11 research outputs found

    Maker-Breaker total domination game

    Full text link
    Maker-Breaker total domination game in graphs is introduced as a natural counterpart to the Maker-Breaker domination game recently studied by Duch\^ene, Gledel, Parreau, and Renault. Both games are instances of the combinatorial Maker-Breaker games. The Maker-Breaker total domination game is played on a graph GG by two players who alternately take turns choosing vertices of GG. The first player, Dominator, selects a vertex in order to totally dominate GG while the other player, Staller, forbids a vertex to Dominator in order to prevent him to reach his goal. It is shown that there are infinitely many connected cubic graphs in which Staller wins and that no minimum degree condition is sufficient to guarantee that Dominator wins when Staller starts the game. An amalgamation lemma is established and used to determine the outcome of the game played on grids. Cacti are also classified with respect to the outcome of the game. A connection between the game and hypergraphs is established. It is proved that the game is PSPACE-complete on split and bipartite graphs. Several problems and questions are also posed.Comment: 21 pages, 5 figure

    Maker-Breaker total domination games on cubic graphs

    Full text link
    We study Maker-Breaker total domination game played by two players, Dominator and Staller on the connected cubic graphs. Staller (playing the role of Maker) wins if she manages to claim an open neighbourhood of a vertex. Dominator wins otherwise (i.e. if he can claim a total dominating set of a graph). For certain graphs on n6n\geq 6 vertices, we give the characterization on those which are Dominator's win and those which are Staller's win

    Mejker–Brejker igre na grafovima

    Get PDF
    The topic of this thesis are different variants of Maker–Breaker positional game, where two players Maker and Breaker alternatively take turns in claiming unclaimed edges/vertices of a given graph. We consider Walker–Breaker game, played on the edge set of the graph Kn. Walker, playing the role of Maker is restricted to claim her edges according to a walk, while Breaker can claim any unclaimed edge per move. The focus is on two standard games - the Connectivity game, where Walker has the goal to build a spanning tree on Kn, and the Hamilton Cycle game, where Walker has the goal to build a Hamilton cycle on Kn. We show that Walker with bias 2 can win both games even when playing against Breaker whose bias b is of the order of magnitude n= ln n. Next, we consider (1 : 1) WalkerMaker–WalkerBreaker game on E(Kn),where both Maker and Breaker are walkers and we are interested in seeing how fast WalkerMaker can build spanning tree and Hamilton cycle. Finally, we study Maker–Breaker total domination game played on the vertex set of a given graph. Two players, Dominator and Staller, alternately take turns in claiming unclaimed vertices of the graph. Staller is Maker and wins if she can claim an open neighbourhood of a vertex. Dominator is Breaker and wins if he manages to claim a total dominating set of a graph. For certain connected cubic graphs on n ≥ 6 vertices, we give the characterization of those graphs which are Dominator’s win and those which are Staller’s win.Tema istrazivanja ove disertacije su igre tipa Mejker– Brejker u kojima uˇcestvuju dva igraˇca, Mejker i Brejker, koji naizmjeniˇcno uzimaju slobodne grane/ˇcvorove datog grafa. Bavimo se Voker–Brejker igrama koje se igraju na skupu grana grafa Kn. Voker, u ulozi Mejkera, jeograniˇcen da uzima svoje grane kao da se ˇseta kroz graf, dok Brejker moˇze da uzme bilo koju slobodnu granu grafa. Fokus je na dvije standardne igre - igri povezanosti, gdje Voker ima za cilj da napravi pokrivaju´ce stablo grafa Kn i igri Hamiltonove konture, gdje Voker ima za cilj da napravi Hamiltonovu konturu. Brejker pobjeduje ako sprijeˇci Vokera u ostvarenju njegovog cilja. Pokaza´cemo da Voker sa biasom 2 moˇze da pobijedi u obje igre ˇcak i ako igra protiv Brejkera ˇciji je bias b reda n= ln n. Potom razmatramo (1 : 1) VokerMejker–VokerBrejker igre na Kn, gdje oba igraˇca, i Mejker i Brejker, moraju da biraju grane koje su dio ˇsetnje u njihovom grafu s ciljem odredivanja brze pobjedniˇce strategije VokerMejkera u igri povezanosti i igri Hamiltonove konture. Konaˇcno, istraˇzujemo Mejker–Brejker igre totalne dominacije koje se igraju na skupu ˇcvorova datog grafa. Dva igraˇca, Dom inator i Stoler naizmjeniˇcno uzimaju slobodne ˇcvorove datog grafa. Stoler je Mejker i pobjeduje ako uspije da uzme sve susjede nekog ˇcvora. Dominator je Brejker i pobjeduje ako ˇcvorovi koje uzme dok kraja igre formiraju skup totalne dominacije. Za odredene klase povezanih kubnih grafova reda n ≥ 6, dajemo karakterizaciju onih grafova na kojima Dominator pobjeduje i onih na kojima Stoler pobjeduje.

    Avoider-Enforcer Game is NP-hard

    Get PDF
    In an Avoider-Enforcer game, we are given a hypergraph. Avoider and Enforcer alternate in claiming an unclaimed vertex, until all the vertices of the hypergraph are claimed. Enforcer wins if Avoider claims all vertices of an edge; Avoider wins otherwise. We show that it is NP-hard to decide if Avoider has a winning strategy

    Maker-Breaker domination game on trees when Staller wins

    Get PDF
    In the Maker-Breaker domination game played on a graph GG, Dominator's goal is to select a dominating set and Staller's goal is to claim a closed neighborhood of some vertex. We study the cases when Staller can win the game. If Dominator (resp., Staller) starts the game, then γSMB(G)\gamma_{\rm SMB}(G) (resp., γSMB(G)\gamma_{\rm SMB}'(G)) denotes the minimum number of moves Staller needs to win. For every positive integer kk, trees TT with γSMB(T)=k\gamma_{\rm SMB}'(T)=k are characterized. Applying hypergraphs, a general upper bound on γSMB\gamma_{\rm SMB}' is proved. Let S=S(n1,,n)S = S(n_1,\dots, n_\ell) be the subdivided star obtained from the star with nn edges by subdividing its edges n11,,n1n_1-1, \ldots, n_\ell-1 times, respectively. Then γSMB(S)\gamma_{\rm SMB}'(S) is determined in all the cases except when 4\ell\ge 4 and each nin_i is even. The simplest formula is obtained when there are are at least two odd nin_is. If n1n_1 and n2n_2 are the two smallest such numbers, then γSMB(S(n1,,n))=log2(n1+n2+1)\gamma_{\rm SMB}'(S(n_1,\dots, n_\ell))=\lceil \log_2(n_1+n_2+1)\rceil. For caterpillars, exact formulas for γSMB\gamma_{\rm SMB} and for γSMB\gamma_{\rm SMB}' are established

    Mejker–Brejker igre na grafovima

    Get PDF
    The topic of this thesis are different variants of Maker–Breaker positional game, where two players Maker and Breaker alternatively take turns in claiming unclaimed edges/vertices of a given graph. We consider Walker–Breaker game, played on the edge set of the graph Kn. Walker, playing the role of Maker is restricted to claim her edges according to a walk, while Breaker can claim any unclaimed edge per move. The focus is on two standard games - the Connectivity game, where Walker has the goal to build a spanning tree on Kn, and the Hamilton Cycle game, where Walker has the goal to build a Hamilton cycle on Kn. We show that Walker with bias 2 can win both games even when playing against Breaker whose bias b is of the order of magnitude n= ln n. Next, we consider (1 : 1) WalkerMaker–WalkerBreaker game on E(Kn),where both Maker and Breaker are walkers and we are interested in seeing how fast WalkerMaker can build spanning tree and Hamilton cycle. Finally, we study Maker–Breaker total domination game played on the vertex set of a given graph. Two players, Dominator and Staller, alternately take turns in claiming unclaimed vertices of the graph. Staller is Maker and wins if she can claim an open neighbourhood of a vertex. Dominator is Breaker and wins if he manages to claim a total dominating set of a graph. For certain connected cubic graphs on n ≥ 6 vertices, we give the characterization of those graphs which are Dominator’s win and those which are Staller’s win.Tema istrazivanja ove disertacije su igre tipa Mejker– Brejker u kojima uˇcestvuju dva igraˇca, Mejker i Brejker, koji naizmjeniˇcno uzimaju slobodne grane/ˇcvorove datog grafa. Bavimo se Voker–Brejker igrama koje se igraju na skupu grana grafa Kn. Voker, u ulozi Mejkera, jeograniˇcen da uzima svoje grane kao da se ˇseta kroz graf, dok Brejker moˇze da uzme bilo koju slobodnu granu grafa. Fokus je na dvije standardne igre - igri povezanosti, gdje Voker ima za cilj da napravi pokrivaju´ce stablo grafa Kn i igri Hamiltonove konture, gdje Voker ima za cilj da napravi Hamiltonovu konturu. Brejker pobjeduje ako sprijeˇci Vokera u ostvarenju njegovog cilja. Pokaza´cemo da Voker sa biasom 2 moˇze da pobijedi u obje igre ˇcak i ako igra protiv Brejkera ˇciji je bias b reda n= ln n. Potom razmatramo (1 : 1) VokerMejker–VokerBrejker igre na Kn, gdje oba igraˇca, i Mejker i Brejker, moraju da biraju grane koje su dio ˇsetnje u njihovom grafu s ciljem odredivanja brze pobjedniˇce strategije VokerMejkera u igri povezanosti i igri Hamiltonove konture. Konaˇcno, istraˇzujemo Mejker–Brejker igre totalne dominacije koje se igraju na skupu ˇcvorova datog grafa. Dva igraˇca, Dom inator i Stoler naizmjeniˇcno uzimaju slobodne ˇcvorove datog grafa. Stoler je Mejker i pobjeduje ako uspije da uzme sve susjede nekog ˇcvora. Dominator je Brejker i pobjeduje ako ˇcvorovi koje uzme dok kraja igre formiraju skup totalne dominacije. Za odredene klase povezanih kubnih grafova reda n ≥ 6, dajemo karakterizaciju onih grafova na kojima Dominator pobjeduje i onih na kojima Stoler pobjeduje.

    Jake pozicione igre

    Get PDF
    In this thesis, we study 2-player combinatorial games on graphs. We devote a lot of attention to strong positional games, where both players have the same goal. First, we consider the so-called fixed graph strong Avoider-Avoider game in which two players called Red and Blue alternately claim edges of the complete graph Kn, and the player who first completes a copy of a fixed graph F loses the game. If neither of the players claimed a copy of F in his graph and all the elements of the board are claimed, the game is declared a draw. Even though these games have been studied for decades, there are very few known results. We make a step forward by proving that Blue has a winning strategy it two different games of this kind. Furthermore, we introduce strong CAvoiderCAvoider F games where the claimed edges of each player must form a connected graph throughout the game. This is a natural extension of the strong Avoider-Avoider games, with a connectedness constraint. We prove that Blue can win in three standard CAvoider-CAvoider F games. Next, we study strong Maker-Maker F games, where now, the player who first occupies a copy of F is the winner. It is well-known that the outcome of these games when both players play optimally can be either the first player's win or a draw. We are interested in finding the achievement number a(F) of a strong Maker-Maker F game, that is, the smallest n for which Red has a winning strategy. We can find the exact value a(F) for several graphs F, including paths, cycles, perfect matchings, and a subclass of trees on n vertices. We also give the upper and lower bounds for the achievement number of stars and trees. Finally, we introduce generalized saturation games as a natural extension of two different types of combinatorial games, saturation games and Constructor-Blocker games. In the generalized saturation game, two graphs H and F are given in advance. Two players called Max and Mini alternately claim unclaimed edges of the complete graph Kn and together gradually building the game graph G, the graph that consists of all edges claimed by both players. The graph G must never contain a copy of F, and the game ends when there are no more moves, i.e. when G is a saturated F-free graph. We are interested in the score of this game, that is, the number of copies of the graph H in G at the end of the game. Max wants to maximize this score, whereas Mini tries to minimize it. The game is played under the assumption that both players play optimally. We study several generalized saturation games for natural choices of F and H, in an effort to locate the score of the game as precisely as possible.У овој тези проучавамо комбинаторне игре на графовима које играју 2 играча. Посебну пажњу посвећујемо јаким позиционим играма, у којима оба играча имају исти циљ. Прво, посматрамо такозвану јаку Авојдер-Авојдер игру са задатим фиксним графом у којој два играча, Црвени и Плави наизменично селектују гране комплетног графа Kn, а играч који први селектује копију фиксног графа F губи игру. Ако ниједан од играча не садржи копију од F у свом графу и сви елементи табле су селектовани, игра се проглашава нерешеном. Иако су ове игре проучаване деценијама, врло је мало познатих резултата. Ми смо направили корак напред доказавши да Плави има победничку стратегију у две различите игре ове врсте. Такође, уводимо јаке ЦАвојдер-ЦАвојдер F игре у којима граф сваког играча мора остати повезан током игре. Ово је природно проширење јаких Авојдер-Авојдер игара, са ограничењем повезаности. Доказујемо да Плави може да победи у три стандардне ЦАвојдер-ЦАвојдер F игре. Затим проучавамо јаке Мејкер-Мејкер F игре, у којима је играч који први селектује копију од F победник. Познато је да исход ових игара уколико оба играча играју оптимално може бити или победа првог играча или нерешено. Циљ нам је да пронађемо ачивмент број а(F) јаке Мејкер-Мејкер F игре, односно најмање n за које Црвени има победничку стратегију. Дајемо тачну вредност a(F) за неколико графова F, укључујући путеве, циклусе, савршене мечинге и поткласу стабала са n чворова. Такође, дајемо горње и доње ограничење ачивмент броја за звезде и стабла. Коначно, уводимо уопштене игре сатурације као природно проширење две различите врсте комбинаторних игара, игара сатурације и Конструктор-Блокер игара. У уопштеној игри сатурације унапред су дата два графа H и F. Два играча по имену Макс и Мини наизменично селектују слободне гране комплетног графа Kn и заједно постепено граде граф игре G, који се састоји од свих грана које су селектовала оба играча. Граф G не сме да садржи копију од F, а игра се завршава када више нема потеза, односно када је G сатуриран граф који не садржи F. Занима нас резултат ове игре, односно, број копија графа H у G на крају игре. Макс жели да максимизира овај резултат, док Мини покушава да га минимизира. Игра се под претпоставком да оба играча играју оптимално. Проучавамо неколико уопштених игара сатурације за природне изборе F и H, у настојању да што прецизније одредимо резултат игре.U ovoj tezi proučavamo kombinatorne igre na grafovima koje igraju 2 igrača. Posebnu pažnju posvećujemo jakim pozicionim igrama, u kojima oba igrača imaju isti cilj. Prvo, posmatramo takozvanu jaku Avojder-Avojder igru sa zadatim fiksnim grafom u kojoj dva igrača, Crveni i Plavi naizmenično selektuju grane kompletnog grafa Kn, a igrač koji prvi selektuje kopiju fiksnog grafa F gubi igru. Ako nijedan od igrača ne sadrži kopiju od F u svom grafu i svi elementi table su selektovani, igra se proglašava nerešenom. Iako su ove igre proučavane decenijama, vrlo je malo poznatih rezultata. Mi smo napravili korak napred dokazavši da Plavi ima pobedničku strategiju u dve različite igre ove vrste. Takođe, uvodimo jake CAvojder-CAvojder F igre u kojima graf svakog igrača mora ostati povezan tokom igre. Ovo je prirodno proširenje jakih Avojder-Avojder igara, sa ograničenjem povezanosti. Dokazujemo da Plavi može da pobedi u tri standardne CAvojder-CAvojder F igre. Zatim proučavamo jake Mejker-Mejker F igre, u kojima je igrač koji prvi selektuje kopiju od F pobednik. Poznato je da ishod ovih igara ukoliko oba igrača igraju optimalno može biti ili pobeda prvog igrača ili nerešeno. Cilj nam je da pronađemo ačivment broj a(F) jake Mejker-Mejker F igre, odnosno najmanje n za koje Crveni ima pobedničku strategiju. Dajemo tačnu vrednost a(F) za nekoliko grafova F, uključujući puteve, cikluse, savršene mečinge i potklasu stabala sa n čvorova. Takođe, dajemo gornje i donje ograničenje ačivment broja za zvezde i stabla. Konačno, uvodimo uopštene igre saturacije kao prirodno proširenje dve različite vrste kombinatornih igara, igara saturacije i Konstruktor-Bloker igara. U uopštenoj igri saturacije unapred su data dva grafa H i F. Dva igrača po imenu Maks i Mini naizmenično selektuju slobodne grane kompletnog grafa Kn i zajedno postepeno grade graf igre G, koji se sastoji od svih grana koje su selektovala oba igrača. Graf G ne sme da sadrži kopiju od F, a igra se završava kada više nema poteza, odnosno kada je G saturiran graf koji ne sadrži F. Zanima nas rezultat ove igre, odnosno, broj kopija grafa H u G na kraju igre. Maks želi da maksimizira ovaj rezultat, dok Mini pokušava da ga minimizira. Igra se pod pretpostavkom da oba igrača igraju optimalno. Proučavamo nekoliko uopštenih igara saturacije za prirodne izbore F i H, u nastojanju da što preciznije odredimo rezultat igre
    corecore