4 research outputs found

    Microfluidics and Bio-MEMS for Next Generation Healthcare.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2018

    Demonstrating Optothermal Actuators for an Autonomous MEMS Microrobot

    Get PDF
    There are numerous applications for microrobots which are beneficial to the Air Force. However, the microrobotics field is still in its infancy, and will require extensive basic research before these applications can be fielded. The biggest hurdle to be solved, in order to create autonomous microrobots, is generating power for their actuator engines. Most present actuators require orders of magnitude more power than is presently available from micropower sources. To enable smaller microrobots, this research proposed a simplified power concept that eliminates the need for on-board power supplies and control circuitry by using actuators powered wirelessly from the environment. This research extended the basic knowledge of methods required to power Micro-Electro-Mechanical Systems (MEMS) devices and reduce MEMS microrobot size. This research demonstrated optothermal actuators designed for use in a wirelessly propelled autonomous MEMS microrobot, without the need of an onboard power supply, through the use of lasers to directly power micrometer scale silicon thermal actuators. Optothermal actuators, intended for use on a small MEMS microrobot, were modeled, designed, fabricated and tested, using the PolyMUMPs silicon-metal chip fabrication process. Prototype design of a MEMS polysilicon-based microrobot, using optothermal actuators, was designed, fabricated and tested. Each of its parts was demonstrated to provide actuation using energy from an external laser. The optothermal actuators provided 2 m of deflection to the microrobot drive shaft, with 60 mW of pulsed laser power. The results of these experiments demonstrated the validity of a new class of wireless silicon actuators for MEMS devices, which are not directly dependant on electrical power for actuation

    Microdevices and Microsystems for Cell Manipulation

    Get PDF
    Microfabricated devices and systems capable of micromanipulation are well-suited for the manipulation of cells. These technologies are capable of a variety of functions, including cell trapping, cell sorting, cell culturing, and cell surgery, often at single-cell or sub-cellular resolution. These functionalities are achieved through a variety of mechanisms, including mechanical, electrical, magnetic, optical, and thermal forces. The operations that these microdevices and microsystems enable are relevant to many areas of biomedical research, including tissue engineering, cellular therapeutics, drug discovery, and diagnostics. This Special Issue will highlight recent advances in the field of cellular manipulation. Technologies capable of parallel single-cell manipulation are of special interest
    corecore