4,315 research outputs found

    Resilient and Scalable Android Malware Fingerprinting and Detection

    Get PDF
    Malicious software (Malware) proliferation reaches hundreds of thousands daily. The manual analysis of such a large volume of malware is daunting and time-consuming. The diversity of targeted systems in terms of architecture and platforms compounds the challenges of Android malware detection and malware in general. This highlights the need to design and implement new scalable and robust methods, techniques, and tools to detect Android malware. In this thesis, we develop a malware fingerprinting framework to cover accurate Android malware detection and family attribution. In this context, we emphasize the following: (i) the scalability over a large malware corpus; (ii) the resiliency to common obfuscation techniques; (iii) the portability over different platforms and architectures. In the context of bulk and offline detection on the laboratory/vendor level: First, we propose an approximate fingerprinting technique for Android packaging that captures the underlying static structure of the Android apps. We also propose a malware clustering framework on top of this fingerprinting technique to perform unsupervised malware detection and grouping by building and partitioning a similarity network of malicious apps. Second, we propose an approximate fingerprinting technique for Android malware's behavior reports generated using dynamic analyses leveraging natural language processing techniques. Based on this fingerprinting technique, we propose a portable malware detection and family threat attribution framework employing supervised machine learning techniques. Third, we design an automatic framework to produce intelligence about the underlying malicious cyber-infrastructures of Android malware. We leverage graph analysis techniques to generate relevant, actionable, and granular intelligence that can be used to identify the threat effects induced by malicious Internet activity associated to Android malicious apps. In the context of the single app and online detection on the mobile device level, we further propose the following: Fourth, we design a portable and effective Android malware detection system that is suitable for deployment on mobile and resource constrained devices, using machine learning classification on raw method call sequences. Fifth, we elaborate a framework for Android malware detection that is resilient to common code obfuscation techniques and adaptive to operating systems and malware change overtime, using natural language processing and deep learning techniques. We also evaluate the portability of the proposed techniques and methods beyond Android platform malware, as follows: Sixth, we leverage the previously elaborated techniques to build a framework for cross-platform ransomware fingerprinting relying on raw hybrid features in conjunction with advanced deep learning techniques

    Analysis of Data Mining Tools for Android Malware Detection

    Get PDF
    There are various data mining tools available to analyze data related android malware detection. However, the problem arises in deciding the most appropriate machine learning techniques or algorithm on particular tools to be implemented on particular data. This research is focusing only on classification techniques. Hence, the objective of this research is to identify the best machine learning technique or algorithm on selected tool for android malware detection. Five techniques: Random Forest, Naive Bayes, Support Vector Machine, Forest, K-Nearest Neighbour and Adaboost are selected and applied in selected tools namely Weka and Orange. The result shows that Adaboost technique in Weka tool and Random Forest technique in Orange tool has obtained accuracy above 80% compare to other techniques. This result provides an option for the researcher on applying technique or algorithm on selected tool when analyzing android malware data

    A Hybrid Approach for Android Malware Detection and Family Classification

    Get PDF
    With the increase in the popularity of mobile devices, malicious applications targeting Android platform have greatly increased. Malware is coded so prudently that it has become very complicated to identify. The increase in the large amount of malware every day has made the manual approaches inadequate for detecting the malware. Nowadays, a new malware is characterized by sophisticated and complex obfuscation techniques. Thus, the static malware analysis alone is not enough for detecting it. However, dynamic malware analysis is appropriate to tackle evasion techniques but incapable to investigate all the execution paths and also it is very time consuming. So, for better detection and classification of Android malware, we propose a hybrid approach which integrates the features obtained after performing static and dynamic malware analysis. This approach tackles the problem of analyzing, detecting and classifying the Android malware in a more efficient manner. In this paper, we have used a robust set of features from static and dynamic malware analysis for creating two datasets i.e. binary and multiclass (family) classification datasets. These are made publically available on GitHub and Kaggle with the aim to help researchers and anti-malware tool creators for enhancing or developing new techniques and tools for detecting and classifying Android malware. Various machine learning algorithms are employed to detect and classify malware using the features extracted after performing static and dynamic malware analysis. The experimental outcomes indicate that hybrid approach enhances the accuracy of detection and classification of Android malware as compared to the case when static and dynamic features are considered alone

    Light up that Droid! On the Effectiveness of Static Analysis Features against App Obfuscation for Android Malware Detection

    Full text link
    Malware authors have seen obfuscation as the mean to bypass malware detectors based on static analysis features. For Android, several studies have confirmed that many anti-malware products are easily evaded with simple program transformations. As opposed to these works, ML detection proposals for Android leveraging static analysis features have also been proposed as obfuscation-resilient. Therefore, it needs to be determined to what extent the use of a specific obfuscation strategy or tool poses a risk for the validity of ML malware detectors for Android based on static analysis features. To shed some light in this regard, in this article we assess the impact of specific obfuscation techniques on common features extracted using static analysis and determine whether the changes are significant enough to undermine the effectiveness of ML malware detectors that rely on these features. The experimental results suggest that obfuscation techniques affect all static analysis features to varying degrees across different tools. However, certain features retain their validity for ML malware detection even in the presence of obfuscation. Based on these findings, we propose a ML malware detector for Android that is robust against obfuscation and outperforms current state-of-the-art detectors

    Applying Deep Learning Techniques to the Analysis of Android APKs

    Get PDF
    Malware targeting mobile devices is a pervasive problem in modern life and as such tools to detect and classify malware are of great value. This paper seeks to demonstrate the effectiveness of Deep Learning Techniques, specifically Convolutional Neural Networks, in detecting and classifying malware targeting the Android operating system. Unlike many current detection techniques, which require the use of relatively rigid features to aid in detection, deep neural networks are capable of automatically learning flexible features which may be more resilient to obfuscation. We present a parsing for extracting sequences of API calls which can be used to describe a hypothetical execution of a given application. We then show how to use this sequence of API calls to successfully classify Android malware using a Convolutional Neural Network

    Android application forensics: A survey of obfuscation, obfuscation detection and deobfuscation techniques and their impact on investigations

    Get PDF
    Android obfuscation techniques include not only classic code obfuscation techniques that were adapted to Android, but also obfuscation methods that target the Android platform specifically. This work examines the status-quo of Android obfuscation, obfuscation detection and deobfuscation. Specifically, it first summarizes obfuscation approaches that are commonly used by app developers for code optimization, to protect their software against code theft and code tampering but are also frequently misused by malware developers to circumvent anti-malware products. Secondly, the article focuses on obfuscation detection techniques and presents various available tools and current research. Thirdly, deobfuscation (which aims at reinstating the original state before obfuscation) is discussed followed by a brief discussion how this impacts forensic investigation. We conclude that although obfuscation is widely used in Android app development (benign and malicious), available tools and the practices on how to deal with obfuscation are not standardized, and so are inherently lacking from a forensic standpoint

    A Study of Android Malware Detection Techniques and Machine Learning

    Get PDF
    Android OS is one of the widely used mobile Operating Systems. The number of malicious applications and adwares are increasing constantly on par with the number of mobile devices. A great number of commercial signature based tools are available on the market which prevent to an extent the penetration and distribution of malicious applications. Numerous researches have been conducted which claims that traditional signature based detection system work well up to certain level and malware authors use numerous techniques to evade these tools. So given this state of affairs, there is an increasing need for an alternative, really tough malware detection system to complement and rectify the signature based system. Recent substantial research focused on machine learning algorithms that analyze features from malicious application and use those features to classify and detect unknown malicious applications. This study summarizes the evolution of malware detection techniques based on machine learning algorithms focused on the Android OS

    EMULATOR vs REAL PHONE: Android Malware Detection Using Machine Learning

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The Android operating system has become the most popular operating system for smartphones and tablets leading to a rapid rise in malware. Sophisticated Android malware employ detection avoidance techniques in order to hide their malicious activities from analysis tools. These include a wide range of anti-emulator techniques, where the malware programs attempt to hide their malicious activities by detecting the emulator. For this reason, countermeasures against anti-emulation are becoming increasingly important in Android malware detection. Analysis and detection based on real devices can alleviate the problems of anti-emulation as well as improve the effectiveness of dynamic analysis. Hence, in this paper we present an investigation of machine learning based malware detection using dynamic analysis on real devices. A tool is implemented to automatically extract dynamic features from Android phones and through several experiments, a comparative analysis of emulator based vs. device based detection by means of several machine learning algorithms is undertaken. Our study shows that several features could be extracted more effectively from the on-device dynamic analysis compared to emulators. It was also found that approximately 24% more apps were successfully analysed on the phone. Furthermore, all of the studied machine learning based detection performed better when applied to features extracted from the on-device dynamic analysis

    Malware Analysis and Detection on Android: The Big Challenge

    Get PDF
    The popularization of the use of mobile devices, such as smartphones and tablets, has accelerated in recent years, as these devices have experienced a reduction in cost together with an increase in functionality and services availability. In this context, due to its openness and free availability, Android operating system (OS) has become not only a major stakeholder in the market of mobile devices but has also become an attractive target for cybercriminals. In this chapter, we advocate to present some current trends and results in the Android malware analysis and detection research area. We start by briefly describing the Android’s security model, followed by a discussion of the static and dynamic malware analysis techniques in order to provide a general view of the analysis and detection process to the reader. After that, a description of a particular set of software developments, which exemplify some of the discussed techniques, is presented accompanied by a set of practical results. Finally, we draw some conclusions about the future development of the Android malware analysis area. The main contribution of this chapter is a description of the realization of static and dynamic malware analysis techniques and principles that can be automated and mapped to software system tools in order to simplify analyses. Moreover, some details about the use of machine learning algorithms for malware classifications and the use of the hooking software techniques for dynamic analysis execution are provided
    corecore