417 research outputs found

    Managing Risks at Runtime in VoIP Networks and Services

    Get PDF
    International audienceIP telephony is less confined than traditional PSTN telephony. As a consequence, it is more exposed to security attacks. These attacks are specific to VoIP protocols such as SPIT, or are inherited from the IP layer such as ARP poisoning. Protection mechanisms are often available, but they may seriously impact on the quality of service of such critical environments. We propose to exploit and automate risk management methods and techniques for VoIP infrastructures. Our objective is to dynamically adapt the exposure of a VoIP network with regard to the attack potentiality while minimizing the impact for the service. This paper describes the challenges of risk management for VoIP, our runtime strategy for assessing and treating risks, preliminary results based on Monte-Carlo simulations and future work

    Automated Runtime Risk Management for Voice over IP Networks and Services

    Get PDF
    International audienceVoice over IP (VoIP) has become a major paradigm for providing telephony services at a lower cost and with a higher flexibility. VoIP infrastructures are however exposed to multiple security issues both inherited from the IP layer and specific to the application layer. In the meantime, protection mechanisms are available but may seriously impact on the continuity and quality of such critical services. We propose in this paper an automated risk management schema for continuously adapting VoIP equipment exposure by activating security safeguards in a dynamic and progressive manner. We describe the architecture supporting our solution, the considered risk model taking into account VoIP properties and the algorithms for restricting and relaxing the risk level of the VoIP service at runtime. The benefits and limits of our solution are evaluated through an implementation prototype and an extensive set of experimental results in the case scenario of SPIT attacks

    Why (and How) Networks Should Run Themselves

    Full text link
    The proliferation of networked devices, systems, and applications that we depend on every day makes managing networks more important than ever. The increasing security, availability, and performance demands of these applications suggest that these increasingly difficult network management problems be solved in real time, across a complex web of interacting protocols and systems. Alas, just as the importance of network management has increased, the network has grown so complex that it is seemingly unmanageable. In this new era, network management requires a fundamentally new approach. Instead of optimizations based on closed-form analysis of individual protocols, network operators need data-driven, machine-learning-based models of end-to-end and application performance based on high-level policy goals and a holistic view of the underlying components. Instead of anomaly detection algorithms that operate on offline analysis of network traces, operators need classification and detection algorithms that can make real-time, closed-loop decisions. Networks should learn to drive themselves. This paper explores this concept, discussing how we might attain this ambitious goal by more closely coupling measurement with real-time control and by relying on learning for inference and prediction about a networked application or system, as opposed to closed-form analysis of individual protocols

    Risk Management in VoIP Infrastructures using Support Vector Machines

    Get PDF
    International audienceTelephony over IP is exposed to multiple security threats. Conventional protection mechanisms do not fit into the highly dynamic, open and large-scale settings of VoIP infrastructures, and may significantly impact on the performance of such a critical service. We propose in this paper a runtime risk management strategy based on anomaly detection techniques for continuously adapting the VoIP service exposure. This solution relies on support vector machines (SVM) and exploits dynamic security safeguards to reduce risks in a progressive manner. We describe how SVM parameters can be integrated into a runtime risk model, and show how this framework can be deployed into an Asterisk VoIP server. We evaluate the benefits and limits of our solution through a prototype and an extensive set of experimental results

    Econometric Feedback for Runtime Risk Management in VoIP Architectures

    Get PDF
    Part 1: Security ManagementInternational audienceVoIP infrastructures are exposed to a large variety of security attacks, but the deployment of security safeguards may deteriorate their performance. Risk management provides new perspectives for addressing this issue. Risk models permit to reduce these attacks while maintaining the quality of such a critical service. These models often suffer from their complexity due to the high number of parameters to be configured. We therefore propose in this paper a self-configuration strategy for support- ing runtime risk management in VoIP architectures. This strategy aims at automatically adapting these parameters based on an econometric feedback mechanism. We mathematically describe this self-configuration strategy, show how it can be integrated into our runtime risk model. We then evaluate its deployment based on a proof-of-concept prototype, and quantify its performance through an extensive set of simulation results

    Management of customizable software-as-a-service in cloud and network environments

    Get PDF

    ACUTA Journal of Telecommunications in Higher Education

    Get PDF
    In This Issue Network Security: An Achilles Heel for Organizations of All Sizes Providing Backup in a VolP World Security Concerns Shift lnward Cell Phones, Land Lines, and E911 Security Checklists Higher Ed\u27s Tricky Equation: Directories Help Balance Availability with Security Disaster Recovery Planning Essentials Passing the Test of productivity Interview President\u27s Message From the Executive Director Here\u27s My Advic

    System Security Assurance: A Systematic Literature Review

    Get PDF
    System security assurance provides the confidence that security features, practices, procedures, and architecture of software systems mediate and enforce the security policy and are resilient against security failure and attacks. Alongside the significant benefits of security assurance, the evolution of new information and communication technology (ICT) introduces new challenges regarding information protection. Security assurance methods based on the traditional tools, techniques, and procedures may fail to account new challenges due to poor requirement specifications, static nature, and poor development processes. The common criteria (CC) commonly used for security evaluation and certification process also comes with many limitations and challenges. In this paper, extensive efforts have been made to study the state-of-the-art, limitations and future research directions for security assurance of the ICT and cyber-physical systems (CPS) in a wide range of domains. We conducted a systematic review of requirements, processes, and activities involved in system security assurance including security requirements, security metrics, system and environments and assurance methods. We highlighted the challenges and gaps that have been identified by the existing literature related to system security assurance and corresponding solutions. Finally, we discussed the limitations of the present methods and future research directions
    corecore