97,059 research outputs found

    The pion-pion Interaction in the rho Channel in Finite Volume

    Full text link
    The aim of this paper is to investigate an efficient strategy that allows to obtain pi-pi phase shifts and rho meson properties from QCD lattice data with high precision. For this purpose we evaluate the levels of the pi-pi system in the rho channel in finite volume using chiral unitary theory. We investigate the dependence on the pi mass and compare with other approaches which use QCD lattice calculations and effective theories. We also illustrate the errors induced by using the conventional Luscher approach instead of a more accurate one recently developed that takes into account exactly the relativistic two meson propagators. Finally we make use of this latter approach to solve the inverse problem, getting pi-pi phase shifts from "synthetic" lattice data, providing an optimal strategy and showing which accuracy is needed in these data to obtain the ρ\rho properties with a desired accuracy.Comment: 16 pages, 13 figures, 1 table, substantially modified with practical examples of use to lattice researchers, new comments and references adde

    Direct interaction with large displays through monocular computer vision

    Get PDF
    Large displays are everywhere, and have been shown to provide higher productivity gain and user satisfaction compared to traditional desktop monitors. The computer mouse remains the most common input tool for users to interact with these larger displays. Much effort has been made on making this interaction more natural and more intuitive for the user. The use of computer vision for this purpose has been well researched as it provides freedom and mobility to the user and allows them to interact at a distance. Interaction that relies on monocular computer vision, however, has not been well researched, particularly when used for depth information recovery. This thesis aims to investigate the feasibility of using monocular computer vision to allow bare-hand interaction with large display systems from a distance. By taking into account the location of the user and the interaction area available, a dynamic virtual touchscreen can be estimated between the display and the user. In the process, theories and techniques that make interaction with computer display as easy as pointing to real world objects is explored. Studies were conducted to investigate the way human point at objects naturally with their hand and to examine the inadequacy in existing pointing systems. Models that underpin the pointing strategy used in many of the previous interactive systems were formalized. A proof-of-concept prototype is built and evaluated from various user studies. Results from this thesis suggested that it is possible to allow natural user interaction with large displays using low-cost monocular computer vision. Furthermore, models developed and lessons learnt in this research can assist designers to develop more accurate and natural interactive systems that make use of human’s natural pointing behaviours

    Ambient Gestures

    No full text
    We present Ambient Gestures, a novel gesture-based system designed to support ubiquitous ‘in the environment’ interactions with everyday computing technology. Hand gestures and audio feedback allow users to control computer applications without reliance on a graphical user interface, and without having to switch from the context of a non-computer task to the context of the computer. The Ambient Gestures system is composed of a vision recognition software application, a set of gestures to be processed by a scripting application and a navigation and selection application that is controlled by the gestures. This system allows us to explore gestures as the primary means of interaction within a multimodal, multimedia environment. In this paper we describe the Ambient Gestures system, define the gestures and the interactions that can be achieved in this environment and present a formative study of the system. We conclude with a discussion of our findings and future applications of Ambient Gestures in ubiquitous computing

    Long-range correlation energy calculated from coupled atomic response functions

    Get PDF
    An accurate determination of the electron correlation energy is essential for describing the structure, stability, and function in a wide variety of systems, ranging from gas-phase molecular assemblies to condensed matter and organic/inorganic interfaces. Even small errors in the correlation energy can have a large impact on the description of chemical and physical properties in the systems of interest. In this context, the development of efficient approaches for the accurate calculation of the long-range correlation energy (and hence dispersion) is the main challenge. In the last years a number of methods have been developed to augment density functional approximations via dispersion energy corrections, but most of these approaches ignore the intrinsic many-body nature of correlation effects, leading to inconsistent and sometimes even qualitatively incorrect predictions. Here we build upon the recent many-body dispersion (MBD) framework, which is intimately linked to the random-phase approximation for the correlation energy. We separate the correlation energy into short-range contributions that are modeled by semi-local functionals and long-range contributions that are calculated by mapping the complex all-electron problem onto a set of atomic response functions coupled in the dipole approximation. We propose an effective range-separation of the coupling between the atomic response functions that extends the already broad applicability of the MBD method to non-metallic materials with highly anisotropic responses, such as layered nanostructures. Application to a variety of high-quality benchmark datasets illustrates the accuracy and applicability of the improved MBD approach, which offers the prospect of first-principles modeling of large structurally complex systems with an accurate description of the long-range correlation energy.Comment: 15 pages, 3 figure

    High-Accuracy Calculations of the Critical Exponents of Dyson's Hierarchical Model

    Full text link
    We calculate the critical exponent gamma of Dyson's hierarchical model by direct fits of the zero momentum two-point function, calculated with an Ising and a Landau-Ginzburg measure, and by linearization about the Koch-Wittwer fixed point. We find gamma= 1.299140730159 plus or minus 10^(-12). We extract three types of subleading corrections (in other words, a parametrization of the way the two-point function depends on the cutoff) from the fits and check the value of the first subleading exponent from the linearized procedure. We suggest that all the non-universal quantities entering the subleading corrections can be calculated systematically from the non-linear contributions about the fixed point and that this procedure would provide an alternative way to introduce the bare parameters in a field theory model.Comment: 15 pages, 9 figures, uses revte

    Exploring dynamical gluon mass generation in three dimensions

    Full text link
    In the d=3 gluon mass problem in pure-glue non-Abelian SU(N)SU(N) gauge theory we pay particular attention to the observed (in Landau gauge) violation of positivity for the spectral function of the gluon propagator. This causes a large bulge in the propagator at small momentum. Mass is defined through m2=Δ(p=0)m^{-2}=\Delta (p=0), where Δ(p)\Delta(p) is the scalar function for the gluon propagator in some chosen gauge, it is not a pole mass and is generally gauge-dependent, except in the gauge-invariant Pinch Technique (PT). We truncate the PT equations with a new method called the vertex paradigm that automatically satisfies the QED-like Ward identity relating the 3-gluon PT vertex function with the PT propagator. The mass is determined by a homogeneous Bethe-Salpeter equation involving this vertex and propagator. This gap equation also encapsulates the Bethe-Salpeter equation for the massless scalar excitations, essentially Nambu-Goldstone fields, that necessarily accompany gauge-invariant gluon mass. The problem is to find a good approximate value for mm and at the same time explain the bulge, which by itself leads, in the gap equation for the gluon mass, to excessively large values for the mass. Our point is not to give a high-accuracy determination of mm but to clarify the way in which the propagator bulge and a fairly accurate estimate of mm can co-exist, and we use various approximations that illustrate the underlying mechanisms. The most critical point is to satisfy the Ward identity. In the PT we estimate a gauge-invariant dynamical gluon mass of mNg2/(2.48π)m \approx Ng^2/(2.48 \pi). We translate these results to the Landau gauge using a background-quantum identity involving a dynamical quantity κ\kappa such that m=κmLm=\kappa m_L, where mL2ΔL(p=0)m_L^{-2}\equiv \Delta_L(p=0). Given our estimates for m,κm,\kappa the relation is fortuitously well-satisfied for SU(2)SU(2) lattice data.Comment: 22 pages, 5 figure

    Electron-phonon interaction in ultrasmall-radius carbon nanotubes

    Full text link
    We perform analysis of the band structure, phonon dispersion, and electron-phonon interactions in three types of small-radius carbon nanotubes. We find that the (5,5) can be described well by the zone-folding method and the electron-phonon interaction is too small to support either a charge-density wave or superconductivity at realistic temperatures. For ultra-small (5,0) and (6,0) nanotubes we find that the large curvature makes these tubes metallic with a large density of states at the Fermi energy and leads to unusual electron-phonon interactions, with the dominant coupling coming from the out-of-plane phonon modes. By combining the frozen-phonon approximation with the RPA analysis of the giant Kohn anomaly in 1d we find parameters of the effective Fr\"{o}lich Hamiltonian for the conduction electrons. Neglecting Coulomb interactions, we find that the (5,5) CNT remains stable to instabilities of the Fermi surface down to very low temperatures while for the (5,0) and (6,0) CNTs a CDW instability will occur. When we include a realistic model of Coulomb interaction we find that the charge-density wave remains dominant in the (6,0) CNT with TCDWT_{\rm CDW} around 5 K while the charge-density wave instability is suppressed to very low temperatures in the (5,0) CNT, making superconductivity dominant with transition temperature around one Kelvin.Comment: 20 pages. Updated 7/23/0

    Perturbative Wilson loops from unquenched Monte Carlo simulations at weak couplings

    Full text link
    Perturbative expansions of several small Wilson loops are computed through next-to-next-to-leading order in unquenched lattice QCD, from Monte Carlo simulations at weak couplings. This approach provides a much simpler alternative to conventional diagrammatic perturbation theory, and is applied here for the first time to full QCD. Two different sets of lattice actions are considered: one set uses the unimproved plaquette gluon action together with the unimproved staggered-quark action; the other set uses the one-loop-improved Symanzik gauge-field action together with the so-called ``asqtad'' improved-staggered quark action. Simulations are also done with different numbers of dynamical fermions. An extensive study of the systematic uncertainties is presented, which demonstrates that the small third-order perturbative component of the observables can be reliably extracted from simulation data. We also investigate the use of the rational hybrid Monte Carlo algorithm for unquenched simulations with unimproved-staggered fermions. Our results are in excellent agreement with diagrammatic perturbation theory, and provide an important cross-check of the perturbation theory input to a recent determination of the strong coupling αMSˉ(MZ)\alpha_{\bar{\rm MS}}(M_Z) by the HPQCD collaboration.Comment: 14 pages, 8 figure
    corecore