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

167 

usc of tho gonnraJ nppro11ch. 

One of the ohscrva.tions in Chapter £) Wf:tS tha.t t.lte CTL opera.tor EG is not a good 

c:andidat;e for a, saturation-based approa.ch. Despite this faet, we an~ still iuter·estt>.d in ways 

to improve the cornputatiou. of this operator together with the construction of eotresponding 

witnesses. Th.e la.tter issue is dosely related Loth{~ problem of finding the strongly conntJd:<xl 

eornponeul:s in a directed graph. Eiffident symbolic algorithms for this problem ;1re useful 

in oUwr areas, iududing Markov chain analysis. We thi.uk that a sirnilar approach to the 

partial saturation introduced fiJr the J:IJU operator can be applied wit;h good results to 

eonst.rueting strongly eonneded components, and also to computing CTL operators under 

f<1irness constra-ints [ M ]. 

There are some typieal exa.mples for which BDD techniques do not perform well, ns~ 

pedally digital circuits such as multiplien;, barrel shifters, and bit. alternators. F'or t.h<:~se 

cases, a substitute for the BDD technology are the SAT solvers [1, ~l, 125). SAT solving con­

sists in adapting the standard algorithms for rcadmbility analysis to work with the classical 

SAT resolution a.lgoritluns, by using satisfiabilit.y checkers. The resulting approach is called 

Bounded Model Cheeking [9]. Even though SAT solvers are not fully automatic and are 

not known to outperform BDDs, with the exception of the few typical eases listed above, a 

direct eo:rnpaJ.·sion wit.h our approach is of due course. 

On a different note is the intent to extend the area. of a.pplicabilit.y of our approa.ch. Since 

our data. struetures and algorithn1s eould be of a more g•nu;~ral purpose, we consider that 

an MDD /saturation libm·ry for public distribution would be vahmble for Uw entire Formal 

Verifiea.tion eommunity. Along the san11~ lines of enhancing exposure, a new modeling 

forrnaiism. in SMAHT (e.g., 8irnila,r to the Promela language of SPIN [81]), that is wore 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

lfiX 

adequate for the study of soft,wa.re, is of innn<'diate interm~t. 

Last, hut not; lea.st., as Ute major bottleneck for symbolic Model Checking rern<:~.ins the 

peak memory consmnption, parallel and dist1·-ilm.ted V\m-Jions of <Jnr saturation algorithms 

could offer a. va1id altiernative to the excesRive mernory eonsumption of soqtumtlal algoritlans. 

On an a.necdot.ieal note, we have to Inmlt;ion tl1a,t this wa.s in f~\ct tlw original motiva\:ion 

behind our entire work. The original (tt:sign of the parallel implem<mt~ttion of the st;rudura.l 

approach to state space eonstruction has sparked the idoas in the work presented here. W(' 

still believe that; parallel and distributed implmmmtation~ are valuable, despit;e t;heir (ll1rtled 

notoriety a,:; ''hard-to-parHllnlizc" problems (Ia8]. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Apper1dix A 

Overview of 

Sl'vfLVrr (Stodw.stic Model checking Analyzer for Reliability and Timing) [25] is a software 

paekage that integrates 1nult.iple logic and stochastic rnodeling forrnalis1ns into a, singl<.>. 

envi.ronrne.nt;. At t.he heart of Sl\Wrr lies the ability to ddirw parametrie models for which a 

variety of rnea~:~·ure.~ can be computed. Ft:lr the analys.is of logical behavior, both explicit and 

symbolie state-space generation tedu.tiques, as well as CTL Model Checking aJgoriH1ms, 

are available. For the study of stochastic and timing behavior, bot.h sparse-storage and 

Kronecker numerical solution approaches are available. 

The &4\Rf project is the result of a collective effort of several developers over the yeaJ:s, 

starting in 1994. Currently, the C++ source has over 100,000 lines of code. The author of 

this thesis is responsible for writing the various symbolic state spaee construction algorithms 

presented here and the entire Model Cheeking modul~~, totaling over 12,000 lines of code. 

The SIV!l\Frf Language 

SMAH'J' uses a strongly-typed, cont.putation-ou-dernand, dedarat;ive language with t.he 

following pred(~fined type.<;: bool (true or false), int (integer va.lnes, machine d<,~pen­

dent range), bigint (arbitrary size integer va.lues), real (floating-point values, rnaehine-

169 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

am listed lHJlow: 

bool c := 3 - 2 > 0; 

int i :"' 12; 

bigint i :~ 1000•2000*3000*4000*5000; 

real x :~ sqrt(2.3); 

str·ing s :"' 11 Monday 11
; 

170 

Composit(~ types can be dcfin(xl using the eouecptti of !lets (collection of homogeneous 

objects: { 1, 2, 4, 8, 16} ) , nrmyB ( rnultidiu1<msional collections of homogeneous object~:~ in~ 

dexed by set clements: a [3] [0. 2]), and aggn"-gates ( a.nalogous to the Pase;tl '1record": 

p:3). 

A t.ypo can he further rnodified by the following na.t?J.res, which describe stochastic char-

acteristies: const: (the default) xwu-stoehastie quantities, ph: for nw.dom variables with 

discrete or continuous phase-type distribution, rand: for random variable with arbitrary 

distribution. Finally, predefined formalism typos can be used to define stochastic processes 

indexed by time: continuous a.nd discrete time Markov cha.ins ( ctmc, dtmc) and st;ocha.stic 

Petri nets ( spn). 

The b;;J ... 'lie statements in SMAfrr can be grouped in: declarations, definitions, compound 

and option statements. 

Function dedarations 

Syntactically, objects defined in 814\HT are functions, possibly recursive, a.nd ea.n be 

overloaded; 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPl~NDIX ll. OVJ?JH.\!JBW OF sJ\:IAH:r 171 

real pi. :"• 3.l4; 

bool close(real a, real b) :"' abs(a-b) < 0.00001; 

I* a two-parameter function *I 

int pow(in·c base, int exp) :~ cond(exp~~1,base,base*pow(base,exp-1)); 

real pow(real 

pow(5,3); 

pow(5.0,3); 

Arrays 

base, int exp) :~ cond(exp==i,base,base>~<pow(base,exp-1)); 

I* returns 125, i11teger '~~</ 

I* returns 125.0, real *I 

Arrays are dedared using a for statement. Their dimensionality is determined by the 

endosing itera.tors. Since the indices along each dhnension belong to a finite set, it is legal 

to define arrays with real indices: 

for (inti in {1 .. 5}, real r in {1 .. i .. 0.1}) { 

real res[i] [r]:= MyModel(i,r).outl; 

} 

fills array res with the value of measure out 1 for MyModel, when the first input parameter 

ranges from one to five and the second one ranges from one to the va.lue oftho first parameter, 

with a step of 1/10. 

Fixed-point iterations 

The approximate solution of a. model b often based on a. heuristic decomposition, where 

(sub)rnodels are solved in a fixed-point iteration. This can be specified with the converge 

sta.ternent: 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX A. 0\:'gl{\llEW OF' stv\AI~r 

converge { 

} 

real x guess 1.0; 

real y :; fy(x, y); 

real x := fx(x, y); 

17'2 

Tho iterations stop when two subsequent. x and y values differ by less thanE in either relative 

or almolute t;nrms. The wdues f{)r x and y are updated ~~it.her ilmnediately or at the end of 

each itoraldon. Both e and the upda,t.ing crit;erinn aro fino-tuned using oJJiion statements. 

Tho converge and for statements ean be arbitrarily nested. within ea.ch other. 

Randont variables 

S1tfAR:I' can nmnipula.te discrete and cout.inuous phase-typn distributions. Combining ph 

types produces another ph type if pha.sC:~-type distributions are dosed under that: operation: 

ph int X := georn(0.7); 

ph int y := equilikely(1,5); 

ph int A := rnin(3*X, Y); 

ph int B := 3*X+Y; 

ph int c := choose (0 .4: 3*X, 0.6:Y); 

ph real x := expo(3.2); 

ph real y := erlang(4,5); 

ph real a :"" rntn(3*x, y); 

Model formalisms 

A model iR declared just like a function except that,, instead of a return value, it; specifies 

a block eontaining declarations) spccUical'ions, and m,easttn~s. Components of the model are 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPBNDIX .. A. OVKHVlEJV\l OF SMAftr 

declared using fornm.liHUHlpecifk typeH (<~.g-~ tJw plaem:; of a Petri not). Tho model sl;ructnre 

is spedfied by nsing forma.lisrn-spedfk functions (<~.g., the arcs of a Petri net). .Mmtsures 

aru user dt~fined functions that specify some qua.:ntJt.y of intm:('81; (e.g., tlH: expf~eted munh~~r 

of tokens in a given plaee in stoa.dy·sta.te), and a.re the only model cmnpon@ts that ea:n be 

accessed o11tJsidc of the model dofinition block. 

For example, the model shown on t;he right is doJined a,s: 

spn mynet(int n) :~ { 

}; 

place p5, p4, p3, p2, p1; 

tra:us a, b. c , d. e ; 

arcs(p5:a,a:p4,a:p2,p4:c,c:p3,p3:b,b:p4, 

p2:d,d:p1,p1:e,p3:e,e:p5); 

firing(a:expo(1.1),b:expo(1.2),c:expo(1.3), 

d:expo(1.4),e:expo(1.5)); 

init(p5:n); 

bigint count := num_states(false); 

real speed:: avg_ss(rate(a)); 

for (int n in {1 .. 4}) { 

} 

print("When n"'" ,n," the number of states is ",mynet(n) .count :2); 

print(" and the throughput is ",mynet (n). speed, "\n"); 

where pl. ace and trans are .f()rrnalism-spccifk types; arcs 1 firing, and ini tare formalism­

specific functions; count and speed are two measures. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPBNDL'X A. OVBHVTE'W OF SM;\.ltr 

The for loop out~ido tho model prodm:es the outvut; 

When n""1 the number of states is 5 and the throughput is 0.284926 

When n""'2 the number of states is 14 and the throughput is 0.456624 

When n""3 the number of stat~;n; is 30 and the throughput is 0.553202 

When n""4 the number of states is 55 and the throughput is 0.6l2783 

where !;he .measm·H c;,dlH ean~:~e Sivt\f{r to perform the <tppropdate a.naJysis. 

Arrays a.n.d for loops a.re allowed within a rnodd. in th~:.~ usual uutmwr. 

State space generation and storage 

SMARr implements a wide variety of algorithms f(Jr construct.ing sta.te spaces, governed 

by the choke of the# StateStorage option. Explidt techniques include AVL, splay trees, 

and ha.<Jh tables (opt;ion values AVL, SPLAY, HASHING). Symbolic ;;~,lgorithms require that 

a partition of tlw model b(l specified, and are classified as either of pregeneration type 

(option values MDD.LOCAL.PREGEN, MDD_FORWARDING_.PREGEN, MDD_SATURATIONJ>REGEN), or 

on-the-Hy (MDD_SATURATION, the default setting when a partitioning is defined). The sb:;e of 

a state space can be obtained in number of states, by using the function nunLstates, and 

number of ares, by calling the num .. arcs function on a model. 

Model Checking 

CTL rnodel· checking queries are available iu SMAHT via a set; of model-dependent J.uca­

surcs. The answers to CTL queries are stu red a.s sets of states {the states that satisfy Uw 

formula.) using MDDs with shared nodes. A predefined type stateset .iH used for this. A.ll 

the algoritlnns employ syrnholie (;edmiqu.es, therefore a usm>·defined partitioniug is required. 

Ta.hle AJ lists the hmctions available for Model Checking in &'Wtr. P a.nd p, or Q and 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPBNDJX 1L 0\ll~RVIl.GW OF SMAH:r 

function 

potantial(bool b) 
ini tialstate 

atom 
<xlom 

complement (sa p) 'P -·p 
intarsection(ss p, ss q) p n Q 1) 1\ q 
unioll(ss p, ss q) PUQ pVq 
differlimce(ss p, ss q) ·p \ Q p 1\ ·-,q 
includes (as p, ss q) P 2 Q q ::::>· 'P 
equal (ss p, ss q) 1J :::: Q fJ ¢'> q 
neq (ss p, ss q) P ·"1:· Q -,(p {:;;>· q) 
EX (ssp)-·-······--·-----~·---- { i : 3j E .V(I)]€":J5r····............ ---·-······~· .. ·- .... -.. EFXz)····· 
AX(ss p) {i: VjcN(i),jE'P} AXp 
EF(ss p) {i: 3jEN~(i),jEP} B.f:i'p 
AF(ss p) {i:VtrEI!i>3n~0,1f11 ET'} AFp 
EG(ss p) {i:3trCIIi>Vn~0,1f,lEP} BOp 
AG(ss p) {i: VjEN*(i),jE'P} AOp 
EU(ss p, ss q) {i::l7rEifi.3m~~O,'lrmEQAVn<m,7r11 EP} B~Jllq] 
AU(ss p, ss q) {i:V1fEI1i,3m?:O,trmEQ/\Vn<m,JrnE'P} A.[pU q] 
EXbar(ss p) {f3IEJS-:iEN(~·~·---·-····-----·-·- ··--lf!'J[p--~ 

AXbar(ss p) {.i: ViE§,jEN(i) '::> iEP} A~Yp 
EFbar(ss p) {j: 3iEP,jEN*(i)} EF'p 
AFbar(ss p) {j: VtrEllJ,:J:n?:O,trnEP} AFp 
EGbar(ss p) {j: 3trEifJ,Vn~O,tr11 E'P} BGp 
AGbar(ss p) {j: ViE .. 9,jEN*(i):.:::} iEP} AGp 
EUbar(ss p, ss q) {j:3trEif;,3m2:0,7rm.EQ/\Vn<m,trnE'P} E~>Uq] 

_ _!~:~bar (ss p, ss q) {j : V1r E ITi, 3m~ 0, Trm E Q 1\ Vn < 1n, 'lf, E 'P} il[p_U qJ 
prev(ss p) ·-·-·;,llia.s forEX(p),One ster> backwilid .... _~~--
ne:xt ( ss p) alia.<> for EX bar (p), one step forward 
backward(ss p) alias for EF(p), backward reachability 
forward(ss p) alias for EFbar (p), forward reachabilit,y 
reachable alias for forward(ini tialstate), the statn spaceS 
addprev(ss p) alias for union(EX(p) ,p), zero or one step bad\:w;:1rd 
addnext(ss alias for union(EXbar(p) ,p), zero or one st;ep forward 

1----:-.. :----~.......!..:........ .. ~--........... _ .• __ ....... +-n-.!t-, u-r-n-'1 ,e::::P""'! ,-l..,.;h_o_;r_nnn1)er .. ()t'(;I~~rr1ert!~s iu set. ;p----·---...................... .. 

the elements in to MaxPrinteditems 

Table A.l: .Model checking fumti011H in Sl\1!\l'{r. 

1 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

17() 

q, a.re the s1~t and the fbnnula. corresponding t,o p~ or q, rospeetivdy. Hi and n·i are Ow setll 

of forward aud reverse time pat;hs starting at stn,to i, nwqH;dively, and trn is the nth state on 

path 1r. For conciseness, th<! abbreviation ss is used for stateset. Not<~ that wo extended 

CTL with all the dual opera,tors in tho pa .. "!t. 

'I' he follO'wing exatnplt~ shows one rwst~ible w;::ty to d1eek for absorbing (deadlocked) st;atos 

in a model, then verif-y smn<.~ st:ability and safety properties: 

states at u := reachable; I* reachable states *I 

states at NotAbsorb :~ prev(potential(true)); I* states that have a successor *I 

stat~;wet Absorb !:;".! difference(U,NotAbaorb); '* reachable absorbing states *I 

bool deadlock :::::: neq(Absorb,nostates); I* deadlock. detection *I 

bool prnabs := printset(Absorb); I* list deadlocked states *I 

state set Good := potential(expr1); 

stateset Stable :z;:: EG(Good); I* there is an infinite good run *I 

state set Safe := AU(Stable,Good); 

For further ref(mmce, a complete SMAI~T llser Manual [29] is availa.hle on-line, a.t: 

www.cs.wm.edu/~ciardo/SMART. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Appendix B 

Benchtnark of Examples 

B.l Dining philosophers 

Figure B.l: The dining philosophers, ith subnet. 

This model implements the classical dining philosophers protocol, a paradigm for mutual 

exclusion solutions. The philosophers (representing processes) are soa.ted around a ta.ble, 

with forks (representing the eoneept of sha.rod resources) between adjacent pllilosophers. 

Each philosopher is initiaJly idle, but. ev(mtually, and independently beeorne lmu~~ry. To be 

able to eat, they have to obtain their eorrespon.ding right··lutnd and h:~ft-hand fork, which are 

shared with their neighbours. When a. fork is seeumd, it is not released uutil the philosopher 

177 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDlX B. 13BN(JHAi.A.Hl\ OF' J•JXAA1PI,J•;s l78 

bas finished <.li.d;ing. 

The SfvW{':r model [111] is em.nposed of N subnets equal to the one ~:~hown in Figure: Ill. 

The net rt~prosnntH a philosopher and Uw philosoplH•r's right fork. 'I'h<:~ philosopher's left 

fork, represented by t,he dotted place Ji'ork(if.J) m()(l JV, is part of the subnet f()r the next 

ph.ilosopher and. is depicted only to illuHtrate lww t:he subnets interact:. Note thtt.t the 

model implemented henl lH1."~ two deadlocked st.a.tes, correHponding to Hm situation when all 

philosophm·s hold their right forks, or all hold their left; forks, respectively. 

The eorn~sponding SMArrr code is: 

spn phils(int N) :""' { 

} ; 

for (inti in {1 .. N}) { 

} 

place Idle[i], WaitL[i], WaitR[i], HaaL[i], HasR[i], Fork[i]; 

trans Go Eat [i] , GetL[i.] , G{!tR [i] , Rel [i] ; 

firing(GoEat[i]:expo(l), GetL[i]:axpo(1), GetR[i]:expo(1), Rel[i]:expo(1)); 

partition(1+div(i,2):Idle[i]:WaitL[i]:WaitR[i] :HasL[i]:HasR[i] :Fork[i]); 

init(Idle[i]:1, Fork[i] :1); 

for (int i in {1. .N}) { 

} 

arcs(Idle[i] :GoEat[i], GoEat[i] :WaitL[i], GoEat[i] :WaitR[i], WaitL[i] :GetL[i], 

Fork[l+mod(i,N)]:GetL[i], GetL[i] :HasL[i], WaitR[i] :GetR[i], 

Fork[i] :GetR[i], GetR[i] :HasR[i], HasL[i] :Rel[i), HasR[i] :Rel[i], 

Rel[i] :Idle [i] , Rel[i] :Fork [i] , Rel[i] :Fork [1 +mod ( i, N)]); 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

.APPE:NDIX R BBNOtlJVLAHJ( OP BXluvlJ»Ll'i8 179 

B.2 A. flexibl(~ n1anufacturing systen1 

The Petri rwt; [a2] in Fig. B.2 models a. flmdble uHumflwturing syHt.mn (FMS). The systcrn 

machimJH of type Af:~, that can <t."lscmble finislH:.~d p~uts of t;ype P 1 a.nd P2 tognther int.o a 

singlo part. When the rnachine Jlfz is idle, it can also process parts of type PJ. Completed 

parts of all types are shipped and raw paJ.·ts of the Harne type enter the syst.mn to rna.intain 

a constant inventory (initially, therH are N part8 of each t;ype). 

The model is parameterized by the initial number N of tokens in f\ 1 P2, and J~l· 

Pl2s lp]2M3 P12M3 1M3 P12wM3 Pl2 

#( P12s) -{]+-·-·- 1x 

IPJ2 

#(P12s) 

Ji'igure B.2: A :flexible manufacturing system. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPEJNDIX R lJt•JNCHMARK OF BXli.MPDB8 180 

spn fms(int n) :"" { 

}; 

place Pl, P2, P3, P12, P2s, P3s, P1s, P12s, 

M1, M2, M3, P1wM1, P2wM2, P3M2, P12wM3, 

P1M1, P2M2, P12M3, Pld, P2d, P1wP2, P2wP1; 

trans tP1, tP2, tP3, tP12, tP1M1, tP2M2, tP3M2, 

tP12M3, tP1a, tP2a, tP3s, tP12s, tM1, 

tM2, tH3, tx, tPla, tP1j, tP2e, tP2j; 

fir:i.ng(tP1: (l::tpo(tk(P1) *max (1. 0, div (3*n, 2) I (tk(P 1)+tk(P2)+tk(P3)+tk(P12)))), 

tP2: expo (tk(P2) *max(:t. 0, div(3*n,2) I (tk (P1)+tk(P2)+tk(P3)+tk(P12)))), 

tP3:expo(tk(P3)*max(1.0, div(3*n,2)/(tk(P1)+tk(P2)+tk(P3)+tk(P12)))), 

tP1.2:expo(tk(P12)'~<max(l.O, div(3*n,2)/(tk(P1)+tk(P2)+tk(P3)+tk(P12)))), 

tP1M1 :expo(tk(P1M1)/4), tP2M2:e:xpo(1/6), tP3M2:Eaxpo(1/2), 

tP12M3:expo(tk(P12M3)), tPls:expo(i/60), tP2s:expo(1/60), tP3s:expo(1/60), 

tP12s:expo(1/60), tM1:0, tM2:0, tM3:0, tx:O, tP1e:O, tP1j:O, tP2e:O, tP2j:O); 

weight(tM1:1, tM2:1, tM3:1, tx:l, tP1e:0.8, tP1j:0.2, tP2e:0.6, tP2j:0.4); 

arcs(P1:tP1, tP1:P1wM1, P1wM1:tM1, Mi:tMl, tM1:P1M1, P1M1.:tP1M1, tP1M1:M1, 

tP1Ml:P1d, P1d:tP1e, Pld:tP1j, tP1e:P1s, tP1j:P1wP2, Pls:tPls:tk(P1s), 

tP1s:P1:tk(P1s), PlwP2:tx, tx:P1.2, P12:tP12, tP1.2:P12wM3, P12wM3:tM3, 

M3:tH3, tM3:P12M3, P12M3:tP12M3, tP12M3:M3, tP12M3:P12s, P12s:tP12s:tk(P12s), 

tP12s:P1:tk(P12s), tP12s:P2:tk(P12s), P2:tP2, tP2:P2wM2, P2wM2:tM2, M2:tM2, 

tM2:P2M2, P2M2:tP2M2, tP2M2:M2, tP2M2:P2d, P2d:tP2j, tP2j:P2wP1, P2wPl:tx, 

P2d:tP2e, tP2e:P2s, P2s:tP2s:tk(P2s), tP2s:P2:tk(P2s), P3:tP3, tP3:P3M2, 

P::..1M2: tP3M2, M2: tP3M2, tP3M2: P3s, tP3M2: M2, P3s: tP3s: tk (P3s), tP3s: P3: tk (P3s)); 

init(Pl:n, P2:n, P3:n, M1:3, M3:2, M2:1); 

partition(P1: P1wM1: P1H1: Mi :P1d: Pis, P1.2s :P12M3: H3: P12wM3: P12 :P1wP2: P2wP1, 

P2:P2wM2:P2M2:M2:P2d:P2s, P3:P3M2:P3s); 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDlX B. BBNGHt\:fAfU\. OF BXA A1PTJBS 181 

B.3 Slotted ring 

Figure :8.3: Slotted ring model, ith sulnwt. 

Figure B.3 shows the Petri net for a single node of a slotted ring network protocol [111]. 

The overa.ll model is composed of N such subnets connected by merging transitions (i.e., 

li'ree(Hl) mod N and Used('i+l) mod N really bfllong to the "next" subuot). 

The following SMAJ-rr eode shows a decomposition where each nod~c~ of Ute ring is in a 

different level. 

spn slot(int N) := { 

for (int i in {0 .. N-1}) { 

} 

place pA [i] , pB [i] , pC [i] , pD [i] , pE [i] , pF [i] , pG [i) , pH [i] ; 

trans other [i] , owner [i] , write [i] , go [i] , give [i] , put [i] , used [i] , free [i] ; 

firing(other[i] :expo(1), owner[i] :expo(!), write[i] :expo(1), go[i] :expo(!), 

give[i] :expo(!), put[i] :expo(1), free[:i.] :expo(!), used(i) :expo(l)); 

partition(pA[i]:pB[i]:pC[i]:pD[i]:pE[i]:pF[i] :pG[i]:pH[i]); 

ini t (pC [i) : 1, pE [i] : 1) ; 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

.APPBNJJlX 13. BENCHMARK OF EXJ11\fPLPJS 

for (inti in {O .. N-1}) { 

arca(used.[mod(i+l,N)):pA[i], pA[i]:other[)], pA[i]:owne:r[i], 

free[mod(i+1,N)] :pB[i], owner[i] :pB[i], pB[i] :go[i], pB[t] :write[i], 

write[i] :pD[i], othe:r[i] :pD[i] • pD[:i.] :put[i] .• go[:i) :pH[i], 

pH[i] :give[i.], give[i] :pC[i]. put[i] :pC[i], pC[i] :free[mod(i+1,N)], 

182 

pC[i] :used[mod(i+l,N)], :free[i] :pF'[i], used[i] :pF[i], pF[i] :give[:i.], 

pF[i] :put[i], give[i] :pE[i], pE[i.) :fre~~[i], put[i] :pG[i], pG[i] :used[i]); 

} 

} 

B.4 A Kanban systen1 

This model [131] eonsists of four stations tlutt. process parts. A pa.rt enters a station only if 

a ticket is available. The part is thou processed, and if the work is pcrl(mned correctly, the 

part can move to the next station, otherwise it is sent back to be fixed. A part that passes 

station 1 is split inlio two parts, one for stations 2 and :3 eaeh, a.nd when the two parts pass 

their stations, they are joined and move to station 4. 

The model shown in Figure B .4 is parameterized by the number N of tokens initially 

in PI, P2, P:i, a.nd p4. The following code shows a partition into four levels, one per kanhan 

station. 

spn kanban(int N) :~ { 

place pml, pback1, pkani, pout1, pm2, pback2, pkan2, pout2, 

pm3, pback3, pkan3, pout3, pm4, pback4, pkan4, pout4; 

trans tin1, tredo1, tok1, tback1, tin23, tredo2, tok2, tback2, tout2, 

tredo3, tok3, tback3, tredo4, tok4, tback4, tout4; 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX R BlUNf'!JJMAHK OF .lDXAJVlPLBS 

,,.,.,,-,.-<>'""""'''"'"""""-,_..,_ _____ _ 

[ktl;,., cp'!!.J {]lrfdo,ofl''"dt u·b.~~kl 
·-·+ "' -

"" 

(N;\ ,~ -!5--· 
/)krm 1~-..."._::_ ____ ./ 

Figure B.4: A lrunban syRtcm. 

parti tion(pm1 :pback1 :pkanl :pout1, pm2: pback2 :pkan2 :pottt2, 

pm3: pback3: pkan3: pout3, pm4: pback4: pka.n4: pout4) ; 

firing(tin1:expo(l.O), tredo1:axpo(0.36), tokl:expo(0.84), tback1:expo(0.3), 

tin23:expo(0.4), tredo2:expo(0.42), tok2:expo(0.98), tback2:expo(0.3), 

tout2: expo(0.5), tredo3:expo(0.39), tok3:expo(0.91), tback3:expo(0.3), 

tredo4:expo(0.33), tok4:expo(O. 77), tback4:expo(0.3), tout4:expo(0.9)); 

arcs(pkanl:tinl, tin1:pm1, pml:tredo1, pm1:tok1, tredo1:pback1, 

tok1:pout1, pbackl:tbackl, tback1:pm1, pout1:tin23, tin23:pkan1, 

pkan2: tin23, t in23: pm2, pm2: tredo2, pm2: tok2, tredo2: pback2, 

tok2:pout2, pback2:tback2, tback2:pm2, pout2:tout2, tout2:pkan2, 

pkan3: tin23, t in23: pm3, pm3: tredo3, pm3: tol<3, tredo3: pback3, 

tok3: pout3, pback3: tback3, tback3: pm3, pout3: tout2, tout2: pkan3, 

pkan4:tout2, tout2:pm4, pm4:tredo4, pm4:tok4, tredo4:pback4, 

tok4:pout4, pback4:tba.ck4, tback4:pm4, pout4:tout4, tout4:pkan4); 

in:"L t (pkanl: N, pkau2: N, pkan3: N, pkan4: N) ; 

}; 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDJX B. BBNCHl\:fAUJ< OF BXA1\rfP.Ll'JS 

B.5 Randornized leader election protocol 

'l'he ran(lomized asynchronous leader election protocol in [84] solves t.he following problem: 

given a ring of N processors, the pa.rtidpa.nt.s are required to designate a uniquo proc~essor 

a..'l leader by sending rm~ssag<~s around the ring. The ring is nnidireetion.:tl) 1nnanine; t.ha.t thH 

I'roeesS(lS send me1<sagos t.o their n:nique snetx•ssor (e.g. the one to t.lH3 right.), and receive 

messages fhnn their uniqnH predt~cessor. It is known that if the processors are indistinguish­

able (no unique identifkrs are assigned), then there is uo deterrninistic algorHhm to solve 

the problem. 

The randomized a.lgoritlun works in pha .. <;es. AL the beginning of every round, each 

process flips a. coin to decide whether it will continue running f()r election or not. Initially 

all pro(:esses are valid eandidatos. After choosing a value (0 = don't; run this round, 1 o:·: 

run), this is corn1nunicated to the neighbour to the right. A process is eliminated from the 

race only if it chose not to run and it's predecessor chose to run. After being eliminated 

from the race, a process never becomes eligible again (it enters the inactive state), and it is 

used only to relay messages between active nodes around the ring. They do no initiate any 

communication. Termination is detected by the active processes (at least one active node 

exists at all times) by sending a token around the ring to count the inactive nodes. The 

process that receives its own token with count N -- 1 is the elected lead or. 

In our rnodd, each processes has 5 state variableH: 

status[:i.] {start, wait, active, inactive, J.eader}; II in it start 

preference [i] {0, 1}; II in it 0 

counter [i] 0 .. N-1; II in it 0 

sent [i] {none, pref, counter}; II in it none 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

A.PFBNDIX H. HENGH2\JAHK OF' BXAMPDBS 

recv[i] {none, p:ref, counter}; II :init none 

Figure B.5: Statechart f(n· the leader election prot,ocoL 

The state-transition diagran1 for thn stntus of a process is shown in Figure B.5. 

The SMARr eode for this model is: 

spn leader(int N) := { 

for (inti in {O .. N-1}) { 

185 

place st_choose[i], st_wait[i], st_active[i], st_inactive[i], st_leader[i], 

pref[i], c[i], rec_none[i], rec_choice[i], rec_counter[i], 

sent_none[i], sent_choice[i], sent_counter[i); 

trans pick_valueO[i], pick_valuel[i], send_pref[i], 

recv_stay_activeO[i], recv_stay_activel[i], recv_become_inactive[i], 

send_new_counter[i], recv_counter[i], become_leader[i], 

i_recv_prefO[i], i._recv_prefl[i], i_send_pref[i], i_send_counter[i]; 

partition(st_choose[i] :st_wait[i] :st_active[i] :st_inactive[i]: 

st_leader[i] :pref[i]:c[i], 

rec_rlOne [i] : rec_.choice [i] : rec_counter [i] : 

sent_none[i] :sent_choice[i] :sent_counter[i]); 

init(st_choose[i]:l, sent_none[i]:l, rec_none[i] :1); 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

18() 

for (int j in {0 .. N·,.i}) { tn~.ms im::_counte:r[:iJ [j]; } 

} 

for (tnt i in {0 .• N-·1}) { 

arcs( 

st_choose[i]:pick_valuaO[i], pick_valueO[i]:st_wait[i], 

sent_none [i] :pick_ valu(~o [i] , pick_ valueO [i] : :o;ent_noue [i] , 

rec_none[i] :pick_valueO[i], pick_valueO[i] :rec_no:ne[i], 

pref[i] :pick_valueO[i] :tk(pref[i]), 

st_choose [i] :pick_ valuei[J.] , pick_ valuel[i] : st_wait [i], 

sent_none[i] :pick,_value1[i], pick_value1[i] :sent_none[i], 

rec_none[i] :pick_valuei[i], pick_valuel[i] :rec_none[i], 

pref[i] :pick_value1[i] :tk(pref[i]), pick_valuel[i.] :pref[i], 

st_wait[i] :send_pref[i], send_pref[i] :st_wait[i], 

sent_none[i] :send_pref[i], send_pref[i] :sent_choice[i], 

st_wait[i] :recv_stay_activeO[i], recv_stay_activeO[i]:st_active[i], 

rec_none[i] :recv_stay,_activeO[i], recv_stay_activeO[i] :rec_choice[i], 

aent_choice[i] :recv_stay_activeO[i], recv_stay_activeO[i]:sent_choice[i], 

st_wait[i] :recv_stay_activei(i], rec_none[i] :recv_stay_active1[i], 

:recv_stay_activel[i] :st .. active(i], recv_stay_activel[i] :rec_choice[i], 

pref [i] : recv _stay _acti.ve1[i], recv _stay _acti Vl:li[i] :pref [i], 

sent_choice[i] :.recv_stay_activel[i], recv_stay_act:i.vel[i] :sent_choice[i], 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. HBNCfiMARK OF J!iXA !\c1PL.E8 187 

st_wa:U;[i] :racv_bt<lcoma .. inactivo[:l], rec_none[i] :recv .. becmne_lttactiv~l[:iJ, 

recv _become_inacti ve [i]: st_inacti ve [i] , recv _become .. inactive [i] :rec .. choice [i], 

sent_choice [i] : n~cv _become_inacti ve [i], recv _become_ inactive [i]: scmt._choice [i] , 

pref[mod(i+t,N)] :recv_become_inactive(i], recv_become_inactive[i]:pref[mod(i+1,N)], 

st_active[i] :send_.new .. counter(i], send_new_counter(i] :st_active[i], 

sent_ choice [i] : send .. new_counter [i], send .. new .. counter [i] : sent_cllunter [i], 

st_active[i] :recv_counter[i], recv_counter[i] :st ... choose(i], 

rec_choice[i) :recv_count;e:r[i], recv .... <:oun·ter[i] :rec_none[i], 

sent_ counter [mod (i+l ,N)] : recv _counter [i] , 

recv_counter[i]:sent_none[mod(i+1,N)], 

pref[i] :recv_counter[i]:tk(pref[i]), c[i] :recv_counter[i] :tk(c[i]), 

c[mod(i+1,N)]:recv_counter[i]:tk(c[mod(i+1,N)]), 

st_active[i]:become_leader[i], become_leader[i] :st_leader[i], 

rec_choice [i] : become_leader [i] , become_leader [i] : rec_none [i] , 

sent_counter[mod(i+i,N)]:become_leader[i], 

become_leader[i]:sent_none[mod(i+i,N)], 

c[mod(i+l,N)]:become_leader[i]:N-1, 

st_inactive[i] :i_recv_prefO(i], i_recv_prefO[i] :st_inactive[i], 

rec_none [i] : i_recv _prefO [i], i_recv _prefO [i] : rec .. choice [i], 

pref [ :i] : i_recv _prefO [i] : tk (pref [i]) , 

c[i]: i_recv_prefO[i] :tk(c[i]), 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPEJNDl)( B. BBNOff[\·1/tlU<: OF' f<JXAJ\1PLE!S 

) ; 

at_inactive[i]:i_racv_prcfl[i], i_recv_prafl[i]:at_inactive[i], 

:rec_none [i] : i_recv_prefi[i] • i_r:ecv _p:r<~f 1 (i] :x·ec_choice [i]. 

pref [mod(i+1,N)] : i_recv_pref l[i] , i_recv _pref 1[i] : pref[mod(i+l ,N)], 

pref[i]:i_recv_pre:f1(i]:tk(pref[i]), i_recv_prefi[i]:pref[i], 

c[i]:i_recv_pref1[i]:tk(c[i]), 

st_inacti ve [i] : i_nend_pref[i) , i, .. send .. pn:f[i] : st.w inact:i.ve [f] , 

seut_none [i]: i_send_pref [i] , i_aen<Cpref [i] : sent_choice [i], 

st_inactive[i]:i_send_cou.nter[i], i_send_counter[i]:st_inacti.ve[i], 

rec_counter[i] :i_send_counter[i], i_send_counter[i] :rec_none[i], 

sent_choice[i] :i_send._counter[i], i_send_counter[i.] :aent_counter[i], 

pref [i): i_send_coun.ter[i] :tk(pref [i]) 

for (int j in {0 .. N-1}) { 

} 

arcs( 

st_inactive[i] :inc_counter[i] [j], inc_counter[i] [j] :st_inactive[i], 

rec_choice[i] :inc_counter[i] [j], inc_counter[i] [j]:rec_counter[i], 

sent_counter[mod(i+1,N)]:inc_counter[i] [j], 

inc_counter[i] [j] :sent_noue[mod(i+1,N)], 

c[mod(i+1,N)] :inc_counter[i] [j] :j, inc_counter[i] [j] :c[i] :j+1); 

inhibit( 

pref[mod(i+1,N)] :recv_stay_activeO[i], 

sent_none[mod(i+l,N)]:recv_stay_activeO[i], 

sent_:none[mod(i+1,N)] :recv_stay_activel[i], 

sent_:none[mod(i+1,N)]:recv_become_i:nactive[i], 

188 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

} 

} 

) ; 

~>~tH'l.t .• non(~ [mod(i+1 ,N)]: i .. re<:v_p:rdO [i], 

sent_none [mod(i +1,N)] : i."recv_p:ref 1 [i] , 

pref[i] :recv_become_inactive[i], 

sent_choice[i]:recv_countedi], 

c [mod( i+l ,N)] : recv _counter [i] : N-1, 

pref[mod(.i.+1 ,N)]: i,_recv .. prefO[i], 

rec_none [i] : i_se.nd .. pref [i] 

for (int j in {O .. N-1}) { 

inhibit(sent_none[mod(i+l,N)] :inc_counter[i] [j], 

c[mod(i+1,N)] :inc_counter[i) [j] :j+1); 

} 

B.6 A round .. ·robin mutual exclusion protocol 

The protocol n:~gula.tes the access t;o a shared resource (e.g. a. communication channel) for 

a ring of N processors [72]. The resource manager gives permission to use the ehamwl to 

each process in order, by moving a token around the ring. When a process has the token, 

it reads in a message from the channel and stores it in its own bufl~lr. It can then release 

tho token to the next; processor bef(n·e reading the eontonts of the buffer, or read the bum~r 

flrst and then send the token to the neighbour. 

Figure B.6 shows the subnet for process i. Each subnct is initially nmrked wit;l1 OlW 

token in place waif:i, exenpt ten· process 0 which starts with one token in n~q.i, mea.ning that 

it is the first process to have a.ccess when t.he protocol starts. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. JJBNOHA·lARK OF BXAMP1J;J8 IHO 

Figure B.6: The round,robin mutual exclusion protocol. 

spn robin(int; N) :"' { 

place Res; 

partition(l:Res); 

for (inti in {O .. N-1}) { 

place 

R[i], bufidle[i], buffull[i], 

pwait[i], pask[i], pok[i], pload[i], psend[i]; 

trans 

task[i], tbuf[i], t1load[i], t2load[i], tlsend[i], t2send[i]; 

partition( 

i+2: buf idle [i] : buffull [i] : pwai t [i] : pask [i] : pok (i] : pload [i] : psend [i] , 

1 :R[i]); 

firing(task[i]:expo(1.0), tbuf[i]:expo(l.O), t1load[i]:expo(1.0), 

tlsend[i] :expo(1.0), t2load[i] :expo(l.O), t2send[i] :expo(1.0)); 

} 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX B. JJFJNCHMAlU\ OF' l1JXA1'vfPDBS 

} 

:for (int i in {0 •• N··l}) { 

} 

arcs (Res: task (i] , pask [i] : ta~lk [i] , 

task[i]:R[i], task[i) :pok[i], 

R[i] :tbuf[i], bufidl<?.[i] :tbuf[i], 

tbu:f [i] : buffull [i] , tbuf (i] :Res, 

buffull[i] :t1load[i], pok[i] :t1load[i], 

t1load(i] :bufidle[i], tiload[i] :psend[i], 

buffull [i] : t21oad [i] , pload [i] : t2load [i] , 

t2load[i] :bufidle[i], t2load(i] :pwait(i], 

pok(i]:t1send[i), pwait(mod(i+l.,N)] :tlsend[i], 

t1send[i] :pload[i], tlsend[i] :pask[mod(i+l,N)], 

psend[i] :t2send[i], pwait[mod(i+l,N)] :t2send[i], 

t2send[i] :pwait[i], t2send[i] :pask[rnod(i+l,N)]); 

init(Res:1, pask[0]:1); 

for (int i in {1. .N-1}) { 

init (pwait[i]:1); 

} 

for (int i in {0 .. N-1}) { 

init(bufidle[i]:l); 

} 

l!Jl 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Bibliography 

[1] I'>. Azrz A.BDULLA, P. B:m:ssg, AND N. E}E!N. Symbolic readmbility analysis ba.'led on 
S.AT-solvcrs. In TAOAS 2000, volume 1785 of LNG'S, p1.:1.ges 4J 1"425. Sp:ringcr·-Vt1rlag, 
2000. 

[2] MARCO A.JMONE M.ARSAN, GIANFRANCO BALBO, GIOVANNI CONTF.:, SUSANNA Do~ 
NA'l'I<)LLI, AND GIULIANA FRANO!!~SCHINIS. Modelling with Oeneralized Stochastic 
Petri Nets . .Johu Wiley & Sons, New York, .1995. 

[:3] S. B. AKERS. Birmry Decision Diagrams. IBEB Tnmt1adions on Cornpv.ters, C-27(6), 
.Jnne 1978. 

[4] R. ALUR, ILK. BRAY'l'ON, T.A .. HKNZINGER, S. qADE.mR, AND S.K. RAJAMANI. 

Partial-order reduction in symbolic stat<:l-spaee exploration. In CAV '97, volmne 1254 
of .LNCS, pages 3t10~351. Springer-Verlag, .1997. 

[5] R. Atun., T. A. HrmziNGJ1:H., AND P.-H. Ho. Autornat;ic symbolic verification of 
embedded systems. IEEE 'l'rantJactions on Software BngineeTing, 22(:3):181-201, 1996. 

[6) V. AMOIA, G. DJ<J MICHELI, AND M. SANTOMAUR.O. Computer-oriented for.mulation 
of transition-rate matrices via Kronecker algebra. IBEB 'l'rans. Rd., 30:12:3--132, .June 
1981. 

[7] H. R. ANDERSEN, .J. STAUNSTR.UP, AND N. MARETT!. Partial model checking with 
ROBDDs. Lcctuno Note8 in Computer Science, 1217:35~·49, 1997. 

[8] R. I. BAHAR, E. A. FROHM, C. M. GAONA, G. D. HACHTEL, E. MACIII, 

A. PARDO, AND F. SoM.mNZI. Algebraic decision diagrams and their applications. 
Formal MethodtJ in S:ystcm Design, l0(2/:J):l7l·206, Aprill997. 

[9] A. BIERE, A. GIMATTI, E. CLARKF:, ANDY. ZIHJ. Symholk r:nodel checking without 
BDDs. LNCS, 1579:1!)3 207, 1999. 

[10] N. BJORNER, A. BHOWNE, E. CHANG, M. COLON, A. KAPUR, Z. MANNA, H. B. 
SIP MA, AND T. K lJ RIBE. STeP: The stanford temporal prover (educational release) 
user's rnauual. Teehnical Report CS-TR-!)5-1562, Stanford University, 19H5. 

[11] RODERICK BLOEM, HAROLD N. GA.BOW, AND FABIO SOMENZI. An algorithm for 
strongly connected component ana.ly1:1iii inn log n syt.nbolic steps. In Pnu;. of PMCAD 
2000, pages :37 54. Springer-Verlag, 2000. 

192 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

BIBLJOGHAPJIY 

[12] ltODE<:H.ICK 13LOB1\11 KAVITA RAVI, AND FABJO SoM.E.N~L Symbolk guidml search 
for CTL modd checking. In Pmc. DA C, pagos 2!) <H, Los A.ngoleN, CA, USA, :.WOO. 
A(;:\1 Press. 

[1:3] AHMI<)D BOUAJJANI, BE:NG'I' .JONSSON, 1\:lARCUS NILSSON, AND TAYSSm. 'I'OUILL 

H.ogular model eheckiug. In Comp·u.ter Aided ·verijic<tfion, p<t~~es r1fla 418, 2000. 

[14] R. S. BOYEJR AND .J. S. MOOREi. A (Jompulat·ionnl Logic. Academic Press, Now 
York, 1979. 

[lt'i] H.. K. BRAY'I'ON, ('L D. HAGHTmL, A. SANGIOVANNI-VINCENTBLL!, .~ND 
F. SOMENZI. VIS: a system for verifica,tion and synthesis. Ledttre Notes ·in Cornp·nter· 
Science, 1102:428 A:n, 1!)9{L 

t:w·l R. K BRYANT. Gra.ph~ba.sed algorithms for boolean function ma.nipula,tion. !BEE 
Tm.n8. Omnp., 35(8):()77'"691, August 1986. 

[17] H .. E. BnYAN'f. Symbolic boolean manipulation wit;h ordered binary~dedsion dia.­
grarns. ACM Comp. Surv., 24(:3)::39:3 -:ns, 1!)92. 

[18] R. K BRYANT AND Y.A. CHEN. Verification of arithmetic circuits with binary 
mo:ment diagrams. In Pmc. of Design Autornation Conj. (DAC), pages 535·541, 
1995. 

[19] PETI<;R BUCHHOLZ, GIANF'ltANCO CIAIWO, SUSANNA DONATELLI, AND PE'I'ER 

KF;MPER. Complexity of mernory-eflident Kronecker operations with applications 
to the solution of Markov models. INFORMS .1. Comp., 12(~~):203~-222, 2000. 

[20) J. R. BuncH, !D. M. CLARKE, AND D. E. LONG. Symbolic model dweking wiU1 
partitioned transition relations. In Int. Conference on Ver·y Larye Sca.le lntegralion, 
A. Halaas and P.B. Denyer, editors, pages 49--58, Edinburgh, Scotland, August 1991. 
IFIP 'lransactions, North-Holland. 

(21] J. R. BURCH, E. M. CLARKE, K. L. McMILLAN, D. L. DILL, AND L .. J. HWANG. 

Syrnbolic rnodel dwcking: 1020 states and beyond. In Proc. 5th AnnuHllEEE S:ymp. 
on Logic in Computer· Science, pa,ges 428"439, Philadelphia, PA, 4··7 June 1990. IEI~l:D 
Cm:np. Soc. Press. 

[22] JOHN P. BURGESS. B~tsk tense logie. In Handbook of Philosophical Logic, Volume 
II: .B:J:lensions of Clas~:~ical Log·ic, D. Gabba.y aud F. Guenthrwr, odit.ors, volumE-: 165 
of S;ynthese LibraTy, chapter 11.2, pages 89~13i~. D. Reidel Publishing Co., Dordreeht, 
198<L 

[2:3] RIGKY \V. BUTLER. Formal nwthods fi)r life-critical software. In AIA.A. Computing 
in Aerospace .9 ConfeTence, pages :ng 2!), Sa.n Diego, CA, 19· 21 October .t 99~{. 

[24] G. CABODI, P. CAMURATT, AND S. Qurm. Improving symbolic tra.versal~-5 by .r.neans 
of adivity profilei:!. lu De.~·ign A.v.tomation Conference, pages aon":n 1, 1999. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

13WL1001?..i\ PHY 194 

[25] GIANF'H.ANCO CIAH.DO~ Rongu·r L .. JoNBS, ANDREW S. MINlm, AND RAilU SI· 

M!NICHIANU. Logical and st:oduJ..'ltic nwdeling with SMAHT. In Proc. l't!lodelling 
Techniqne.'l (J,n<l Tool.~ for Oornplder .Pt;r:forrna,nce Bvaluntion, Pder Kompor and 
William H. Saminrs, (~ditors. LNCS 27911, pages 78 H7, Urbana, IL, USA, S<~pt.mn-· 

her 200:3. Springer-Verlag. 

[2ti) GIANF'RANCO CIARDO, GERALD LUf~lTTGEN, AND llADU SIMINICE:ANU. Eflident 
symbolic state-space construction fi>r asynchronous syHI;emH. In Proc. J2lth Int. Oonf. 
on Applicr~tiom1 nnd Theory of Pct·ri Net,.,;, Mogens Nielson a.nd Dan Simpson, editors, 
LNCS 1825, pages 10:!122, AarhnNl Denmar.k, .Juue 2000. Springor-Vm·la.g. 

(27) GIANFRANCO CIARDO, GmtAI.,D LUE'J:"I'GKN, AND RADU SIMINICE:ANU. S;:l.l;nra.tion: 
An dfident :itentt:ion strategy for syutbolk state space generation. In Pme. Jhols a.nd 
Algor-ithms .fo•r the Construction and Analysis o.f System;; (:Z:A OAS), Tiziana Ma.rgaria 
and Wang Yi, editors, LNCS 2mn, pa.ges :J28 i}42, Genova, Italy, April200L Springer·· 
Verlag. 

(28] GIANFRANCO CIAH.DO, RO.B.EHT MAilMOllST.ITIIN, AND H .. ADU SIMINICBANU. Si.~tu­
rat;ion unbound. In Proc. Tools and Algor'ithrns for the Con.'ltmction and Analw;is 
of Systl:mJ> (TACAS), Hubert Garavel and John Ha.tdiff, (J(tit,ors, LNCS 26H}, pages 
a70-:3!):3, Warsaw, Poland, April 200a. Springer·Verlag. 

[29] GrA.NPitANco CIARDO, ANDREW S. MINER, RonErrr L. .JoNES, RommT 
MARMORSTEIN, AND H.ADU SIMINICEANU. SMAHT: Stoeha.."ltic Model check­
ing Analyzer for Reliability and Timing, User Manual Available at 
http://www.es.wm.edu/ ,....ciardojSMAHT/. 

[30) GIANFRANCO CIARDO AND RADU SIMINICEANU. Using edge-va.lued decision dia­
grams for symbolic generation of shortest pa.ths. In Pmc .. Fourth lntemationcLl Con­
ference on F'onnal Methods 1:n Computer-Aided Design (PMCAD), Mark D. Aagaard 
a.nd .John W. O'Leary, editors, LNCS 2517, pages 256··-27a, Portland, OR, USA, 
November 2002. Springer-Verlag. 

[31) GI.ANF'RANCO CIARDO AND RADU SIMINICEANU. Structural symbolic C']'L model 
checking of asynchronous systems. In ComJmter Aided Verification (CAV'OS), Warren 
Hunt, .Jr. and Fabio Somflllzi, editors, volume 2725 of LNCS, pages 40-53, Boulder, 
CO, 'USA, .July 2003. Springer-Verlag. 

[:32] GIANFRANCO CIARDO AND KISHOR S. 'TIUVIDDL A decomposition approach for 
stochastic Petri net models. In PrYJC. 4th Int. Work.'Jhop on Pet1·i Nets and Perfor­
mance Models (PNPM'.9.1}, pages 74:-8~~, Melbourne, Australia, Dceernber 1991. UJE;E 
Cornp. Soe. Press. 

[:3~3) A. CIMATTI, K M. CLARKE, F'. GIUNCHIGLIA, AND M. ROVBIU. N\JSMV: a new 
Sy.rnbolic M.odel Verifier. In PTOceedings .Eleventh Confer-ence on Cornpv.tr-:'1'-A-idcd 
Ve'rifio;.t·ion (CAV'9.9}, N. Ha.lbwachs and D. Peled, editors, LNCS l()::n, pages 4!:.15 
4.99, Trento, Haly, .July HHH). Springer. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

BIHUOGHAPHY 1.95 

(:H] R M. CLARKE AND LA. DltAGHIGI~iSCU. Eixpressibility results f()r linear time and 
branching time logkH. Linear Tirne, B·ranching Time. nnd Plwlial Onle•r ·in Log·ics 
and Models for Ooncu.rrency, 35·4:428 4~i7, 1988. 

[:35] I~. M. CLARKg AND .E. A. EMrwsoN. Charaeterizing properties of parallel pro­
grams as fixpoints. In Seventh lnternMional Colloqtdm on A·atornata, Lmt.()'ltageH, and 
Pt'Of!t'(J,mming, volu1nfl 8~l of LNCS, 1981. 

[3G] E. l\1. GLARKg, E. A. BM.B~RSON, A.Nn A. J:>. S1STLA. Automatie verifkatiou of 
:finit<H>tate eoneur.rent system.s using tcmporallot;;k specifications. A Clvf Tmns. Pmgr-. 
Lcuzg. and S;l]st., 8(2):244· 26:3, April .1986. 

[a7] B":. M. Ct.ARKg AND .BJ.A. lDMBilSON. Design and synthesh; ofsynd1ronill;ation skele­
tons using bra,nching t;imc·) yenrporallogic. ln Logic of Pmymms: lf/ork:;hop, Yo·ridmvn 
Heights NY, volume UH of LNCS, May 1981. 

(88] 8 .. M. CLARKE, T. Fl.LKORN, AND S . .JHA. Bxploiting symmetry in model checking. 
ln OAV '9.'3, vohune GH7 of LNCS, J>l't~~es 450··4(:i2. Springer~Vorlag, 1993. 

[39] B. M. CLARKE, M. FuJnA, P. C. McGEER, K. McMILLAN, J. C.-Y. YANG, AND 

X. ZHAO. Multi-terminal himuy dedRion diagrams: an cffident data strncliure for 
matrix representaiiion. Ji'omw.l A:fethods in System Defii,qn., 10(2/3):149+, April 1997. 

(40] E. M. CLARKE, 0. GRUMBERG, KEN L. McMILLAN, AND X. ZHAO. Efficient 
generation of eount;erexa.mpl<:~s and wituesse:> in symbolic model checking. In 8ft3nd 
Desig·n Automation Confer-ence (DAO 95}, pages 427~·432, Sa.n Fra.nci:,;co, CA, USA, 
1995. 

[41] E. M. CLARKE, 0. GRUMBERG, AND D. A. PELED. Model (]hecking. MIT Press, 
199!J. 

[42] E. M. CLARKE, D. E. LONG, AND K .. L. McMILLAN. Compositional model checking. 
In Proceedings, Fourth Anm1.al Sympoi'ti1J.rn on Logic in Cornp·1der Science, pages 353-
362, Asilomar Conference Center, Pacific Grov<~, California, 5··8 .June 1989. IEEE 
Computer Sodety Press. 

[43] K M. CLARKE AND X. ZHAO. Ana.lyt.iea A theorem prover in Mathematica. 
Lectm·e Notes in Computet· Science, 607:761· 765, 19~)2. 

[44] E. M. CLARKE AND X. ZHAO. Word level sy1nbolic model checking: A new approad.t 
for veri~ying arithnwtk Gircuits. 'I'echnical Report CS-95-161, Carnegie Mdlon Uni­
versity, School of Computer Science, May 1995. 

[ 115] R. CLFiAVI~LAND, J. PARROW, AND B. STEFFEN. The Concurrency Workbench: 
A sen1antics-based tool for the verific~ttion of finHc-stato systems. A OM TOPLAS, 
15(1)::36·72, 199:3. 

(46] H .. L. CONSTABLE, S. ALLEN, H. BROMl<}LY, W. ()r,gvm-AND, ET AL. Implementing 
Mathematic8 with the NnPRL Development 8y.stern. Prentice-Hall, l'Jugl<Mood Cliff:.,, 
N.J, 1986. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

BlBUOGHllPHY l!IG 

[47] JAMg~; CORHHl'~l', !VLI\.TTHI<:W .DWYEm., JOHN llA'I'C.LIF'F, ()OlUNA PASAHl')ANU,, 

RotmY, SHAWN LAUHAcrH, AND I:!ONG.JUN Zm£NG. Ba.rHlera: Ex.traei;i.ng Hnit,Q., 
state 1.nodels from Java, sonrce eode. In J~2nd lntenwtional Con.fcrent.e on Sufhua:n: 
Engineering, pages 4~H)· ·1-18, Limerick, Ireland, .Juno 2000. U:~l'JE} ComJmter Societ;y. 

[48] C. CORNES, J. Cm:JRANT, .J-C. FrLLlATilB, G. HUET, P. MANOURY, C. MUNOZ, 

C. MURTHY, C. PARENT, A. SAliH, AND B. \V.KRNEIL The Coq proof a .. 'lsisiiant, 
reference r:na.nual, version 5 . .10. Technical H.eport Il:l\·0177, Inria, 1995. 

(·19) D. CRAIGEN, S. KrtOMODIM<.>:RLJO, L M.ElS}1;LS, .A. NEILSON, 13. PASfli, AND 

M. SAALTlNK. m-l~VES: A tool f()r verifying software. .In P-roceedings of the 1Oth 
lntm'natiorwl Confen:nce on 8ojt;war·e~ Bng·ine<~r-ing, pageH :324· 333. IIDID.FJ Pn:ss, 1988. 

[50] W. DAMM, 13 . .JosKo, AND R. ScFni)H .. Spedfk:tt.ion a.nd verHication of VHDL­
ha,'led system-level hardware design:;. In 8pec4icalion and ~.rrtlidntion Methods, pages 
;3:31 ·410. Oxford UniwJrsity Press, Hm5. 

[51) D. DAMS, R. GEHTH, G. DOHMEN, R. IfiDRRMANN, P. KELB, AND H. PAIWMANN. 

Model cheeking uHing adaptive statu and data. abstraction. In Pmc. 6th International 
Conwatcr Aided Verification Conference, pages 455 467, 199•1. 

[52] M. DAVIO, J-P. DJDSCHAMPS, AND A. THAYSE. Discmt(; nnd Switching .Punctions. 
McGraw-Hill, New York, 1st edition, 1978. 

[53] D. DrmARBE: AND D. BoRIUONJ~. Semantics of a verificaJ.ion-oriented subset of 
VHDL. Lect-ure Notes in Comp·~tter Science, 987:29~~-310, 1995. 

[54] D. L. DILL, .J. DREXLER, A . .J. Hu, AND C. H. YANG. Protoc:ol verification as 
a hardware dE~sign aieL In Intemational Conference on Cornputer Design, VLSI in 
Computer·s and Pr·ocessor·s, pages 5220<·525, Los Alam.itos, Ca., USA, October H)!n. 

[55] MARK DowsoN. The ARIANE 5 sofware failure. Software Engineering Notes, 
22(2):84, March 1997. 

[56] R. DRECHSLER AND D. SIBLING. Binary d<:,dsion diagrams in theory and practice. 
Soft·ware Tools joT Technology Transfer, :3:112·-136, 2001. 

[57] ALAN EDELMAN. The mathematics of the Pentium division bug. SIAM Rev., 
:39( 1 ):511·{)7, 1997. 

[58] E. A. EMERSON AND .L Y. HALPERN. Somel:imes a.nd Not Never revit'dted: On 
branching time versus linear time. Jmtrna.l of the ACM, 33:151·178, 1986. 

[59] E. ALLEN BMERSON AND .lOSEPH Y. HALPERN. Decisiou procedures and expreH­

siveness in the tElmporal logic of branching time. In Pmceedings o.f the foudeenth 
a:rm.1..wl ACM Symposimn on Theory of Comp'Ut'ing, Stm Fhmcisco, Califomin, Mr~y 
5 '1, .1982, ACM, editor, pages 169 180, New York, NY, USA, 1982. ACM Press. 

[60) FEDERAL AVIA'I'ION ADMINISTRATION, US DEPARTM.I:1:NT OF TRANSPOR'TA'l'!ON. In~ 
t.roduction to 'I'CAS II, March 1990. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

BIBLIOCJRAl'HY' 1!.17 

[61] 'I'. FILKOHN~ H. A .. ScHNEID.E;R, A. Scmn.z, A. STHASSBR, AND P. WARI<:E:NTIN. 

SVE U.'ier's Guide. Sierm:n~:~ AG, Munich) HHH. 

J:f>2] Iv1. Fu:JL'I'A, H. FU.liSAWA, AND N. KAWATO. Evalua.tion and i:rnprovements of 
boolean eonqmrison rneUtod ba.sed on binary deehlion diagrams. In I·nt. Oon.fc1·ence 
on Computer· .Aided De:>ign. rggJ<~, 1988. 

[6a] M. FUJITA, H. FU.JlSAWA, AND Y. MATSUNAGA. Variable ordoring aJgorithms for 
ordered binary dedsion dia.gl'amR and their evaluation. 11EBB ~l'ra.ns. on Comcrmtcr 
Aided Design o.f lntt>.gmler:L Cin~uits a.ntl. Systems, 12(1):6 '12, 1DH:3. 

(64] D. GABBAY, A. PNU!';LI, S. SHElu'\H, AND .J. STAVL 'I'hc tcmpora.l a.na.Iysis of 
fairness. In Confen~nce Rccor·d of i:he Seventh anmutl A 0/v.f Symiposiurn on Pr·-inci.11les 
of Pmgmmrnin,q Langl.tage.'!l, pages 16il,17~t ACM, ACM, .January 1980. 

[65) S .. J. GArtLAND AND .J. V. GUTTAG. LP: Tlw Ln;eeh prover. ln Proceedin!)s on the 
{Jth Inten!.al'ional Confc1·ence on A1ttomated Ded·uction, volume :no of LNCS, pages 
748~749, Berlin, May 1988. Springer. 

[66] A. GEsgrt, J. KNOOP, G. LU'I'TCHilN, B. STEFPI~N, AND 0. lltJTIHNG:. Chaotic fixed 
point iterations. Technical.Report MIP-9408, Univ. of Pa..ssau, 1994. 

[07] PATRICE Gomt:PROID. PaTtial-onler Methods for the Ver·ification of Concurrent Sys .. 
terns 1in ApJwoach to the State-·exploHion Problem, volume 1():32 of LNCS. Springer­
Verlag, 19!J6. 

[68] PATR.ICI'} GODEFROID AND DAVID E. LONG. Symbolic: protocol verification with 
queue BDDs. Fomw.l Method.9 in System Design, l4(a):257··271, May 1999. 

[69] M. GORDON. A proof generating system for higher-order logic. Technical Report 103, 
University of Cambridge, ;Jannaq 1987. 

[70] M. GORDON, R. MILNER, AND C. WADSWORTH. Edinburgh LCF. Lect1u'e Notes in 
Co·mputeT Science, 78, 1979. 

[71] J. ARTHUR. GOWAN, CHRIS .JESSE, AND RICHARD G. MATTIIIEU. Y2K compliance 
and the distributed enterprise. Comrnu.nir.ations of the ACM, 42(2):68~7:3, February 
1999. 

[72] S. GRAF', B. STEFFEN, AND G. LiJTTGEN. CompositiouaJminimisationoffinitestate 
systems using interface specifications. F'omwl Asp. of Comp., 8(5):60T·616, 199ft 

[7:lj DAVID F. Gn.EEN JR. Runway Bafety monitor a.lgorit.hrn f(Jr rnnwa:y incursion do­
teetion and alerting. 'I'edmic:~l Report CR-2002-211416, N AS.A. Langley Research 
Center, Hampton) VA, 2002. 

[74] D. l1AREL. Sta.t.ecl!a.rts: A visual approach to complex systems. Technical Report 
CS84-05, Weizn:umn InHtitute, Rehovot, Israel, ,July 1984.. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

DIBL.IOG.H .. APll 1' l!>H 

[7f1] SccYrT HAZE:LHtHtST. Cor.npositiona.l modol checking of par.'tially ordered st.;tto l<p::tct:s. 
Technicallleport TH~96··02, Dermr'tnHHlt of Compul;nr Science, Univor::-;ity of British 
Columbia, .Ja:nwtry 19!)1). 

[76] JE:SPBR G. HBNlUKSE:N, JAKOB L .. ]ENSI!;N, MICHA'l!iL E . .J<''rllGENfH!lN, NII-S KI.AR·· 

LUND, RoBEitT PAIGli:, THr~rs IlAUH.F.:, AND ANm~RS SANDIIOI".M. '1\iona.: Monadic 
second-order logie in practice. In 7bol.'i and Atgor·ithms for the Con.<;truction awl Anal·· 
yl'li.'f! of S;tjstems, I~d Brinksrna, .Ra.uce Cleaveland, Kim Guldstntnd La.rsen, Tiziana 
Margada, and Bernhard Steffen, editors, voh:une 1019, pages 89 110. Springer, 1995. 

[77) 'I'. A. fiENZlNGER, X. NICiOLLIN, J. SIFAKIS, AND 8. YOVINg. Symbolic modfll 
checking for real-t;ime systems. lr~formation mtd Computation, 1ll(2):19a-244, .Jmtt~ 
1994. 

[78) C. A. R. HOARB. Cornrn:anicating Sequent-ial Procc.r:fse.<~. Pr~mt,ke~Ilall, IDnglewood 
Cliffs, NJ, 1985. 

[79] DIETFJR liOGREI•'I<;. E.<Jtdle, Lotm; unrl SDL. Springt'~r Verlag, Berlin, HJ89. 

[80) R. HOJATI, R. K. BRAYTON, AND R. 1'>. KURSHAN. BDD-based debugging of designs 
using language conta.imnEmt. and fair C'I'L. In Pr·oc. 5th Intcrnatiorwl Compu.te1· Aided 
Ver·ificai:ion Confenmce, pages H·-58, 199:3. 

[81] G. HOLZMANN. The model checker SPIN. !BEE T·mn.c;. on Softw. Eng., 2~}(5):279···· 
295, 1997. 

[82] G. HOLZMANN AND DORON PBLgn. An ilnprovement in formal verification. In 
Proc. Porma.l Descr-iption Teclmiqtu::B1 PORTE94, pages 197-·211, Berne, Switzerland, 
October 1994. Chapman & HalL 

[83] S. I. MINATO. Zero-suppressed BDDs for set manipulation in combinatorial problerns. 
In Pmceedings of the 30th AOM/IEEE Design Automation Conference, ACM-SIGDA; 
IEEE, editor, pages 272 277, Dallas, TX, .Tune 199:3. ACM Press. 

[84] A. ITAI AND M. RODElL Symmetry breaking in distributive networks. In 22th Annual 
Symp. on F't:mndations of Computer Science, pages 150 158, Los Alamitos, CA, USA, 
October 1981. IEEE Comp. Soc. Press. 

[85] C. B . .JONES. Systematic Development 1J.fling VDM. International Ser.ies in Computer 
Science. Prentice~Ha.ll, Englewood. Cliffs, 198G. 

[86] JPL SPJii(JIAL REVIEW BOARD. Report on the Loss of the Mars Polar Lander Deflp 
Space 2 Missions, 2000. 

(87] T. KAlVl, T. VILIJA, ILK. BRAYTON, AND A. SANC:JOVANNI-VTNCENTE:LLI. Multi­
valm:~d dedsion diagmm~:>: Theory and a.pplka.tions. MttltirJle.- Val1w1 Logic, 4(1 ·2):9 
62, l!JH8. 

[88] 1). KAF"JI'. AN' I) 1). J'> l\11. c , . '-· ,USSEIL Proof by consistency. A 1't~jicial Intelligence, 
')1 (9)·1 ')~" lr::7 198"" t) " .o;..J' • '..;.~~)-~~ tJ ' ~ '. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

BJIJD.TOGH.i\PHY 199 

[8!1.] M. KATJI''M.i\NN AND .L S. Momt.m. ACL2: An industrial st,rengt;h version nfNqtJnn. 
COMP!.UJS Pmcee(Urt.y8 of the Annual Confe1'en.C(! on Cornpu.ter AHsmYt'nce, pages 
2;J<14, 1996. 

[90] SrliN.JI KIMURA AND EDMUND M. CLARKE. A parallel aJgorithm for <:onstructing 
binary decision diagrams. In Pror:. Int. Conf. on (!omp'ltter Dc.-;-i_qn (lCGD ), pages 
220 22:~, Cambridge, MA, September 1990. IEEl~ Comp. Soe. Press. 

[91) SAUL A. KRIPKE1. Sema.nt:k considerations on r:nodallogic. Acta PhilotWJ:l/dm Pennica, 
24:8:3 91a, H163. 

[92j MAR'l'A Z. KWIATKOWSKA, GgTmN NORMAN, AND DAVID PARJ:mn. PRISM: Prob­
abilist;ic Symbolic ModHl ClH!cker. In Pr"Oc. Compv.ter· P(~'!fonna.nce Bvahtal:ion / 
TOODS, pages 200 2041 London, UK, April2003. 

[9:l] Y.-T. LAI 1 M. F'EDRAM, AND B. K. VIUIDHULA. Fon:naJ verifkation u:;ing edge·· 
valued binary decision diagrams. lBEJE Tram .. '!. Cmnp., 45:247 255, 19~)6. 

[~}4] Y.-T. LAI AND S. SASTRY. Edgc~va.lued binary ded:;;ion diagra.rns for rnult:i~level 
hierarchical verific:ation. In Pmceedings of the fi9th Confer"en.ce on Design Automation, 
pages 608·-618, Los Alamitos, CA, USA, .June 1992. IEEE Computer Society Press. 

[95J L. LAMPORT. Time, clocks and the ordering of events in diHtribnted systems. Com­
rm.mica.tion.s of the AOM, 21(7):558~·564, 1978. 

[96] L. LAMPOH'f. Sornetirnes is sometimes Not Never-. Annu.al A CM Sympos·iurn on 
P1"inciples of Progr-amming Langnage.B, pages 174···185, 1980. 

[97] K. LARSF..:N, P. PET'l'ERSSON, AND W. YI. Compositional and symbolic model­
checking of real-time systems. In R.TSS '95, pages 76··89. Computer Society Press, 
199.1. 

[98] C. Y. LEE. Representation of switching circuits by binary-decision programs. Bell 
Syst. Techn. J., 38(4):985"999, July 1959. 

[99] P. LESCANNE. Computer experiments with the .REVE term rewriting systems genera­
tor. In ProceedingB of 10th AOM Symposium on Principles r~f Pmgramrn:ing Lang·u.ages, 
pages 99"-108, 198~t 

[100] Lii~SLm LAMPORT. What good is tmnpomllogic? In Proceedings of the IPIP Congress 
on Irdomwtion Proce.ssing, R .E. A. Mason, editor1 pages 657··6()7, Arnst.erdarn, 1983. 
North-Holland. 

[101] Z. Luo AND R. POLLACK. The LEGO proof development system: A user's manuaL 
Technic<:tl Report ECS-LFCS-92-211, University of Edinburgh, Ma;y 19!>2. 

[102] N. A. LYNCH AND M. 'I'UTTLE. Hif~rarchieal correctness proofs f()r distributed algo­
riH.t.ms. ~rechnical .Report; MIT/LCS/TR~:387, Massachusetts Institute of Technology, 
Apiil1987. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

BIBL10GHAPHY 200 

[10::~] ZOHAU MANNA AND ;\MIH PNUELI. The 'l'emporal Logic o.f R.i:tJCtiue and Connm·cnt 
S;ysic'IIIJi. Springer, New York, H)92. 

[104] K. L. McMH,LAN. Symbol-ic Model Chcr:king: An Apvroneh to tlw Statemf;:I:JJlo.<don 
Probll'~m. PhD thesis, Carnegie-Mellon Univ., 19!12. 

[1 05] It. MII,NEJR. A Oalcul1t.8 for· Cormmm:icating Pmce.s::Je8, volume 92 of llf~cture Notes in 
Oom.pu.ter b'cieno;. Springer Verlag, 1980. 

[10()] KIM MILVANC:-JENSEN .AND ALAN J. Hu. BDDNOW: A parallel BDD pa.ek<:tge. In 
PoTmal l'vfethod.'J ·in Corn.pnicr-Aidcd De8ign, H. Beilnm· and P. I3auS<\ editors, LNCS 
1522, pages 501···507. Springm:-Verlag, 1998. 

(107) ANDREWS. MINER AND GIANFHANCO CJATtDO. JDHieieut reaehability set gem'ration 
and stora.gc using decision diagrams. In Pmc. 20th Tnt. Conf. on Applica.tion8 and 
Theor·y of PetTi Net:;, H.C.M. Kkijn and Susanna Donat;elli., editors, LNCS 10:~9, 

pages ()~"25, Williamsburg, VA, USA, .June 1999. Springer-Verlag. 

[108] ANDRii:W STI<JPHBN MINER. Da.ta stntcture.'l for' the a.nalysilJ of large stntctttrecl 
Mo:rkov models. PhD thesis, College of William and Mary, Williamsburg, VA, 2000. 

[109] TAIJAO MURA'l'A A.ND IL Cnunc.H. Analysis of rnarked f,'1'aphs and Petri nets by rna­
trix equations. Resea.rch r0port MDC 1.1.8, Department of inf(mnat.ion eugineering, 
Univeristy of Illinois, Chicago,IL, November 1975. 

[110] S. OWRE, .J. M. RUSHBY, AND N. SHANKAR. PVS: A prototype verification system. 
Lec.i'IJ.re Notes in Comp·nter· Science, 607:748 752, 1992. 

[111] E. PASTOR, 0. B.OIG, J. CORTAm;LLA, AND R.. BADIA. J.:>etri net analysis using 

boolean nmnipulation. In Proc. 1Sth Int. Conf. on Applic(dions and Theory of Petri 
Nets, Robert Valette, editor, LNCS 815, pages 416-·<1:~5, Zaragoza, Spain, June 1994. 
Springer-Verlag. 

[112] .JAMBS L. PETERSON. Petr·i Net Theory and the ModeUng o.f Systems. Preutiee-Hall, 
1H8l. 

[113] C. A. PETRI. Kommunikation m-it Automaten. PhD thesis, Inst. fur Instrurnentelle 
Ma.thematik, Un. Bonn, FR Germany, 1962. 

[114] Sl':RGIO PISSANETZKY. Sparse Matrix Technology. Academic Press, 19811. 

[115] B.R.IGI'l'TE PLATBAU. On t:he stochastic structure of parallelism and synchronisation 
rnodds for distributed algorithm.s. In Proc. ACM SIO.MB1'R.lC7S, pages 147"153, 
Austin, TX, USA, May 1985. 

[116] AMm PNUJ<::LI. The tornpornllogic of programs. IBBB POCS, pages 46"[;7, October 
1977. 

[117] HARRY PREUSS AND ANAND SRIVASTAV. Bloekwise variable orderin~~s for shared 
BD Ds. In MPCS: Sym.p. on !vfathenw.tical Jil:w,ndation8 of Compnfer Science, 1998. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

BIBLIOGJV\. PH'l 201 

[118) An:I.'IHJR N. PHJ<HL Time o,nd rnodality. Oxfhrd Uui.versity I1ross, Oxford, UK, 1957. 

[119] .LP. qutl<)J.Ll•: AND J. SU'AKIB. Spcdfiea.tiou and verifleation of eoncurrcmt syst.mus 
in CESAR. In 5th lntcrnationo.l Symposinrn on Pm!Jmmming, pageH a:W a50, 1981. 

[120] KAVrTA llAVI AND FABIO SOMENZI. Jiigh~dfmsity rmLehabiHty a.ua.ly::;is. In [(}" 
CAD '95, pa.ges 154 ·1 f18. IBBE:: Computer Sodot;y Press, 1995. 

[121] KAVITA llAVI AND F'AIHO SOMf:mZI. gffkient fixpoiut co.rnputa.t;ion for invariant 

ehecking. In P1·m: . .Int. Conf1~nmce on Uornp·uteT De!lign. (lCCD }, pa.ges 407 474, 
Austin, 'I'X, Oct1ober 1999. IEgE Comp. Soc. Press. 

[122] NICHOLAS RBSCHI'JR AND ALASDAJR URQUHART. Tempor-al Lorrie. Springer-Verlag, 
Berlin, 1971. 

[12:J] 0. Ilom, ,J. Con:rAm;LLA, AND E. PASTOR. Verification of asynchronous circuits 
by BDD-based model checking of Ptltri n<:Jts. ln Proc. 16th btt. Conf. on AlJ[Jlir:ationH 
and 1'/t(:'or·y of Petr·i Net.H, :ntrin, Italy, Giorgio De M.ichelis and Mic.l:wl Dia.z, editors, 
LN CS !)~J5, pages :37 4-<391. Springer-Verlag, .June 1905. 

[124] R.RUDELL. Dynamic variable reordering for ordered binary decision diagrams. In 
Intenwtimwl Conference on Corrqmter- Aided Dewign, Santa Clttm CA, Nov. 199:3. 

[125] M:. SHBERAN AND G. STALMAH.CK. A tutorial on SUUrnarck's proof proeeduro for 
propositional logic. Formal Methods in Syldem Design, Hi(1):2a~58) 2000. 

[126] MARC SOLITI AND ENRIC PASTOR.. 'I1:aversal techniques for eoncurrent systems. Lee­
tun~ Notes in Cornputc1· Science, 2517:220--2~37, 2002. 

[127] FABIO SoMENZI. CUDD: CU Dedsion Diagram Pac:kage, Release 2.~:U. 
http: I I vlsi.colorado.edu/ rvfabio I CUDD I euddlntro.html. 

[128] J. M. SPIVEY. Intmducing Z: A Sr.Jec~f/,cation Language and ds For·mal Semantics. 
Cambridge University Press, 1988. 

[129] B. STEFFEN, T. MARGAIUA, A. CLASSEN, AND V. BRAUN. The MBTAFrame'95 
environment. In Proceedings of the Eighth International Confer-ence on Computer 
Aided Ver-ification CA V, volume 1102 of Lecture Notes in Computer Science, pages 
450-·453. Springer Verlag, 1996. 

[130] AL.FRED TAH.SKI. A lattke-theoret.ical fixpoint theorem and its application. Pacific 
JcnJ,rr1.al of Mathematics, pa.ges 285-iHl!J, 1955. 

[181] MARCO TU.GNEH., YUKIO 'I'AKAHASHI, AND GIANFllANCO CIARDO. SNS 1.0: Syn­
chronized Network Solver. In .1st Int. Wo'I'A;shop on Manufact·ur-in£1 and Petr·i Nets, 
pages 215·2:34, Osaka, .Japan, .June 199(i. 

[1~32] ANTTI VALMARL A stubborn attack on the st;ate explosion problem. [n CA V '.90, 
pages 25·42. AMS, 1990. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

ImlLJ OG.RA PH}' 202 

(13:3] M.Y. VARDI AND P. WOLPF;R, An ;mtoma.t;a.~tlworetk approach to au(;onwA.k pnr 
gram verification. JJCS, pages aa2 <H·t 198(i. 

i:la4] F. VBRNADAT, P. AZBMA, AND F. M.rc:mn,. Covering st.np graph. In JCATPN '!l{:i, 

vohune 1091 of .LNCS, pages G16·5;)f:,. Springer-Verlag, 1096. 

[1:15] POUL F. WILIJAMS, ARMIN Bn<:RE, EDMUND M. CL.AH.KE), AND A.NUHHAV GUI'TA. 

Combining Dedsion Diagrmns and S.AT Proeedures for Efficient; Syntbolk Model 
Chf>.cking. In Proceedings of OA V 100, pages 124 laS, 2000. 

!'1:36] .c\J<HJO XIB AND PETER A. J3gmti':L. hnplidt emunera.tion of si;rougly connected 
componenlis. In IOCAD 1.99, pages ;n 40. ACM Press, 19H9. 

[1:.17) Hwou~N YANG AND DAVID R. O'HAU.ARON. Parallel breadth-first, BDD eonstrue·· 
tion. In l'mc. of the Sixth ACJ\f SIGPLAN Symp. on Principles and Practice of 
Parallel Progmrnrning (PPoPP'9'l), page~ 145"·156, La.s Vega.") NV, .June HHJ7. 

(138] SHIPE! ZHANG, OLI!Xl S<)KOLSKY, AND Sco.r·r A. SMOLKA. On Ute parallel eom­

ple::dty of model eheddng in the moda.l mu-ea.kulus. ln Pmcee.dingll of the 9th Ann·ual 
IEEE Sympo.9imn on .Logie in Computer Science, pages 104··163, Paris, France, 4 7 
.July 1!)!)4. IFJEE Computer Society Press. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

VI'Ii\ 

Rad u Sirninice<&}HJ. 

Ra.du Siminkeanu was Born in la.!:!i, Romania, on September 21, 197il He gradtuJ,ted 

from "C. Negrmr.t.i" High School in 1992, as Valedictorian. He earned B.S. and M.S. degrees 

in Computer Science from "Al.I.Cuza" University of Ia§i. in 1907 and 1998, respec!;ively. 

lit>, also graduated college as Va.lcdictorian, and was later appointed as Teaching FeUow by 

the same department, duriug the Spring semm;ter of 19~)8. 

Mr. Sirninieeanu entered the Ph.D. prognun of the Co.rnputer Science Dflpartment at 

the College of Willia,rn and Mary in August 1998. During the next five years, he worked as 

Researeh Assistant under the supervision of Dr. Gianfranco Ciardo, focusing on symbolic 

Model Checking and Formal Verification. He was granted a 1'eachjng J:i'dlowship by the 

Computer Science Department, in t.he Fall semester of 2003, and was the recipient of the 

"Stephen K. Park" award for graduate student resea.reh in 2003. He completed the Ph.D. 

program in December 200i~. 

In 200tl, Dr. Siminiceanu will start working a.'3 a staff scientist a.t the National Institute 

of Aerosp<:tce, in Haxnptou, Virginia. 


	Structural model checking
	Recommended Citation

	tmp.1539734415.pdf.NlMDa

