
PARALLEL MACHINE SCHEDULING
SUBJECT TO MACHINE AVAILABILITY

CONSTRAINTS

A THESIS

SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL

ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Kaya Sevindik

January 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52940114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I certify that I have read this thesis and that in my opinion it is fully

adequate, in scope and in quality, as a thesis for the degree of Master of

Science.

 Asst. Prof. Mehmet Rüştü Taner (Advisor)

I certify that I have read this thesis and that in my opinion it is fully

adequate, in scope and in quality, as a thesis for the degree of Master of

Science.

 Prof. M. Selim Aktürk

I certify that I have read this thesis and that in my opinion it is fully

adequate, in scope and in quality, as a thesis for the degree of Master of

Science.

 Asst. Prof. Yavuz Günalay

Approved for the Institute of Engineering and Sciences:

Prof. Mehmet Baray

 Director of Institute of Engineering and Sciences

 ii

ABSTRACT

PARALLEL MACHINE SCHEDULING

SUBJECT TO MACHINE AVAILABILITY
CONSTRAINTS

Kaya Sevindik

M.S. in Industrial Engineering

Supervisor: Asst. Prof. Mehmet Rüştü Taner

January 2006

Within a planning horizon, machines may become unavailable due to

unexpected breakdowns or pre-scheduled activities. A realistic approach

in constructing the production schedule should explicitly take into

account such periods of unavailability. This study addresses the parallel

machine-scheduling problem subject to availability constraints on each

machine. The objectives of minimizing the total completion time and

minimizing the maximum completion time are studied. The problems

with both objectives are known to be NP-hard. We develop an exact

branch-and-bound procedure and propose three heuristic algorithms for

the total completion time problem. Similarly, we propose exact and

approximation algorithms also for the maximum completion time

problem. All proposed algorithms are tested through extensive

computational experimentation, and several insights are provided based

on computational results.

Keywords: Scheduling, Parallel Machines, Total Completion Time,

Makespan, Availability Constraints, Heuristics.

 iii

ÖZET

MAKİNA KULLANIM KISITLARI ALTINDA
PARALEL MAKİNA ÇİZELGELEME

PROBLEMİ

Kaya Sevindik

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yard. Doç. Dr. Mehmet Rüştü Taner

Ocak, 2006

Bir planlama çevreninde makinalar beklenmeyen bozulmalar veya daha

önceden çizelgelenmiş aktiviteler nedeniyle kullanılabilirliklerini

kaybedebilirler. Üretim çizelgelemesini gerçekçi bir yaklaşımla

oluştururken bu tür kullanılamama periyotlarını hesaba katmak gerekir.

Bu çalışma her makinada kullanım kısıtı altında paralel makina

çizelgeleme problemi üzerinedir. Toplam bitirme zamanını enazlama ve

en büyük bitirme zamanını enazlama hedef fonksiyonları çalışılmıştır.

Her iki problemde NP-zor olarak bilinir. Toplam bitirme zamanını

enazlama problemi için kesin bir dallandır-ve-sınırla prosedürü

geliştirilmiş, ve üç farklı sezgisel yaklaşım algoritması önerilmiştir.

Ayrıca en büyük bitirme zamanını enazlama problemi için bir kesin ve

bir sezgisel yaklaşım algoritması önerilmiştir. Önerilen bütün

algoritmalar kapsamlı ölçümleme deneylerinde test edilmiş ve

ölçümleme sonuçlarından muhtelif bulgular sağlanmıştır.

Anahtar Sözcükler: Çizelgeleme, Paralel Makinalar, Toplam Bitirme

Zamanı, En Büyük Bitirme Zamanı, Kullanım Kısıtları, Sezgisel.

 iv

To my grandfather Bahattin Çeber…

 v

Acknowledgement

I would like to express my sincere gratitude to Asst. Prof. Dr. Mehmet

Rüştü Taner for him supervision and encouragement in this thesis. His

vision, guidance and leadership were the driving force behind the work.

His endless patience and understanding let this thesis come to an end.

I am indebted to Prof. Dr. M. Selim Aktürk and Asst. Prof. Dr. Yavuz

Günalay for accepting to read and review this thesis and also for their

valuable comments and suggestions.

I would like to extend my deepest gratitude and thanks to my mom, dad,

sister and my whole family for their continuous morale support, endless

love and understanding.

And my sincere thanks to my officemates in EA332 and fellows from

Industrial Engineering Department with whom I have shared my time

during my graduate study for their patience and help.

 vi

Contents

1. Introduction 1

2. Literature Review 3

2.1. Parallel Machine Scheduling... 3

2.2. Scheduling with Availability Constraints...................... 5

2.3. Summary.. 10

3. Total Completion Time Problem 11

3.1. Problem Definition.. 11

3.2. Solution Characteristics... 14

3.3. Lower Bound... 18

3.4. Solution Methods... 19

 3.4.1. Branch-and-Bound Algorithm........................ 19

 3.4.1.1. Lower Bound for a Partial Schedule. 20

 3.4.1.2. Node Generation Process................. 21

 3.4.2. Heuristic Algorithms....................................... 24

 3.4.2.1. Constructive Heuristic Algorithm.... 24

 3.4.2.2. Neighborhood Search Algorithm..... 30

 3.4.2.3. Simulated Annealing Application.... 37

3.5. Computational Experimentation.................................... 39

 3.5.1. Experimental Design...................................... 39

 3.5.2. Computational Results.................................... 40

 vii

4. Maximum Completion Time Problem 46

 4.1. Problem Definition.. 46

 4.2. Solution Procedure.. 49

 4.2.1. Cutting Plane Scheme.................................... 49

 4.2.2. Exact Solution.. 52

 4.2.2.1. Lower Bound................................... 52

 4.2.2.2. Exact Algorithm....................... 53

 4.2.3. Heuristic Approach... 61

 4.2.3.1. Knapsack Algorithm........................ 62

 4.2.3.2. Heuristic Algorithm......................... 64

 4.3. Computational Study... 67

5. Conclusion 72

References 74

 viii

List of Figures

3-1 Schematic representation of the problem 12

3-2 Representation of the partial schedule 21

3-3 Node generation process 22

3-4 Back-processing 23

3-5 Partial graph 23

3-6 Worst case solution obtained from “Greedy” 25

3-7 Worst case example of “Greedy” 28

3-8 Representation of NS algorithm 33

3-9 Graphical illustration of initial schedule 34

3-10 Schedule obtained after first move 35

3-11 Schedule obtained after second move 36

3-12 Heuristic performance against the optimum in 30-job

problems 42

3-13 Heuristic performance against the optimum in 50-job

problems 44

3-14 Heuristic performance against the optimum in 70-job

problems 45

4-1 Schematic view of exact algorithm 55

4-2 Schematic representation of the partial schedule 56

4-3 Availability intervals preceding unavailability periods 61

 ix

List of Tables

3-1 Processing times of jobs 34

3-2 Initial solution 34

3-3 Schedule obtained after the first move 35

3-4 Schedule obtained after the second move 36

3-5 Experimental scheme of unavailability periods 40

3-6 Branch-and-bound results 40

3-7 Results of heuristic algorithms for 30 jobs 42

3-8 Results of heuristic algorithms for 50 jobs 43

3-9 Results of heuristic algorithms for 70 jobs 44

4-1 Exact algorithm results for one unavailability period 69

4-2 Exact and heuristic algorithm results for cases

pi ~ U(1,70) 70

4-3 Exact and heuristic algorithm results for cases

pi ~ U(21,50) 71

 x

Chapter 1

INTRODUCTION

Scheduling literature commonly assumes that machines are continuously

available throughout the entire planning horizon. This assumption may

not hold in many cases where unexpected breakdowns occur or when

some activities are pre-scheduled on machines. Models and findings in

the general scheduling literature may become inadequate to find optimum

solutions for many cases with machine availability constraints. Although

scheduling with availability constraints has gained some popularity

during the last decade, there are still gaps in the relevant literature with

respect to various machine arrangements and objective functions.

This study considers parallel machine scheduling problem with

availability constraints on each machine with the objectives of

minimizing total completion time (jC∑), and minimizing maximum

completion time (makespan, Cmax). The problems with both objectives

are known to be NP-hard [18], [35]. There is exactly one unavailability

period on each machine. Durations of unavailability periods are

deterministic and can be different on different machines. Unavailability

periods are non-simultaneous for total completion time problem, however

they can be simultaneous in makespan problem.

Chapter 2 gives a short review of the literature on parallel machine

scheduling problems with the objectives of minimizing Cmax and

minimizing and the literature on machine scheduling with

availability constraints. Chapter 3 defines the problem of minimizing

,jC∑

 1

jC∑ with availability constraints, proposes exact and heuristic solution

methods for this problem, and presents computational results with the

proposed methods. Similarly, Chapter 4 focuses on the problem of

minimizing Cmax with availability constraints, develops exact and

heuristic solution methods for this problem, and presents computational

results. Finally, Chapter 5 concludes the thesis with a summary of the

major findings, and gives some directions for future research.

 2

Chapter 2

LITERATURE REVIEW

This section provides a literature review of parallel machine scheduling

with objectives of minimizing Cmax and ,iC∑ and machine scheduling

with availability constraints.

2.1. PARALLEL MACHINE SCHEDULING

Elaborate reviews of the literature on parallel machine scheduling are

provided in [44] and [10]. The problem with the objective of minimizing

the total completion time (iC∑) can be solved in polynomial time [13].

It is well known that the problem of minimizing makespan (Cmax) on

parallel identical machines is NP-hard even with two machines [18], [19].

Dell’Amico and Martello [16] introduce lower bounds, heuristic

algorithms and a branch-and-bound algorithm, and Ho and Wong [24]

implement a lexicographical search procedure for this problem. The most

recent exact procedure in the literature is the branch-and-cut algorithm

developed by Mokotoff [46]. Dell’Amico and Martello [17] show that

their original algorithm proposed in [16] outperforms this recent

algorithm proposed by Mokotoff in [46] by some orders of magnitude.

The unrelated parallel machine problem with the objective of minimizing

Cmax is also widely studied. Exact and approximate algorithms for this

problem are presented in Van de Velde [53], and Martello et al. [42]. The

most recent exact procedure is the cutting plane scheme developed by

Mokotoff and Chretienne [45]. Ghirardi and Potts [21] propose a

 3

recovering beam search algorithm in a recent study. Other examples of

heuristic attempts include Mokotoff and Chretienne [45], Martello et al.

[42], Horowitz and Sahni [25], Ibarra and Kim [26], De and Morton [15],

Davis and Jaffe [14], Potts [48], Lenstra et al. [37], and Hariri and Potts

[23]. Chang and Jiang [9] address an extension of the problem that

incorporates arbitrary precedence constraints and develop a state-space-

search procedure for its solution.

Salem et al. [50] consider an extension of the problem with machine

eligibility restrictions in which a subset of the jobs can be processed only

on certain machines. They propose a branch-and-bound algorithm that

exploits a customized lower bound. Their algorithm is capable of

efficiently solving instances with up to 8 machines and 40 jobs.

The problem of preemptive task scheduling on parallel identical

machines with the objective of minimizing the Cmax can be solved in

polynomial time in most cases even if there are precedence constraints.

Muntz and Coffman [47] propose an algorithm for the case in which

there are tree-like precedence constraints on parallel machines.

Bruno et al [8] show that the problem of scheduling jobs on parallel

identical machines with the objective of minimizing the total weighted

completion time is NP-hard even with two machines. Azizoglu and Kirca

[4] consider both the identical and the uniform machine cases of the

multi-machine problem, establish optimality characteristics, develop a

lower bound, and construct a branch-and-bound algorithm.

 4

2.2. SCHEDULING WITH AVAILABILITY

CONSTRAINTS

Schmidt [52] and Sanlaville and Schmidt [51] provide an excellent

review of scheduling with machine unavailability. These reviews present

single, parallel, and flow shop models with total completion time, Cmax,

and due date related objectives.

Research on single machine problems under machine availability

constraints is very limited. Lee and Liman [34] show that the problem of

minimizing on a single machine without preemption is NP-hard.

Sadfi et al. [49] study the single machine scheduling problem with a

given unavailability period and deterministic processing times. They

consider the total completion time objective and propose an

approximation algorithm with a worst-case error bound of 20/17. Akturk

et al. [2] study single machine problem with multiple unavailability

periods by minimizing total completion time. They provide a number of

heuristic methods and discuss the performances of these heuristics

through computational experiments. Akturk et al. [3] also consider the

SPT (Shortest Processing Time) list scheduling for the same problem and

they provide worst case bounds under different conditions. Lee and Leon

[33] consider the single machine scheduling problem with a rate-

modifying activity in which the starting time of the rate modifying

activity is a decision variable. They develop polynomial time algorithms

for the C

iC∑

max and total completion time objectives, and a pseudo-

polynomial algorithm for a special case of the total weighted completion

time problem. Lee and Leon also show in this paper that the problem of

minimizing maximum lateness is NP-hard, and they provide a pseudo-

 5

polynomial algorithm. Graves and Lee [22] study a single machine

scheduling problem with maintenance windows and semi-resumable job

processing with the starting time of the maintenance a decision variable.

They show that the problem of minimizing the total weighted completion

time is NP-hard, while the SPT and EDD (Earliest Due Date) ordering

give optimal schedules for the total completion time and Lmax objectives,

respectively. Liao and Chen [39] study the single machine problem with

multiple periods of unavailability with the objective of minimizing

maximum tardiness. They develop both an exact branch-and-bound

procedure and a heuristic algorithm.

Parallel machine problems with the objectives of minimizing Cmax, and

Lmax tend to be polynomially solvable when preemption is allowed.

Although polynomial time algorithms can be found for some special

cases, most non-preemptive problems are known to be NP-hard.

Lee [29] studies parallel identical machine scheduling problem with

initial availability constraints. He studies the objective of minimizing

Cmax, and provides a polynomial time approximation algorithm with a

worst-case error bound of 4/3.

Liao et al. [40] study the objective of minimizing Cmax on two parallel

machines with an availability constraint during a given interval on only

one machine. They classify the problem into four cases, and use versions

of a lexicographical search algorithm originally proposed by Ho and

Wong [24] to device an exact method for each case.

Gharbi and Haouari [20] consider the parallel identical machine problem

with non-decreasing and non-simultaneous machine availability times,

 6

release dates, and delivery times and the objective of minimizing Cmax.

They develop new lower and upper bounds based on max-flow

computations, and propose a branch-and-bound algorithm using these

bounds. This algorithm is able to solve instances with up to 700 jobs and

20 machines.

Leung and Pinedo [38] study a preemptive problem with identical

parallel machines, and deterministic unavailability periods. They

consider the total completion time, Cmax and maximum lateness

objectives. For the total completion time objective, they show in what

conditions the optimum solution can be obtained via list scheduling. For

the Cmax objective, they consider problems with precedence constraints

and fixed processing times. They determine conditions on precedence

constraints and on unavailability periods to find a polynomial time

algorithm. They also give a polynomial time algorithm that gives

optimum solutions for the Lmax and Cmax objectives without any

precedence constraints.

Blazewicz et al. [5] also consider the preemptive problem case when

machines are available for processing for certain time intervals with

precedence constraints. They show that the P, staircase/pmtn, intree/Cmax

problem is NP-hard in the strong sense. They propose a polynomial time,

linear programming based procedure to solve the case with chain-like

precedence constraints and a staircase pattern of machine availability.

They also study uniform and unrelated parallel machine problems with

arbitrary patterns of unavailability with the Cmax and Lmax objectives.

They propose a network flow approach for the uniform, and a linear

programming approach for the unrelated machine problem.

 7

Lee and Liman [34] study the two parallel machine scheduling problem

with an unavailability period on one machine with the objective of

minimizing the total completion time. They show that the problem is NP-

hard, and propose a pseudo-polynomial, online algorithm as well as a

constructive heuristic with a worst-case error bound of 3/2. Kaspi and

Montreuil [27], and Liman [41] study the same problem, and show that in

the special case involving only initial availability constraints, SPT

ordering gives the optimum solution.

Lee and Chen [32] study the problem of scheduling jobs and maintenance

activities on parallel machines with the objective of minimizing the total

weighted completion time. As in [22], the starting times of the

maintenance activities are taken as decision variables. The authors

consider the two cases of overlapping and non-simultaneous periods of

unavailability. They show that the problem is NP-hard in both cases.

They propose a branch-and-bound method based on column generation

techniques to solve medium sized problems within a reasonable

computational time.

Lee and Lin [36] study a single-machine scheduling problem with

stochastic breakdowns, and a rate modifying maintenance/repair activity.

They consider the objectives of expected Cmax, total expected completion

time, expected maximum lateness, and maximum expected lateness. A

machine becomes unavailable due to a maintenance activity triggered by

the decision maker who wishes to increase its speed or repair activity

required due to a fatal breakdown. The machine assumes its normal

speed after the repair/maintenance activity.

 8

All studies on the flowshop problems with machine unavailability focus

on the Cmax objective. Lee [30] studies a two-machine flowshop

scheduling problem of minimizing Cmax with an availability constraint.

He considers a fully deterministic environment. He shows that the

problem is NP-hard and develops a pseudo-polynomial algorithm to

solve the problem optimally. In addition, he develops two heuristic

algorithms each having a complexity of O(n log n). The worst-case error

bound of his first algorithm, which is proposed for problems with an

availability constraint on machine 1, is 3/2, and that of his second

algorithm for problems with an availability constraint on machine 2 is

4/3. Cheng and Wang [11] address the same problem in [30] and show

that the relative worst-case error bound of 3/2 is tight for the heuristic

proposed in [30] when there is an availability constraint on machine 1.

Also, they propose an improved heuristic algorithm with a relative worst-

case error bound of 4/3.

Blazewicz et al. [6] study the same problem with availability constraints

on both machines. They analyze several constructive and local search

based algorithms in the literature through computational experimentation.

Cheng and Wang [12] study the generalization of the problem studied in

[30] in that having an availability constraint imposed on each machine.

Availability constraints are consecutive. They identify some

characteristics of the problem in the semi-resumable case, and provide a

heuristic with a relative worst-case error bound of 5/3 for the non-

preemptive case. Breit [7] also studies the preemptive version of the

problem in [30] with an availability constraint only on machine 2. He

proposes a heuristic algorithm with a worst-case error bound of 5/4.

 9

Lee [31] considers the two-machine flowshop problem and an

availability constraint on only one machine and on both machines. Job

processing is semi-resumable where if a semi-resumable job is

interrupted by an unavailability period, the processing can continue with

after a certain setup time. He provides a complexity analysis, develops a

pseudo-polynomial dynamic programming algorithm, and proposes

heuristics supplemented with error bounds.

Aggoune [1] considers m-machine flowshop scheduling problem with

availability constraints with the objective of minimizing Cmax. He studies

two cases of the problem. In the first case, starting times of unavailability

periods are fixed, while in the second case starting times are in a time

interval. He proposes a genetic algorithm and a tabu search procedure.

2.3. SUMMARY

Total completion time problem on the parallel machines with continuous

availability is easy to solve, however, makespan problem turns out to be

NP-hard. Extensive research is conducted on makespan problem on

parallel machines, which includes identical, uniform and unrelated

parallel machines. With availability constraints, single and parallel

machine scheduling problems are NP-hard for both total completion time

and makespan objectives. Although problems with availability

constraints have become very popular for the last decade, the relevant

literature is still very limited. For both objectives minimizing ∑ and

makespan, this study fills the gap in literature of scheduling problems

with availability constraints on each of parallel machines.

iC

 10

Chapter 3

TOTAL COMPLETION TIME

PROBLEM

This section defines the problem of minimizing jC∑ on parallel

identical machines with availability constraints, develops exact and

heuristic solution methods for this problem, and presents computational

results with the proposed methods.

3.1. PROBLEM DEFINITION

All jobs are released simultaneously. Processing times are known and

deterministic. Each job is to be processed exactly on one of the parallel

identical machines. Job processing is non-preemptive. There is exactly

one unavailability period on each machine for which the starting time and

duration are given. Periods of unavailability on different machines do not

overlap. That is, at most one machine may become unavailable at any

time instance. This assumption is required since the lower bound to be

defined in section 3.3 would not be valid without it.

Since this particular problem is a more general version of the one that is

proved to be NP-hard by the Lee and Liman [35], it is also NP-hard.

 11

MATHEMATICAL FORMULATION

The schematic representation of the problem is as follows. Available

times of machines for processing before and after the unavailability

periods will be denoted as “availability intervals” or only “intervals”.

Every machine has two “intervals” for processing jobs. There are 2m

intervals for processing in the system in cumulative.

Interval 2 Interval 1 Unavail. 1
Machine 1

Unavail. 2 Interval 4 Interval 3 Machine 2

Int. 2m Interval 2m-1 Unavail. m

Machine m

Figure 3-1 Schematic representation of problem

Define ai as the starting time of the interval i, that is ai = 0 for intervals i

= 1, 3,…, 2m-1; but ai equals to the summation of starting time and

duration of the unavailability period on the corresponding machine for

intervals i = 2, 4,…, 2m .

The notation is as follows.

Indices:

h : Machine index, h= 1,2,…,m

j, k, l, g : Job index, j, k, l, g = 1,2,…,n

i: Interval index, i = 1,2,…,2m

Parameters:

sh: Starting unavailability period on machine h

∆h: Duration of unavailability period on machine h

 12

pk: Processing time of job k

Sets:

Pk: Set of jobs preceding job k in the same interval;

Sk: Set of jobs succeeding job k in the same interval;

Decision variables:

xik:
1 if job is processed in interval
0 otherwise

k i
= 


bjk
1 if jobs and are processed in the same interval
0 otherwise

j k
= 


 rk: Starting time of the processing of job k;

Assume without loss that jobs are indexed in SPT order, that is,

1 2 ... np p≤ ≤ ≤ p . Then, the problem can be formulated as follows.

 min ()
2

1 1

m n

ik i k k
i k

x a r p
= =

+ +∑∑

Subject to
2

1
1

m

ik
i

x
=

=∑ for k∀ (3.1)

1jk ij ikb x x≥ + − for i=1,...,2m and ,j k∀ s.t j<k (3.2)

1

1

k

k jk
j

r b
−

=

≥∑ jp for k∀ (3.3)

2 1,
1

n

h k k h
k

x p s−
=

≤∑ for h=1, 2,…, m (3.4)

xik, bjk ∈ {0,1} for ∀i, and ∀k

 13

rk ∈ N for ∀k

Constraint set (3.1) ensures that all jobs are assigned to exactly one of the

intervals. Constraint set (3.2) determines which jobs are processed in the

same interval. Constraint set (3.3) indicates that the starting time of a job

cannot be any smaller than the sum of the processing times of the

preceding jobs within the same interval, and a job is preceded by the jobs

with smaller processing times. Finally, constraint set (3.4) ensures that all

jobs scheduled to be processed before unavailability can be completed so

as to allow for the corresponding unavailability period to start on time.

3.2. SOLUTION CHARACTERISTICS

It is shown that SPT ordering minimizes the total completion time on

continuously available, parallel identical machines. However, SPT

ordering is not the only solution for this case. Consider two-parallel

machine case, there are / 22 n   (x   is the greatest integer strictly smaller

than x) optimal solutions for the problem where n is the number of jobs

to be completed. As stated before, jobs are indexed in SPT order. Then

the completion time of job j in the optimal schedule is:

j

j k
k P

C p
∈

= +∑ jp . It can be seen that every job takes place in the

calculation of completion time of the jobs succeeding it. If we do some

algebraic operations the total completion time turns out to be

1

(1)
n

j j
j

S p
=

+∑ where jS is the number of jobs in Sj. It can be seen that

interchanging the place of a job with the place of another job with same

number of successors (interchange place of jobs j and k s.t. |Sj| = |Sk|)

 14

does not violate optimality. Since the number of jobs holding this

condition is in two-parallel machine problem, there are 2

optimal solutions. Therefore, SPT ordering is a sufficient but not a

necessary condition for optimality in the case of continuous machine

availability. For the same case, a general necessary and sufficient

condition can be summarized as follows.

/ 2n 
/ 2n  

l k
P

C= +

k j

l l
P l∈

= +∑ j jS p

Lemma 3.1: Let k and j be two jobs assigned to different machines with

processing times pk and pj such that pk < pj. Then in the optimal solution

k jS S≥ .

Proof: By contradiction. Suppose jobs k and j with pk < pj are scheduled

in the optimal solution such that kS < jS . Then the objective value is

1 k k j

n

j

g l l j
g l l S l P l S

C C C C C
= ∈ ∈ ∈ ∈

+ + + +∑ ∑ ∑ ∑ ∑ lC

if we exchange the places of jobs k and j, completion times of jobs that

precede these jobs remain the same, and completion times of jobs k and j

become

Ck = rj + pk and Cj = rk +pj, respectively.

Thus, the summation of Ck and Cj does not change. However starting

times of jobs succeeding job k in the original schedule increase by pj – pk

and that of jobs succeeding job j in the original schedule decrease by pj –

pk. As a result, the new objective value after the exchange is:

*

1
() ()

k j

n

g k j l l k j k
g l P l S l S

C C C C C C C S p p p
= ∈ ∈ ∈

+ + + + + − − −∑ ∑ ∑ ∑

k

()*

1 1

()
n n

g l j k j
g l

C C S S p
= =

= − − −∑ ∑ kp

 15

We know that kS S< j and pk < pj. Hence, the gC∑ in the new

schedule is strictly smaller than that in the original schedule. Therefore,

there cannot be an optimal schedule with

kS S< j and pk < pj.

Corollary 3.1: For the continuous available machines case, jobs assigned

to the same machine must be processed in SPT order in the optimal

schedule.

Optimality Conditions

Because jobs are non-preemptive and starting time and duration of each

interval is fixed, jobs assigned to different intervals may not have easily

identifiable precedence relations. Intervals before unavailability periods

have a processing capacity; hence certain jobs cannot be processed

together in these intervals. This makes it very difficult to find precedence

relations valid for every problem instance.

Observations on the parallel machine problem with continuously

available machines lead to the following optimality properties.

Corollary 3.2: Jobs must be sequenced in SPT order within each interval.

Proof: The sub-problem within each interval can be thought of as a

single machine problem, and it is well known that SPT ordering

minimizes the flow time, [3].

Define Ii as the idle time left in interval i in the optimal schedule. Since

all remaining jobs can be processed continuously on either machine after

 16

the period of unavailability, respective idle times in intervals 2, 4,…,2m

are always zero. Idle times for intervals before the unavailability period

equal to the difference between the initial available processing time of

the corresponding interval and cumulative processing time of jobs

assigned to that interval.

i

i i
j As

jI Av p
∈

= − ∑ .

Where Avi = s(i+1)/2 that is starting time of period of unavailability on the

corresponding machine, and Asi is the set of jobs assigned to intervals i

where (i = 1,3,…,2m-1).

Lemma 3.2: Let g, j, k, and l be four jobs with processing times pg < pj <

pk < pl respectively. Suppose job j is assigned to interval x, and job k is

assigned to interval y in the optimal solution. Let g be the last job

assigned to interval y with a smaller processing time than j, and let l be

the first job assigned to interval x with larger processing time than k.

Then at least one of the following two conditions must hold for

optimality:

i) The places of job j and job k cannot be exchanged due to availability

constraint, that is:

x j kI p p+ <

ii) The total gain obtained from the exchange of the places of job j and

job k is not positive that is:

 () ()1 1j j g j k k l kS p S p S p S p 0× − − × + × − + × ≤

Proof: By contradiction. Suppose neither condition holds in the optimal

solution. That is, there exists an optimal schedule S such that

i) x j kI p p+ ≥ , and

 17

ii) () ()1 1g j j j l k k kS p S p S p S p− × − × + + × − × < 0

k

That x jI p p+ ≥ implies interchanging jobs j and k leads to a new

feasible solution. If we exclude job j from interval x and job k from

interval y the gain is

j j kS p S p× + × k

And if we assign job j to interval y and job k to interval x the increase in

the objective value is

() ()1 1g j lS p S− × + + × kp then total gain is

()() ()()1 1j g j k lS S p S S− − + − + kp

Opening of the term above is the same as the term in condition (ii),

multiplied by (-1). Hence, adding these gives a positive gain in the

objective value. Hence, any schedule that satisfies both of the two

conditions above cannot be an optimal solution.

3.3. LOWER BOUND

Leung and Pinedo [38] show that Shortest Remaining Processing Time

(SRPT) order gives an optimum solution to the parallel machine problem

subject to machine unavailability and preemptive processing times.

Since all solutions for non-preemptive case is also feasible solutions for

preemptive case, the optimum solution of the preemptive case dominates

all solutions for the non-preemptive case. Hence, the preemptive solution

constitutes a lower bound for our problem.

This lower bound is expected to perform better in those problems in

which the periods of unavailability on all machines occur both close to

 18

either the beginning or the end of the planning horizon. Keeping in mind

that the lower bound sets the idle time immediately preceding the interval

of unavailability on each machine equal to zero, this insight can be

explained by the following two observations on the optimum solution.

Observation 1: The length of the idle time tends to be larger as the

starting time of the unavailability gets larger.

Observation 2: The number of succeeding jobs amplifies the impact of

the length of the idle time on the objective, when the starting time of

unavailability gets smaller.

The total impact on the objective tends to assume its maximum level

when the starting time of unavailability lies in the medium term, and both

factors are in play. Hence, the expected poorer performance in the lower

bound for such cases.

3.4. SOLUTION METHODS

We identify some problem characteristics in Section 3.2. We use these

characteristics to develop exact and heuristic algorithms for the problem.

In this section we present our solution methods to find exact and

approximate solutions for the problem and we discuss our exact and

approximate algorithms in detail.

3.4.1. BRANCH-AND-BOUND ALGORITHM

We propose a branch–and–bound algorithm to solve small- and medium-

sized problems optimally. As mentioned before, given the job

 19

assignments to the intervals SPT ordering within each interval gives an

optimal solution. Hence, the key decision is how to assign the jobs to the

intervals.

3.4.1.1. Lower Bound for a Partial Schedule

A modification of the overall lower bound obtained from the solution to

the preemptive problem gives a lower bound for each particular schedule

corresponding to the nodes of the branch-and-bound tree. Level 0 in the

branch-and-bound tree defines that no job is assigned any of the

intervals. In the level 1, decision of assigning the job with SPT is done,

and for the next levels this continues with remaining jobs in SPT order.

Fixing the assignment of job k (level k) to the corresponding interval and

assigning the remaining jobs by SRPT, calculate lower bound for a node

at level k. While calculating the lower bund for a node at level k, the key

point is jobs fixed to intervals should be the first k jobs in SPT order of

all jobs.

Obviously, processing the jobs not included in each particular schedule in

SRPT order gives a lower bound for that particular schedule. This lower

bound can be strengthened through a modification based on the following

observations.

Fact 1(Look Ahead Factor): Let S be a given partial schedule and, let Jk

be the next job to be assigned, that is, first k – 1 jobs are fixed and job k

is the job with the SRPT. This scheme belongs to (k – 1)th level of the

branch-and-bound tree. If Jk cannot be assigned to interval i (i

∈{1,3…2m}) completely, that is the idle time of interval i (i ∈ {1,3…2m

 20

– 1}) for the partial schedule P is smaller than pk, for this and next levels,

no partial or complete assignment will be done to interval i.
 I1

B Unavailable

C

A

Unavailable

 I3

 Job k

Figure 3-2 Representation of the partial schedule

Consider the two-machine case above. Suppose that A, B and C are set of

jobs assigned respectively intervals 1, 2, and 3 in partial schedule P.

Suppose that I1 is greater than or equal to pk whereas the I3 is smaller

than pk. According to fact, there will be no assignments to interval 3 until

the branch-and-bound algorithm back-processes to (k – 1)st level.

3.4.1.2. Node Generation Process

Let n be the number of jobs and assume without loss jobs are indexed in

SPT order. Number of jobs in the partial schedule designates the level in

the branch-and-bound tree, and the nodes within each level correspond to

the intervals to which the next job can be assigned. Since the jobs are

indexed in SPT order, level 1 corresponds to job 1, level 2 corresponds to

job 2 and so on. At each level a new set of nodes are generated by

assigning the next job to each one of the 2m possible intervals. Then the

lower bound is taken as the best promising node. This best promising

node is selected as the parent node for the next level, and the process

repeats itself until all jobs are scheduled. Hence, a job is assigned to an

interval; the algorithm passes on the next job with the smallest processing

time.

 21

 Level 0
 Overall LB: 1804

 Level 1
 LB: 1805 1830 1804 1832

4

2 3

1

4 1

321

 Level 2

Figure 3-3 Node generation process

Figure 3-3 depicts levels 0-2 for a branch-and-bound tree for a hypothetic

scenario of a two-machine problem example, the overall lower bound for

the problem is 1804, that is also the lower bound for node 1 at level 0. At

level 1, the first job is assigned to each of the four intervals, and the

corresponding lower bounds are calculated. At level 2, four new nodes

are generated from the node gave the smallest lower bound in level 1.

When it is not possible to generate new nodes from the current node,

back-processing runs. For instance, when the last job is inserted to an

interval, there remains no jobs to be inserted to generate nodes or when

all possible nodes that can be generated from a node do not give a lower

bound that is better than the current feasible solution.

In the back- processing current node’s lower bound is updated as the best

of the lower bounds of its child nodes, and process returns to the previous

node (level).

 22

Current feasible solution: 1810

Level k-1

 Lower Bound 1815 1820 1805 1805

4 32

4 32

1

1

Level k
Lower Bound 1810 1820 1810 1815

Figure 3-4 Back-processing

Consider a two-machine problem; at level k we have a feasible solution

with a total completion time (jC∑) value of 1810. As it can be seen in

the Figure 3-3, no other node at the same level has a potential to lead to a

better solution. Thus, the algorithm proceeds at level k – 1, equal to lower

bounds of its child nodes as 1810, and deletes all of the lower bounds of

nodes in level k.

 The resulting partial graph is shown in Figure 3-5

1 2 3 4 Level k-1

Lower Bound 1815 1820 1810 1805

Figure 3-5 Partial graph

Since only node 4 in level k – 1 has a corresponding lower bound that is

smaller than that of the best incumbent solution, the process continues by

generating 4 new branches, emanating from this node. The algorithm

stops with the optimal solution, when all updated lower bounds of the

nodes in level 1 is greater than or equal to the best incumbent solution so

far found.

 23

3.4.2. HEURISTIC ALGORITHMS

Since our problem is NP-hard exploration of heuristic approaches is

justified. Consequently, in this section, we exploit the previously

identified optimality properties to propose a constructive heuristic

algorithm, a neighborhood search mechanism, and a simulated annealing

application.

3.4.2.1. Constructive Heuristic Algorithm

This algorithm, called Greedy Assignment (Greedy) is based on greedy

assignments of jobs to the intervals by using the “lower bound” of a

partial schedule defined in Branch-and-Bound section. The algorithm

starts with the first job (the job with SPT), assigns this job to the interval,

which gives the minimum lower bound, and continues with next jobs in

the order of SPT. The solution obtained from Greedy is used as the initial

feasible solution in the branch-and-bound algorithm.

Although the algorithm assigns jobs with respect to lower bounds,

resulting schedule has some intelligence due to the look ahead factor in

the lower bound calculation. This factor allows the algorithm not to

assign jobs to the intervals before the unavailability periods resulting

large idle times in these intervals.

 24

Worst Case Error Bound of Greedy

Let POPT be the optimal solution for the preemptive case of the problem

and GSOL and NOPT are the heuristic and optimum solutions for the

non-preemptive case of the problem. We know that SRPT ordering of

preemptive case gives a lower bound for the non-preemptive case that is,

POPT ≤ NOPT for all problem instances.

Define minsum(x)(y1,…, yz) that equals to summation of first x smallest

values of the set (y1,…, yz). For instance, minsum(2)(2, 3, 4) = 2 + 3.

Similarly, define maxsum(x)(y1,…, yz) that equals to summation of first x

largest values of the set (y1,…, yz). For instance maxsum(2)(2, 3, 4) = 3 +

4. Also define xy that equals to “x – /x y x×   ”. For instance, 42 = 2 and

32 = 1. Let be the smallest integer that is greater than or equal to z. z  

Theorem 3.1: When the periods of unavailability on different machines

are of equal length, the worst case error bound of the Greedy algorithm is

2.

Proof: The greatest deviation between GSOL and POPT is obtained

when there is no job assignment in intervals before unavailability

periods. Figure 3-6 depicts the particular 2-machine case, where ∆ is the

length of a period of unavailability.

 J6J4J2∆

J5J3J1∆

Figure 3-6 Worst case solution obtained from “Greedy” for 2 machines

 25

Assume without loss of generality s1 < s2 <…<sm. For m-machine case,

greedy gives a solution displaying this characteristic if and only if p1 ≥

sm where sm is the starting time of unavailability period on machine m.

Also we know that sm ≥ (m–1)∆, as the unavailability periods do not

overlap. For the worst case defined above, “Greedy” finds a solution

(GSOL) of:

() ()

() ()

() ()

1 1

1 2 1

1 2 1 2

... 1 ...

2

... 1 ... (3.5)

m m m

m m

m

n n n m

n m n m n m n

n m

n np p p p
m m

n p p p p
m

ns s s s s s
m

+ +

+ + + − +

    + + + − + + +        
   − + + + + + + +    

  + ∆ + + ∆ + + + ∆ + − + ∆ + + ∆ + + + ∆    

In the other hand, SRPT finds a solution (POPT) for preemptive case:

()() ()
()

()() ()

()
()() ()

1 1 1

1 2 3 1

()
1

1 2 3 1

()
1

... 1 min ,

max , , , ,..., ,
1 minsum

1 min ,

max , , , ,..., ,
2 maxsum

1 min ,

m

m

m m m m

m m

n
m m m

m m

m n
m m m

p p p s m s p

s p p p pn
m p s m s p

s p p p pn
m p s m s p

−

−

−

−

 + + + − + − ∆ + + ∆ + 
+ ∆     − +     − + − ∆ + + ∆     

+ ∆   −    − + − ∆ + + ∆  

() ()

()

1 1 2

1

1 ... 2

... (3.6)

m m mm m n m n m n

n m n

n np p p p
m m

p p

+ + + + +

− +

 
  +
   

      − + + + − + + + +            

+ +

Since (m-1)∆ ≤ sm, for s1 < s2 <…< sm < p1 ≤ p2 ≤….≤ pn,

 26

The deviation between GSOL and POPT is maximized when ∆ → 0, s1

→ p1, pn → p1. In these limits the equations (3.5) and (3.6) tend to

1 1 1 1

1

1 2 ...

1 (3.5) becomes (3.5') and

m m
n n nn p m p m p m p n p
m m m

nm p
m

        + − + − + + × +                
   −    

1 +

1 1 1 1

1 1 1

1 () 2 1

2 3 ... (3.6) becomes (3.6').

m m m
n n nmp n p m n p n p
m m m

n nm p m p mp
m m

          + − + − − + −                    
      − + − + +            

+

After reordering the terms in both equations and dividing (3.5’) to (3.6’),

we obtain (3.5’)/(3.6’):

1 1 1 1 1

1 1 1 1

2 1 2 ...
 (3.7)

1 2 ...

m m

m

n n nn p n p m p m p m p
m m m

n n nn p m p m p m p
m m m

        + + − + − + + ×                
        + − + − + + ×                

After doing some algebraic operations, this ratio becomes

11 1 1
2 (3.8)

1 1
2

m

m

n n n nn m
m m m m

n n nn
m m m

             + + − + −                          
         + −                  

We can see that this ratio is maximized at n ≤ m, with the value of 2.

From the above result, we know that 2GSOL
POPT

≤ for all problem

instances. Since NOPT ≥ POPT for all problem instances,

 27

2GSOL GSOL
NOPT POPT

≤ ≤ for all problem instances. Therefore, 2 is a worst

case error bound for the Greedy algorithm.

Corollary 3.3: Greedy Algorithm’s worst case error bound of 2 is tight

for the 2-machine case.

Proof: Now consider the problem instance with 4 jobs with (p1=ε, p2=ε,

p3=2ε, p4=s2), 4ε ≤ s1, 7ε ≤ s2 and s1 + ∆ = s2.

The Greedy algorithm produces the following solution.

J2

J3 J1 J4

Figure 3-7: Worst case example of “Greedy”

with an objective value 5ε + 2s2. But optimal schedule has an objective

value 7ε + s2. Then the ratio between NOPT and GSOL is:

2

2

5 2
7

s
s

ε
ε
+
+

.

 2

0
2

5 2lim 2
7

s
sε

ε
ε→

+
=

+
 is the error bound for this instance, and this equals to

the worst-case bound of the problem. From this result we can conclude

that 2 is the worst-case bound of Greedy algorithm and it is tight.

Theorem 3.2: The Greedy algorithm has a worst-case error bound of 3/2

on the 2-parallel machine problem case, which has only one period of

unavailability.

 28

Proof: In the worst case of this type of problem, two criteria must be

hold. First, there is no job assignment to the available period before

unavailability period, and, second, the number of jobs assigned to the

continuously available period is maximized. To hold these criteria, p1 > s

where t is the starting time of unavailability, and
1

1

n

j
j

p s
−

=

≤ + ∆∑ .

Under these conditions, the solution obtained from Greedy algorithm is

1 2(1) ... nn p n p p× + − × + + (3.9),

and solution obtained from SRPT,

1 1 2 3(1) () (2) ... np n p p s n p p+ − × + − + − × + + =

1 2 3(1) () (2) ... nn p n p s n p p× + − × − + − × + + (3.10). If we divide (3.9)

to (3.10), we obtain,

1 2

1 2 3

(1) ...
(1) () (2) ...

n

n

n p n p p
n p n p s n p p

× + − × + +
× + − × − + − × + +

 for t < p1 ≤ p2 ≤…≤pn.

This ratio is largest

where s→p1, p2→p1,…, pn→p1. Then the ratio becomes

1

1 1

1 (1)
2

1 (1) (1)
2

n n p

n n p n p

+

+ − −
and this ratio is maximum at n=2, or n=3, that is

3/2.

We know that 3
2

GSOL
POPT

≤ for all problem instances from above result.

Since NOPT ≥ POPT for all problem instances,

3
2

GSOL GSOL
NOPT POPT

≤ ≤ for all problem instances. Therefore, 3/2 is a worst

case upper bound to Greedy algorithm.

 29

Now consider the problem instance with 5 jobs with (p1=ε, p2=ε, p3=ε,

p4=t, p5=s + ε), and 3ε ≤ s, the greedy algorithm gives a solution of

= 3s + 10ε while optimal solution is 2s + 10ε. Then the ratio

is

jC∑
3 1
2 1
s
s

0
0
ε
ε

+
+

. While ε→0, the ratio is 3/2. Hence, 3/2 is a tight upper

bound for Greedy.

Corollary 3.4: A more general worst-case error bound for the problems

that every machine does not have unavailability periods can be written.

Let u be the number of machines that have unavailability periods on it.

Then worst-case bound of this algorithm is 1 u
m

+ . This can be proved by

the same approach used in Theorem 2.

3.4.2.2. Neighborhood Search Algorithm

This algorithm is based on searching for improving solutions from a

neighborhood of a given initial feasible solution. Since searching entire

solution space is too costly, a small neighborhood of a solution is

determined and a search is performed on this neighborhood. An initial

feasible solution, a neighborhood structure, and a search structure

between the neighborhoods of a feasible solution are defined to construct

this neighborhood search mechanism.

Neighborhood Definition

As mentioned before assigning job to intervals are preferred rather than

assigning jobs to machines while defining neighborhood structure. Since

jobs assigned to each interval of machine availability are to be processed

 30

in SPT order, a feasible assignment of all jobs to these intervals

constitutes a solution. Within this framework, the neighborhood of a

given feasible solution is defined as the set of new solutions that can be

generated through two-, three-, and four-way job exchanges among

intervals of machine availability. Two-way job exchanges consist of one

to two, three-way job exchanges consist of one to two, and four-way job

exchanges consist of two to two job exchanges between 2m intervals

defined in section 2.

Whole neighborhood is not searched in only one iteration. To make this

search easier and more efficient we divide the whole neighborhood of a

feasible solution into sub-neighborhoods. A sub-neighborhood consists

of only job exchanges between only fixed 2 intervals. Actually a sub-

neighborhood is a neighborhood defined only between two intervals.

Local optimum of a sub-neighborhood of a feasible solution is the

minimum solution that can be found by making two-, three-, and four-

way job exchanges between the corresponding two intervals. In a

particular m-machine problem, there are C(m,2) sub-neighborhoods.

For two-machine problem case, in addition to these sub-neighborhoods, 4

dummy sub-neighborhoods are generated for fine-tuning of the

algorithm. These 4 sub-neighborhoods search job exchanges between 3

intervals. For a particular two-machine case these intervals are:

[from 2 to 1 and from 1 to 4], [from 4 to 1 and from 1 to 2], [from 2 to 3

and from 3 to 4], [from 4 to 3 and from 3 to 2].

Totally 10 sub-neighborhoods are generated to search the solution space.

The sub-neighborhoods are searched sequentially until all sub-

neighborhoods reach their local-optimum that is no two-, three-, or four-

way job exchange can be done.

 31

Finding an Initial Solution

The solution found from the constructive algorithm is used as the starting

solution for the NS algorithm. Also, the solution found from the NS

algorithm is used as the initial feasible solution in the branch-and-bound

algorithm.

Job Exchange in a Neighborhood Move:

A neighborhood move involves selecting one or two jobs from an

interval and interchanging them by one or two jobs from another interval.

Jobs in an interval are considered for an exchange in SPT order, and only

those exchanges that would result in a reduction in the ∑ value are

executed. When an exchange is executed, jobs in the affected intervals

are reordered to maintain the SPT sequence, and the process repeats itself

starting from the jobs with the shortest processing time within each

interval until all job pairs are considered for exchange with no exchange

being executed. Always two jobs are selected from both intervals for an

exchange. To allow two- and three-way exchanges one dummy job with

processing time 0 is added to each interval. The completion times of

these dummy jobs are not considered while calculating the objective

value.

jC

Fact 2: Optimal schedule for a given instance has a total idle time in

interval 1 and 3 * *
1 3()I I+ that is smaller than or equal to the initial

cumulative idle times on interval 1 and interval 3. That is;
* *
1 3 1 3I I I I+ ≤ +

 32

 NO

 YES

 NO

 YES

 NO

 YES

Select a pair from first
interval considered

Select a pair from second
interval considered

Exchange

Are all pairs in
2nd interval

selected

Change sub-neighborhood

Are all pairs
in 1st int

Initialize the
intervals

Figure 3-8 Representation of NS algorithm

Thus, job exchanges should decrease idle time in intervals 1 and 3. This

observation helps accelerate the search process by making the size of the

sub-neighborhood and whole neighborhood smaller. As an exception,

only job exchanges between interval 1 and interval 3 can violate this rule

because, the process should increase at least one of the idle times of these

intervals while exchanging jobs between them.

 33

Example 3.1: Consider two-parallel machine case and the following 10-

job problem with processing times as shown in Table 3-1, and without

loss of generality assume that jobs are indexed in SPT order.

Table 3-1: Processing times of jobs

job i 1 2 3 4 5 6 7 8 9 10
pi 16 29 31 34 46 49 54 60 66 92

Starting time of unavailability in the first machine is 50, that in the

second machine is 100, and duration of unavailability on both machines

is 50. Define schi is the assignment of job i that is the interval job i

assigned.

 The NS algorithm starts with the initial solution shown in Table 3-2.
Table 3-2: Initial solution

job i 1 2 3 4 5 6 7 8 9 10
schi 1 3 3 1 2 2 2 4 2 4

The value for this initial solution is 1572. Once again, since the

SPT order is maintained within each interval, the search process consists

in reassignment of certain jobs to different intervals. A graphical

illustration of the initial schedule given in Table 3-2 is shown in Figure

3-8.

jC∑

 0 16 50 100 146 195 249 315

9 7654 1

 0 29 60 100 150 210 302

1083 2

Figure 3-9: Graphical illustration of initial schedule

 34

No idle time is incurred on machine 1, and the total idle time on machine

2 is 40 time units in interval 3.

The Neighborhood Search algorithm looks for a one- or two-job

exchange between sub-neighborhoods defined above. Job exchanges are

performed by selecting two jobs from each interval and interchanging

their assigned intervals. Initially we add a dummy job to each interval

with processing time 0 to allow two- and three- way job exchanges. Let

d1, d2, d3, and d4 be the dummy jobs numbered with respect to the

interval they assigned. The algorithm starts by selecting the sub-

neighborhood that considers only the job exchanges between interval 1

and 3. Then it considers all possible job pairs for a potential exchange

operation. Since no job exchanges result in a reduction in the ∑

value, the algorithm passes on to sub-neighborhood that considers the job

exchanges between intervals 2 and 3. Then it selects jobs d2, and 5 from

interval 2 and jobs d3 and 2 from interval 3 for an exchange operation.

Since this exchange results in both an improvement in the objective

function value, and a reduction in the idle time on machine 2, it is

accepted and new schedule becomes as shown in Table 3-3.

jC

Table 3-3: Schedule obtained after the first move

job i 1 2 3 4 5 6 7 8 9 10
sch i 1 2 3 1 3 2 2 4 2 4

A graphical illustration of this new schedule is displayed in Figure 3-10.

0 16 50 100 129 178 232 298

2 9 7641

0 31 77 100 150 210 302

Figure 3-10: Schedule obtained after first move
1083 5

 35

The value of this new schedule is 1523. The search mechanism is

then recentered around this solution and the process restarts by taking the

first two jobs from each interval. These jobs are jobs d2 and 2 from

interval 2 and jobs d3 and 3 from interval 3. Exchanging these particular

jobs does not yield a better solution, and hence this exchange is rejected.

Then jobs in the 1

jC∑

st and the 3rd place from interval 2 (d2 and job 6) and

first two jobs from interval 3 (d3 and job3) are considered. It is

calculated that exchanging these jobs yields a feasible solution and

improves the objective function and also this exchange decreases the idle

time on machine 2. Then this exchange is accepted and new schedule

becomes
Table 3-4: Schedule obtained after the second move

job i 1 2 3 4 5 6 7 8 9 10
schi 1 2 2 1 3 3 2 4 2 4

And the assignments graphically become

0 16 50 100 129 160 214 280

0 46 95 100 150 210 302

1086 5

97324 1

Figure 3-11: Schedule obtained after second move

New objective value is 1502. The algorithm initializes the search and

starts with the first two jobs from the interval. When search is completed

in sub-neighborhood intervals between 2 and 3, the algorithm continues

with sub-neighborhoods between intervals 1-4, 1-2, 3-4, 2-1-4, 4-1-2, 2-

3-4, 4-3-2, and 2-4. When no exchange can be found within these sub-

neighborhoods the algorithm turns to sub-neighborhood 1-3 and starts

searching for improving moves. When there is no improving move in all

of the 10 sub-neighborhoods the algorithm stops. In our example NS

 36

algorithm gives 1497 as the objective value at the end, that is found in

branch-and-bound algorithm as the optimal value.

Computational Complexity

The algorithm generates C(2m,2) + 2m×C(m,2) sub-neighborhoods in a

problem where m is the number of machines. Search of a sub-

neighborhood has a complexity of n5m log m where n is the number of

jobs. Hence, searching the whole neighborhood once has a complexity of

n5m4 log m. The algorithm repeats searching whole neighborhood until

no improving move can be found. Then this repeating action has a

complexity of n2, because jC∑ value cannot exceed ()1
2

n n+

jC∑

pmax and

every movement results in an integral decrease in value.

Therefore, the NS algorithm has a computational complexity of n7m4 log

m.

3.4.2.3. Simulated Annealing Application

This algorithm uses the same neighborhood structure adopted in

algorithm NS. It is different, however, in that in addition to always

accepting those moves that result in a reduction in the objective value, it

also accepts moves that result in an increased jC∑ value with some

probability. In this way, it allows for searching different valleys in an

attempt to avoid entrapment at a local optimum.

The algorithm is a straightforward application of the classical approach

proposed by Kirkpatrick et al. [28]. Recall that in algorithm NS, a job

exchange is accepted only if:

1. it decreases the idle time on machines 1 and 2, and

2. it results in a smaller objective value.

 37

The simulated annealing algorithm entirely disregards the first condition

while extending the second condition by also allowing moves that

increase the objective value with a certain probability. In particular, a

move that results in an increase in the jC∑ value can be accepted with a

probability of
 t

te
∆

−
 where t∆ is the magnitude of the resulting increase

and t is the current temperature of the system.

The parameters of the simulated annealing algorithm such as the initial

temperature, cooling function, and maximum number of iterations are set

based on preliminary experimentation. The initial temperature is set as

100. A linear cooling function f(t)=0.99t is adopted. The maximum

number of iterations to be performed at a given temperature is set at 100

for each neighborhood. Finally, the system is considered frozen when

temperature of the system fell below 0.1, that the algorithm is terminated

when tfin 0.1. A pseudo code of the algorithm is shown below. ≤

Let V be the set of neighborhoods constitutes the whole neighborhood

and Ej’s be the elements of this set,

(1) W = ∅;

(2) Select a sub-neighborhood Ej s.t. Ej∉W; W=W E∪ j; set i = 1;

(3)Consider a job-pair exchange; t∆ := change in the objective value;

(4) if ∆ 0, perform exchange; go to (7); t <

(5) R~U(0,1); if 0 and e , go to (7); t∆ > (/)t t− ∆ > R

(6) Reject exchange; if all pairs are not considered go to (3); else go to (9);

(7) Perform exchange; i = i + 1;

(8) If i < iterations, go to (3);

(9) if W = V, t = 0.99t; go to (10), else go to (2) ;

(10) if t ≤ 0.1, exit;

(11) Go to (1);

 38

3.5. COMPUTATIONAL

EXPERIMENTATION

In this section, we develop an experimental design framework and

analyze the performance of the proposed algorithms via computational

experimentation on the 2-machine case of the problem.

3.5.1. EXPERIMENTAL DESIGN

Processing times of jobs are generated from a uniform distribution

between 1 and 100, and the duration of each period of unavailability is

set equal to the average processing time of 50.

Starting times of unavailability periods in each machine is taken as

experiment variable. The starting time of the period of unavailability on

each machine is set systematically as early, medium, and late as shown in

Table 3-5. For the first machine, early start of unavailability is 5n,

medium start of unavailability is 25n/2, and late start of unavailability is

20n where n is the number of jobs. For the second machine, early start of

unavailability is immediately after the end of period of unavailability on

the first machine. Medium start of unavailability gives a gap of two

unavailability durations after the end of the unavailability period on the

first machine and late start of unavailability gives a gap of four

unavailability durations after the end of the unavailability period in the

first machine. The starting times and durations of unavailability periods

are:

 39

Table 3-5: Experimental scheme of unavailability periods

First machine Second Machine Start in First
Machine

Start in Second
Machine

Early 6n
Medium 8n

Early

Late

5n
 10n

Early 13.5n
Medium 15.5n

Medium

Late

12.5n

17.5n
Early 21n
Medium 23n

Late

Late

20n

25n

3.5.2. COMPUTATIONAL RESULTS

All algorithms are implemented in C programming language and run on

an IBM compatible PC with Celeron 1.2 Mhz CPU. Small-, medium-,

and large-sized problems having 30, 50, and 70 jobs, respectively, are

tested in the experimental scheme. All CPU times for the NS algorithm

are smaller than 2 seconds. In the small-sized problems for which the

optimum solution could be obtained, the heuristic results are compared

with the optimal.
Table 3-6: Branch-and-bound results

Start of
unavailability

on the first
machine

Start of
unavailability
on the second

machine

Number of
solved

problems

% Deviation
from the

lower bound

Early 5 of 5 0.65
Medium 5 of 5 0.48

Early

Late 5 of 5 0.06
Early 3 of 5 0.71

Medium 5 of 5 0.39

Medium
Late 5 of 5 0.38
Early 2 of 5 0.54

Medium 3 of 5 0.10

Late
Late 4 of 5 0.04

 40

For medium and large-sized problems, for which the optimum results are

unavailable in a 30-minute CPU time, performance evaluation is

performed based on the lower bound. The table 3-6 gives the results of

Branch-and-bound algorithm in 30-job problems. In small-sized

problems with up to 30 jobs, 37 of the 45 instances are solved optimally

by the branch-and-bound algorithm. Six of the unsolved instances have

late period of unavailability on the first machine. The other two unsolved

instances are with medium and early unavailability periods on machines

1 and 2, respectively. Considering the large number of possible

combinations of jobs that can together be assigned to the intervals

preceding the periods of unavailability on each machine, the poor

performance of the branch-and-bound in solving problems with late

periods of unavailability should not be surprising. The similar difficulty

in solving problems with medium and early periods of unavailability on

machines 1 and 2 can be explained by the relatively poor quality of both

the lower bound and the heuristic solution fed in to the algorithm as an

initial upper bound. Table 3-6 suggests that given the starting time of the

unavailability on machine 1, the performance of the lower bound

improves as the unavailability of machine 2 is delayed further. This trend

is in line with the two observations made in Section 3.3. In addition, the

number of unsolved instances shown in Table 3-6 closely follows this

trend, that is, the branch-and-bound solves those instances, for which a

better lower bound is available, more easily. The average percentage

deviation of the lower bound from the optimum in the total 37 solved

instances is less than 1%. This small deviation suggests that the lower

bound is tight enough to allow for giving insights about performances of

heuristic algorithms for medium- and large-sized problems for which the

optimum results are unavailable.

 41

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

1 2 3 4 5 6 7 8 9

Problem Instances

Pe
rc

en
t D

ev
ia

tio
n

fr
om

O

pt
im

um

NS Algorithm SA Application

Figure 3-12: Heuristic performance against the optimum in 30-job problems

Table 3-7: Results of heuristic algorithms for 30 jobs

Start of
unavailability

on the first
machine

Start of
unavailability
on the second

machine

Greedy
percentage
deviation

from
optimum

NS
percentage
deviation

from
optimum

SA
percentage
deviation

from
optimum

Average
SA time
(second)

 Early 1,12 0.04 0 261.7
Medium 0,79 0.02 0 323.2

Early

Late 2,28 0.45 0.1 323.5
Early 1,51 0.92 0.003 339

Medium 1,71 0.43 0.007 313

Medium
Late 1,25 0.20 0.005 304.9
Early 0,08 0.01 0 260.1

Medium 0,57 0.04 0.3 244.2

Late
Late 0,41 0.06 0 232.2

 42

Table 3-8 Results of heuristic algorithms for 50 jobs

Start of
unavailability

in first
machine

Start of
unavailability

in second
machine

Greedy
percentage
deviation
from LB

NS
percentage
deviation
from LB

SA
percentage
deviation
from LB

Average
SA time

(seconds)

Early 1,55 0.51 0.24 2039.8
Medium 1,75 0.39 0.26 2084.7

Early

Late 1,41 0.17 0.17 2070.6
Early 0,7 0.42 0.45 1893,0

Medium 1,7 0.79 0.82 1786,2

Medium
Late 0,86 0.41 0.27 1788,3
Early 0,53 0.45 0.46 1174,1

Medium 0,51 0.41 0.43 1043,4

Late
Late 0,39 0.28 0.29 923,1

Tables 3-7, 3-8 and 3-9 show the performance of the three heuristics for

the 30-, 50- and 70-job problems, respectively. The neighborhood search

algorithm performs very well in all cases. The algorithm never exceeds a

gap of 1% from the optimum in the 30-job case, and from the lower

bound in the 50- and 70-job cases. For the 30-job problems, it gives less

than 0.5% gap for eight of the nine parameter combinations, and less than

0.1% gap for five of the nine parameter combinations from the optimum

solution. The simulated annealing algorithm also produces excellent

results in this experimental scheme. It gives less than 1% gap in all 27

problem instances. Simulated Annealing Application produces nearly

optimal solutions for 30-job problems, and outperforms Neighborhood

Search Algorithm. However, Neighborhood Search Algorithm gives

nearly same solutions for 50-job problems and outperforms Simulated

Annealing Application in almost every instance for 70-job problems.

Extension of the neighborhood of a solution with high number of jobs

causes improved results of Neighborhood Search Algorithm.

 43

0

0,1
0,2

0,3

0,4
0,5

0,6

0,7
0,8

0,9

1 2 3 4 5 6 7 8 9

Problem Instances

Pe
rc

en
t D

ev
ia

tio
n

fr
om

 L
ow

er

B
ou

nd

NS Algorithm SA Application

Figure 3-13: Heuristic performance against the lower bound in 50-job problems

Table 3-9: Results of heuristic algorithms for 70 jobs

Start of
unavailability

in first
machine

Start of
unavailability

in second
machine

Greedy
percent

deviation
from LB

NS
percentage
deviation
from LB

SA
percentage
deviation
from LB

Average
SA time

(seconds)

Early 0,55 0.14 0.07 6487,2
Medium 0,63 0.18 0.20 6610,4

Early

Late 0,93 0.16 0.21 6628,0
Early 0,93 0.48 0.62 5343,2

Medium 1,04 0.45 0.57 5123,2

Medium
Late 0,36 0.18 0.44 5114,4
Early 0,49 0.36 0.29 2897,6

Medium 0,48 0.38 0.33 2626,4

Late
Late 0,43 0.23 0.28 2292,8

 44

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8

1 2 3 4 5 6 7 8 9

Problem Instances

Pe
rc

en
t D

ev
ia

tio
n

fr
om

 L
ow

er

B
ou

nd

NS Algorithm SA Application

Figure 3-14: Heuristic performance against the lower bound in 70-job problems

 45

Chapter 4

MAXIMUM COMPLETION TIME

PROBLEM

In this section, we give the problem definition of minimizing Cmax on

parallel identical machines with availability constraints, exact and

heuristic solution methods for this problem and computational results of

proposed methods.

4.1. PROBLEM DEFINITION

This chapter considers parallel machine scheduling problem with the

maximum completion time (makespan,) objective subject to periods

of machine unavailability. Machines are identical. Each job should be

processed on exactly one machine. All jobs are available at time zero.

Processing times for all jobs are deterministic. Jobs are non-preemptive,

that is if a job is interrupted while processing, it should start from the

beginning. There is exactly one pre-determined unavailability period on

each machine. Starting time and duration for the unavailability periods

are known in advance, and machines may become unavailable

simultaneously.

maxC

 46

MATHEMATICAL FORMULATION

Consider a set J of n independent and non-preemptive jobs. Every

member of this set will be processed on exactly one member of set M of

m identical machines. Processing time of job Jk is denoted by pk and is

the same on each machine. Every machine Mh is subject to a period of

unavailability with a length of th – sh, where sh is the starting time, and th

is the ending time of unavailability period on machine h. In modeling this

problem, each interval of availability is treated as a separate machine. In

order to model those intervals that follow the periods of unavailability, m

dummy jobs Jn+1,....,Jn+m are added to be scheduled on machines 1

through m. The processing times of these dummy jobs are set equal to

t1,....,tm, respectively. Similarly, to model those intervals preceding the

period of unavailability, m dummy machines, Mm+1,....,M2m, are defined.

These machines are available for processing until times s1,....,sm,

respectively.

An IP formulation for the problem is as follows. The decision variable xhk

is a binary integer variable which takes on a value of one if job k is

processed on machine h, and zero otherwise.

min Cmax

max
1

0
n m

k hk
k

C p x
+

=

− ≥∑ for h=1,.....,m (4.1)

1
0

n

h k hk
i

s p x
=

−∑ ≥ for h=m+1,....,2m (4.2)

2

1
1

m

hk
h

x
=

=∑ for k=1,.....,n (4.3)

 47

1
1

m

hk
h

x
=

=∑ for k=n+1,....,n+m (4.4)

1
1

n m

hk
k n

x
+

= +

=∑ for h=1,.....,m (4.5)

xhk ∈ {0,1}

Once again, dummy jobs, Jn+1,...,Jn+m, and dummy machines,

Mm+1,...,M2m are included to adequately model the respective periods of

unavailability on machines 1 through m. Constraint set (4.1) sets the Cmax

equal to the completion time of the last job. Constraint set (4.2) forces

job processing on machines Mm+1,...,M2m to complete before the

respective time limits of s1,...,sm. In practice this means jobs assigned

before unavailability period should be completed before unavailability

period begins. Constraint set (4.3) requires each original job to be

processed on exactly one machine. The constraints in (4.4) and (4.5) are

associated with periods of unavailability. (4.4) ensures that unavailability

periods are completed and (4.5) ensures that only one unavailability

period is assigned to each of the machines M1,.....,Mm.

In order to simplify this problem, we can make a slight modification in

constraints (4.5) and (4.4). We know that machines are identical and

every machine should have exactly only one unavailability period. Hence

we can pre-assign dummy jobs raised from the unavailability periods to

the original machines one by one and decrease the total number of jobs to

be considered. Then we add new constraint (4.4’) in the place of

constraints (4.4) and (4.5) in the formulation.

xn+h,h = 1 for h =1,….,m (4.4’)

 48

4.2. SOLUTION PROCEDURE

The IP formulation given in Section 4-1 is a modification of the model

used by Mokotoff [46] for the parallel machine scheduling problem with

continuous machine availability and a Cmax objective. The modification

arises from the dummy jobs and dummy machines related with

unavailability periods. The dummy jobs are not processed on dummy

machines. Since the constraints added due to the modification are in the

form of strict equalities, the cutting plane scheme described in [46]

remains applicable to the problem under consideration. Section 4.2.1

formally states this claim and provides a detailed mathematical proof.

4.2.1 CUTTING PLANE SCHEME

Following Mokotoff’s [46] notation, let S be the feasible set

corresponding to the LP relaxation of our MIP formulation. Consider y0

∈ R+ and define S(y0) as the subset of all points (x,y0) ∈S where y0 is the

objective value which is revealed by x. Let P be the initial set of

inequalities defining S, and Φ the set of valid inequalities for the convex

hull of S(y0), conv(S(y0)). Finally, let P(Φ) be the current relaxation of

conv(S(y0)) defined by the inequalities of P and inequalities of Φ.

Suppose x0 is a point in S(y0). We define a valid inequality I such that (x0,

y0) ∈ P(Φ ∪ {I}) if x0 is integer. For each machine Mh, let Ah be the set

of jobs partially or fully assigned to machine Mh including the dummy

machines and dummy jobs according to assignment vector x0. Also let

(x*, sh) ∈ S(y0) and x* be a binary (0/1) point and let

 49

*{ |h h hjB j A x= ∈ = 0}

h

. Therefore, we can say that from the definition of

Bh,

*

h h h h

j hj j j j
j A j A B j A j B

p x p p
∈ ∈ − ∈ ∈

= = −∑ ∑ ∑ ∑ p (4.6)

If either one of the two constraints corresponding to Mh in sets (4.1) and

(4.2) is satisfied as a strict equality by (x0, y0), then we call that particular

constraint active. We define the excess load ∆h for a machine h as the

difference between the summation of processing times of jobs assigned

to Mh and available processing time for Mh that is 0

h

h j
j A

p y
∈

∆ = −∑ for

h=1,...,m and
h

h j
j A

hp s
∈

∆ = −∑ for h=m+1,.....,2m. From the definition of

∆h for h=m+1,…,2m it can be easily seen that

h

j h
j A

p s
∈

h= + ∆∑ (4.7)

if we insert this equation into equation (4.6),

h h h h

j hj h h j h j h
j A B j B j B

p x s p s p
∈ − ∈ ∈

 
= + ∆ − = − −∆

 
∑ ∑ ∑  (4.8)

Since *
j hj h

j

p x s
∀

≤∑ ,

*

h

j hj h
j A

p x s
∈

≤∑ , then we have that 0
h

j h
j B

p
∈

− ∆ ≥∑ . (4.9)

Therefore, we have that

*

h h

j hj h j h
j A j B

p x s p
+

∈ ∈

 
= − −∆ 

 
∑ ∑

 (
h

h j
j B

s p)h

+

∈

− ∆∑≤ − . (4.10)

 50

where () for k ∈ R. { }max 0,k + = k

1 0Moreover 1 if j ∈ B*
hjx− = h, and 1 *

hjx− = if j ∈ Ah – Bh, we get

*() () (1
h h

j h j h hj
j B j A

)p p+ +

∈ ∈

− ∆ = −∆ −∑ ∑ x

*)

 (4.11)

inserting this equality into equality (4.10) we have
* () (1

h h

j hj h j h hj
j A j A

p x s p x+

∈ ∈

≤ − −∆ −∑ ∑ . (4.12)

This inequality leads us a useful result for our problem.

Proposition 4.1: Let (x0, y0) be a point of P(Φ) and assume that the

machine constraint for Mh is active for (x0, y0). Then the linear inequality
0 () (1

h h

j hj j h hj
j A j A

)p x y p x+

∈ ∈

≤ − − ∆ −∑ ∑ (4.13)

for h=1,....,m and

() (1
h h

j hj h j h hj
j A j A

)p x s p x+

∈ ∈

≤ − −∆ −∑ ∑ (4.14)

for h=m+1,.....,2m are valid inequalities. Moreover if there is a job Jj

such that pj > ∆h and 0 1hjx < , then the inequality is not satisfied by (x0,

y0).

Proof: Proof for (4.13) is given in [46]. For inequality (4.14), we have

shown above that a binary solution should satisfy this inequality. Hence,

this is a valid inequality. Moreover, let { |ı
h h jA j A p }h= ∈ > ∆ be the

subset of jobs whose processing times are greater than the excess load on

Mh.

Assume now that there is a job ı
hj A∈ such that and 0 1,

then

jp > ∆h

0.

0
hjx< <

0() (1)
h

j h hj
j A

p x+

∈

− ∆ − >∑

 51

Since 0

h

j hj h
j A

p x s
∈

=∑ , the current solution does not satisfy the inequality.

4.2.2. EXACT SOLUTION

We develop an exact solution procedure by using the cutting plane

scheme obtained in the previous section. This procedure consists in

integration of valid cuts to the LP formulation of the problem in an

iterative manner until either no more cuts can be added or a binary

integer solution is obtained. Initially, a pre-determined objective value is

inserted to the formulation. After obtaining the solution for this value,

cuts for this solution are added. At the beginning of the algorithm, the

initial objective value is found by the wrap-around rule, which is

proposed in [43]. In addition, this is a Lower Bound for the optimal

value. If no more cuts can be added for this solution value, this lower

bound value is updated by increasing by one and new cuts are searched

for the new solution value.

4.2.2.1. Lower Bound

Commonly used Wrap-Around rule for preemptive job case is used as the

LB for this problem. This can be summarized as:

max
1 1

1max ;max
n m m

j h
j h j

C p s
m

+

= =

   = −  
   

∑ ∑ jp

In addition, this lower bound can be improved by:

max 2 2 1m mC p p +≥ +

Then our lower bound turns out to be:

 52

max 2 2 1
1 1

1max ;max ;
n m m

j h j m m
j h j

C p s p p
m

+

+
= =

   = − +  
   

∑ ∑ p

B,))

The lower bound function returning an integer value is denoted by

LB(n,m,p,U) for a given problem, where n represents the jobs, m

represents the machines, p represents the processing times of jobs and U

represents the unavailability periods in the problem.

4.2.2.2. The Exact Algorithm

An exact cutting plane algorithm (Cmax(J,U)) that uses the valid

inequality defined in the previous sections is given below. Define

LP(LB,Φ) is the LP relaxation of the integration of the original problem

and the current set of added cuts

Cmax(J,U) :

LB : (, , ,)LB n m p U= - 1;

improvelowerbound: LB = LB+1 ; Φ = ∅;

truncate: Solve LP(LB,Φ);

 if LP(LB,Φ) has no solution then go to improvelowerbound;

 if solution x(LB,Φ) is a binary variable then return LB;

 : (LB, , (LI FindNewCut x= Φ Φ ;

 if I = ∅, then return (MIP(LB));

 Φ = Φ ∪ {I};

 go to truncate;

LB(n,m,p,U) function gives the initial lower bound for the problem. The

main idea of this exact algorithm is to search whether an integral solution

exists for a given objective value. LP(LB,Φ) is the linear programming

 53

problem obtained by the linear relaxation of the binary variables xik, and

adding the lower bound value LB and the cut set Φ obtained from valid

inequalities defined in section 4.2.1. LB is inserted as the objective value

(Cmax = LB) to the mathematical formulation. Then, the cutting plane

algorithm searches for an integral solution for this objective value.

Set Φ is dynamic in the sense that, it is updated at the end of each

iteration (i.e., each time a solution is obtained for the LP relaxation).

Inserting the LB as the objective value to the mathematical formulation

and solving the LP relaxation of the problem may result in two possible

outcomes: a feasible solution is found or the problem classified as

infeasible. If a feasible solution is obtained, it is checked whether it is an

integral solution. If it is an integral solution, the algorithm reports this

solution as the optimum and stops. If not, the algorithm searches for new

cuts (I). If new cuts are found, the cut set Φ is updated by adding these

new cuts (Φ = Φ ∪ I). If no new cuts are found for the current LP

relaxation of the problem, then the MIP (Mixed Integer Programming)

solver is invoked for the original problem where the LB value is inserted

as a lower bound (i.e., C). In the second possible outcome that is

if LP relaxation of the problem is classified as infeasible, the LB value is

increased by 1 unit (LB = LB + 1), the cut set is emptied (Φ = ∅), and

the above steps are repeated until either an integral solution is found or

the MIP formulation is classified as infeasible. Since, when the inserted

C

max LB≥

max value become infeasible, the Cmax value is increased by 1 starting

from the lower bound we found, the algorithm finds the optimal value by

adding cuts to the solution in the optimal value or if it cannot add any

valid cuts after some point it finds the optimal by sending the problem to

a MIP solver. Schematic view of the algorithm can be seen from Figure

4-1 below:

 54

 NO

 YES

 NO

 YES NO

 YES

Add Cut

MIP solver

Satisfy?

Find Cut

Cmax=Cmax+1

Optimum

Integral?

Feasible?

Solve LP

Cmax = LB

Figure 4-1: Schematic view of exact algorithm

Example 4.1:

Consider jobs 1, 2 and 3 with processing times of 3, 7 and 8,

respectively. These jobs should be processed in a two-parallel machine

setting in which each machine becomes unavailable for 5 time units. The

unavailability period starts with machine 1 at time 3 and proceeds with

machine 2 without interruption. In our formulation, this problem is

modeled as a 5-job, 4-parallel machine problem where the processing

times of the three original and two dummy jobs are 3, 7, 8, 8 and 13, and

machines 4 and 5 are available only until time 3 and 8, respectively.

Constraint (4.4’) in the mathematical formulation given in Section 4.1,

immediately forces job 4 to be assigned to machine 1, and job 5 to

machine 2 resulting in the following partial schedule.

 55

Job 5

Job 4

UNAVAILABLE

UNAVAILABLE

Figure 4-2: Schematic representation of the partial schedule

The LP relaxation of this problem yields the following solution with an

objective value of Cmax = 14.

i \ j M1 M2 M3 M4

J1 0 0 1 0

J2 0.857 0.143 0 0

J3 0 0 0 1

J4 1 0 0 0

J5 0 1 0 0

A1 = {2,4} and A2 ={2,5},

1 2{2,4} and {2,5}ı ıA A= = . Then we derive the cuts

7 x12 + 8 x14 ≤ 14 – [6(1 - x12) + 7(1 – x14)] ⇒ x12 + x14 ≤ 1

and,

7 x22 + 13 x25 ≤ 14 – [(1 - x22) + 7(1 – x25)] ⇒ 6 x22 + 6 x25 ≤ 6.

With these two cuts added to the constraint set of the LP relaxation, the

following solution is obtained.

 56

i \ j M1 M2 M3 M4

J1 0 0 1 0

J2 0 0 0 1

J3 0.75 0.125 0 0.125

J4 1 0 0 0

J5 0 1 0 0

Based on this solution we derive the following three cuts.

8 x13 + 8 x14 ≤ 14 – [6(1 – x13) + 6(1 – x14)] ⇒ 2 x13 + 2 x14 ≤ 2

8 x23 + 13 x25 ≤ 14 – [(1 – x23) + 6(1 – x25)] ⇒ 7 x23 + 7 x25 ≤ 7

7 x42 + 8 x43 ≤ 8 – [0(1 – x42) + (1 – x43)] ⇒ 7 x42 + 7 x43 ≤ 7

Adding these three cuts to the LP relaxation renders the problem

infeasible. Thus, the solution value Cmax is incremented by one (Cmax =

14 +1) and the cut set is emptied. Solving the LP relaxation with the

incremented Cmax value provides the following solution.

i \ j M1 M2 M3 M4

J1 0 0 1 0

J2 1 0 0 0

J3 0 0 0 1

J4 1 0 0 0

J5 0 1 0 0

Since this is a binary solution, the algorithm reports it as the optimum

and stops.

 57

A Special Case

When problem instances for the 2-machine case with only one

unavailability period are carefully examined, it can be seen that the

algorithm can be simplified by doing some operations as done in the [40].

The exact algorithm defined above is designed to deal with more

complex problem structures that every machine in the problem has

exactly one unavailability period in scheduled time horizon.

In view of this fact, the exact algorithm is restructured for this particular

two-machine experimental scheme with unavailability period only on one

machine. Problems are classified into four cases based on the total

processing time and the starting (s) and ending (t) times of the

unavailability period. An alternative version of the algorithm is

characterized for each case, and the appropriate version is applied to

solve a given instance.

Case 1: s = 0;

In that case, the problem instance becomes a 2-parallel machine

scheduling problem with continuous availability and with a dummy job

with processing time t (pn+1 = t). The resulting IP formulation is as

follows:

min Cmax
1

max
1

0
n

j hj
j

C p x
+

=

−∑ ≥ for h = 1, 2 (4.15)

 58

2

1
1hj

h
x

=

=∑

{0,1}hjx ∈

 for j =1,2,…,n+1 (4.16)

Case 2:
1

2
n

j
j

p s
=

≤∑

That is, the last job on at least one of the two machines completes

processing before time s. Hence, the problem reduces to a 2-parallel

machine scheduling problem with continuous availability. We exploit

this property, set both the starting (s) and the ending (t) times of the

period of unavailability equal to 0 (i.e., s = 0, t = 0), and apply to the

problem. The resulting IP formulation is as follows:

min Cmax

max
1

0
n

j hj
j

C p x
=

−∑ ≥

t+

 for h = 1, 2 (4.17)

2

1
1jh

h
x

=

=∑ for j =1,2,…,n+1 (4.18)

{0,1}hjx ∈

Case 3:
1

2
n

j
j

s p s
=

< ≤∑

In this case, completion time of the last job on the continuously available

machine is greater than s, and no jobs will be assigned to the other

machine after the period of unavailability. This observation leads to the

following proposition.

 59

Define C as the completion time of the last job assigned to the interval

preceding the period of unavailability.

Proposition 4.2: Problem reduces to maximizing C .

Proof: Obviously, it must be that C ≤ t. Since no jobs will be processed

on the partially available machine after the period of unavailability, we

also have that

max
1

n

j
j

C C p
=

+ =∑

Therefore, assumes its minimum value when maxC C is at its maximum.

Thus, the problem reduces to a knapsack problem.

It is important to note that the Heuristic Algorithm, Heur(J,U), proposed

in section 4.2.3 provides the optimum solution under Case 3.

Case 4:
1

n

j
j

s t p
=

+ <∑

Problems in this class do not render themselves to any particular

simplification and hence Algorithm 1 should be applied as it to obtain the

optimum solution.

Four cases defined above constitute a 2-machine problem with an

availability constraint. To solve this type of problem, appropriate solution

method is applied according to these cases.

 60

4.2.3. HEURISTIC APPROACH

A heuristic approach is developed based on a divide-and-conquer

philosophy to obtain good solutions for the problem in reasonable CPU

times. In particular, the problem is divided into m sub-problems each

having only one interval for processing, each one of these sub-problems

is solved in isolation, jobs assigned in this initial phase are eliminated

from the list of jobs to be scheduled, and an a m-parallel machine

scheduling problem is solved for the remaining jobs. Computational

results given in Chapter 5 provide evidence for an acceptable tradeoff

between the gain in computational time and deviation from optimality.

Figure 4-2 depicts m intervals of machine availability preceding each

period of unavailability on an m-machine problem. Let Uh be the length

of unavailability on machine h and Dh the idle time in interval j after all

jobs are assigned to the intervals. We can conclude that

max
1 1

1 ()
n m

j h
j h

C p D
m = =

 
≥ + + 

 
∑ ∑ hU .

 Interval 1

 Interval m Unavail. m

Interval 2 Unavail. 2

Unavail. 1

Figure 4-3 Availability intervals preceding unavailability periods

 61

Processing times “pj” and lengths of unavailability “Uh” on each machine

are deterministic and known in advance. Hence, the only solution

dependent components in the lower bound formulation are the idle times

in intervals 1 through m. Consequently, the quality of this lower bound

dependent upon an accurate estimation of the minimum total unavoidable

idle time to be incurred in these intervals.

This general idea triggers a natural heuristic approach to the solution of

the problem. In this approach, a knapsack problem is solved optimally for

each one of the intervals 1,...,m, to decide on the jobs to be assigned to

these intervals. At each step, the jobs assigned to an interval are excluded

from job list J, and finally after all knapsack problems are solved and

jobs assigned to intervals 1 through m are removed from list J, a Cmax

problem is solved to schedule all unassigned jobs and m dummy jobs

with processing times t1,...,tm (to account for the point in time at which

each machine becomes available after unavailability period) on m parallel

identical machines using the exact algorithm Cmax(J,U) defined in

previous sections. By doing this, m knapsack problems and an ordinary

parallel machine Cmax problem with reduced job number are solved

iteratively by the algorithm. Knapsack problems are solved in the

increasing order of size of the knapsack to allow small sized jobs

assigned to the small sized intervals. If larger sized knapsacks are solved

formerly, small sized jobs may be assigned to these intervals and small

sized intervals cannot be filled properly.

4.2.3.1. Knapsack Algorithm

Consider a simple knapsack problem,

max p1x1 +……+pnxn

 62

subject to

p1x1 +……+pnxn ≤ C (4.19)

where pi’s are the sizes of items to be inserted and C is the size of

knapsack. We can see that inequality (4.2) in the mathematical

formulation phase is very similar to the inequality (4.19). We can

conclude from this similarity that () (1
h h

j j h j h j
j A j A

)p x s p x+

∈ ∈

≤ − − ∆ −∑ ∑ is

a valid inequality for the knapsack problem. The proof of the idea above

is the same as the proof of Proposition 4.1. We follow the same approach

as in Cmax(J,U), and search for an integral solution for the LP relaxation

of the knapsack problem before using an MIP solver. Let Knap(j,E) be an

exact algorithm to solve the knapsack problem corresponding to

availability interval j and the set E of jobs assigned to any interval. Also

let LPKnap(Tj,E,Φ) be the solution to the LP relaxation of the problem

and MIPKnap(Tj,E,Φ) be the optimum integer solution for the problem.

The algorithm “Knap(j,E)” can be summarized as follows.

set Φ = ∅;

truncate: Solve LPKnap(sh,E,Φ);

If solution x(sh,E,Φ) is a binary integer, then return LB;

I := findNewCut(sh, E, Φ, x(LB, Φ));

 If I = 0, then return (MIPKnap(sh,E,Φ));

Φ = Φ ∪ {I};

 Go to truncate;

 Since the cuts are still valid for the value sh, they are added to the

problem formulation before invoking the MIP solver.

 63

4.2.3.2. Heuristic Algorithm

In this section, we present a heuristic algorithm composed of two stages.

In the first stage (Knapsack Stage), jobs are inserted to the availability

intervals consecutively by using Knap(j,E) algorithm and in the second

stage (Cmax Stage), Cmax with remaining jobs and m dummy jobs is

computed. Let Ej be the set of jobs assigned to interval j by Knap(j,E),

and D be the set of dummy jobs arising from the unavailability periods.
The heuristic algorithm “Heur(J,U)” is summarized below.

Set j =1; E = ∅;

Knapsack: Knap(j,E); E = E ∪ Ej;

If j = m; go to ExactAlgorithm;

j = j + 1; go to Knapsack;

ExactAlgorithm 1: J = J \ E ∪ D; Cmax(J);

end

It is important to note that the exact algorithm “Cmax(J)” here runs

without the unavailability periods on m parallel identical machines. The

problem has a special structure however in that each one of the m

machines is assigned exactly one dummy job.

Example 4.2:

Consider the set J of 3 jobs with processing times {3,7,8} respectively.

These jobs should be processed on a two-parallel machine setting in

which both of the two machines become unavailable for 5 time units

iteratively starting in time 3. There are two knapsacks in this problem

 64

with sizes 3, and 8 respectively. Algorithm starts with the smallest sized

knapsack and generates the problem

max 3 x1 + 7 x2 + 8 x3

subject to

 3 x1 + 7 x2 +8 x3 ≤ 3

{0,1}ikx ∈ .

Solving the LP relaxation of this problem, we obtain the solution {x1 = 1,

x2 = 0, x3 = 0}. Because of this solution is integral, the heuristic algorithm

excludes job 1 from the job list and passes to the second knapsack. After

the following knapsack problem is generated:

max 7 x2 + 8 x3

subject to

 7 x2 +8 x3 ≤ 8

xi’s are binary .

Solving the LP relaxation of this problem, we obtain the solution {x2 = 1,

x3 = 0.125}. This is not an integral solution, hence the heuristic algorithm

adds the cut :

7 x2 + 8 x3 ≤ 8 – [0× (1 – x2) + (1 – x3)] ⇒ 7 x2 + 7 x3 ≤ 7

Added this cut, the LP relaxation of the algorithm gives the solution {x2

= 0, x3 = 1}. Because of this solution is integral, the heuristic algorithm

excludes job 3 from the job list and passes the Cmax phase with dummy

jobs and remaining job in the job list, hence all knapsack problems are

solved. New problem generated by heuristic algorithm is

min y

subject to

y – 7 x12 – 8 x14 – 13 x15 ≥ 0

 65

y – 7 x22 – 8 x24 – 13 x25 ≥ 0

x12 + x22 = 1

x14 = 1

x25 = 1

Solving the LP relaxation of this problem, we obtain the solution:

Cmax =14

i \ j M1 M2

J2 0.857 0.143

J4 1 0

J5 0 1

The cuts are found that

7 x12 + 8 x14 ≤ 14 – [6× (1 - x12) + 7× (1 – x14)] ⇒ x12 + x14 ≤ 1

7 x22 + 13 x25 ≤ 14 – [(1 - x22) + 7× (1 – x25)] ⇒ 6 x22 + 6 x25 ≤ 6.

Adding these cuts, we found that the LP relaxation of the problem

becomes infeasible. Then The Cmax value is increased by one (Cmax = 14

+ 1), and cut set is emptied. Then, the LP relaxation is solved with this

new Cmax value. The following solution is obtained:

Cmax =15

i \ j M1 M2

J2 1 0

J4 1 0

J5 0 1

This is an integral solution and this solution is returned as the solution for

the problem.

 66

4.3. COMPUTATIONAL STUDY

As a part of the experimental scheme, experiment carried out by Liao et

al. [40] is taken into consideration. This experiment contains a 2-machine

scheduling problem with an unavailability period only on one machine.

Table 4-1 shows the results for the experimental scheme is given [40].

Results are obtained for small-, medium-, and large-sized problems with

n =10, 50, 100. Starting times of the unavailability period are set as 0,

, and where a and b are the lower and upper limits of

the uniform distribution from which job processing times generated,

respectively. Ending times are selected to cover all three cases discussed

in Section 4.2.2.2. Processing times of jobs are generated from U(20, 50)

and U(20, 100) for all parameter combinations. Duration of the

unavailability period is not constant in this scheme. The proposed

algorithm in Section 4.2.2.2 solves all cases in the average 0.185 seconds

and in the worst case 1.404 seconds.

a n× () / 4a b n+ ×

In addition to the experimental scheme of [40], the proposed technique is

tested also on 2-, 3-, and 5-parallel machine problems with a period of

unavailability on each machine. Similar to the problems lends itself to the

same reductions and simplifications. The periods of unavailability are

consecutive in the sense that a period of unavailability starts on one

machine as soon as one ends on a different machine.

Starting and ending times of the periods of unavailability are selected to

allow the algorithm to insert jobs to each interval of availability on all

machines. Duration of an unavailability period is taken as the average

processing time of the jobs. Processing times of jobs are generated from

 67

U(1,70). Table 4-2 shows the results of the exact and heuristic

algorithms. The results indicate that for a given number of machines, the

CPU time fluctuate randomly as the number of jobs is increased, and do

not seem to display any systematic behavior. However, when the number

of machines is increased for the same number of jobs per machine, the

CPU time increases. Although the algorithm may require unreasonably

long CPU times for large instances, it is seemingly able to solve

problems with m = 5 machines, and n = 250 jobs within a reasonable

time limit. Results shown in Table 4-3 also indicate that the heuristic

algorithm provides very good solutions for the instances for which an

optimum solution could be obtained. The modest computational times

with the heuristic algorithm illustrate its efficiency, and hence suggest

that it may provide good solutions for those problems whose size may be

prohibitive for the exact procedure.

Experiments with processing time generated from U(21,50) are also

performed to observe the behavior of the exact and heuristic algorithms

when the processing times display little dispersion. Table 4.3 shows the

results of the exact and heuristic algorithms for this last scheme in the

experimental design. The results indicate that for this class of

experiments with a narrow range of processing times, the CPU time for

both the exact and the heuristic algorithms increase rapidly as the

problem size increases, and after a certain point neither algorithm can

provide a solution.

 68

Table 4-1 Exact algorithm CPU times (in seconds) for one unavailability period

t Pi ~ (20,50) t Pi ~ (20,100)
 s s
n= 10
 0 200 175 0 200 300
250 0.074 0.071 0.068 350 0.075 0.143 0.069

300 0.13 0.064 0.062 400 0.077 0.073 0.07

350 0.091 0.07 0.069 450 0.061 0.064 0.068

n=50
 0 1000 875 0 1000 1500
1250 0.149 0.125 0.124 1750 0.136 0.375 0.12

1500 0.144 0.123 0.122 2000 0.141 0.5 0.118

1750 0.164 0.119 0.119 2250 0.129 0.094 0.12

n = 100
 0 2000 1750 0 2000 3000
2500 0.191 0.186 0.177 3500 0.273 1.404 0.182

3000 0.197 0.202 0.175 4000 0.248 1.184 0.182

3500 0.163 0.184 0.172 4450 0.261 0.138 0.18

 69

Table 4-2: Exact and heuristic algorithm results for cases pi ~ U(1,70)

m n s1 t1 Average
CPU
Time of
EA (in
seconds)

Average
CPU Time
of Heuristic
(in seconds)

Percent
Deviation
from
Optimum

Average
CPU
Time of
MIP

pi ~ U(1, 70)
2 4 35 70 0.164 0.178 0 0.036

2 6 50 85 0.138 0.162 0.73 0.036

2 8 70 105 0.094 0.158 3.547 0.058

2 10 85 120 0.164 0.194 4.835 0.116

2 14 100 135 0.384 0.21 2.252 0.44

2 20 160 195 0.248 0.356 0.287 0.218

2 40 335 370 0.418 0.794 0 0.364

2 100 860 895 1.384 1.684 0 1.402

3 9 35 70 0.22 0.108 0 0.058

3 12 50 85 0.422 0.208 3.828 0.294

3 15 70 105 8.286 0.17 3.366 7.91

3 21 90 125 34.098 0.18 0.727 7.318

3 30 165 200 4.854 0.21 0.174 4.632

3 60 315 350 1.306 0.41 0 2.32

3 150 805 840 7.88 0.694 0 6.374

5 25 0 35 29.612 0.858 1.748 116.65

5 35 55 90 165.258 0.844 1.469 158.338

5 50 90 125 47.466 5.652 0 138.992

 70

5 100 265 300 40.046 1.87 0 50.292

5 250 785 820 67.18 3.764 0 44.438

Table 4-3 Exact and heuristic algorithm results for cases pi ~ U(21,50)

m n s1 t1 Average
CPU Time of
EA (in
seconds)

Average
CPU Time
of Heuristic
(in seconds)

Percent
Deviation
From
Optimum

pi ~ U(21, 50)
2 10 85 120 0.226 0.116 0.297

2 40 335 370 19.466 0.166 0

2 100 860 895 2.38 0.298 0

3 15 70 105 7.406 0.186 3.378

3 60 315 350 70.148 0.792 0

 71

Chapter 5

CONCLUSION

This thesis addressed the problem of parallel machine scheduling with

availability constraints on each machine. The objectives of minimizing

the total completion time (jC∑), and minimizing the makespan (Cmax)

are studied.

We developed an exact branch-and-bound procedure, and proposed three

heuristic algorithms to find approximate solutions for the ∑ problem.

A pre-emptive lower bound is used within the branch-and-bound

procedure. The three heuristic algorithms are a constructive algorithm, a

neighborhood improvement algorithm and a simulated annealing

procedure. The constructive algorithm relies on assignments of jobs

based on a projection for the best promising solution. The algorithm has a

worst-case error bound of 2. The neighborhood improvement algorithm

takes the schedule produced by the constructive procedure and attempts

to improve it through a local search within a given neighborhood. The

particular neighborhood structure can be thought of as a combination of

smaller neighborhoods. The search process exploits some optimality

properties of the problem. Computational results show that the

improvement algorithm gives very good solutions (with less than 1%

deviation from lower bound in all cases), very efficiently with less than 2

seconds of CPU times in all cases.

jC

The simulated annealing procedure is proposed as a random search

technique using the same neighborhood structure in the hopes to avoid

 72

entrapment at local optima. Although it gives excellent solutions (optimal

solutions for almost all 30-job problems and less than 1% deviation from

the lower bound for the 50- and 70-job problems), its CPU times overly

exceed those with the improvement algorithm.

The second part of the thesis addressed the problem of minimizing Cmax.

We developed an exact algorithm based on a branch-and-cut method, and

a heuristic algorithm that uses a divide-and-conquer strategy. We

modified a cutting plane scheme previously proposed in the literature for

a parallel machine problem under continuous availability, and proposed a

transformation of our problem to make it suitable for the application of

the modified cutting plane scheme. This same cutting plane scheme is

also utilized within the context of a new heuristic algorithm that divides

the problem into sub-problems, solves these sub-problems to optimality,

and reports the combined solution. Computational experimentation

shows that the exact algorithm solves problems within a 10-minute CPU

time only when the range of processing times is large. The heuristic

algorithm provides very good solutions within reasonable CPU times

even when the processing times are sampled from a smaller range.

An immediate extension of this study is the consideration of the total

flextime objective with simultaneous periods of unavailability on

different machines. Problems with total weighted completion time

objective and the due date related objectives (e.g., minimizing maximum

lateness (Lmax), number of tardy jobs) are other natural extensions. In

addition, stochastic periods of unavailability, for example due to

unexpected breakdowns, may be another interesting and challenging

avenue for future research.

 73

References:

[1] R. Aggoune. Minimizing the Makespan for the Flowshop Scheduling

Problem with Availability Constraints. European Journal of

operational Research, 153:534-543, 2004.

[2] M.S. Akturk, J.B. Ghosh, E.D. Gunes. Scheduling with Tool Changes

to Minimize Total Completion Time: A Study of Heuristics and Their

Performance. Naval Research Logistics, 50:15-30, 2003.

[3] M.S. Akturk, J.B. Ghosh, E.D. Gunes. Scheduling with Tool Changes

to Minimize Total Completion Time: Basic Results and SPT

Performance. European Journal of Operational Research, 157:784-

790, 2004.

[4] M. Azizoglu, and O. Kirca. On the Minimization of Total Weighted

Flowtime with Identical and Uniform Parallel Machines. European

Journal of Operational Research, 113:91-100, 1999.

[5] J. Blazewicz, and M. Drozdowski, P. Formanowicz, W. Kubiak, G.

Schmidt, Scheduling Preemptable Tasks on Parallel Processors with

Limited Availability. Parallel Computing, 26:1195-1211, 2000.

[6] J. Blazewicz, J. Breit, P. Formanowicz, W. Kubiak, and G. Schmidt.

Heuristic Algorithms for the Two-Machine Flowshop with Limited

Machine Availability. Omega, 29:599-608, 2001.

 74

[7] J. Breit. An Improved Approximation Algorithm for Two-Machine

Flowshop Scheduling with an Availability Constraint. Information

Processing Letters, 90(6): 273-278, 2004.

[8] L.J. Bruno, E.G. Coffman, and R. Sethi. Scheduling Independent

Tasks to Reduce Mean Finishing Time. AIIE Transactions, 17:382-

387, 1974.

[9] P.C. Chang, and Y.S. Jiang. A State-Space Search Approach for

Parallel Processor Scheduling Problems with Arbitrary Precedence

Relations. European Journal of Operational Research, 77(2):208-

223, 1994.

[10] T.C.E. Cheng. A State-of-the Art: A Review of the Parallel

Machine Scheduling. European Journal of Operational Research,

18(2): 193-242, 2001

[11] T.C.E. Cheng, and G. Wang. Two-Machine Flowshop Scheduling

with Consecutive Availability Constraints. Information Processing

Letters, 71:49-54, 1999.

[12] T.C.E. Cheng, and G. Wang. An Improved Heuristic for Two-

Machine Flowshop Scheduling with Availability Constraints.

Operations Research Letters, 26:223-229, 2000.

[13] R.W. Conway, W.L. Maxwell, and L.W. Miller. Theory of

Scheduling, Addison-Wesley, 1967.

 75

[14] E. Davis, and J.M. Jaffe. Algorithms for Scheduling Tasks on

Unrelated Processors. Journal of Assoc. Computing Mach.,28:721-

736, 1981.

[15] P. De, and T.E. Morton. Scheduling to Minimize Makespan on

Unequal Parallel Processors. Decision Science, 11:586-603, 1980.

[16] M. Dell’Amico, and S. Martello. Optimal Scheduling of Tasks on

Identical Parallel Processors. ORSA Journal of Computing, 7:191-

200, 1995.

[17] M. Dell’Amico, and S. Martello. A Note on Exact Algorithms for

the Identical Parallel Machine Scheduling Problem. European

Journal of Operational Research, 160: 576-578, 2005.

[18] M.R. Garey, and D.S. Johnson. Computers and Intractability: A

Guide to the Theory of NP-completeness, Freeman, San Francisco,

1979.

[19] M.R. Garey, and D.S. Johnson. Strong NP-completeness Results:

Motivation, Examples and Implications. Journal of the ACM, 25:

499-508, 1978.

[20] A. Gharbi, and M. Haouari. Optimal Parallel Machines

Scheduling with Availability Constraints. Discrete Applied

Mathematics, 148:63-87, 2005.

[21] M. Ghirardi, and C.N. Potts. Makespan Minimization for

Scheduling Unrelated Parallel Machines: A Recovering Beam Search

 76

Approach. European Journal of Operational Research, 165(2): 457-

467, 2005

[22] G.H. Graves, and C.Y. Lee. Scheduling Maintenance and

Semiresumable Jobs on a Single Machine. Naval Research Logistics,

46:845-863, 1999.

[23] A.M.A. Hariri, and C.N. Potts. Heuristics for Scheduling

Unrelated Parallel Machines. Comput. Operations Research, 18: 313-

321, 1991.

[24] J.C. Ho, and J.S. Wong. Makespan Minimization for m-parallel

Identical Processors. Naval Research Logistics, 42:935-942, 1995.

[25] E. Horowitz, and S. Sahni. Exact and Approximate Algorithms

for Scheduling Non-identical Processors. Journal of Assoc.

Computing Mach., 23: 317-327, 1976.

[26] O.H. Ibarra, and C.E. Kim. Heuristic Algorithms for Scheduling

Independent Tasks on Non-identical Processors. Journal of Assoc.

Computing Mach.,24: 280-289, 1978.

[27] M. Kaspi, and B. Montreuil. On the Scheduling of Identical

Parallel Processes with Arbitrary Initial Processor Available Time.

Research Report, 88-12, School of Industrial Engineering, Purdue

University, West Lafayette, IN, 1988.

[28] S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi. Optimization by

Simulated Annealing. Science, 220(4598):671-680, 1983.

 77

[29] C.Y. Lee. Parallel Machines Scheduling with Non-simultaneous

Machine Available Time. Discrete Applied Mathematics, 30: 53-61,

1991.

[30] C.Y. Lee. Two-Machine Flowshop Scheduling with Availability

Constraints. European Journal of Operational Research, 114:420-

429, 1999.

[31] C.Y. Lee. Minimizing the Makespan in the Two-Machine

Flowshop Scheduling Problem with an Availability Constraint. OR

Letters, 20:129-139, 1997.

[32] C.Y. Lee, and Z.L. Chen. Scheduling Jobs and Maintenance

Activities on Parallel Machines. Naval Research Logistics, 47:145-

165, 2000.

[33] C.Y. Lee, and V.J. Leon. Macihne Scheduling with Rate-

Modifying Activity. European Journal of Operational Research,

128:119-128, 2001.

[34] C.Y. Lee, and S.D. Liman. Single Macihne Flow-time Scheduling

with Scheduled Maintenance. Acta Informatica, 29: 375-382, 1992.

[35] C.Y. Lee, and S.D. Liman. Capacitated Two-Parallel Machine

Scheduling to Minimize Sum of Job Completions. Discrete Applied

Mathematics, 41:211-222, 1993.

[36] C.Y. Lee, and C.S. Lin. Single Machine Scheduling with

Maintenance and Repair Rate Modifying Activities. European

Journal of Operational Research, 135:493-513, 2001.

 78

[37] J.K. Lenstra, and D.B. Shmoys, E. Tardos. Approximation

Algorithms for Scheduling Unrelated Parallel Machines. Math.

Programming, 46: 259-271, 1990.

[38] J.Y.T. Leung, and M. Pinedo. A Note on Scheduling Parallel

Machines Subject to Breakdown and Repair. Naval Research

Logistics, 2004.

[39] C.J. Liao, and W.J. Chen. Single Machine scheduling with

Periodic Maintenance and Non-resumable Jobs. Computers &

Operations Research, 30: 1335-1347, 2003.

[40] C.L. Liao, D.L. Shyur, and C.H. Lin. Makespan Minimization for

Two Parallel Machines with an Availability Constraint. European

Journal of Operational Research, 160:445-456, 2005.

[41] S.D. Liman. Scheduling Capacities and Due Dates. PhD. Thesis,

University of Florida, Gainesville, FL, 1991.

[42] S. Martello, F. Soumis, and P. Toth. Exact and Approximation

Algorithms for Makespan Minimization on Unrelated Parallel

Machines. Discrete Applied Mathematics, 75:169-188, 1997.

[43] R. McNaughton. Scheduling with Deadlines and Loss Functions.

Management Science, 6:1-12, 1959.

[44] E. Mokotoff. Parallel Macihne Scheduling Problems: A Survey.

Asia-Pacific Journal of Operational Research, 18(2):193-242, 2001.

 79

[45] E. Mokotoff, and P. Chretienne. A Cutting Plane Algorithm for

the Unrelated Parallel Machine Scheduling Problem. European

Journal of Operational Research, 141:515-525, 2002.

[46] E. Mokotoff. An Exact Algorithm for the Identical Parallel

Machine Scheduling Problem. European Journal of Operational

Research, 152:758-769, 2004.

[47] R. Muntz, and E.G. Coffman, Preemptive Scheduling of Real-

time Tasks on Multiprocessor Systems. Journal of ACM, 17:324-338,

1970.

[48] C.N. Potts. Analysis of a Linear Programming Heuristic for

Scheduling Unrelated Parallel Machines. Discrete Applied

Mathematics, 10:155-164, 1985.

[49] C. Sadfi, B. Penz, C. Rapine, J. Blazewicz, .and P. Formanowicz.

An Improved Approximation Algorithm for the Single Machine Total

Completion Time Scheduling Problem with Availability Constraints.

European Journal of Operational Research, 161:3-10, 2005.

[50] A. Salem, G.C. Anagnostopoulos, and G. Rabadi. A Branch-and-

Bound Algorithm for Parallel Machine Scheduling Problems.

Proceedings of the International Workshop on Harbour, Maritime

&Multimodel Logistics Modeling &Simulation (HMS 2000) Society

for Computers & Simulation International, 88-93, 2000

[51] E. Sanlaville, and G. Schmidt. Machine Scheduling with

Availability Constraints. Acta Informatica, 35:795-811, 1998.

 80

[52] G. Schmidt. Scheduling with Limited Machine Availability.

European Journal of Operational Research, 121:1-15, 2000.

[53] S.L. van de Velde. Duality-based Algorithms for Scheduling

Unrelated Parallel Machines. ORSA Journal of Computing, 5: 192-

205, 1993.

 81

	To my grandfather Bahattin Çeber…
	Acknowledgement
	List of Figures
	Chapter 1
	INTRODUCTION
	Chapter 2
	LITERATURE REVIEW
	2.1. PARALLEL MACHINE SCHEDULING
	2.2. SCHEDULING WITH AVAILABILITY CONSTRAINTS

	TOTAL COMPLETION TIME PROBLEM
	3.1. PROBLEM DEFINITION
	3.2. SOLUTION CHARACTERISTICS
	Optimality Conditions
	3.3. LOWER BOUND
	3.4. SOLUTION METHODS
	3.4.1. BRANCH-AND-BOUND ALGORITHM
	3.4.1.2. Node Generation Process

	3.4.2. HEURISTIC ALGORITHMS
	3.4.2.1. Constructive Heuristic Algorithm
	3.4.2.2. Neighborhood Search Algorithm

	Neighborhood Definition
	
	
	
	
	Table 3-1: Processing times of jobs
	Figure 3-9: Graphical illustration of initial schedule

	3.4.2.3. Simulated Annealing Application

	3.5. COMPUTATIONAL EXPERIMENTATION
	3.5.1. EXPERIMENTAL DESIGN
	3.5.2. COMPUTATIONAL RESULTS

	4.1. PROBLEM DEFINITION
	4.2.1 CUTTING PLANE SCHEME
	4.2.2.1. Lower Bound
	4.2.2.2. The Exact Algorithm
	J10010
	J20.8570.14300

	J41000
	J10010
	J20001

	J41000
	J10010
	J21000

	J41000

	4.2.3. HEURISTIC APPROACH
	4.2.3.1. Knapsack Algorithm
	4.2.3.2. Heuristic Algorithm
	J20.8570.143
	J410

	J210
	J410

	4.3. COMPUTATIONAL STUDY

	Chapter 5
	CONCLUSION
	References:

