6 research outputs found

    Managing Congestion in Vehicular Networks Using Tabu Search

    Get PDF
    © 2018, Springer Nature Switzerland AG. In this era of communication, exponentially growing networks bring a lot of challenges to address for smoother network functionalities. Among them is efficiency in handling packet traffic to avoid and control congestion. A particular case is applicable to Vehicular Ad-hoc Networks, which are known with unbalanced resource utilisation, communication overheads, high transmission delay and least transmission capacity. This paper aims to minimise the delay and jitter for enhancing the Quality of Service (QoS) in Vehicular Adhoc Networks (VANET) using tabu search algorithm with multi-channel allocation capability. We proposed a scheme that prioritises each message considering the basis of message type or its substances, such as crisis, reference point, and administration oriented etc., and uses tabu search for scheduling the transmission of queued messages in order to enhance the efficiency, security, and durability of VANET. A comprehensive simulation is conducted to validate the proposed scheme and to evaluate the performances in comparison with other state-of-the-art approaches

    Joint Beacon Power and Beacon Rate Control Based on Game Theoretic Approach in Vehicular Ad Hoc Networks

    Get PDF
    In vehicular ad hoc networks (VANETs), each vehicle broadcasts its information periodically in its beacons to create awareness for surrounding vehicles aware of their presence. But, the wireless channel is congested by the increase beacons number, packet collision lost a lot of beacons. This paper tackles the problem of joint beaconing power and a beaconing rate in VANETs. A joint utilitybased beacon power and beacon rate game are formulated as a non-cooperative game and a cooperative game. A three distributed and iterative algorithm (Nash Seeking Algorithm, Best Response Algorithm, Cooperative Bargaining Algorithm) for computing the desired equilibrium is introduced, where the optimal values of each vehicle beaconing power and beaconing rate are simultaneously updated at the same step. Extensive simulations show the convergence of a proposed algorithm to the equilibrium and give some insights on how the game parameters may vary the game outcome. It is demonstrated that the Cooperative Bargaining Algorithm is a fast algorithm that converges the equilibrium

    Survey on decentralized congestion control methods for vehicular communication

    Get PDF
    Vehicular communications have grown in interest over the years and are nowadays recognized as a pillar for the Intelligent Transportation Systems (ITSs) in order to ensure an efficient management of the road traffic and to achieve a reduction in the number of traffic accidents. To support the safety applications, both the ETSI ITS-G5 and IEEE 1609 standard families require each vehicle to deliver periodic awareness messages throughout the neighborhood. As the vehicles density grows, the scenario dynamics may require a high message exchange that can easily lead to a radio channel congestion issue and then to a degradation on safety critical services. ETSI has defined a Decentralized Congestion Control (DCC) mechanism to mitigate the channel congestion acting on the transmission parameters (i.e., message rate, transmit power and data-rate) with performances that vary according to the specific algorithm. In this paper, a review of the DCC standardization activities is proposed as well as an analysis of the existing methods and algorithms for the congestion mitigation. Also, some applied machine learning techniques for DCC are addressed

    Survey on Congestion Detection and Control in Connected Vehicles

    Full text link
    The dynamic nature of vehicular ad hoc network (VANET) induced by frequent topology changes and node mobility, imposes critical challenges for vehicular communications. Aggravated by the high volume of information dissemination among vehicles over limited bandwidth, the topological dynamics of VANET causes congestion in the communication channel, which is the primary cause of problems such as message drop, delay, and degraded quality of service. To mitigate these problems, congestion detection, and control techniques are needed to be incorporated in a vehicular network. Congestion control approaches can be either open-loop or closed loop based on pre-congestion or post congestion strategies. We present a general architecture of vehicular communication in urban and highway environment as well as a state-of-the-art survey of recent congestion detection and control techniques. We also identify the drawbacks of existing approaches and classify them according to different hierarchical schemes. Through an extensive literature review, we recommend solution approaches and future directions for handling congestion in vehicular communications

    A comprehensive survey on congestion control techniques and the research challenges on VANET

    Get PDF
    The nature of vehicular mobility and high speed of vehicular ad hoc network (VANET) with dynamic change in the network topology let the vehicular remain as one of the most challenging problems in vehicular-to-vehicular (V2V) communications. Information dissemination is the major problem in VANET with a fixed bandwidth which is causing congestion on the resources, such as channels and affects the performance of the important application, especially when the emergency or secure transmission of messages is exchanged between the vehicles-to-vehicles communication. To mitigate these problems and introduce a safe vehicular environment in urban and highway, congestion detection and control has been considered and with various strategies and techniques which is take the attention of researchers in VANET. In our survey we mentioned recent techniques and approaches which is used in congestion detection and control and applied different matrices and parameters which is used to evaluate these approaches. In addition, the study also explained the limitation and problems that face the current congestion detection and control schemes, finally we present various solution approach and future expectations in vehicular communication
    corecore