648 research outputs found

    Managing Mutual Information & Transfer Entropy In Synthetic Ecologies

    Get PDF
    In this paper we consider transfer entropy and mutual information in terms of their application in the emerging highly interconnected and dynamic synthetic ecologies underpinned by the Cyber. We consider existing models relating to the management of learning and change within organizations and as they may relate to mutual information (MI) and transfer entropy (TE) within socio and info/techno settings, based upon a Mech-Organic perspective. A premise of this paper is that change is costly and that it needs to be seen through a social as well as an info/techno lens. We identify potential improvements to existing models and applications applied to the management of change by considering alternative models and how they may be applied collaboratively within a learning organization

    Classifying and systemising uncertainty and instability : a dynamic social network approach to risk

    Get PDF
    The narrow and probabilistic, ergodic approach to risk, to date, has potentially not fully understood or incorporated the dynamical synthetic ecology in which our systems actually operate. A dynamic synthetic ecology made even more complex and potentially uncertain and unstable through the degrees of socio-info/techno connectivity we now enjoy compared to 30 years ago. This means our decisions and solutions are often deeply entangled in ways that it is almost impossible to measure. Yet Risk Management continues to call for measured certainty based upon a potentially increasingly narrow and frozen understanding of Risk – usually ‘taken’ at the unit / operational but not the systems level. In this paper, we look at uncertainty and instability as being connected but not necessarily synonymous indicators of risk. In terms of instability, we look to classify different types of instability that a system may face including, for example, technical risks introduced through disruptive technologies

    A Role for Bottom-Up Synthetic Cells in the Internet of Bio-Nano Things?

    Get PDF
    The potential role of bottom-up Synthetic Cells (SCs) in the Internet of Bio-Nano Things (IoBNT) is discussed. In particular, this perspective paper focuses on the growing interest in networks of biological and/or artificial objects at the micro- and nanoscale (cells and subcellular parts, microelectrodes, microvessels, etc.), whereby communication takes place in an unconventional manner, i.e., via chemical signaling. The resulting "molecular communication" (MC) scenario paves the way to the development of innovative technologies that have the potential to impact biotechnology, nanomedicine, and related fields. The scenario that relies on the interconnection of natural and artificial entities is briefly introduced, highlighting how Synthetic Biology (SB) plays a central role. SB allows the construction of various types of SCs that can be designed, tailored, and programmed according to specific predefined requirements. In particular, "bottom-up" SCs are briefly described by commenting on the principles of their design and fabrication and their features (in particular, the capacity to exchange chemicals with other SCs or with natural biological cells). Although bottom-up SCs still have low complexity and thus basic functionalities, here, we introduce their potential role in the IoBNT. This perspective paper aims to stimulate interest in and discussion on the presented topics. The article also includes commentaries on MC, semantic information, minimal cognition, wetware neuromorphic engineering, and chemical social robotics, with the specific potential they can bring to the IoBNT

    A Role for Bottom-Up Synthetic Cells in the Internet of Bio-Nano Things?

    Get PDF
    he potential role of bottom-up Synthetic Cells (SCs) in the Internet of Bio-Nano Things (IoBNT) is discussed. In particular, this perspective paper focuses on the growing interest in networks of biological and/or artificial objects at the micro- and nanoscale (cells and subcellular parts, microelectrodes, microvessels, etc.), whereby communication takes place in an unconventional manner, i.e., via chemical signaling. The resulting “molecular communication” (MC) scenario paves the way to the development of innovative technologies that have the potential to impact biotechnology, nanomedicine, and related fields. The scenario that relies on the interconnection of natural and artificial entities is briefly introduced, highlighting how Synthetic Biology (SB) plays a central role. SB allows the construction of various types of SCs that can be designed, tailored, and programmed according to specific predefined requirements. In particular, “bottom-up” SCs are briefly described by commenting on the principles of their design and fabrication and their features (in particular, the capacity to exchange chemicals with other SCs or with natural biological cells). Although bottom-up SCs still have low complexity and thus basic functionalities, here, we introduce their potential role in the IoBNT. This perspective paper aims to stimulate interest in and discussion on the presented topics. The article also includes commentaries on MC, semantic information, minimal cognition, wetware neuromorphic engineering, and chemical social robotics, with the specific potential they can bring to the IoBNT

    Biodigital philosophy, technological convergence, and new knowledge ecologies

    Get PDF
    This is an accepted manuscript of an article published by Springer in Postdigital Science and Education on 11/01/2021, available online at: https://doi.org/10.1007/s42438-020-00211-7 The accepted version of the publication may differ from the final published version.New technological ability is leading postdigital science, where biology as digital information, and digital information as biology, are now dialectically interconnected. In this article we firstly explore a philosophy of biodigitalism as a new paradigm closely linked to bioinformationalism. Both involve the mutual interaction and integration of information and biology, which leads us into discussion of biodigital convergence. As a unified ecosystem this allows us to resolve problems that isolated disciplinary capabilities cannot, creating new knowledge ecologies within a constellation of technoscience. To illustrate our arrival at this historical flash point via several major epistemological shifts in the post-war period, we venture a tentative typology. The convergence between biology and information reconfigures all levels of theory and practice, and even critical reason itself now requires a biodigital interpretation oriented towards ecosystems and coordinated Earth systems. In this understanding, neither the digital humanities, the biohumanities or the posthumanities sit outside of biodigitalism. Instead, posthumanism is but one form of biodigitalism that mediates the biohumanities and the digital humanities, no longer preoccupied with the tradition of the subject, but with the constellation of forces shaping the future of human ontologies. This heralds a new biopolitics which brings the philosophy of race, class, gender and intelligence, into a compelling dialogue with genomics and information

    How the informed relations between physical, digital and biological dimensions are changing the design practice, as well as the sustainability paradigm

    Get PDF
    In the “century of biotechnology”, a new form of “bio-digital industry” is emerging in which, thanks to increasingly sophisticated and digitized technologies that allow engineering and production on a biological quantum scale, it is possible to analyze and reproduce the generative, chemical, physical, and molecular processes underlying natural mechanisms. Inheriting methodologies and technologies from biological fabrication, bio-digital practices foster a new material-based biological paradigm that, bringing biomimicry to a material level, allows designers to observe substances and logic used by nature for assembling and structuring its materials, developing more sustainable and strategic ways for artifice manufacturing, as well as replicating complex, tailored, and emergent biological qualities. The paper aims to describe the new hybrid manufacturing techniques, demonstrating how the transition from form-based to material-based approaches also leads to the change of logic and conceptual frameworks in design practices, allowing greater alignment with the paradigms of biological growth. In particular, the focus is on informed relations between physical, digital, and biological dimensions, allowing interaction, development, and mutual empowerment between entities and disciplines belonging to them. Such a correlative strategy can help design to apply systemic thinking, from the scale of the material to that of the product and the process, paving the way to sustainable scenarios, not simply to reduce the human impact on the ecosystem but to enhance nature through original cooperation and integration forms between humans, biology, and machines

    Proceedings of the ECCS 2005 satellite workshop: embracing complexity in design - Paris 17 November 2005

    Get PDF
    Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr). Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr)

    Chapter 8 Democratizing knowledge and ways of knowing for food sovereignty, agroecology, and biocultural diversity

    Get PDF
    Contestations over knowledge – and who controls its production – are a key focus of social movements and other actors that promote food sovereignty, agroecology and biocultural diversity. This book critically examines the kinds of knowledge and ways of knowing needed for food sovereignty, agroecology and biocultural diversity. ‘Food sovereignty’ is understood here as a transformative process that seeks to recreate the democratic realm and regenerate a diversity of autonomous food systems based on agroecology, biocultural diversity, equity, social justice and ecological sustainability. It is shown that alternatives to the current model of development require radically different knowledges and epistemologies from those on offer today in mainstream institutions (including universities, policy think tanks and donor organizations). To achieve food sovereignty, agroecology and biocultural diversity, there is a need to re-imagine and construct knowledge for diversity, decentralisation, dynamic adaptation and democracy. The authors critically explore the changes in organizations, research paradigms and professional practice that could help transform and co-create knowledge for a new modernity based on plural definitions of wellbeing. Particular attention is given to institutional, pedagogical and methodological innovations that can enhance cognitive justice by giving hitherto excluded citizens more power and agency in the construction of knowledge. The book thus contributes to the democratization of knowledge and power in the domain of food, environment and society

    Art as we don't know it

    Get PDF
    2018 marked the 10th anniversary of the Bioart Society and created the impetus for the publication of Art as We Don’t Know It. For this publication, the Bioart Society joined forces with the School of Arts, Design and Architecture of the Aalto University. The close history and ongoing collaborative relationship between the Bioart Society and Biofilia – Base for Biological Arts in the Aalto University lead to this mutual effort to celebrate together a diverse and nurturing environment to foster artistic practices on the intersection of art, science and society. Rather than stage a retrospective, we decided to invite writings that look forward and invite speculations about the potential directions of bioarts. The contributions range from peer-reviewed articles to personal accounts and inter-views, interspersed with artistic contributions and Bioart Society projects. The selection offers a purview of the rich variety, both in content and form, of the work currently being made within the field of bioart. The works and articles clearly trouble the porous and provisional definitions of what might be understood as bioart, and indeed definitions of bioart have been usefully and generativity critiqued since the inception of the term. Whilst far from being definitive, we consider the contributions of the book to be tantalising and valuable indicators of trends, visions and impulses. We also invite into the reading of this publication a consideration of potential obsolescences knowing that some of today’s writing will become archaic over time as technologies driven by contemporary excitement and hype are discarded. In so doing we also acknowledge and ponder upon our situatedness and the partialness of our purview in how we begin and find points of departure from which to anticipate the unanticipated. Whilst declining the view of retrospection this book does present art and research that has grown and flourished within the wider network of both the Bioart Society and Biofilia during the previous decade. The book is structured into four thematic sections Life As We Don’t Know It, Convergences, Learnings/Unlearnings, Redraw and Refigure and rounded off with a glossary
    • 

    corecore