1,005 research outputs found

    Foliations and 2+1 Causal Dynamical Triangulation Models

    Full text link
    The original models of causal dynamical triangulations construct space-time by arranging a set of simplices in layers separated by a fixed time-like distance. The importance of the foliation structure in the 2+1 dimensional model is studied by considering variations in which this property is relaxed. It turns out that the fixed-lapse condition can be equivalently replaced by a set of global constraints that have geometrical interpretation. On the other hand, the introduction of new types of simplices that puncture the foliating sheets in general leads to different low-energy behavior compared to the original model.Comment: v2: 9 pages, 3 figures, published versio

    Nonorientable 3-manifolds admitting coloured triangulations with at most 30 tetrahedra

    Full text link
    We present the census of all non-orientable, closed, connected 3-manifolds admitting a rigid crystallization with at most 30 vertices. In order to obtain the above result, we generate, manipulate and compare, by suitable computer procedures, all rigid non-bipartite crystallizations up to 30 vertices.Comment: 18 pages, 3 figure

    Towards a Scalable Dynamic Spatial Database System

    Get PDF
    With the rise of GPS-enabled smartphones and other similar mobile devices, massive amounts of location data are available. However, no scalable solutions for soft real-time spatial queries on large sets of moving objects have yet emerged. In this paper we explore and measure the limits of actual algorithms and implementations regarding different application scenarios. And finally we propose a novel distributed architecture to solve the scalability issues.Comment: (2012

    Computing parametric rational generating functions with a primal Barvinok algorithm

    Full text link
    Computations with Barvinok's short rational generating functions are traditionally being performed in the dual space, to avoid the combinatorial complexity of inclusion--exclusion formulas for the intersecting proper faces of cones. We prove that, on the level of indicator functions of polyhedra, there is no need for using inclusion--exclusion formulas to account for boundary effects: All linear identities in the space of indicator functions can be purely expressed using half-open variants of the full-dimensional polyhedra in the identity. This gives rise to a practically efficient, parametric Barvinok algorithm in the primal space.Comment: 16 pages, 1 figure; v2: Minor corrections, new example and summary of algorithm; submitted to journa

    Dynamically Triangulating Lorentzian Quantum Gravity

    Get PDF
    Fruitful ideas on how to quantize gravity are few and far between. In this paper, we give a complete description of a recently introduced non-perturbative gravitational path integral whose continuum limit has already been investigated extensively in d less than 4, with promising results. It is based on a simplicial regularization of Lorentzian space-times and, most importantly, possesses a well-defined, non-perturbative Wick rotation. We present a detailed analysis of the geometric and mathematical properties of the discretized model in d=3,4. This includes a derivation of Lorentzian simplicial manifold constraints, the gravitational actions and their Wick rotation. We define a transfer matrix for the system and show that it leads to a well-defined self-adjoint Hamiltonian. In view of numerical simulations, we also suggest sets of Lorentzian Monte Carlo moves. We demonstrate that certain pathological phases found previously in Euclidean models of dynamical triangulations cannot be realized in the Lorentzian case.Comment: 41 pages, 14 figure

    Shapes of polyhedra and triangulations of the sphere

    Full text link
    The space of shapes of a polyhedron with given total angles less than 2\pi at each of its n vertices has a Kaehler metric, locally isometric to complex hyperbolic space CH^{n-3}. The metric is not complete: collisions between vertices take place a finite distance from a nonsingular point. The metric completion is a complex hyperbolic cone-manifold. In some interesting special cases, the metric completion is an orbifold. The concrete description of these spaces of shapes gives information about the combinatorial classification of triangulations of the sphere with no more than 6 triangles at a vertex.Comment: 39 pages. Published copy, also available at http://www.maths.warwick.ac.uk/gt/GTMon1/paper25.abs.htm

    IST Austria Thesis

    Get PDF
    Many methods for the reconstruction of shapes from sets of points produce ordered simplicial complexes, which are collections of vertices, edges, triangles, and their higher-dimensional analogues, called simplices, in which every simplex gets assigned a real value measuring its size. This thesis studies ordered simplicial complexes, with a focus on their topology, which reflects the connectedness of the represented shapes and the presence of holes. We are interested both in understanding better the structure of these complexes, as well as in developing algorithms for applications. For the Delaunay triangulation, the most popular measure for a simplex is the radius of the smallest empty circumsphere. Based on it, we revisit Alpha and Wrap complexes and experimentally determine their probabilistic properties for random data. Also, we prove the existence of tri-partitions, propose algorithms to open and close holes, and extend the concepts from Euclidean to Bregman geometries

    Approximation and geometric modeling with simplex B-splines associated with irregular triangles

    Get PDF
    Bivariate quadratic simplical B-splines defined by their corresponding set of knots derived from a (suboptimal) constrained Delaunay triangulation of the domain are employed to obtain a C1-smooth surface. The generation of triangle vertices is adjusted to the areal distribution of the data in the domain. We emphasize here that the vertices of the triangles initially define the knots of the B-splines and do generally not coincide with the abscissae of the data. Thus, this approach is well suited to process scattered data.\ud \ud With each vertex of a given triangle we associate two additional points which give rise to six configurations of five knots defining six linearly independent bivariate quadratic B-splines supported on the convex hull of the corresponding five knots.\ud \ud If we consider the vertices of the triangulation as threefold knots, the bivariate quadratic B-splines turn into the well known bivariate quadratic Bernstein-Bézier-form polynomials on triangles. Thus we might be led to think of B-splines as of smoothed versions of Bernstein-Bézier polynomials with respect to the entire domain. From the degenerate Bernstein-Bézier situation we deduce rules how to locate the additional points associated with each vertex to establish knot configurations that allow the modeling of discontinuities of the function itself or any of its directional derivatives. We find that four collinear knots out of the set of five defining an individual quadratic B-spline generate a discontinuity in the surface along the line they constitute, and that analogously three collinear knots generate a discontinuity in a first derivative.\ud Finally, the coefficients of the linear combinations of normalized simplicial B-splines are visualized as geometric control points satisfying the convex hull property.\ud Thus, bivariate quadratic B-splines associated with irregular triangles provide a great flexibility to approximate and model fast changing or even functions with any given discontinuities from scattered data.\ud An example for least squares approximation with simplex splines is presented
    corecore