21 research outputs found

    Fast, accurate solutions for curvilinear earthquake faults and anelastic strain

    Get PDF
    Imaging the anelastic deformation within the crust and lithosphere using surface geophysical data remains a significant challenge in part due to the wide range of physical processes operating at different depths and to various levels of localization that they embody. Models of Earth's elastic properties from seismological imaging combined with geodetic modeling may form the basis of comprehensive rheological models of Earth's interior. However, representing the structural complexity of faults and shear zones in numerical models of deformation still constitutes a major difficulty. Here, we present numerical techniques for high-precision models of deformation and stress around both curvilinear faults and volumes undergoing anelastic (irreversible) strain in a heterogenous elastic half-space. To that end, we enhance the software Gamra to model triangular and rectangular fault patches and tetrahedral and cuboidal strain volumes. This affords a means of rapid and accurate calculations of elasto-static Green's functions for localized (e.g., faulting) and distributed (e.g., viscoelastic) deformation in Earth's crust and lithosphere. We demonstrate the correctness of the method with analytic tests, and we illustrate its practical performance by solving for coseismic and postseismic deformation following the 2015 Mw 7.8 Gorkha, Nepal earthquake to extremely high precision

    Extensible Component Based Architecture for FLASH, A Massively Parallel, Multiphysics Simulation Code

    Full text link
    FLASH is a publicly available high performance application code which has evolved into a modular, extensible software system from a collection of unconnected legacy codes. FLASH has been successful because its capabilities have been driven by the needs of scientific applications, without compromising maintainability, performance, and usability. In its newest incarnation, FLASH3 consists of inter-operable modules that can be combined to generate different applications. The FLASH architecture allows arbitrarily many alternative implementations of its components to co-exist and interchange with each other, resulting in greater flexibility. Further, a simple and elegant mechanism exists for customization of code functionality without the need to modify the core implementation of the source. A built-in unit test framework providing verifiability, combined with a rigorous software maintenance process, allow the code to operate simultaneously in the dual mode of production and development. In this paper we describe the FLASH3 architecture, with emphasis on solutions to the more challenging conflicts arising from solver complexity, portable performance requirements, and legacy codes. We also include results from user surveys conducted in 2005 and 2007, which highlight the success of the code.Comment: 33 pages, 7 figures; revised paper submitted to Parallel Computin

    Footprints of spontaneous fluid redistribution on capillary pressure in porous rock

    Get PDF
    Pore-scale imaging of two-phase flow in porous media shows that pore filling occurs as cooperative events with accompanying spontaneous fluid redistribution in other parts of the pore space. We present a level set method that controls saturation quasi-statically to model experiments controlled by low, constant flow rates and demonstrate that our method can describe the observed displacement mechanisms. The level set approach determines states of capillary equilibrium, which generally are different for displacement protocols constrained by saturation and pressure. Saturation-controlled simulations of drainage in sandstone show spontaneous fluid redistributions with abrupt pressure jumps and cooperative behavior, including snap-off and interface retraction events, consistent with experimental observations. Drainage capillary pressure curves are lower when saturation, rather than pressure, controls displacement. Remarkably, these effects are less significant for imbibition processes where the development of hydraulically connected wetting phase moderates the cooperative behavior and associated pressure jumps.publishedVersio

    A Multi-Solver Scheme for Viscous Flows Using Adaptive Cartesian Grids and Meshless Grid Communication

    Full text link
    This work concerns the development of an adaptive multi-solver approach for CFD simulation of viscous flows. Curvilinear grids are used near solid bodies to capture boundary layers, and stuctured adaptive Cartesian grids are used away from the body to fill the majority of the computational domain. An edge-based meshless scheme is used in the interface region to connnect the near-body and off-body codes. We show that the combination of a body-fitted grid near the surface coupled with an adaptive Cartesian grid system away from the surface leads to a highly efficient scheme with sharp feature resolution. The use of a meshless flow solver to interface the body-fitted and Cartesian grid systems leads to seamless grid communication without many of the complexities inherent in traditional Chimera overset grid interpolation schemes. The hierarchical structure of the nested Cartesian grids may be exploited to achieve multigrid convergence for steady problems and for use in dual-time stepping algorithms for unsteady problems. Results of two-dimensional steady airfoil calculations are presented. I

    Modularization and Validation of FUN3D as a CREATE-AV Helios Near-Body Solver

    Get PDF
    Under a recent collaborative effort between the US Army Aeroflightdynamics Directorate (AFDD) and NASA Langley, NASA's general unstructured CFD solver, FUN3D, was modularized as a CREATE-AV Helios near-body unstructured grid solver. The strategies adopted in Helios/FUN3D integration effort are described. A validation study of the new capability is performed for rotorcraft cases spanning hover prediction, airloads prediction, coupling with computational structural dynamics, counter-rotating dual-rotor configurations, and free-flight trim. The integration of FUN3D, along with the previously integrated NASA OVERFLOW solver, lays the ground for future interaction opportunities where capabilities of one component could be leveraged with those of others in a relatively seamless fashion within CREATE-AV Helios

    Fast, accurate solutions for curvilinear earthquake faults and anelastic strain

    Get PDF
    Imaging the anelastic deformation within the crust and lithosphere using surface geophysical data remains a significant challenge in part due to the wide range of physical processes operating at different depths and to various levels of localization that they embody. Models of Earth's elastic properties from seismological imaging combined with geodetic modeling may form the basis of comprehensive rheological models of Earth's interior. However, representing the structural complexity of faults and shear zones in numerical models of deformation still constitutes a major difficulty. Here, we present numerical techniques for high-precision models of deformation and stress around both curvilinear faults and volumes undergoing anelastic (irreversible) strain in a heterogenous elastic half-space. To that end, we enhance the software Gamra to model triangular and rectangular fault patches and tetrahedral and cuboidal strain volumes. This affords a means of rapid and accurate calculations of elasto-static Green's functions for localized (e.g., faulting) and distributed (e.g., viscoelastic) deformation in Earth's crust and lithosphere. We demonstrate the correctness of the method with analytic tests, and we illustrate its practical performance by solving for coseismic and postseismic deformation following the 2015 Mw 7.8 Gorkha, Nepal earthquake to extremely high precision

    Pore-scale Ostwald ripening of gas bubbles in the presence of oil and water in porous media

    Get PDF
    Hypothesis Ostwald ripening of gas bubbles is a spontaneous mass transfer process that can impact the storage volume of trapped gas in the subsurface. In homogeneous porous media with identical pores, bubbles evolve toward an equilibrium state of equal pressure and volume. How the presence of two liquids impacts ripening of a bubble population is less known. We hypothesize that the equilibrium bubble sizes depend on the surrounding liquid configuration and oil/water capillary pressure. Method and numerical experiments We investigate ripening of nitrogen bubbles in homogeneous porous media containing decane and water using a level set method that alternately simulates capillary-controlled displacement and mass transfer between bubbles to eradicate chemical-potential differences. We explore impacts of initial fluid distribution and oil/water capillary pressure on the bubble evolution. Findings Ripening in three-phase scenarios in porous media stabilizes gas bubbles to sizes that depend on their surrounding liquids. Bubbles in oil decrease in size while bubbles in water increase in size with increasing oil/water capillary pressure. Bubbles in oil reach local equilibrium before the three-phase system stabilizes globally. A potential implication for field-scale gas storage is that the trapped gas fractions in oil and water vary with depth in the oil/water transition zone.publishedVersio
    corecore