222 research outputs found

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Joint scheduling of jobs and preventive maintenance operations in the flowshop sequencing problem: A resolution with sequential and integrated strategies.

    No full text
    International audienceUsually, scheduling of maintenance operations and production sequencing are dealt with separately in the literature and, therefore, also in the industry. Given that maintenance affects available production time and elapsed production time affects the probability of machine failure, this interdependency seems to be overlooked in the literature. This paper presents a comparative study on joint production and preventive maintenance scheduling strategies regarding flowshop problems. The sequential strategy which consists of two steps: first scheduling the production jobs then inserting maintenance operations, taking the production schedule as a strong constraint. The integrated one which consists of simultaneously scheduling both maintenance and production activities based on a common representation of these two activities. For each strategy, a constructive heuristic and two meta-heuristics are proposed: NEH heuristic, Genetic algorithm and Taboo search. The goal is to optimize an objective function which takes into account both production and maintenance criteria. The proposed heuristics have been applied to non-standard test problems which represent joint production and maintenance benchmark flowshop scheduling problems taken from Benbouzid et al. (2003). A comparison of the solutions yielded by the heuristics developed in this paper with the heuristic solutions given by Taillard (1993) is undertaken with respect to the minimization of performance loss after maintenance insertion. The comparison shows that the proposed integrated GAs are clearly superior to all the analyzed algorithms

    A Proactive Approach for Coping with Uncertain Resource Availabilities on Desktop Grids

    No full text
    International audienceUncertainties stemming from multiple sources affect distributed systems and jeopardize their efficient utilization. Desktop grids are especially concerned by this issue as volunteers lending their resources may have irregular and unpredictable behaviors. Efficiently exploiting the power of such systems raises theoretical issues that received little attention in the literature. In this paper, we assume that there exist predictions on the intervals during which machines are available. When these predictions have a limited error, it is possible to schedule a set of jobs such that the effective total execution time will not be higher than the predicted one. We formally prove it is the case when scheduling jobs only in large intervals and when provisioning sufficient slacks to absorb uncertainties. We present multiple heuristics with various efficiencies and costs that are empirically assessed through simulations

    Serial-batch scheduling – the special case of laser-cutting machines

    Get PDF
    The dissertation deals with a problem in the field of short-term production planning, namely the scheduling of laser-cutting machines. The object of decision is the grouping of production orders (batching) and the sequencing of these order groups on one or more machines (scheduling). This problem is also known in the literature as "batch scheduling problem" and belongs to the class of combinatorial optimization problems due to the interdependencies between the batching and the scheduling decisions. The concepts and methods used are mainly from production planning, operations research and machine learning

    Parallel machine scheduling subject to machine availability constraints

    Get PDF
    Cataloged from PDF version of article.Within a planning horizon, machines may become unavailable due to unexpected breakdowns or pre-scheduled activities. A realistic approach in constructing the production schedule should explicitly take into account such periods of unavailability. This study addresses the parallel machine-scheduling problem subject to availability constraints on each machine. The objectives of minimizing the total completion time and minimizing the maximum completion time are studied. The problems with both objectives are known to be NP-hard. We develop an exact branch-and-bound procedure and propose three heuristic algorithms for the total completion time problem. Similarly, we propose exact and approximation algorithms also for the maximum completion time problem. All proposed algorithms are tested through extensive computational experimentation, and several insights are provided based on computational results.Sevindik, KayaM.S

    Total Tardiness Minimization in a Single-Machine with Periodical Resource Constraints

    Get PDF
    In this paper we introduce a variant of the single machine considering resource restriction per period. The objective function to be minimized is the total tardiness.  We proposed an integer linear programming modeling based on a bin packing formulation. In view of the NP-hardness of the introduced variant, heuristic algorithms are required to find high-quality solutions within an admissible computation times. In this sense, we present a new hybrid matheuristic called Relax-and-Fix with Variable Fixing Search (RFVFS).  This innovative solution approach combines the relax-and-fix algorithm and a strategy for the fixation of decision variables based on the concept of the variable neighborhood search metaheuristic. As statistical indicators to evaluate the solution procedures under comparison, we employ the Average Relative Deviation Index (ARDI) and the Success Rate (SR). We performed extensive computational experimentation with a testbed composed by 450 proposed test problems. Considering the results for the number of jobs, the RFVFS returned ARDI and SR values of 35.6% and 41.3%, respectively. Our proposal outperformed the best solution approach available for a closely-related problem with statistical significance

    Minimizing Total Earliness and Tardiness for Common Due Date Single-Machine Scheduling with an Unavailability Interval

    Get PDF
    This paper addresses the problem of scheduling n independent jobs on a single machine with a fixed unavailability interval, where the aim is to minimize the total earliness and tardiness (TET) about a common due date. Two exact methods are proposed for solving the problem: mixed integer linear programming formulations and a dynamic programming based method. These methods are coded and tested intensively on a large data set and the results are analytically compared. Computational experiments show that the dynamic programming method is efficient in obtaining the optimal solutions and no problems due to memory requirement
    corecore