32,358 research outputs found

    Secure Communication using Identity Based Encryption

    Get PDF
    Secured communication has been widely deployed to guarantee confidentiality and\ud integrity of connections over untrusted networks, e.g., the Internet. Although\ud secure connections are designed to prevent attacks on the connection, they hide\ud attacks inside the channel from being analyzed by Intrusion Detection Systems\ud (IDS). Furthermore, secure connections require a certain key exchange at the\ud initialization phase, which is prone to Man-In-The-Middle (MITM) attacks. In this paper, we present a new method to secure connection which enables Intrusion Detection and overcomes the problem of MITM attacks. We propose to apply Identity Based Encryption (IBE) to secure a communication channel. The key escrow property of IBE is used to recover the decryption key, decrypt network traffic on the fly, and scan for malicious content. As the public key can be generated based on the identity of the connected server and its exchange is not necessary, MITM attacks are not easy to be carried out any more. A prototype of a modified TLS scheme is implemented and proved with a simple client-server application. Based on this prototype, a new IDS sensor is developed to be capable of identifying IBE encrypted secure traffic on the fly. A deployment architecture of the IBE sensor in a company network is proposed. Finally, we show the applicability by a practical experiment and some preliminary performance measurements

    Safeguarding IoMT: Semi-automated Intrusion Detection System (SAIDS) for detecting multilayer attacks

    Get PDF
    The Internet of Medical Things (IoMT) plays a significant role in the healthcare system as it improves effectiveness and efficiency of treatment by continuously monitoring patients using smart home sensor and wearables (Fig. 1). IoMT devices are vulnerable to Multi-layer attacks that are exploiting multiple layers of IoMT architecture (Fig. 2). Denial-of-service (DoS) and Man-In-The-Middle (MITM) attacks, for instance, can target the three layers of the IoMT system and lead to serious consequences, such as theft of patients’ sensitive data and reputational damages [2]. This project aims to create a robust detection system for multilayer attacks using a Semi-automated Intrusion Detection System (SAIDS) for IoT devices. To achieve this aim, we have focused on the following objectives: • Explore a variety of feature selection algorithms. • Apply feature weighting. • Integrating human and machine learning approaches to work together. • Increase detection efficiency by utilizing significant features

    Deep-IDS: A Real-Time Intrusion Detector for IoT Nodes Using Deep Learning

    Get PDF
    The Internet of Things (IoT) represents a swiftly expanding sector that is pivotal in driving the innovation of today's smart services. However, the inherent resource-constrained nature of IoT nodes poses significant challenges in embedding advanced algorithms for cybersecurity, leading to an escalation in cyberattacks against these nodes. Contemporary research in Intrusion Detection Systems (IDS) predominantly focuses on enhancing IDS performance through sophisticated algorithms, often overlooking their practical applicability. This paper introduces Deep-IDS, an innovative and practically deployable Deep Learning (DL)-based IDS. It employs a Long-Short-Term-Memory (LSTM) network comprising 64 LSTM units and is trained on the CIC-IDS2017 dataset. Its streamlined architecture renders Deep-IDS an ideal candidate for edge-server deployment, acting as a guardian between IoT nodes and the Internet against Denial of Service, Distributed Denial of Service, Brute Force, Man-in-the-Middle, and Replay Attacks. A distinctive aspect of this research is the trade-off analysis between the intrusion Detection Rate (DR) and the False Alarm Rate (FAR), facilitating the real-time performance of the Deep-IDS. The system demonstrates an exemplary detection rate of 96.8% at the 70% threshold of DR-FAR trade-off and an overall classification accuracy of 97.67%. Furthermore, Deep-IDS achieves precision, recall, and F1-scores of 97.67%, 98.17%, and 97.91%, respectively. On average, Deep-IDS requires 1.49 seconds to identify and mitigate intrusion attempts, effectively blocking malicious traffic sources. The remarkable efficacy, swift response time, innovative design, and novel defense strategy of Deep-IDS not only secure IoT nodes but also their interconnected sub-networks, thereby positioning Deep-IDS as a leading IDS for IoT-enhanced computer networks.</p

    Intrusion detection mechanisms for VoIP applications

    Get PDF
    VoIP applications are emerging today as an important component in business and communication industry. In this paper, we address the intrusion detection and prevention in VoIP networks and describe how a conceptual solution based on the Bayes inference approach can be used to reinforce the existent security mechanisms. Our approach is based on network monitoring and analyzing of the VoIP-specific traffic. We give a detailed example on attack detection using the SIP signaling protocol

    Wireless and Physical Security via Embedded Sensor Networks

    Full text link
    Wireless Intrusion Detection Systems (WIDS) monitor 802.11 wireless frames (Layer-2) in an attempt to detect misuse. What distinguishes a WIDS from a traditional Network IDS is the ability to utilize the broadcast nature of the medium to reconstruct the physical location of the offending party, as opposed to its possibly spoofed (MAC addresses) identity in cyber space. Traditional Wireless Network Security Systems are still heavily anchored in the digital plane of "cyber space" and hence cannot be used reliably or effectively to derive the physical identity of an intruder in order to prevent further malicious wireless broadcasts, for example by escorting an intruder off the premises based on physical evidence. In this paper, we argue that Embedded Sensor Networks could be used effectively to bridge the gap between digital and physical security planes, and thus could be leveraged to provide reciprocal benefit to surveillance and security tasks on both planes. Toward that end, we present our recent experience integrating wireless networking security services into the SNBENCH (Sensor Network workBench). The SNBENCH provides an extensible framework that enables the rapid development and automated deployment of Sensor Network applications on a shared, embedded sensing and actuation infrastructure. The SNBENCH's extensible architecture allows an engineer to quickly integrate new sensing and response capabilities into the SNBENCH framework, while high-level languages and compilers allow novice SN programmers to compose SN service logic, unaware of the lower-level implementation details of tools on which their services rely. In this paper we convey the simplicity of the service composition through concrete examples that illustrate the power and potential of Wireless Security Services that span both the physical and digital plane.National Science Foundation (CISE/CSR 0720604, ENG/EFRI 0735974, CIES/CNS 0520166, CNS/ITR 0205294, CISE/ERA RI 0202067

    A taxonomy of malicious traffic for intrusion detection systems

    Get PDF
    With the increasing number of network threats it is essential to have a knowledge of existing and new network threats to design better intrusion detection systems. In this paper we propose a taxonomy for classifying network attacks in a consistent way, allowing security researchers to focus their efforts on creating accurate intrusion detection systems and targeted datasets
    • …
    corecore