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ABSTRACT 

 
PARALLEL MACHINE SCHEDULING 

SUBJECT TO MACHINE AVAILABILITY 
CONSTRAINTS 

 
Kaya Sevindik 

M.S. in Industrial Engineering 

Supervisor: Asst. Prof. Mehmet Rüştü Taner 

January 2006 

 

Within a planning horizon, machines may become unavailable due to 

unexpected breakdowns or pre-scheduled activities. A realistic approach 

in constructing the production schedule should explicitly take into 

account such periods of unavailability. This study addresses the parallel 

machine-scheduling problem subject to availability constraints on each 

machine. The objectives of minimizing the total completion time and 

minimizing the maximum completion time are studied. The problems 

with both objectives are known to be NP-hard. We develop an exact 

branch-and-bound procedure and propose three heuristic algorithms for 

the total completion time problem. Similarly, we propose exact and 

approximation algorithms also for the maximum completion time 

problem. All proposed algorithms are tested through extensive 

computational experimentation, and several insights are provided based 

on computational results. 

 

 

Keywords: Scheduling, Parallel Machines, Total Completion Time, 

Makespan, Availability Constraints, Heuristics. 
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ÖZET 
 

MAKİNA KULLANIM KISITLARI ALTINDA 
PARALEL MAKİNA ÇİZELGELEME 

PROBLEMİ 
 

Kaya Sevindik 

Endüstri Mühendisliği, Yüksek Lisans 

Tez Yöneticisi: Yard. Doç. Dr. Mehmet Rüştü Taner 

Ocak, 2006 

 

Bir planlama çevreninde makinalar beklenmeyen bozulmalar veya daha 

önceden çizelgelenmiş aktiviteler nedeniyle kullanılabilirliklerini 

kaybedebilirler. Üretim çizelgelemesini gerçekçi bir yaklaşımla 

oluştururken bu tür kullanılamama periyotlarını hesaba katmak gerekir. 

Bu çalışma her makinada kullanım kısıtı altında paralel makina 

çizelgeleme problemi üzerinedir. Toplam bitirme zamanını enazlama ve 

en büyük bitirme zamanını enazlama hedef fonksiyonları çalışılmıştır. 

Her iki problemde NP-zor olarak bilinir. Toplam bitirme zamanını 

enazlama problemi için kesin bir dallandır-ve-sınırla prosedürü 

geliştirilmiş, ve üç farklı sezgisel yaklaşım algoritması önerilmiştir. 

Ayrıca en büyük bitirme zamanını enazlama problemi için bir kesin ve 

bir sezgisel yaklaşım algoritması önerilmiştir. Önerilen bütün 

algoritmalar kapsamlı ölçümleme deneylerinde test edilmiş ve 

ölçümleme sonuçlarından muhtelif bulgular sağlanmıştır.  

 

Anahtar Sözcükler: Çizelgeleme, Paralel Makinalar, Toplam Bitirme 

Zamanı, En Büyük Bitirme Zamanı, Kullanım Kısıtları, Sezgisel. 
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Chapter 1 

INTRODUCTION 
 
Scheduling literature commonly assumes that machines are continuously 

available throughout the entire planning horizon. This assumption may 

not hold in many cases where unexpected breakdowns occur or when 

some activities are pre-scheduled on machines. Models and findings in 

the general scheduling literature may become inadequate to find optimum 

solutions for many cases with machine availability constraints. Although 

scheduling with availability constraints has gained some popularity 

during the last decade, there are still gaps in the relevant literature with 

respect to various machine arrangements and objective functions.  

 

This study considers parallel machine scheduling problem with 

availability constraints on each machine with the objectives of 

minimizing total completion time ( jC∑ ), and minimizing maximum 

completion time (makespan, Cmax). The problems with both objectives 

are known to be NP-hard [18], [35]. There is exactly one unavailability 

period on each machine. Durations of unavailability periods are 

deterministic and can be different on different machines. Unavailability 

periods are non-simultaneous for total completion time problem, however 

they can be simultaneous in makespan problem.  

 

Chapter 2 gives a short review of the literature on parallel machine 

scheduling problems with the objectives of minimizing Cmax and 

minimizing  and the literature on machine scheduling with 

availability constraints.  Chapter 3 defines the problem of minimizing 

,jC∑
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jC∑ with availability constraints, proposes exact and heuristic solution 

methods for this problem, and presents computational results with the 

proposed methods. Similarly, Chapter 4 focuses on the problem of 

minimizing Cmax with availability constraints, develops exact and 

heuristic solution methods for this problem, and presents computational 

results. Finally, Chapter 5 concludes the thesis with a summary of the 

major findings, and gives some directions for future research. 
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Chapter 2 

LITERATURE REVIEW 
 
This section provides a literature review of parallel machine scheduling 

with objectives of minimizing Cmax and ,iC∑  and machine scheduling 

with availability constraints.  

 

2.1. PARALLEL MACHINE SCHEDULING 
 

Elaborate reviews of the literature on parallel machine scheduling are 

provided in [44] and [10]. The problem with the objective of minimizing 

the total completion time ( iC∑ ) can be solved in polynomial time [13]. 

It is well known that the problem of minimizing makespan (Cmax) on 

parallel identical machines is NP-hard even with two machines [18], [19]. 

Dell’Amico and Martello [16] introduce lower bounds, heuristic 

algorithms and a branch-and-bound algorithm, and Ho and Wong [24] 

implement a lexicographical search procedure for this problem. The most 

recent exact procedure in the literature is the branch-and-cut algorithm 

developed by Mokotoff [46]. Dell’Amico and Martello [17] show that 

their original algorithm proposed in [16] outperforms this recent 

algorithm proposed by Mokotoff in [46] by some orders of magnitude. 

 

The unrelated parallel machine problem with the objective of minimizing 

Cmax is also widely studied. Exact and approximate algorithms for this 

problem are presented in Van de Velde [53], and Martello et al. [42]. The 

most recent exact procedure is the cutting plane scheme developed by 

Mokotoff and Chretienne [45].  Ghirardi and Potts [21] propose a 
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recovering beam search algorithm in a recent study. Other examples of 

heuristic attempts include Mokotoff and Chretienne [45], Martello et al. 

[42], Horowitz and Sahni [25], Ibarra and Kim [26], De and Morton [15], 

Davis and Jaffe [14], Potts [48], Lenstra et al. [37], and Hariri and Potts 

[23]. Chang and Jiang [9] address an extension of the problem that 

incorporates arbitrary precedence constraints and develop a state-space-

search procedure for its solution. 

 

Salem et al. [50] consider an extension of the problem with machine 

eligibility restrictions in which a subset of the jobs can be processed only 

on certain machines. They propose a branch-and-bound algorithm that 

exploits a customized lower bound. Their algorithm is capable of 

efficiently solving instances with up to 8 machines and 40 jobs.  

 

The problem of preemptive task scheduling on parallel identical 

machines with the objective of minimizing the Cmax can be solved in 

polynomial time in most cases even if there are precedence constraints. 

Muntz and Coffman [47] propose an algorithm for the case in which 

there are tree-like precedence constraints on parallel machines.  

 

Bruno et al [8] show that the problem of scheduling jobs on parallel 

identical machines with the objective of minimizing the total weighted 

completion time is NP-hard even with two machines. Azizoglu and Kirca 

[4] consider both the identical and the uniform machine cases of the 

multi-machine problem, establish optimality characteristics, develop a 

lower bound, and construct a branch-and-bound algorithm. 
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2.2. SCHEDULING WITH AVAILABILITY 

CONSTRAINTS 
 

Schmidt [52] and Sanlaville and Schmidt [51] provide an excellent 

review of scheduling with machine unavailability. These reviews present 

single, parallel, and flow shop models with total completion time, Cmax, 

and due date related objectives. 

 

Research on single machine problems under machine availability 

constraints is very limited. Lee and Liman [34] show that the problem of 

minimizing on a single machine without preemption is NP-hard. 

Sadfi et al. [49] study the single machine scheduling problem with a 

given unavailability period and deterministic processing times. They 

consider the total completion time objective and propose an 

approximation algorithm with a worst-case error bound of 20/17. Akturk 

et al. [2] study single machine problem with multiple unavailability 

periods by minimizing total completion time. They provide a number of 

heuristic methods and discuss the performances of these heuristics 

through computational experiments. Akturk et al. [3] also consider the 

SPT (Shortest Processing Time) list scheduling for the same problem and 

they provide worst case bounds under different conditions. Lee and Leon 

[33] consider the single machine scheduling problem with a rate-

modifying activity in which the starting time of the rate modifying 

activity is a decision variable. They develop polynomial time algorithms 

for the C

iC∑

max and total completion time objectives, and a pseudo-

polynomial algorithm for a special case of the total weighted completion 

time problem. Lee and Leon also show in this paper that the problem of 

minimizing maximum lateness is NP-hard, and they provide a pseudo-
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polynomial algorithm. Graves and Lee [22] study a single machine 

scheduling problem with maintenance windows and semi-resumable job 

processing with the starting time of the maintenance a decision variable. 

They show that the problem of minimizing the total weighted completion 

time is NP-hard, while the SPT and EDD (Earliest Due Date) ordering 

give optimal schedules for the total completion time and Lmax objectives, 

respectively. Liao and Chen [39] study the single machine problem with 

multiple periods of unavailability with the objective of minimizing 

maximum tardiness. They develop both an exact branch-and-bound 

procedure and a heuristic algorithm. 

 

Parallel machine problems with the objectives of minimizing Cmax, and 

Lmax tend to be polynomially solvable when preemption is allowed. 

Although polynomial time algorithms can be found for some special 

cases, most non-preemptive problems are known to be NP-hard.  

 

Lee [29] studies parallel identical machine scheduling problem with 

initial availability constraints. He studies the objective of minimizing 

Cmax, and provides a polynomial time approximation algorithm with a 

worst-case error bound of 4/3.  

 

Liao et al. [40] study the objective of minimizing Cmax on two parallel 

machines with an availability constraint during a given interval on only 

one machine. They classify the problem into four cases, and use versions 

of a lexicographical search algorithm originally proposed by Ho and 

Wong [24] to device an exact method for each case. 

 

Gharbi and Haouari [20] consider the parallel identical machine problem 

with non-decreasing and non-simultaneous machine availability times, 
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release dates, and delivery times and the objective of minimizing Cmax. 

They develop new lower and upper bounds based on max-flow 

computations, and propose a branch-and-bound algorithm using these 

bounds. This algorithm is able to solve instances with up to 700 jobs and 

20 machines.  

 

Leung and Pinedo [38] study a preemptive problem with identical 

parallel machines, and deterministic unavailability periods. They 

consider the total completion time, Cmax and maximum lateness 

objectives. For the total completion time objective, they show in what 

conditions the optimum solution can be obtained via list scheduling. For 

the Cmax objective, they consider problems with precedence constraints 

and fixed processing times. They determine conditions on precedence 

constraints and on unavailability periods to find a polynomial time 

algorithm. They also give a polynomial time algorithm that gives 

optimum solutions for the Lmax and Cmax objectives without any 

precedence constraints.  

 

Blazewicz et al. [5] also consider the preemptive problem case when 

machines are available for processing for certain time intervals with 

precedence constraints. They show that the P, staircase/pmtn, intree/Cmax 

problem is NP-hard in the strong sense.  They propose a polynomial time, 

linear programming based procedure to solve the case with chain-like 

precedence constraints and a staircase pattern of machine availability. 

They also study uniform and unrelated parallel machine problems with 

arbitrary patterns of unavailability with the Cmax and Lmax objectives. 

They propose a network flow approach for the uniform, and a linear 

programming approach for the unrelated machine problem. 
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Lee and Liman [34] study the two parallel machine scheduling problem 

with an unavailability period on one machine with the objective of 

minimizing the total completion time. They show that the problem is NP-

hard, and propose a pseudo-polynomial, online algorithm as well as a 

constructive heuristic with a worst-case error bound of 3/2. Kaspi and 

Montreuil [27], and Liman [41] study the same problem, and show that in 

the special case involving only initial availability constraints, SPT 

ordering gives the optimum solution. 

 

Lee and Chen [32] study the problem of scheduling jobs and maintenance 

activities on parallel machines with the objective of minimizing the total 

weighted completion time. As in [22], the starting times of the 

maintenance activities are taken as decision variables. The authors 

consider the two cases of overlapping and non-simultaneous periods of 

unavailability. They show that the problem is NP-hard in both cases. 

They propose a branch-and-bound method based on column generation 

techniques to solve medium sized problems within a reasonable 

computational time. 

 

Lee and Lin [36] study a single-machine scheduling problem with 

stochastic breakdowns, and a rate modifying maintenance/repair activity. 

They consider the objectives of expected Cmax, total expected completion 

time, expected maximum lateness, and maximum expected lateness. A 

machine becomes unavailable due to a maintenance activity triggered by 

the decision maker who wishes to increase its speed or repair activity 

required due to a fatal breakdown. The machine assumes its normal 

speed after the repair/maintenance activity.  
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All studies on the flowshop problems with machine unavailability focus 

on the Cmax objective. Lee [30] studies a two-machine flowshop 

scheduling problem of minimizing Cmax with an availability constraint. 

He considers a fully deterministic environment. He shows that the 

problem is NP-hard and develops a pseudo-polynomial algorithm to 

solve the problem optimally. In addition, he develops two heuristic 

algorithms each having a complexity of O(n log n). The worst-case error 

bound of his first algorithm, which is proposed for problems with an 

availability constraint on machine 1, is 3/2, and that of his second 

algorithm for problems with an availability constraint on machine 2 is 

4/3. Cheng and Wang [11] address the same problem in [30] and show 

that the relative worst-case error bound of 3/2 is tight for the heuristic 

proposed in [30] when there is an availability constraint on machine 1. 

Also, they propose an improved heuristic algorithm with a relative worst-

case error bound of 4/3. 

 

Blazewicz et al. [6] study the same problem with availability constraints 

on both machines. They analyze several constructive and local search 

based algorithms in the literature through computational experimentation. 

 

Cheng and Wang [12] study the generalization of the problem studied in 

[30] in that having an availability constraint imposed on each machine. 

Availability constraints are consecutive. They identify some 

characteristics of the problem in the semi-resumable case, and provide a 

heuristic with a relative worst-case error bound of 5/3 for the non-

preemptive case. Breit [7] also studies the preemptive version of the 

problem in [30] with an availability constraint only on machine 2. He 

proposes a heuristic algorithm with a worst-case error bound of 5/4. 
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Lee [31] considers the two-machine flowshop problem and an 

availability constraint on only one machine and on both machines. Job 

processing is semi-resumable where if a semi-resumable job is 

interrupted by an unavailability period, the processing can continue with 

after a certain setup time. He provides a complexity analysis, develops a 

pseudo-polynomial dynamic programming algorithm, and proposes 

heuristics supplemented with error bounds. 

 

Aggoune [1] considers m-machine flowshop scheduling problem with 

availability constraints with the objective of minimizing Cmax. He studies 

two cases of the problem. In the first case, starting times of unavailability 

periods are fixed, while in the second case starting times are in a time 

interval. He proposes a genetic algorithm and a tabu search procedure.  

 

2.3. SUMMARY 
 

Total completion time problem on the parallel machines with continuous 

availability is easy to solve, however, makespan problem turns out to be 

NP-hard. Extensive research is conducted on makespan problem on 

parallel machines, which includes identical, uniform and unrelated 

parallel machines. With availability constraints, single and parallel 

machine scheduling problems are NP-hard for both total completion time 

and makespan objectives. Although problems with availability 

constraints have become very popular for the last decade, the relevant 

literature is still very limited. For both objectives minimizing ∑  and 

makespan, this study fills the gap in literature of scheduling problems 

with availability constraints on each of parallel machines. 

iC
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Chapter 3 
 

TOTAL COMPLETION TIME 

PROBLEM 
 

This section defines the problem of minimizing jC∑  on parallel 

identical machines with availability constraints, develops exact and 

heuristic solution methods for this problem, and presents computational 

results with the proposed methods. 

 

 

3.1. PROBLEM DEFINITION 
 

All jobs are released simultaneously. Processing times are known and 

deterministic. Each job is to be processed exactly on one of the parallel 

identical machines. Job processing is non-preemptive. There is exactly 

one unavailability period on each machine for which the starting time and 

duration are given. Periods of unavailability on different machines do not 

overlap. That is, at most one machine may become unavailable at any 

time instance. This assumption is required since the lower bound to be 

defined in section 3.3 would not be valid without it.  

 

Since this particular problem is a more general version of the one that is 

proved to be NP-hard by the Lee and Liman [35], it is also NP-hard. 

 11



MATHEMATICAL FORMULATION 

 

The schematic representation of the problem is as follows. Available 

times of machines for processing before and after the unavailability 

periods will be denoted as “availability intervals” or only “intervals”. 

Every machine has two “intervals” for processing jobs. There are 2m 

intervals for processing in the system in cumulative. 
 

Interval 2 Interval 1 Unavail. 1
Machine 1 

Unavail. 2 Interval 4 Interval 3 Machine 2 

 

 
Int. 2m Interval 2m-1 Unavail. m 

Machine m 

Figure 3-1 Schematic representation of problem 
 

Define ai as the starting time of the interval i, that is ai = 0 for intervals i 

= 1, 3,…, 2m-1; but ai equals to the summation of starting time and 

duration of the unavailability period on the corresponding machine for 

intervals i = 2, 4,…, 2m .  

 

The notation is as follows. 

Indices: 

h :  Machine index, h= 1,2,…,m 

j, k, l, g : Job index, j, k, l, g = 1,2,…,n 

i:  Interval index, i = 1,2,…,2m  

Parameters: 

sh:  Starting unavailability period on machine h 

∆h:  Duration of unavailability period on machine h 
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pk:  Processing time of job k 

 

Sets: 

Pk:  Set of jobs preceding job k in the same interval; 

Sk:  Set of jobs succeeding job k in the same interval; 

 

Decision variables: 

 

xik:   
1 if job  is processed in interval 
0 otherwise                                   

k i
= 


bjk   
1 if jobs  and  are processed in  the same interval
0 otherwise

j k
= 


 

 rk:  Starting time of the processing  of job k; 

Assume without loss that jobs are indexed in SPT order, that is, 

1 2 ... np p≤ ≤ ≤ p . Then, the problem can be formulated as follows. 

 

 min ( )
2

1 1

m n

ik i k k
i k

x a r p
= =

+ +∑∑  

Subject to 
2

1
1

m

ik
i

x
=

=∑    for k∀      (3.1) 

1jk ij ikb x x≥ + −   for i=1,...,2m and ,j k∀  s.t j<k (3.2) 

1

1

k

k jk
j

r b
−

=

≥∑ jp    for k∀      (3.3) 

2 1,
1

n

h k k h
k

x p s−
=

≤∑   for h=1, 2,…, m   (3.4) 

xik, bjk ∈ {0,1}   for ∀i, and ∀k 
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rk ∈ N    for ∀k 

 

Constraint set (3.1) ensures that all jobs are assigned to exactly one of the 

intervals. Constraint set (3.2) determines which jobs are processed in the 

same interval. Constraint set (3.3) indicates that the starting time of a job 

cannot be any smaller than the sum of the processing times of the 

preceding jobs within the same interval, and a job is preceded by the jobs 

with smaller processing times. Finally, constraint set (3.4) ensures that all 

jobs scheduled to be processed before unavailability can be completed so 

as to allow for the corresponding unavailability period to start on time.  

 

3.2. SOLUTION CHARACTERISTICS 
 

It is shown that SPT ordering minimizes the total completion time on 

continuously available, parallel identical machines. However, SPT 

ordering is not the only solution for this case. Consider two-parallel 

machine case, there are / 22 n    ( x    is the greatest integer strictly smaller 

than x) optimal solutions for the problem where n is the number of jobs 

to be completed. As stated before, jobs are indexed in SPT order. Then 

the completion time of job j in the optimal schedule is: 

j

j k
k P

C p
∈

= +∑ jp . It can be seen that every job takes place in the 

calculation of completion time of the jobs succeeding it. If we do some 

algebraic operations the total completion time turns out to be 

1

( 1)
n

j j
j

S p
=

+∑  where jS  is the number of jobs in Sj. It can be seen that 

interchanging the place of a job with the place of another job with same 

number of successors (interchange place of jobs j and k s.t. |Sj| = |Sk|) 
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does not violate optimality. Since the number of jobs holding this 

condition is  in two-parallel machine problem, there are 2  

optimal solutions. Therefore, SPT ordering is a sufficient but not a 

necessary condition for optimality in the case of continuous machine 

availability. For the same case, a general necessary and sufficient 

condition can be summarized as follows. 

/ 2n 
/ 2n  

l k
P

C= +

k j

l l
P l∈

= +∑ j jS p

 

Lemma 3.1: Let k and j be two jobs assigned to different machines with 

processing times pk and pj such that pk < pj. Then in the optimal solution 

k jS S≥ .  

 

Proof: By contradiction. Suppose jobs k and j with pk < pj are scheduled 

in the optimal solution such that kS  < jS . Then the objective value is 

1 k k j

n

j

g l l j
g l l S l P l S

C C C C C
= ∈ ∈ ∈ ∈

+ + + +∑ ∑ ∑ ∑ ∑ lC  

if we exchange the places of jobs k and j, completion times of jobs that 

precede these jobs remain the same, and completion times of jobs k and j 

become 

Ck = rj + pk and Cj = rk +pj, respectively. 

Thus, the summation of Ck and Cj does not change. However starting 

times of jobs succeeding job k in the original schedule increase by pj – pk 

and that of jobs succeeding job j in the original schedule decrease by pj – 

pk. As a result, the new objective value after the exchange is: 

*

1
( ) ( )

k j

n

g k j l l k j k
g l P l S l S

C C C C C C C S p p p
= ∈ ∈ ∈

+ + + + + − − −∑ ∑ ∑ ∑
 

k

( )*

1 1

( )
n n

g l j k j
g l

C C S S p
= =

= − − −∑ ∑ kp  
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We know that kS S< j   and  pk < pj. Hence, the gC∑  in the new 

schedule is strictly smaller than that in the original schedule. Therefore, 

there cannot be an optimal schedule with  

kS S< j  and  pk < pj. 

 

Corollary 3.1:  For the continuous available machines case, jobs assigned 

to the same machine must be processed in SPT order in the optimal 

schedule.  

 

Optimality Conditions 

 

Because jobs are non-preemptive and starting time and duration of each 

interval is fixed, jobs assigned to different intervals may not have easily 

identifiable precedence relations. Intervals before unavailability periods 

have a processing capacity; hence certain jobs cannot be processed 

together in these intervals. This makes it very difficult to find precedence 

relations valid for every problem instance. 

 

Observations on the parallel machine problem with continuously 

available machines lead to the following optimality properties. 

 

Corollary 3.2: Jobs must be sequenced in SPT order within each interval. 

 

Proof: The sub-problem within each interval can be thought of as a 

single machine problem, and it is well known that SPT ordering 

minimizes the flow time, [3]. 

 

Define Ii as the idle time left in interval i in the optimal schedule. Since 

all remaining jobs can be processed continuously on either machine after 
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the period of unavailability, respective idle times in intervals 2, 4,…,2m 

are always zero. Idle times for intervals before the unavailability period 

equal to the difference between the initial available processing time of 

the corresponding interval and cumulative processing time of jobs 

assigned to that interval. 

  

i

i i
j As

jI Av p
∈

= − ∑ . 

Where Avi = s(i+1)/2 that is starting time of period of unavailability on the 

corresponding machine, and Asi is the set of jobs assigned to intervals i 

where (i = 1,3,…,2m-1). 

 

Lemma 3.2: Let g, j, k, and l be four jobs with processing times pg < pj < 

pk < pl respectively. Suppose job j is assigned to interval x, and job k is 

assigned to interval y in the optimal solution. Let g be the last job 

assigned to interval y with a smaller processing time than j, and let l be 

the first job assigned to interval x with larger processing time than k. 

Then at least one of the following two conditions must hold for 

optimality:  

i) The places of job j and job k cannot be exchanged due to availability 

constraint, that is:  

x j kI p p+ <    

ii) The total gain obtained from the exchange of the places of job j and 

job k is not positive that is: 

 ( ) ( )1 1j j g j k k l kS p S p S p S p 0× − − × + × − + × ≤  

 

Proof: By contradiction. Suppose neither condition holds in the optimal 

solution. That is, there exists an optimal schedule S such that 

i)    x j kI p p+ ≥ , and 

 17



ii)   ( ) ( )1 1g j j j l k k kS p S p S p S p− × − × + + × − × < 0

k

 

That x jI p p+ ≥  implies interchanging jobs j and k leads to a new 

feasible solution. If we exclude job j from interval x and job k from 

interval y the gain is 

j j kS p S p× + × k  

And if we assign job j to interval y and job k to interval x the increase in 

the objective value is 

( ) ( )1 1g j lS p S− × + + × kp  then total gain is 

( )( ) ( )( )1 1j g j k lS S p S S− − + − + kp  

Opening of the term above is the same as the term in condition (ii), 

multiplied  by (-1). Hence, adding these gives a positive gain in the 

objective value. Hence, any schedule that satisfies both of the two 

conditions above cannot be an optimal solution.  

 

3.3. LOWER BOUND 
 

Leung and Pinedo [38] show that Shortest Remaining Processing Time 

(SRPT) order gives an optimum solution to the parallel machine problem 

subject to machine unavailability and preemptive processing times.  

 

Since all solutions for non-preemptive case is also feasible solutions for 

preemptive case, the optimum solution of the preemptive case dominates 

all solutions for the non-preemptive case. Hence, the preemptive solution 

constitutes a lower bound for our problem.  

 

This lower bound is expected to perform better in those problems in 

which the periods of unavailability on all machines occur both close to 
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either the beginning or the end of the planning horizon.  Keeping in mind 

that the lower bound sets the idle time immediately preceding the interval 

of unavailability on each machine equal to zero, this insight can be 

explained by the following two observations on the optimum solution. 

 

Observation 1:  The length of the idle time tends to be larger as the 

starting time of the unavailability gets larger. 

 

Observation 2: The number of succeeding jobs amplifies the impact of 

the length of the idle time on the objective, when the starting time of 

unavailability gets smaller. 

 

The total impact on the objective tends to assume its maximum level 

when the starting time of unavailability lies in the medium term, and both 

factors are in play. Hence, the expected poorer performance in the lower 

bound for such cases. 

 

3.4. SOLUTION METHODS 
 

We identify some problem characteristics in Section 3.2.  We use these 

characteristics to develop exact and heuristic algorithms for the problem. 

In this section we present our solution methods to find exact and 

approximate solutions for the problem and we discuss our exact and 

approximate algorithms in detail. 

 

3.4.1. BRANCH-AND-BOUND ALGORITHM 

 

We propose a branch–and–bound algorithm to solve small- and medium-

sized problems optimally. As mentioned before, given the job 
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assignments to the intervals SPT ordering within each interval gives an 

optimal solution. Hence, the key decision is how to assign the jobs to the 

intervals.  

 

3.4.1.1. Lower Bound for a Partial Schedule 

 

A modification of the overall lower bound obtained from the solution to 

the preemptive problem gives a lower bound for each particular schedule 

corresponding to the nodes of the branch-and-bound tree. Level 0 in the 

branch-and-bound tree defines that no job is assigned any of the 

intervals.  In the level 1, decision of assigning the job with SPT is done, 

and for the next levels this continues with remaining jobs in SPT order. 

Fixing the assignment of job k (level k) to the corresponding interval and 

assigning the remaining jobs by SRPT, calculate lower bound for a node 

at level k. While calculating the lower bund for a node at level k, the key 

point is jobs fixed to intervals should be the first k jobs in SPT order of 

all jobs.   

 

Obviously, processing the jobs not included in each particular schedule in 

SRPT order gives a lower bound for that particular schedule. This lower 

bound can be strengthened through a modification based on the following 

observations. 

 

Fact 1(Look Ahead Factor): Let S be a given partial schedule and, let Jk 

be the next job to be assigned, that is, first k – 1 jobs are fixed and job k 

is the job with the SRPT. This scheme belongs to (k – 1)th level of the 

branch-and-bound tree. If Jk cannot be assigned to interval i (i 

∈{1,3…2m}) completely, that is the idle time of interval i (i ∈ {1,3…2m 
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– 1}) for the partial schedule P is smaller than pk, for this and next levels, 

no partial or complete assignment will be done to interval i.  
                               I1 

 

 

 

B Unavailable

C 

A 

Unavailable

                                                               I3 

 

 Job k

Figure 3-2  Representation of the partial schedule 

Consider the two-machine case above. Suppose that A, B and C are set of 

jobs assigned respectively intervals 1, 2, and 3 in partial schedule P. 

Suppose that I1 is greater than or equal to pk whereas the I3 is smaller 

than pk. According to fact, there will be no assignments to interval 3 until 

the branch-and-bound algorithm back-processes to (k – 1)st level.  

 

3.4.1.2. Node Generation Process 
 

Let n be the number of jobs and assume without loss jobs are indexed in 

SPT order. Number of jobs in the partial schedule designates the level in 

the branch-and-bound tree, and the nodes within each level correspond to 

the intervals to which the next job can be assigned. Since the jobs are 

indexed in SPT order, level 1 corresponds to job 1, level 2 corresponds to 

job 2 and so on. At each level a new set of nodes are generated by 

assigning the next job to each one of the 2m possible intervals. Then the 

lower bound is taken as the best promising node. This best promising 

node is selected as the parent node for the next level, and the process 

repeats itself until all jobs are scheduled. Hence, a job is assigned to an 

interval; the algorithm passes on the next job with the smallest processing 

time.  
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        Level 0 
                      Overall LB:                                                        1804 
 

         Level 1 
                       LB:                       1805                   1830                           1804                         1832 

4 

2 3

1

4 1

321

 

         Level 2 

 
Figure 3-3 Node generation process 

 

Figure 3-3 depicts levels 0-2 for a branch-and-bound tree for a hypothetic 

scenario of a two-machine problem example, the overall lower bound for 

the problem is 1804, that is also the lower bound for node 1 at level 0. At 

level 1, the first job is assigned to each of the four intervals, and the 

corresponding lower bounds are calculated. At level 2, four new nodes 

are generated from the node gave the smallest lower bound in level 1. 

 

When it is not possible to generate new nodes from the current node, 

back-processing runs. For instance, when the last job is inserted to an 

interval, there remains no jobs to be inserted to generate nodes or when 

all possible nodes that can be generated from a node do not give a lower 

bound that is better than the current feasible solution.  

 

In the back- processing current node’s lower bound is updated as the best 

of the lower bounds of its child nodes, and process returns to the previous 

node (level). 
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Current feasible solution: 1810 

Level k-1 

 
 

 Lower Bound                   1815                        1820                          1805                        1805 

4 32

4 32

1 

1 

 

 

 

Level k 
Lower Bound                     1810                        1820                            1810                        1815 

Figure 3-4 Back-processing 

 

Consider a two-machine problem; at level k we have a feasible solution 

with a total completion time ( jC∑ ) value of 1810. As it can be seen in 

the Figure 3-3, no other node at the same level has a potential to lead to a 

better solution. Thus, the algorithm proceeds at level k – 1, equal to lower 

bounds of its child nodes as 1810, and deletes all of the lower bounds of 

nodes in level k. 

 The resulting partial graph is shown in Figure 3-5 

 
 

1 2 3 4 Level k-1 

Lower Bound                     1815                       1820                             1810                            1805 

Figure 3-5 Partial graph 

Since only node 4 in level k – 1 has a corresponding lower bound that is 

smaller than that of the best incumbent solution, the process continues by 

generating 4 new branches, emanating from this node. The algorithm 

stops with the optimal solution, when all updated lower bounds of the 

nodes in level 1 is greater than or equal to the best incumbent solution so 

far found. 
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3.4.2. HEURISTIC ALGORITHMS 

 

Since our problem is NP-hard exploration of heuristic approaches is 

justified. Consequently, in this section, we exploit the previously 

identified optimality properties to propose a constructive heuristic 

algorithm, a neighborhood search mechanism, and a simulated annealing 

application. 

 

3.4.2.1. Constructive Heuristic Algorithm 
 

This algorithm, called Greedy Assignment (Greedy) is based on greedy 

assignments of jobs to the intervals by using the “lower bound” of a 

partial schedule defined in Branch-and-Bound section. The algorithm 

starts with the first job (the job with SPT), assigns this job to the interval, 

which gives the minimum lower bound, and continues with next jobs in 

the order of SPT. The solution obtained from Greedy is used as the initial 

feasible solution in the branch-and-bound algorithm.  

 

Although the algorithm assigns jobs with respect to lower bounds, 

resulting schedule has some intelligence due to the look ahead factor in 

the lower bound calculation. This factor allows the algorithm not to 

assign jobs to the intervals before the unavailability periods resulting 

large idle times in these intervals. 
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Worst Case Error Bound of Greedy 

 

Let POPT be the optimal solution for the preemptive case of the problem 

and GSOL and NOPT are the heuristic and optimum solutions for the 

non-preemptive case of the problem. We know that SRPT ordering of 

preemptive case gives a lower bound for the non-preemptive case that is, 

POPT ≤ NOPT for all problem instances.  

 

Define minsum(x)(y1,…, yz) that equals to summation of first x smallest 

values of the set (y1,…, yz). For instance, minsum(2)(2, 3, 4) = 2 + 3. 

Similarly, define maxsum(x)( y1,…, yz) that equals to summation of first x 

largest values of the set (y1,…, yz). For instance maxsum(2)(2, 3, 4) = 3 + 

4. Also define xy that equals to “x – /x y x×   ”. For instance, 42 = 2 and 

32 = 1. Let  be the smallest integer that is greater than or equal to z.  z  

 

Theorem 3.1: When the periods of unavailability on different machines 

are of equal length, the worst case error bound of the Greedy algorithm is 

2. 

  

Proof: The greatest deviation between GSOL and POPT is obtained 

when there is no job assignment in intervals before unavailability 

periods. Figure 3-6 depicts the particular 2-machine case, where ∆ is the 

length of a period of unavailability. 

 

 

 

 J6J4J2∆

J5J3J1∆

Figure 3-6 Worst case solution obtained from “Greedy” for 2 machines 
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Assume without loss of generality s1 < s2 <…<sm. For m-machine case, 

greedy gives a solution displaying this characteristic if and only if p1 ≥ 

sm where sm is the starting time of unavailability period on machine m. 

Also we know that sm ≥ (m–1)∆, as the unavailability periods do not 

overlap. For the worst case defined above, “Greedy” finds a solution 

(GSOL) of: 

( ) ( )

( ) ( )

( ) ( )

1 1

1 2 1

1 2 1 2

... 1 ...

2 ... ... ...

... 1 ...      (3.5)

m m m

m m

m

n n n m

n m n m n m n

n m

n np p p p
m m

n p p p p
m

ns s s s s s
m

+ +

+ + + − +

    + + + − + + +        
   − + + + + + + +    

  + ∆ + + ∆ + + + ∆ + − + ∆ + + ∆ + + + ∆    
 

In the other hand, SRPT finds a solution (POPT) for preemptive case: 

( )( ) ( )
( )

( )( ) ( )

( )
( )( ) ( )

1 1 1

1 2 3 1

( )
1

1 2 3 1

( )
1

... 1 min ,

max , , , ,..., ,
1 minsum

1 min ,

max , , , ,..., ,
2 maxsum

1 min ,

m

m

m m m m

m m

n
m m m

m m

m n
m m m

p p p s m s p

s p p p pn
m p s m s p

s p p p pn
m p s m s p

−

−

−

−

 + + + − + − ∆ + + ∆ + 
+ ∆     − +     − + − ∆ + + ∆     

+ ∆   −    − + − ∆ + + ∆  

( ) ( )

( )

1 1 2

1

1 ... 2 ... ...

...                                                                                     (3.6)

m m mm m n m n m n

n m n

n np p p p
m m

p p

+ + + + +

− +

 
  +
   

      − + + + − + + + +            

+ +
 

Since (m-1)∆ ≤ sm, for s1 < s2 <…< sm < p1 ≤ p2 ≤….≤ pn, 

 26



The deviation between GSOL and POPT is maximized when ∆ → 0, s1 

→ p1, pn → p1. In these limits the equations (3.5) and (3.6) tend to 

1 1 1 1

1

1 2 ...

1     (3.5) becomes (3.5') and

m m
n n nn p m p m p m p n p
m m m

nm p
m

        + − + − + + × +                
   −    

1 +

 

1 1 1 1

1 1 1

1 ( ) 2 1

2 3 ...    (3.6) becomes (3.6').

m m m
n n nmp n p m n p n p
m m m

n nm p m p mp
m m

          + − + − − + −                    
      − + − + +            

+

 

After reordering the terms in both equations and dividing (3.5’) to (3.6’), 

we obtain (3.5’)/(3.6’):   

1 1 1 1 1

1 1 1 1

2 1 2 ...
       (3.7)

1 2 ...

m m

m

n n nn p n p m p m p m p
m m m

n n nn p m p m p m p
m m m

        + + − + − + + ×                
        + − + − + + ×                

 

After doing some algebraic operations, this ratio becomes 

11 1 1
2                                 (3.8)

1 1
2

m

m

n n n nn m
m m m m

n n nn
m m m

             + + − + −                          
         + −                  

 

 

We can see that this ratio is maximized at n ≤ m, with the value of 2.  

From the above result, we know that 2GSOL
POPT

≤  for all problem 

instances. Since NOPT  ≥ POPT for all problem instances,  
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2GSOL GSOL
NOPT POPT

≤ ≤  for all problem instances. Therefore, 2 is a worst 

case error bound for the Greedy algorithm.  

 

Corollary 3.3: Greedy Algorithm’s worst case error bound of 2 is tight 

for the 2-machine case. 

  

Proof: Now consider the problem instance with 4 jobs with (p1=ε, p2=ε, 

p3=2ε, p4=s2), 4ε  ≤ s1, 7ε ≤ s2 and s1 + ∆ = s2.  

The Greedy algorithm produces the following solution. 

 

 

 

 
J2

J3 J1 J4

Figure 3-7: Worst case example of “Greedy” 

with an objective value 5ε + 2s2. But optimal schedule has an objective 

value 7ε + s2. Then the ratio between NOPT and GSOL is: 

2

2

5 2
7

s
s

ε
ε
+
+

.  

 2

0
2

5 2lim 2
7

s
sε

ε
ε→

+
=

+
 is the error bound for this instance, and this equals to 

the worst-case bound of the problem. From this result we can conclude 

that 2 is the worst-case bound of Greedy algorithm and it is tight.      

 

Theorem 3.2: The Greedy algorithm has a worst-case error bound of 3/2 

on the 2-parallel machine problem case, which has only one period of 

unavailability. 
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Proof: In the worst case of this type of problem, two criteria must be 

hold. First, there is no job assignment to the available period before 

unavailability period, and, second, the number of jobs assigned to the 

continuously available period is maximized. To hold these criteria, p1 > s 

where t is the starting time of unavailability, and 
1

1

n

j
j

p s
−

=

≤ + ∆∑ . 

 

Under these conditions, the solution obtained from Greedy algorithm is 

1 2( 1) ... nn p n p p× + − × + +                                    (3.9),  

and solution obtained from SRPT, 

1 1 2 3( 1) ( ) ( 2) ... np n p p s n p p+ − × + − + − × + + =  

1 2 3( 1) ( ) ( 2) ... nn p n p s n p p× + − × − + − × + +    (3.10). If we divide (3.9) 

to (3.10), we obtain, 

1 2

1 2 3

( 1) ...
( 1) ( ) ( 2) ...

n

n

n p n p p
n p n p s n p p

× + − × + +
× + − × − + − × + +

 for t < p1 ≤ p2 ≤…≤pn. 

This ratio is largest  

where s→p1, p2→p1,…, pn→p1. Then the ratio becomes  

1

1 1

1 ( 1)
2

1 ( 1) ( 1)
2

n n p

n n p n p

+

+ − −
and this ratio is maximum at n=2, or n=3, that is 

3/2. 

We know that 3
2

GSOL
POPT

≤  for all problem instances from above result. 

Since NOPT  ≥ POPT for all problem instances,  

3
2

GSOL GSOL
NOPT POPT

≤ ≤  for all problem instances. Therefore, 3/2 is a worst 

case upper bound to Greedy algorithm.  
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Now consider the problem instance with 5 jobs with (p1=ε, p2=ε, p3=ε, 

p4=t, p5=s + ε), and 3ε ≤ s, the greedy algorithm gives a solution of 

= 3s + 10ε while optimal solution is 2s + 10ε. Then the ratio 

is

jC∑
3 1
2 1
s
s

0
0
ε
ε

+
+

. While ε→0, the ratio is 3/2. Hence, 3/2 is a tight upper 

bound for Greedy.  

 

Corollary 3.4: A more general worst-case error bound for the problems 

that every machine does not have unavailability periods can be written. 

Let u be the number of machines that have unavailability periods on it. 

Then worst-case bound of this algorithm is 1 u
m

+ . This can be proved by 

the same approach used in Theorem 2. 

 

3.4.2.2. Neighborhood Search Algorithm 
 

This algorithm is based on searching for improving solutions from a 

neighborhood of a given initial feasible solution. Since searching entire 

solution space is too costly, a small neighborhood of a solution is 

determined and a search is performed on this neighborhood. An initial 

feasible solution, a neighborhood structure, and a search structure 

between the neighborhoods of a feasible solution are defined to construct 

this neighborhood search mechanism.  

 

Neighborhood Definition 

 

As mentioned before assigning job to intervals are preferred rather than 

assigning jobs to machines while defining neighborhood structure. Since 

jobs assigned to each interval of machine availability are to be processed 
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in SPT order, a feasible assignment of all jobs to these intervals 

constitutes a solution. Within this framework, the neighborhood of a 

given feasible solution is defined as the set of new solutions that can be 

generated through two-, three-, and four-way job exchanges among 

intervals of machine availability. Two-way job exchanges consist of one 

to two, three-way job exchanges consist of one to two, and four-way job 

exchanges consist of two to two job exchanges between 2m intervals 

defined in section 2.  

 

Whole neighborhood is not searched in only one iteration. To make this 

search easier and more efficient we divide the whole neighborhood of a 

feasible solution into sub-neighborhoods. A sub-neighborhood consists 

of only job exchanges between only fixed 2 intervals. Actually a sub-

neighborhood is a neighborhood defined only between two intervals. 

Local optimum of a sub-neighborhood of a feasible solution is the 

minimum solution that can be found by making two-, three-, and four-

way job exchanges between the corresponding two intervals. In a 

particular m-machine problem, there are C(m,2) sub-neighborhoods.  

 

For two-machine problem case, in addition to these sub-neighborhoods, 4 

dummy sub-neighborhoods are generated for fine-tuning of the 

algorithm. These 4 sub-neighborhoods search job exchanges between 3 

intervals. For a particular two-machine case these intervals are: 

[from 2 to 1 and from 1 to 4], [from 4  to 1 and from 1 to 2], [from 2 to 3 

and from 3 to 4], [from 4 to 3 and from 3 to 2]. 

Totally 10 sub-neighborhoods are generated to search the solution space.  

 

The sub-neighborhoods are searched sequentially until all sub-

neighborhoods reach their local-optimum that is no two-, three-, or four-

way job exchange can be done. 
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Finding an Initial Solution  

 

The solution found from the constructive algorithm is used as the starting 

solution for the NS algorithm. Also, the solution found from the NS 

algorithm is used as the initial feasible solution in the branch-and-bound 

algorithm.  

 

Job Exchange in a Neighborhood Move: 

 

A neighborhood move involves selecting one or two jobs from an 

interval and interchanging them by one or two jobs from another interval. 

Jobs in an interval are considered for an exchange in SPT order, and only 

those exchanges that would result in a reduction in the ∑ value are 

executed. When an exchange is executed, jobs in the affected intervals 

are reordered to maintain the SPT sequence, and the process repeats itself 

starting from the jobs with the shortest processing time within each 

interval until all job pairs are considered for exchange with no exchange 

being executed. Always two jobs are selected from both intervals for an 

exchange. To allow two- and three-way exchanges one dummy job with 

processing time 0 is added to each interval. The completion times of 

these dummy jobs are not considered while calculating the objective 

value.  

jC

Fact 2: Optimal schedule for a given instance has a total idle time in 

interval 1 and 3 * *
1 3( )I I+ that is smaller than or equal to the initial 

cumulative idle times on interval 1 and interval 3. That is; 
* *
1 3 1 3I I I I+ ≤ +  
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Figure 3-8 Representation of NS algorithm 

 

  

Thus, job exchanges should decrease idle time in intervals 1 and 3. This 

observation helps accelerate the search process by making the size of the 

sub-neighborhood and whole neighborhood smaller. As an exception, 

only job exchanges between interval 1 and interval 3 can violate this rule 

because, the process should increase at least one of the idle times of these 

intervals while exchanging jobs between them. 
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Example 3.1: Consider two-parallel machine case and the following 10-

job problem with processing times as shown in Table 3-1, and without 

loss of generality assume that jobs are indexed in SPT order. 
 

Table 3-1: Processing times of jobs 

job i 1 2 3 4 5 6 7 8 9 10 
pi 16 29 31 34 46 49 54 60 66 92 

Starting time of unavailability in the first machine is 50, that in the 

second machine is 100, and duration of unavailability on both machines 

is 50. Define schi is the assignment of job i that is the interval job i 

assigned. 

 

 The NS algorithm starts with the initial solution shown in Table 3-2. 
Table 3-2: Initial solution 

job i 1 2 3 4 5 6 7 8 9 10 
schi 1 3 3 1 2 2 2 4 2 4 

 

The  value for this initial solution is 1572. Once again, since the 

SPT order is maintained within each interval, the search process consists 

in reassignment of certain jobs to different intervals. A graphical 

illustration of the initial schedule given in Table 3-2 is shown in Figure 

3-8. 

jC∑

 

 0    16            50                      100               146                   195                           249                           315 

 

 
9 7654 1

 0            29           60               100                  150                           210                                             302 

 

 
1083 2 

Figure 3-9: Graphical illustration of initial schedule 
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No idle time is incurred on machine 1, and the total idle time on machine 

2 is 40 time units in interval 3.  

The Neighborhood Search algorithm looks for a one- or two-job 

exchange between sub-neighborhoods defined above. Job exchanges are 

performed by selecting two jobs from each interval and interchanging 

their assigned intervals. Initially we add a dummy job to each interval 

with processing time 0 to allow two- and three- way job exchanges. Let 

d1, d2, d3, and d4 be the dummy jobs numbered with respect to the 

interval they assigned. The algorithm starts by selecting the sub-

neighborhood that considers only the job exchanges between interval 1 

and 3. Then it considers all possible job pairs for a potential exchange 

operation. Since no job exchanges result in a reduction in the ∑  

value, the algorithm passes on to sub-neighborhood that considers the job 

exchanges between intervals 2 and 3. Then it selects jobs d2, and 5 from 

interval 2 and jobs d3 and 2 from interval 3 for an exchange operation. 

Since this exchange results in both an improvement in the objective 

function value, and a reduction in the idle time on machine 2, it is 

accepted and new schedule becomes as shown in Table 3-3. 

jC

 
Table 3-3: Schedule obtained after the first move 

job i 1 2 3 4 5 6 7 8 9 10 
sch i 1 2 3 1 3 2 2 4 2 4 

 

A graphical illustration of this new schedule is displayed in Figure 3-10. 

 
0     16            50                     100         129                    178                       232                           298 

 

            
2 9 7641

0             31                77        100                    150                       210                                            302 

 

Figure 3-10: Schedule obtained after first move 
1083 5 
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The value of this new schedule is 1523. The search mechanism is 

then recentered around this solution and the process restarts by taking the 

first two jobs from each interval. These jobs are jobs d2 and 2 from 

interval 2 and jobs d3 and 3 from interval 3. Exchanging these particular 

jobs does not yield a better solution, and hence this exchange is rejected. 

Then jobs in the 1

jC∑

st and the 3rd place from interval 2 (d2 and job 6) and 

first two jobs from interval 3 (d3 and job3) are considered.  It is 

calculated that exchanging these jobs yields a feasible solution and 

improves the objective function and also this exchange decreases the idle 

time on machine 2. Then this exchange is accepted and new schedule 

becomes 
Table 3-4: Schedule obtained after the second move 

job i 1 2 3 4 5 6 7 8 9 10 
schi 1 2 2 1 3 3 2 4 2 4 

 

And the assignments graphically become 

0     16             50                    100          129          160                        214                           280 

 

 

0                 46                    95  100                  150                       210                                            302 

 

 
1086 5 

97324 1

Figure 3-11: Schedule obtained after second move 

New objective value is 1502. The algorithm initializes the search and 

starts with the first two jobs from the interval. When search is completed 

in sub-neighborhood intervals between 2 and 3, the algorithm continues 

with sub-neighborhoods between intervals 1-4, 1-2, 3-4, 2-1-4, 4-1-2, 2-

3-4, 4-3-2, and 2-4. When no exchange can be found within these sub-

neighborhoods the algorithm turns to sub-neighborhood 1-3 and starts 

searching for improving moves. When there is no improving move in all 

of the 10 sub-neighborhoods the algorithm stops. In our example NS 
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algorithm gives 1497 as the objective value at the end, that is found in 

branch-and-bound algorithm  as the optimal value. 

 

Computational Complexity 

 

The algorithm generates C(2m,2) + 2m×C(m,2) sub-neighborhoods in a 

problem where m is the number of machines. Search of a sub-

neighborhood has a complexity of n5m log m where n is the number of 

jobs. Hence, searching the whole neighborhood once has a complexity of  

n5m4 log m. The algorithm repeats searching whole neighborhood until 

no improving move can be found. Then this repeating action has a 

complexity of n2, because jC∑ value cannot exceed ( )1
2

n n+

jC∑

pmax and 

every movement results in an integral decrease in  value. 

Therefore, the NS algorithm has a computational complexity of n7m4 log 

m. 

3.4.2.3. Simulated Annealing Application 
 

This algorithm uses the same neighborhood structure adopted in 

algorithm NS. It is different, however, in that in addition to always 

accepting those moves that result in a reduction in the objective value, it 

also accepts moves that result in an increased jC∑  value with some 

probability. In this way, it allows for searching different valleys in an 

attempt to avoid entrapment at a local optimum.  

The algorithm is a straightforward application of the classical approach 

proposed by Kirkpatrick et al. [28]. Recall that in algorithm NS, a job 

exchange is accepted only if: 

1. it decreases the idle time on machines 1 and 2, and 

2. it results in a smaller objective value. 
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The simulated annealing algorithm entirely disregards the first condition 

while extending the second condition by also allowing moves that 

increase the objective value with a certain probability. In particular, a 

move that results in an increase in the jC∑ value can be accepted with a 

probability of  
 t

te
∆

−
 where t∆  is the magnitude of the resulting increase 

and t is the current temperature of the system.  

 

The parameters of the simulated annealing algorithm such as the initial 

temperature, cooling function, and maximum number of iterations are set 

based on preliminary experimentation. The initial temperature is set as 

100. A linear cooling function f(t)=0.99t is adopted. The maximum 

number of iterations to be performed at a given temperature is set at 100 

for each neighborhood. Finally, the system is considered frozen when 

temperature of the system fell below 0.1, that the algorithm is terminated 

when tfin  0.1. A pseudo code of the algorithm is shown below. ≤

 

Let V be the set of neighborhoods constitutes the whole neighborhood 

and Ej’s be the elements of this set, 

(1) W = ∅; 

(2) Select a sub-neighborhood Ej s.t. Ej∉W; W=W  E∪ j; set i = 1;  

(3)Consider a job-pair exchange; t∆ := change in the objective value; 

(4) if ∆ 0, perform exchange; go to (7); t <

(5) R~U(0,1);  if 0 and e , go to (7); t∆ > ( / )t t− ∆ > R

(6) Reject exchange; if all pairs are not considered go to (3); else go to (9); 

(7) Perform exchange; i = i + 1;  

(8) If i < iterations, go to (3); 

(9) if W = V, t = 0.99t; go to (10), else go to (2) ; 

(10) if t ≤ 0.1, exit; 

(11) Go to (1); 
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3.5. COMPUTATIONAL 

EXPERIMENTATION 
 

In this section, we develop an experimental design framework and 

analyze the performance of the proposed algorithms via computational 

experimentation on the 2-machine case of the problem.  

 

3.5.1. EXPERIMENTAL DESIGN 

 

Processing times of jobs are generated from a uniform distribution 

between 1 and 100, and the duration of each period of unavailability is 

set equal to the average processing time of 50.  

 

Starting times of unavailability periods in each machine is taken as 

experiment variable. The starting time of the period of unavailability on 

each machine is set systematically as early, medium, and late as shown in 

Table 3-5. For the first machine, early start of unavailability is 5n, 

medium start of unavailability is 25n/2, and late start of unavailability is 

20n where n is the number of jobs. For the second machine, early start of 

unavailability is immediately after the end of period of unavailability on 

the first machine. Medium start of unavailability gives a gap of two 

unavailability durations after the end of the unavailability period on the 

first machine and late start of unavailability gives a gap of four 

unavailability durations after the end of the unavailability period in the 

first machine. The starting times and durations of unavailability periods 

are: 
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Table 3-5: Experimental scheme of unavailability periods 

First machine Second Machine Start in First 
Machine 

Start in Second 
Machine 

Early 6n 
Medium 8n 

 
Early 

Late 

 
5n 
 10n 

Early 13.5n 
Medium 15.5n 

 
Medium 

Late 

 
12.5n 

17.5n 
Early 21n 
Medium 23n 

 
Late 

Late 

 
20n 

25n 
 

3.5.2. COMPUTATIONAL RESULTS 

 

All algorithms are implemented in C programming language and run on 

an IBM compatible PC with Celeron 1.2 Mhz CPU. Small-, medium-, 

and large-sized problems having 30, 50, and 70 jobs, respectively, are 

tested in the experimental scheme. All CPU times for the NS algorithm 

are smaller than 2 seconds. In the small-sized problems for which the 

optimum solution could be obtained, the heuristic results are compared 

with the optimal.  
Table 3-6: Branch-and-bound results 

Start of 
unavailability 

on the first 
machine 

Start of 
unavailability 
on the second 

machine 

Number of 
solved 

problems 

% Deviation 
from the 

lower bound 

Early 5 of 5 0.65 
Medium 5 of 5 0.48 

 
Early 

Late 5 of 5 0.06 
Early 3 of 5 0.71 

Medium 5 of 5 0.39 
 

Medium 
Late 5 of 5 0.38 
Early 2 of 5 0.54 

Medium 3 of 5 0.10 
 

Late 
Late 4 of 5 0.04 
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For medium and large-sized problems, for which the optimum results are 

unavailable in a 30-minute CPU time, performance evaluation is 

performed based on the lower bound. The table 3-6 gives the results of 

Branch-and-bound algorithm in 30-job problems. In small-sized 

problems with up to 30 jobs, 37 of the 45 instances are solved optimally 

by the branch-and-bound algorithm. Six of the unsolved instances have 

late period of unavailability on the first machine. The other two unsolved 

instances are with medium and early unavailability periods on machines 

1 and 2, respectively. Considering the large number of possible 

combinations of jobs that can together be assigned to the intervals 

preceding the periods of unavailability on each machine, the poor 

performance of the branch-and-bound in solving problems with late 

periods of unavailability should not be surprising. The similar difficulty 

in solving problems with medium and early periods of unavailability on 

machines 1 and 2 can be explained by the relatively poor quality of both 

the lower bound and the heuristic solution fed in to the algorithm as an 

initial upper bound. Table 3-6 suggests that given the starting time of the 

unavailability on machine 1, the performance of the lower bound 

improves as the unavailability of machine 2 is delayed further. This trend 

is in line with the two observations made in Section 3.3. In addition, the 

number of unsolved instances shown in Table 3-6 closely follows this 

trend, that is, the branch-and-bound solves those instances, for which a 

better lower bound is available, more easily. The average percentage 

deviation of the lower bound from the optimum in the total 37 solved 

instances is less than 1%. This small deviation suggests that the lower 

bound is tight enough to allow for giving insights about performances of 

heuristic algorithms for medium- and large-sized problems for which the 

optimum results are unavailable. 
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Figure 3-12: Heuristic performance against the optimum in 30-job problems 
 

 

Table 3-7: Results of heuristic algorithms for 30 jobs 

Start of 
unavailability 

on the first 
machine 

Start of 
unavailability 
on the second 

machine 

Greedy 
percentage 
deviation 

from 
optimum 

NS 
percentage 
deviation 

from 
optimum 

SA 
percentage 
deviation 

from 
optimum 

Average 
SA time 
(second) 

 Early 1,12 0.04 0 261.7 
Medium 0,79 0.02 0 323.2 

 
Early 

Late 2,28 0.45 0.1 323.5 
Early 1,51 0.92 0.003 339 

Medium 1,71 0.43 0.007 313 
 

Medium 
Late 1,25 0.20 0.005 304.9 
Early 0,08 0.01 0 260.1 

Medium 0,57 0.04 0.3 244.2 
 

Late 
Late 0,41 0.06 0 232.2 
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Table 3-8 Results of heuristic algorithms for 50 jobs 

Start of 
unavailability 

in first 
machine 

Start of 
unavailability 

in second 
machine 

Greedy 
percentage 
deviation 
from LB 

NS 
percentage 
deviation 
from LB 

SA 
percentage 
deviation 
from LB 

Average 
SA time 

(seconds) 

Early 1,55 0.51 0.24 2039.8 
Medium 1,75 0.39 0.26 2084.7 

 
Early 

Late 1,41 0.17 0.17 2070.6 
Early 0,7 0.42 0.45 1893,0 

Medium 1,7 0.79 0.82 1786,2 
 

Medium 
Late 0,86 0.41 0.27 1788,3 
Early 0,53 0.45 0.46 1174,1 

Medium 0,51 0.41 0.43 1043,4 
 

Late 
Late 0,39 0.28 0.29 923,1 

 

 

Tables 3-7, 3-8 and 3-9 show the performance of the three heuristics for 

the 30-, 50- and 70-job problems, respectively. The neighborhood search 

algorithm performs very well in all cases. The algorithm never exceeds a 

gap of 1% from the optimum in the 30-job case, and from the lower 

bound in the 50- and 70-job cases. For the 30-job problems, it gives less 

than 0.5% gap for eight of the nine parameter combinations, and less than 

0.1% gap for five of the nine parameter combinations from the optimum 

solution.  The simulated annealing algorithm also produces excellent 

results in this experimental scheme. It gives less than 1% gap in all 27 

problem instances. Simulated Annealing Application produces nearly 

optimal solutions for 30-job problems, and outperforms Neighborhood 

Search Algorithm. However, Neighborhood Search Algorithm gives 

nearly same solutions for 50-job problems and outperforms Simulated 

Annealing Application in almost every instance for 70-job problems. 

Extension of the neighborhood of a solution with high number of jobs 

causes improved results of Neighborhood Search Algorithm. 
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Figure 3-13: Heuristic performance against the lower bound in 50-job problems 

 

 

Table 3-9: Results of heuristic algorithms for 70 jobs 

Start of 
unavailability 

in first 
machine 

Start of 
unavailability 

in second 
machine 

Greedy 
percent 

deviation 
from LB 

NS 
percentage 
deviation 
from LB 

SA 
percentage 
deviation 
from LB 

Average 
SA time 

(seconds) 

Early 0,55 0.14 0.07 6487,2 
Medium 0,63 0.18 0.20 6610,4 

 
Early 

Late 0,93 0.16 0.21 6628,0 
Early 0,93 0.48 0.62 5343,2 

Medium 1,04 0.45 0.57 5123,2 
 

Medium 
Late 0,36 0.18 0.44 5114,4 
Early 0,49 0.36 0.29 2897,6 

Medium 0,48 0.38 0.33 2626,4 
 

Late 
Late 0,43 0.23 0.28 2292,8 
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Figure 3-14: Heuristic performance against the lower bound in 70-job problems 
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Chapter 4 

MAXIMUM COMPLETION TIME 

PROBLEM 

 
In this section, we give the problem definition of minimizing Cmax on 

parallel identical machines with availability constraints, exact and 

heuristic solution methods for this problem and computational results of 

proposed methods. 

 
4.1. PROBLEM DEFINITION 
 

This chapter considers parallel machine scheduling problem with the 

maximum completion time (makespan, ) objective subject to periods 

of machine unavailability. Machines are identical. Each job should be 

processed on exactly one machine. All jobs are available at time zero. 

Processing times for all jobs are deterministic. Jobs are non-preemptive, 

that is if a job is interrupted while processing, it should start from the 

beginning. There is exactly one pre-determined unavailability period on 

each machine. Starting time and duration for the unavailability periods 

are known in advance, and machines may become unavailable 

simultaneously.

maxC
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MATHEMATICAL FORMULATION 

 

Consider a set J of n independent and non-preemptive jobs. Every 

member of this set will be processed on exactly one member of set M of 

m identical machines. Processing time of job Jk is denoted by pk and is 

the same on each machine. Every machine Mh is subject to a period of 

unavailability with a length of th – sh, where sh is the starting time, and th 

is the ending time of unavailability period on machine h. In modeling this 

problem, each interval of availability is treated as a separate machine. In 

order to model those intervals that follow the periods of unavailability, m 

dummy jobs Jn+1,....,Jn+m are added to be scheduled on machines 1 

through m. The processing times of these dummy jobs are set equal to 

t1,....,tm, respectively. Similarly, to model those intervals preceding the 

period of unavailability, m dummy machines, Mm+1,....,M2m, are defined. 

These machines are available for processing until times s1,....,sm, 

respectively.  

 

An IP formulation for the problem is as follows. The decision variable xhk 

is a binary integer variable which takes on a value of one if job k is 

processed on machine h, and zero otherwise.  

 

min Cmax 

 

max
1

0
n m

k hk
k

C p x
+

=

− ≥∑   for h=1,.....,m    (4.1) 

1
0

n

h k hk
i

s p x
=

−∑ ≥   for h=m+1,....,2m   (4.2) 

2

1
1

m

hk
h

x
=

=∑    for k=1,.....,n    (4.3) 
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1
1

m

hk
h

x
=

=∑    for k=n+1,....,n+m   (4.4) 

1
1

n m

hk
k n

x
+

= +

=∑    for h=1,.....,m    (4.5) 

xhk ∈ {0,1} 

 

Once again, dummy jobs, Jn+1,...,Jn+m, and dummy machines, 

Mm+1,...,M2m are included to adequately model the respective periods of 

unavailability on machines 1 through m. Constraint set (4.1) sets the Cmax 

equal to the completion time of the last job. Constraint set (4.2) forces 

job processing on machines Mm+1,...,M2m to complete before the 

respective time limits of s1,...,sm. In practice this means jobs assigned 

before unavailability period should be completed before unavailability 

period begins. Constraint set (4.3) requires each original job to be 

processed on exactly one machine. The constraints in (4.4) and (4.5) are 

associated with periods of unavailability. (4.4) ensures that unavailability 

periods are completed and (4.5) ensures that only one unavailability 

period is assigned to each of the machines M1,.....,Mm.  

 

In order to simplify this problem, we can make a slight modification in 

constraints (4.5) and (4.4). We know that machines are identical and 

every machine should have exactly only one unavailability period. Hence 

we can pre-assign dummy jobs raised from the unavailability periods to 

the original machines one by one and decrease the total number of jobs to 

be considered. Then we add new constraint (4.4’) in the place of 

constraints (4.4) and (4.5) in the formulation.  

xn+h,h = 1   for h =1,….,m    (4.4’) 
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4.2. SOLUTION PROCEDURE 
 

The IP formulation given in Section 4-1 is a modification of the model 

used by Mokotoff [46] for the parallel machine scheduling problem with 

continuous machine availability and a Cmax objective. The modification 

arises from the dummy jobs and dummy machines related with 

unavailability periods. The dummy jobs are not processed on dummy 

machines. Since the constraints added due to the modification are in the 

form of strict equalities, the cutting plane scheme described in [46] 

remains applicable to the problem under consideration. Section 4.2.1 

formally states this claim and provides a detailed mathematical proof. 

 

4.2.1 CUTTING PLANE SCHEME 

 

Following Mokotoff’s [46] notation, let S be the feasible set 

corresponding to the LP relaxation of our MIP formulation. Consider y0 

∈ R+ and define S(y0) as the subset of all points (x,y0) ∈S where y0 is the 

objective value which is revealed by x. Let P be the initial set of 

inequalities defining S, and Φ the set of valid inequalities for the convex 

hull of S(y0), conv(S(y0)). Finally, let P(Φ) be the current relaxation of 

conv(S(y0)) defined by the inequalities of P and inequalities of Φ.  

 

Suppose x0 is a point in S(y0). We define a valid inequality I such that (x0, 

y0) ∈ P(Φ ∪ {I}) if x0 is integer. For each machine Mh, let Ah be the set 

of jobs partially or fully assigned to machine Mh including the dummy 

machines and dummy jobs according to assignment vector x0. Also let 

(x*, sh) ∈ S(y0) and x* be a binary (0/1) point and let 
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*{ |h h hjB j A x= ∈ = 0}

h

. Therefore, we can say that from the definition of 

Bh, 

 
*

h h h h

j hj j j j
j A j A B j A j B

p x p p
∈ ∈ − ∈ ∈

= = −∑ ∑ ∑ ∑ p     (4.6) 

 

If either one of the two constraints corresponding to Mh in sets (4.1) and 

(4.2) is satisfied as a strict equality by (x0, y0), then we call that particular 

constraint active. We define the excess load ∆h for a machine h as the 

difference between the summation of processing times of jobs assigned 

to Mh and available processing time for Mh that is 0

h

h j
j A

p y
∈

∆ = −∑ for 

h=1,...,m and 
h

h j
j A

hp s
∈

∆ = −∑  for h=m+1,.....,2m. From the definition of  

∆h for h=m+1,…,2m it can be easily seen that  

h

j h
j A

p s
∈

h= + ∆∑       (4.7) 

if we insert this equation into equation (4.6), 

h h h h

j hj h h j h j h
j A B j B j B

p x s p s p
∈ − ∈ ∈

 
= + ∆ − = − −∆

 
∑ ∑ ∑    (4.8) 

 

Since *
j hj h

j

p x s
∀

≤∑ , 

*

h

j hj h
j A

p x s
∈

≤∑ , then we have that 0
h

j h
j B

p
∈

− ∆ ≥∑ .  (4.9) 

Therefore, we have that 

*

h h

j hj h j h
j A j B

p x s p
+

∈ ∈

 
= − −∆ 

 
∑ ∑  

   (
h

h j
j B

s p )h

+

∈

− ∆∑≤ − .     (4.10) 
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where ( )  for k ∈ R. { }max 0,k + = k

1 0Moreover 1  if j ∈ B*
hjx− = h, and 1 *

hjx− = if j ∈ Ah – Bh, we get 

*( ) ( ) (1
h h

j h j h hj
j B j A

)p p+ +

∈ ∈

− ∆ = −∆ −∑ ∑ x

* )

    (4.11) 

inserting this equality into equality (4.10) we have 
* ( ) (1

h h

j hj h j h hj
j A j A

p x s p x+

∈ ∈

≤ − −∆ −∑ ∑ .    (4.12) 

This inequality leads us a useful result for our problem. 

 

Proposition 4.1: Let (x0, y0) be a point of P(Φ) and assume that the 

machine constraint for Mh is active for (x0, y0). Then the linear inequality  
0 ( ) (1

h h

j hj j h hj
j A j A

)p x y p x+

∈ ∈

≤ − − ∆ −∑ ∑     (4.13) 

for h=1,....,m and 

( ) (1
h h

j hj h j h hj
j A j A

)p x s p x+

∈ ∈

≤ − −∆ −∑ ∑     (4.14) 

for h=m+1,.....,2m are valid inequalities. Moreover if there is a job Jj 

such that pj > ∆h and 0 1hjx < , then the inequality is not satisfied by (x0, 

y0). 

 

Proof: Proof for (4.13) is given in [46]. For inequality (4.14), we have 

shown above that a binary solution should satisfy this inequality. Hence, 

this is a valid inequality. Moreover, let { |ı
h h jA j A p }h= ∈ > ∆  be the 

subset of jobs whose processing times are greater than the excess load on 

Mh. 

Assume now that there is a job ı
hj A∈ such that  and 0 1, 

then 

jp > ∆h

0.

0
hjx< <

0( ) (1 )
h

j h hj
j A

p x+

∈

− ∆ − >∑  
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Since 0

h

j hj h
j A

p x s
∈

=∑ , the current solution does not satisfy the inequality. 

 

 

4.2.2. EXACT SOLUTION 

 

We develop an exact solution procedure by using the cutting plane 

scheme obtained in the previous section. This procedure consists in 

integration of valid cuts to the LP formulation of the problem in an 

iterative manner until either no more cuts can be added or a binary 

integer solution is obtained. Initially, a pre-determined objective value is 

inserted to the formulation. After obtaining the solution for this value, 

cuts for this solution are added. At the beginning of the algorithm, the 

initial objective value is found by the wrap-around rule, which is 

proposed in [43]. In addition, this is a Lower Bound for the optimal 

value. If no more cuts can be added for this solution value, this lower 

bound value is updated by increasing by one and new cuts are searched 

for the new solution value.  

 

4.2.2.1. Lower Bound 

 

Commonly used Wrap-Around rule for preemptive job case is used as the 

LB for this problem. This can be summarized as: 

max
1 1

1max ;max
n m m

j h
j h j

C p s
m

+

= =

   = −  
   

∑ ∑ jp  

In addition, this lower bound can be improved by: 

max 2 2 1m mC p p +≥ +  

Then our lower bound turns out to be: 
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max 2 2 1
1 1

1max ;max ;
n m m

j h j m m
j h j

C p s p p
m

+

+
= =

   = − +  
   

∑ ∑ p

B, ))

 

The lower bound function returning an integer value is denoted by 

LB(n,m,p,U) for a given problem, where n represents the jobs, m 

represents the machines, p represents the processing times of jobs and  U 

represents the unavailability periods in the problem. 

4.2.2.2. The Exact Algorithm 
 

An exact cutting plane algorithm (Cmax(J,U))  that uses the valid 

inequality defined in the previous sections is given below. Define 

LP(LB,Φ) is the LP relaxation of the integration of the original problem 

and the current set of added cuts 

 

Cmax(J,U) : 

 

LB : ( , , , )LB n m p U=  - 1; 

improvelowerbound: LB = LB+1 ; Φ = ∅; 

truncate: Solve LP(LB,Φ); 

 if LP(LB,Φ) has no solution then go to improvelowerbound; 

 if solution x(LB,Φ) is a binary variable then return LB; 

 : (LB, , (LI FindNewCut x= Φ Φ ; 

 if I = ∅, then return (MIP(LB)); 

 Φ = Φ ∪ {I}; 

 go to truncate; 

 

LB(n,m,p,U) function gives the initial lower bound for the problem. The 

main idea of this exact algorithm is to search whether an integral solution 

exists for a given objective value. LP(LB,Φ) is the linear programming 
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problem obtained by the linear relaxation of the binary variables xik, and 

adding the lower bound value LB and the cut set Φ obtained from valid 

inequalities defined in section 4.2.1. LB is inserted as the objective value 

(Cmax = LB) to the mathematical formulation. Then, the cutting plane 

algorithm searches for an integral solution for this objective value. 

 

Set Φ is dynamic in the sense that, it is updated at the end of each 

iteration (i.e., each time a solution is obtained for the LP relaxation).  

Inserting the LB as the objective value to the mathematical formulation 

and solving the LP relaxation of the problem may result in two possible 

outcomes: a feasible solution is found or the problem classified as 

infeasible. If a feasible solution is obtained, it is checked whether it is an 

integral solution. If it is an integral solution, the algorithm reports this 

solution as the optimum and stops.  If not, the algorithm searches for new 

cuts (I). If new cuts are found, the cut set Φ is updated by adding these 

new cuts (Φ = Φ ∪ I). If no new cuts are found for the current LP 

relaxation of the problem, then the MIP (Mixed Integer Programming) 

solver is invoked for the original problem where the LB value is inserted 

as a lower bound (i.e., C ). In the second possible outcome that is 

if LP relaxation of the problem is classified as infeasible, the LB value is 

increased by 1 unit (LB = LB + 1),  the cut set is emptied (Φ = ∅), and 

the above steps are repeated until either an integral solution is found or 

the MIP formulation is classified as infeasible. Since, when the inserted 

C

max LB≥

max value become infeasible, the Cmax value is increased by 1 starting 

from the lower bound we found, the algorithm finds the optimal value by 

adding cuts to the solution in the optimal value or if it cannot add any 

valid cuts after some point it finds the optimal by sending the problem to 

a MIP solver. Schematic view of the algorithm can be seen from Figure 

4-1 below: 
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Figure 4-1: Schematic view of exact algorithm 

 

Example 4.1: 

 

Consider jobs 1, 2 and 3 with processing times of 3, 7 and 8, 

respectively. These jobs should be processed in a two-parallel machine 

setting in which each machine becomes unavailable for 5 time units.  The 

unavailability period starts with machine 1 at time 3 and proceeds with 

machine 2 without interruption. In our formulation, this problem is 

modeled as a 5-job, 4-parallel machine problem where the processing 

times of the three original and two dummy jobs are 3, 7, 8, 8 and 13, and 

machines 4 and 5 are available only until time 3 and 8, respectively. 

Constraint (4.4’) in the mathematical formulation given in Section 4.1, 

immediately forces job 4 to be assigned to machine 1, and job 5 to 

machine 2 resulting in the following partial schedule. 
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Figure 4-2: Schematic representation of the partial schedule 

 

 

The LP relaxation of this problem yields the following solution with an 

objective value of Cmax = 14. 

 

 

 

i \ j M1 M2 M3 M4 

J1 0 0 1 0 

J2 0.857 0.143 0 0 

J3 0 0 0 1 

J4 1 0 0 0  

J5 0 1 0 0 

 

A1 = {2,4}  and  A2  ={2,5}, 

1 2{2,4}  and  {2,5}ı ıA A= = . Then we derive the cuts 

7 x12 + 8 x14 ≤ 14 – [6(1 - x12) + 7(1 – x14)]     ⇒ x12 + x14 ≤ 1  

and,  

7 x22 + 13 x25  ≤ 14 – [(1 - x22) + 7(1 – x25)]    ⇒ 6 x22  + 6 x25 ≤ 6. 

With these two cuts added to the constraint set of the LP relaxation, the 

following solution is obtained. 
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i \ j M1 M2 M3 M4 

J1 0 0 1 0 

J2 0 0 0 1 

J3 0.75 0.125 0 0.125 

J4 1 0 0 0  

J5 0 1 0 0 

 

Based on this solution we derive the following three cuts. 

8 x13 + 8 x14 ≤ 14 – [6(1 – x13) + 6(1 – x14)]   ⇒ 2 x13 + 2 x14  ≤ 2 

8 x23 + 13 x25 ≤ 14 – [(1 – x23) + 6(1 – x25)]   ⇒ 7 x23 + 7 x25  ≤ 7 

7 x42 + 8 x43 ≤ 8 – [0(1 – x42) + (1 – x43)]   ⇒ 7 x42 + 7 x43 ≤ 7 

Adding these three cuts to the LP relaxation renders the problem 

infeasible. Thus, the solution value Cmax is incremented by one (Cmax = 

14 +1) and the cut set is emptied. Solving the LP relaxation with the 

incremented Cmax value provides the following solution. 

 

i \ j M1 M2 M3 M4 

J1 0 0 1 0 

J2 1 0 0 0 

J3 0 0 0 1 

J4 1 0 0 0  

J5 0 1 0 0 

 

Since this is a binary solution, the algorithm reports it as the optimum 

and stops. 
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A Special Case 

 

When problem instances for the 2-machine case with only one 

unavailability period are carefully examined, it can be seen that the 

algorithm can be simplified by doing some operations as done in the [40]. 

 

The exact algorithm defined above is designed to deal with more 

complex problem structures that every machine in the problem has 

exactly one unavailability period in scheduled time horizon. 

 

In view of this fact, the exact algorithm is restructured for this particular 

two-machine experimental scheme with unavailability period only on one 

machine. Problems are classified into four cases based on the total 

processing time and the starting (s) and ending (t) times of the 

unavailability period. An alternative version of the algorithm is 

characterized for each case, and the appropriate version is applied to 

solve a given instance. 

 

Case 1: s = 0; 

In that case, the problem instance becomes a 2-parallel machine 

scheduling problem with continuous availability and with a dummy job 

with processing time t (pn+1 = t). The resulting IP formulation is as 

follows:  

 

min Cmax 
1

max
1

0
n

j hj
j

C p x
+

=

−∑ ≥   for h = 1, 2    (4.15) 
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2

1
1hj

h
x

=

=∑

{0,1}hjx ∈

   for j =1,2,…,n+1   (4.16) 

 

Case 2: 
1

2
n

j
j

p s
=

≤∑  

That is, the last job on at least one of the two machines completes 

processing before time s. Hence, the problem reduces to a 2-parallel 

machine scheduling problem with continuous availability. We exploit 

this property, set both the starting (s) and the ending (t) times of the 

period of unavailability equal to 0 (i.e., s = 0, t = 0), and apply to the 

problem. The resulting IP formulation is as follows:  

 

min Cmax 

 

max
1

0
n

j hj
j

C p x
=

−∑ ≥

t+

  for h = 1, 2    (4.17) 

 
2

1
1jh

h
x

=

=∑    for j =1,2,…,n+1   (4.18) 

{0,1}hjx ∈  

 

Case 3:  
1

2
n

j
j

s p s
=

< ≤∑

In this case, completion time of the last job on the continuously available 

machine is greater than s, and no jobs will be assigned to the other 

machine after the period of unavailability. This observation leads to the 

following proposition.  
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Define C  as the completion time of the last job assigned to the interval 

preceding the period of unavailability. 

 

Proposition 4.2: Problem reduces to maximizing C . 

 

Proof: Obviously, it must be that C ≤ t. Since no jobs will be processed 

on the partially available machine after the period of unavailability, we 

also have that 

 

max
1

n

j
j

C C p
=

+ =∑   

 

Therefore,  assumes its minimum value when maxC C  is at its maximum. 

Thus, the problem reduces to a knapsack problem.   

 

It is important to note that the Heuristic Algorithm, Heur(J,U), proposed 

in section 4.2.3 provides the optimum solution under Case 3.  

 

Case 4:  
1

n

j
j

s t p
=

+ <∑

Problems in this class do not render themselves to any particular 

simplification and hence Algorithm 1 should be applied as it to obtain the 

optimum solution. 

 

Four cases defined above constitute a 2-machine problem with an 

availability constraint. To solve this type of problem, appropriate solution 

method is applied according to these cases. 
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4.2.3. HEURISTIC APPROACH 

 

A heuristic approach is developed based on a divide-and-conquer 

philosophy to obtain good solutions for the problem in reasonable CPU 

times. In particular, the problem is divided into m sub-problems each 

having only one interval for processing, each one of these sub-problems 

is solved in isolation, jobs assigned in this initial phase are eliminated 

from the list of jobs to be scheduled, and an a m-parallel machine 

scheduling problem is solved for the remaining jobs. Computational 

results given in Chapter 5 provide evidence for an acceptable tradeoff 

between the gain in computational time and deviation from optimality.   

 

Figure 4-2 depicts m intervals of machine availability preceding each 

period of unavailability on an m-machine problem. Let Uh be the length 

of unavailability on machine h and Dh the idle time in interval j after all 

jobs are assigned to the intervals. We can conclude that  

 

max
1 1

1 ( )
n m

j h
j h

C p D
m = =

 
≥ + + 

 
∑ ∑ hU . 

 

 Interval 1

 

 

 

 Interval m Unavail. m

Interval 2 Unavail. 2

Unavail. 1

Figure 4-3 Availability intervals preceding unavailability periods 
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Processing times “pj” and lengths of unavailability “Uh” on each machine 

are deterministic and known in advance. Hence, the only solution 

dependent components in the lower bound formulation are the idle times 

in intervals 1 through m. Consequently, the quality of this lower bound 

dependent upon an accurate estimation of the minimum total unavoidable 

idle time to be incurred in these intervals.  

 

This general idea triggers a natural heuristic approach to the solution of 

the problem. In this approach, a knapsack problem is solved optimally for 

each one of the intervals 1,...,m, to decide on the jobs to be assigned to 

these intervals. At each step, the jobs assigned to an interval are excluded 

from job list J, and finally after all knapsack problems are solved and 

jobs assigned to intervals 1 through m are removed from list J, a Cmax 

problem is solved to schedule all unassigned jobs and m dummy jobs 

with processing times t1,...,tm (to account for the point in time at which 

each machine becomes available after unavailability period) on m parallel 

identical machines using the exact algorithm Cmax(J,U) defined in 

previous sections. By doing this, m knapsack problems and an ordinary 

parallel machine Cmax problem with reduced job number are solved 

iteratively by the algorithm. Knapsack problems are solved in the 

increasing order of size of the knapsack to allow small sized jobs 

assigned to the small sized intervals. If larger sized knapsacks are solved 

formerly, small sized jobs may be assigned to these intervals and small 

sized intervals cannot be filled properly. 

 

 

4.2.3.1. Knapsack Algorithm 
 

Consider a simple knapsack problem, 

max p1x1 +……+pnxn    
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subject to 

p1x1 +……+pnxn ≤ C     (4.19) 

where pi’s are the sizes of items to be inserted and C is the size of 

knapsack. We can see that inequality (4.2) in the mathematical 

formulation phase is very similar to the inequality (4.19). We can 

conclude from this similarity that ( ) (1
h h

j j h j h j
j A j A

)p x s p x+

∈ ∈

≤ − − ∆ −∑ ∑  is 

a valid inequality for the knapsack problem. The proof of the idea above 

is the same as the proof of Proposition 4.1. We follow the same approach 

as in Cmax(J,U), and search for an integral solution for the LP relaxation 

of the knapsack problem before using an MIP solver. Let Knap(j,E) be an 

exact algorithm to solve the knapsack problem corresponding to 

availability interval j and the set E  of jobs assigned to any interval. Also 

let LPKnap(Tj,E,Φ) be the solution to the LP relaxation of the problem 

and MIPKnap(Tj,E,Φ) be the optimum integer solution for the problem. 

The algorithm “Knap(j,E)” can be summarized as follows. 

 

set Φ = ∅; 

truncate: Solve LPKnap(sh,E,Φ); 

If solution x(sh,E,Φ) is a binary integer, then return LB; 

I := findNewCut(sh, E, Φ, x(LB, Φ) ); 

 If I = 0, then return (MIPKnap(sh,E,Φ)); 

Φ = Φ ∪ {I}; 

 Go to truncate; 

 

 Since the cuts are still valid for the value sh, they are added to the 

problem formulation before invoking the MIP solver. 
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4.2.3.2. Heuristic Algorithm 
 

In this section, we present a heuristic algorithm composed of two stages. 

In the first stage (Knapsack Stage), jobs are inserted to the availability 

intervals consecutively by using Knap(j,E) algorithm and in the second 

stage (Cmax Stage), Cmax with remaining jobs and m dummy jobs is 

computed. Let Ej be the set of jobs assigned to interval j by Knap(j,E), 

and D be the set of dummy jobs arising from the unavailability periods.  
The heuristic algorithm “Heur(J,U)” is summarized below. 

 

Set j =1; E = ∅; 

Knapsack: Knap(j,E); E = E ∪ Ej; 

If j = m; go to ExactAlgorithm; 

j = j + 1; go to Knapsack; 

ExactAlgorithm 1: J = J \ E ∪ D; Cmax(J); 

end 

 

It is important to note that the exact algorithm “Cmax(J)” here runs 

without the unavailability periods on m parallel identical machines. The 

problem has a special structure however in that each one of the m 

machines is assigned exactly one dummy job. 

 

Example 4.2: 

 

Consider the set J of 3 jobs with processing times {3,7,8} respectively. 

These jobs should be processed on a two-parallel machine setting in 

which both of the two machines become unavailable for 5 time units 

iteratively starting in time 3. There are two knapsacks in this problem 
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with sizes 3, and 8 respectively. Algorithm starts with  the smallest sized 

knapsack and generates the problem 

 

max  3 x1 + 7 x2 + 8 x3 

subject to 

 3 x1 + 7 x2 +8 x3 ≤ 3 

{0,1}ikx ∈ . 

 

Solving the LP relaxation of this problem, we obtain the solution {x1 = 1, 

x2 = 0, x3 = 0}. Because of this solution is integral, the heuristic algorithm 

excludes job 1 from the job list and passes to the second knapsack. After 

the following knapsack problem is generated: 

max  7 x2 + 8 x3 

subject to 

 7 x2 +8 x3 ≤ 8 

xi’s are binary . 

Solving the LP relaxation of this problem, we obtain the solution {x2 = 1, 

x3 = 0.125}. This is not an integral solution, hence the heuristic algorithm 

adds the cut : 

7 x2 + 8 x3 ≤ 8 – [0× (1 – x2) + (1 – x3)]   ⇒ 7 x2 + 7 x3 ≤ 7 

Added this cut, the LP relaxation of the algorithm gives the solution {x2 

= 0, x3 = 1}. Because of this solution is integral, the heuristic algorithm 

excludes job 3 from the job list and passes the Cmax phase with dummy 

jobs and remaining job in the job list, hence all knapsack problems are 

solved. New problem generated by heuristic algorithm is 

min y 

subject to  

y – 7 x12 – 8 x14 – 13 x15 ≥ 0 
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y – 7 x22 – 8 x24 – 13 x25 ≥ 0 

x12 + x22 = 1 

x14 = 1 

x25 = 1 

 

Solving the LP relaxation of this problem, we obtain the solution: 

Cmax =14 

 

i \ j M1 M2  

J2 0.857 0.143  

J4 1 0  

J5 0 1  

The cuts are found that  

7 x12 + 8 x14 ≤ 14 – [6× (1 - x12) + 7× (1 – x14)]     ⇒    x12 + x14 ≤ 1  

7 x22 + 13 x25  ≤ 14 – [(1 - x22) + 7× (1 – x25)]        ⇒    6 x22  + 6 x25 ≤ 6. 

Adding these cuts, we found that the LP relaxation of the problem 

becomes infeasible. Then The Cmax value is increased by one (Cmax = 14 

+ 1), and cut set is emptied. Then, the LP relaxation is solved with this 

new Cmax value. The following solution is obtained: 

Cmax =15 

 

i \ j M1 M2  

J2 1 0  

J4 1 0  

J5 0 1 

 

This is an integral solution and this solution is returned as the solution for 

the problem. 
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4.3. COMPUTATIONAL STUDY 
 

As a part of the experimental scheme, experiment carried out by Liao et 

al. [40] is taken into consideration. This experiment contains a 2-machine 

scheduling problem with an unavailability period only on one machine.  

 

Table 4-1 shows the results for the experimental scheme is given [40]. 

Results are obtained for small-, medium-, and large-sized problems with 

n =10, 50, 100. Starting times of the unavailability period are set as 0, 

, and where a and b are the lower and upper limits of 

the uniform distribution from which job processing times generated, 

respectively. Ending times are selected to cover all three cases discussed 

in Section 4.2.2.2. Processing times of jobs are generated from U(20, 50) 

and U(20, 100) for all parameter combinations. Duration of the 

unavailability period is not constant in this scheme. The proposed 

algorithm in Section 4.2.2.2 solves all cases in the average 0.185 seconds 

and in the worst case 1.404 seconds.  

a n× ( ) / 4a b n+ ×

 

In addition to the experimental scheme of [40], the proposed technique is 

tested also on 2-, 3-, and 5-parallel machine problems with a period of 

unavailability on each machine. Similar to the problems lends itself to the 

same reductions and simplifications. The periods of unavailability are 

consecutive in the sense that a period of unavailability starts on one 

machine as soon as one ends on a different machine.  

 

Starting and ending times of the periods of unavailability are selected to 

allow the algorithm to insert jobs to each interval of availability on all 

machines. Duration of an unavailability period is taken as the average 

processing time of the jobs. Processing times of jobs are generated from 
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U(1,70). Table 4-2 shows the results of the exact and heuristic 

algorithms. The results indicate that for a given number of machines, the 

CPU time fluctuate randomly as the number of jobs is increased, and do 

not seem to display any systematic behavior. However, when the number 

of machines is increased for the same number of jobs per machine, the 

CPU time increases. Although the algorithm may require unreasonably 

long CPU times for large instances, it is seemingly able to solve 

problems with m = 5 machines, and n = 250 jobs within a reasonable 

time limit. Results shown in Table 4-3 also indicate that the heuristic 

algorithm provides very good solutions for the instances for which an 

optimum solution could be obtained. The modest computational times 

with the heuristic algorithm illustrate its efficiency, and hence suggest 

that it may provide good solutions for those problems whose size may be 

prohibitive for the exact procedure.  

 

Experiments with processing time generated from U(21,50) are also 

performed to observe the behavior of the exact and heuristic algorithms 

when the processing times display little dispersion. Table 4.3 shows the 

results of the exact and heuristic algorithms for this last scheme in the 

experimental design. The results indicate that for this class of 

experiments with a narrow range of processing times, the CPU time for 

both the exact and the heuristic algorithms increase rapidly as the 

problem size increases, and after a certain point neither algorithm can 

provide a solution. 
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Table 4-1 Exact algorithm CPU times (in seconds) for one unavailability period 

t Pi ~ (20,50) t Pi ~ (20,100) 
 s    s   
n= 10 
 0 200 175  0 200 300 
250 0.074 0.071 0.068 350 0.075 0.143 0.069 
        
300 0.13 0.064 0.062 400 0.077 0.073 0.07 
        
350 0.091 0.07 0.069 450 0.061 0.064 0.068 
        
n=50 
 0 1000 875  0 1000 1500 
1250 0.149 0.125 0.124 1750 0.136 0.375 0.12 
        
1500 0.144 0.123 0.122 2000 0.141 0.5 0.118 
        
1750 0.164 0.119 0.119 2250 0.129 0.094 0.12 
        
n = 100 
 0 2000 1750  0 2000 3000 
2500 0.191 0.186 0.177 3500 0.273 1.404 0.182 
        
3000 0.197 0.202 0.175 4000 0.248 1.184 0.182 
        
3500 0.163 0.184 0.172 4450 0.261 0.138 0.18 
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Table 4-2: Exact and heuristic algorithm results for cases pi  ~ U(1,70) 

m n s1 t1 Average 
CPU 
Time of 
EA (in 
seconds) 

Average 
CPU Time 
of Heuristic 
(in seconds) 

Percent 
Deviation 
from 
Optimum 

Average 
CPU 
Time of 
MIP 

pi ~ U(1, 70) 
2 4 35 70 0.164 0.178 0 0.036 
        
2 6 50 85 0.138 0.162 0.73 0.036 
        
2 8 70 105 0.094 0.158 3.547 0.058 
        
2 10 85 120 0.164 0.194 4.835 0.116 
        
2 14 100 135 0.384 0.21 2.252 0.44 
        
2 20 160 195 0.248 0.356 0.287 0.218 
        
2 40 335 370 0.418 0.794 0 0.364 
        
2 100 860 895 1.384 1.684 0 1.402 
        
3 9 35 70 0.22 0.108 0 0.058 
        
3 12 50 85 0.422 0.208 3.828 0.294 
        
3 15 70 105 8.286 0.17 3.366 7.91 
        
3 21 90 125 34.098 0.18 0.727 7.318 
        
3 30 165 200 4.854 0.21 0.174 4.632 
        
3 60 315 350 1.306 0.41 0 2.32 
        
3 150 805 840 7.88 0.694 0 6.374 
        
5 25 0 35 29.612 0.858 1.748 116.65 
        
5 35 55 90 165.258 0.844 1.469 158.338 
        
5 50 90 125 47.466 5.652 0 138.992 
        

 70



5 100 265 300 40.046 1.87 0 50.292 
        
5 250 785 820 67.18 3.764 0 44.438 

 

 

Table 4-3 Exact and heuristic algorithm results for cases pi ~ U(21,50) 

m n s1 t1 Average 
CPU Time of 
EA (in 
seconds) 

Average 
CPU Time 
of Heuristic 
(in seconds) 

Percent 
Deviation 
From 
Optimum 

pi ~ U(21, 50) 
2 10 85 120 0.226 0.116 0.297 
       
2 40 335 370 19.466 0.166 0 
       
2 100 860 895 2.38 0.298 0 
       
3 15 70 105 7.406 0.186 3.378 
       
3 60 315 350 70.148 0.792 0 
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Chapter 5 

CONCLUSION 

 
 
This thesis addressed the problem of parallel machine scheduling with 

availability constraints on each machine. The objectives of minimizing 

the total completion time ( jC∑ ), and minimizing the makespan (Cmax) 

are studied.  

 

We developed an exact branch-and-bound procedure, and proposed three 

heuristic algorithms to find approximate solutions for the ∑  problem. 

A pre-emptive lower bound is used within the branch-and-bound 

procedure. The three heuristic algorithms are a constructive algorithm, a 

neighborhood improvement algorithm and a simulated annealing 

procedure. The constructive algorithm relies on assignments of jobs 

based on a projection for the best promising solution. The algorithm has a 

worst-case error bound of 2. The neighborhood improvement algorithm 

takes the schedule produced by the constructive procedure and attempts 

to improve it through a local search within a given neighborhood. The 

particular neighborhood structure can be thought of as a combination of 

smaller neighborhoods. The search process exploits some optimality 

properties of the problem. Computational results show that the 

improvement algorithm gives very good solutions (with less than 1% 

deviation from lower bound in all cases), very efficiently with less than 2 

seconds of CPU times in all cases. 

jC

 

The simulated annealing procedure is proposed as a random search 

technique using the same neighborhood structure in the hopes to avoid 
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entrapment at local optima. Although it gives excellent solutions (optimal 

solutions for almost all 30-job problems and less than 1% deviation from 

the lower bound for the 50- and 70-job problems), its CPU times overly 

exceed those with the improvement algorithm.  

 

The second part of the thesis addressed the problem of minimizing Cmax. 

We developed an exact algorithm based on a branch-and-cut method, and 

a heuristic algorithm that uses a divide-and-conquer strategy. We 

modified a cutting plane scheme previously proposed in the literature for 

a parallel machine problem under continuous availability, and proposed a 

transformation of our problem to make it suitable for the application of 

the modified cutting plane scheme. This same cutting plane scheme is 

also utilized within the context of a new heuristic algorithm that divides 

the problem into sub-problems, solves these sub-problems to optimality, 

and reports the combined solution. Computational experimentation 

shows that the exact algorithm solves problems within a 10-minute CPU 

time only when the range of processing times is large. The heuristic 

algorithm provides very good solutions within reasonable CPU times 

even when the processing times are sampled from a smaller range.  

 

An immediate extension of this study is the consideration of the total 

flextime objective with simultaneous periods of unavailability on 

different machines. Problems with total weighted completion time 

objective and the due date related objectives (e.g., minimizing maximum 

lateness (Lmax), number of tardy jobs) are other natural extensions. In 

addition, stochastic periods of unavailability, for example due to 

unexpected breakdowns, may be another interesting and challenging 

avenue for future research. 
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