203 research outputs found

    Preliminary investigation of the clinical usefulness of super-high-resolution LCDs with 9 and 15 mega-sub-pixels: Observation studies with phantoms

    Get PDF
    金沢大学附属病院放射線部Our purpose in this study was to evaluate the preliminary clinical efficacy of soft-copy reading of digital mammography, for a 15-mega-sub-pixel (MsP) and a 9-MsP super-high-resolution liquid-crystal display (SHR-LCD) by use of an independent sub-pixel driving technology. We performed three kinds of phantom observation studies by six radiological technologists. Detectability of a contrast-detail phantom and simulated small objects (SSOs) resembling microcalcifications (MCLs), and shape discrimination ability of SSOs with round and square shapes, were examined and compared with a 5-MP conventional LCD (5-MP LCD). In each study, four types of display magnification ratio were used. The detectability and the shape discrimination ability of the 15-MsP SHR-LCD were highest among the three LCDs of most of the display magnification ratios. The 9-MsP SHR-LCD indicated a higher or equal performance as compared with the 5-MP LCD in the SSO detection and shape studies. The results of our study demonstrated that the SHR-LCDs had good potential to detect MCLs and to evaluate the shape in high-resolution digital mammography. © 2009 Japanese Society of Radiological Technology and Japan Society of Medical Physics

    Digital Image Processing

    Get PDF
    This book presents several recent advances that are related or fall under the umbrella of 'digital image processing', with the purpose of providing an insight into the possibilities offered by digital image processing algorithms in various fields. The presented mathematical algorithms are accompanied by graphical representations and illustrative examples for an enhanced readability. The chapters are written in a manner that allows even a reader with basic experience and knowledge in the digital image processing field to properly understand the presented algorithms. Concurrently, the structure of the information in this book is such that fellow scientists will be able to use it to push the development of the presented subjects even further

    Mammography

    Get PDF
    In this volume, the topics are constructed from a variety of contents: the bases of mammography systems, optimization of screening mammography with reference to evidence-based research, new technologies of image acquisition and its surrounding systems, and case reports with reference to up-to-date multimodality images of breast cancer. Mammography has been lagged in the transition to digital imaging systems because of the necessity of high resolution for diagnosis. However, in the past ten years, technical improvement has resolved the difficulties and boosted new diagnostic systems. We hope that the reader will learn the essentials of mammography and will be forward-looking for the new technologies. We want to express our sincere gratitude and appreciation?to all the co-authors who have contributed their work to this volume

    Post-Processing of Low Dose Mammography Images

    Get PDF
    In mammography, X-ray radiation is used in sufficient doses to be captured on film for cancer diagnosis. A problem lies in the inherent nature of X-rays to cause cancer. The resolution of the images obtained on film is directly related to the radiation dosage. Thus, a trade-off between image quality and radiation exposure is necessary to ensure proper diagnosis without causing cancer. A possible solution is to decrease the dosage of radiation and improve the image quality of mammograms using post- processing methods applied to digitized film images. Image processing techniques that may improve the resolution of images captured at lower doses include crispening, denoising, histogram equalization, and pattern recognition methods. The Wright Patterson Air Force Base Hospital Radiology Department sponsored this research and provided digitized images of the American College of Radiology (ACR) phantom, which is a model for mammogram image quality and classification. Side by side comparisons were performed of high dose images and low-dose images post-processed using the methods mentioned. The result was improved- resolution on mammography images for lower radiation doses. Thus, this research represents progress towards solving a problem that currently plagues mammography: exposure of patients to high doses of cancer- causing radiation to obtain quality mammography images. By improving the image quality of mammography images at lower radiation doses, the problem of cancer induced by high radiation exposure is alleviated

    X-ray Phase-Contrast Tomography: Underlying Physics and Developments for Breast Imaging

    Get PDF
    X-ray phase-contrast tomography is a powerful tool to dramatically increase the visibility of features exhibiting a faint attenuation contrast within bulk samples, as is generally the case of light (low-Z) materials. For this reason, the application to clinical tasks aiming at imaging soft tissues, as e.g., breast imaging, has always been a driving force in the development of this field. In this context, the SYRMA-3D project, which constitutes the framework of the present work, aims to develop and implement the first breast computed tomography system relying on the propagation-based phase-contrast technique at the Elettra synchrotron facility (Trieste, Italy). This thesis finds itself in the \u2018last mile\u2019 towards the in-vivo implementation, and the obtained results add some of the missing pieces in the realization of the project. The first part of the work introduces a homogeneous mathematical framework describing propagation-based phase contrast from the sample-induced X-ray refraction, to detection, processing and tomographic reconstruction. The original results reported in the following chapters include the implementation of a pre-processing procedure dedicated for a novel photon-counting CdTe detector; a study, supported by a rigorous theoretical model, on signal and noise dependence on physical parameters such as propagation distance and detector pixel size; hardware and software developments for improving signal-to-noise ratio and reducing the scan time; and, finally, a clinically-oriented study based on comparisons with clinical mammographic and histological images. The last part of the thesis attempts to widen the experimental horizon: first, a quantitative image comparison of the synchrotron-based setup and a clinically available breast-CT scanner is presented and then a practical laboratory implementation is detailed, introducing a monochromatic propagation-based micro-tomography setup making use on a high-power rotating anode source

    Innovative Acoustic Reflection Imaging Techniques And Application To Clinical Breast Tomography

    Get PDF
    Conventional ultrasound techniques use beam-formed, constant sound speed ray models for fast image reconstruction. However, these techniques are inadequate for the emerging new field of ultrasound tomography (UST). We present a new technique for reconstruction of reflection images from UST data. We have extended the planar Kirchhoff migration method used in geophysics, and combined it with sound speed and attenuation data obtained from the transmission signals to create reflection ultrasound images that are corrected for refractive and attenuative effects. The resulting techniques were applied to simulated numerical phantom data, physical phantom data and in-vivo breast data obtained with an experimental ring transducer prototype. Additionally, the ring transducer was customized to test compatibility with an existing ultrasound workstation. We were able to obtain independently recorded radio-frequency (RF) data for individual transmit-receive pair combinations for all 128 transducers. The signal data was then successfully reconstructed into reflection data using the Kirchhoff migration techniques. The results from the use of sound speed and attenuation corrections lead to significant improvements in image quality, particularly in dense tissues where the refractive and scattering effects are the greatest. The procedure was applied to a variety of breast densities and masses of different natures. The resulting reflection images successfully resolved boundaries and textures. The reflection characteristics of tomographic ultrasound maintain an indispensible position in the quantification of proper mass identification. The results of this project indicate the clinical significance of the invocation of properly compensated Kirchhoff based reconstruction method with the use of sound speed and attenuation parameters for the visualization and classification of masses and tissue
    corecore