294 research outputs found

    A Semantic Question Answering Framework for Large Data Sets

    Get PDF
    Traditionally, the task of answering natural language questions has involved a keyword-based document retrieval step, followed by in-depth processing of candidate answer documents and paragraphs. This post-processing uses semantics to various degrees. In this article, we describe a purely semantic question answering (QA) framework for large document collections. Our high-precision approach transforms the semantic knowledge extracted from natural language texts into a language-agnostic RDF representation and indexes it into a scalable triplestore. In order to facilitate easy access to the information stored in the RDF semantic index, a user's natural language questions are translated into SPARQL queries that return precise answers back to the user. The robustness of this framework is ensured by the natural language reasoning performed on the RDF store, by the query relaxation procedures, and the answer ranking techniques. The improvements in performance over a regular free text search index-based question answering engine prove that QA systems can benefit greatly from the addition and consumption of deep semantic information

    A Survey on Graph Database Management Techniques for Huge Unstructured Data

    Get PDF
    Data analysis, data management, and big data play a major role in both social and business perspective, in the last decade. Nowadays, the graph database is the hottest and trending research topic. A graph database is preferred to deal with the dynamic and complex relationships in connected data and offer better results. Every data element is represented as a node. For example, in social media site, a person is represented as a node, and its properties name, age, likes, and dislikes, etc and the nodes are connected with the relationships via edges. Use of graph database is expected to be beneficial in business, and social networking sites that generate huge unstructured data as that Big Data requires proper and efficient computational techniques to handle with. This paper reviews the existing graph data computational techniques and the research work, to offer the future research line up in graph database management

    Storage Solutions for Big Data Systems: A Qualitative Study and Comparison

    Full text link
    Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriate storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    A framework for supporting knowledge representation – an ontological based approach

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de ComputadoresThe World Wide Web has had a tremendous impact on society and business in just a few years by making information instantly available. During this transition from physical to electronic means for information transport, the content and encoding of information has remained natural language and is only identified by its URL. Today, this is perhaps the most significant obstacle to streamlining business processes via the web. In order that processes may execute without human intervention, knowledge sources, such as documents, must become more machine understandable and must contain other information besides their main contents and URLs. The Semantic Web is a vision of a future web of machine-understandable data. On a machine understandable web, it will be possible for programs to easily determine what knowledge sources are about. This work introduces a conceptual framework and its implementation to support the classification and discovery of knowledge sources, supported by the above vision, where such sources’ information is structured and represented through a mathematical vector that semantically pinpoints the relevance of those knowledge sources within the domain of interest of each user. The presented work also addresses the enrichment of such knowledge representations, using the statistical relevance of keywords based on the classical vector space model concept, and extending it with ontological support, by using concepts and semantic relations, contained in a domain-specific ontology, to enrich knowledge sources’ semantic vectors. Semantic vectors are compared against each other, in order to obtain the similarity between them, and better support end users with knowledge source retrieval capabilities
    • …
    corecore