38 research outputs found

    Strategyproof social choice for restricted domains

    Get PDF

    Egalitarian Judgment Aggregation

    Full text link
    Egalitarian considerations play a central role in many areas of social choice theory. Applications of egalitarian principles range from ensuring everyone gets an equal share of a cake when deciding how to divide it, to guaranteeing balance with respect to gender or ethnicity in committee elections. Yet, the egalitarian approach has received little attention in judgment aggregation -- a powerful framework for aggregating logically interconnected issues. We make the first steps towards filling that gap. We introduce axioms capturing two classical interpretations of egalitarianism in judgment aggregation and situate these within the context of existing axioms in the pertinent framework of belief merging. We then explore the relationship between these axioms and several notions of strategyproofness from social choice theory at large. Finally, a novel egalitarian judgment aggregation rule stems from our analysis; we present complexity results concerning both outcome determination and strategic manipulation for that rule.Comment: Extended version of paper in proceedings of the 20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 202

    Egalitarian judgment aggregation

    Get PDF
    Egalitarian considerations play a central role in many areas of social choice theory. Applications of egalitarian principles range from ensuring everyone gets an equal share of a cake when deciding how to divide it, to guaranteeing balance with respect to gender or ethnicity in committee elections. Yet, the egalitarian approach has received little attention in judgment aggregation—a powerful framework for aggregating logically interconnected issues. We make the first steps towards filling that gap. We introduce axioms capturing two classical interpretations of egalitarianism in judgment aggregation and situate these within the context of existing axioms in the pertinent framework of belief merging. We then explore the relationship between these axioms and several notions of strategyproofness from social choice theory at large. Finally, a novel egalitarian judgment aggregation rule stems from our analysis; we present complexity results concerning both outcome determination and strategic manipulation for that rule.publishedVersio

    Multi-Winner Voting with Approval Preferences

    Get PDF
    Approval-based committee (ABC) rules are voting rules that output a fixed-size subset of candidates, a so-called committee. ABC rules select committees based on dichotomous preferences, i.e., a voter either approves or disapproves a candidate. This simple type of preferences makes ABC rules widely suitable for practical use. In this book, we summarize the current understanding of ABC rules from the viewpoint of computational social choice. The main focus is on axiomatic analysis, algorithmic results, and relevant applications.Comment: This is a draft of the upcoming book "Multi-Winner Voting with Approval Preferences

    Collective decisions with incomplete individual opinions

    Get PDF

    Multi-Winner Voting with Approval Preferences

    Get PDF
    From fundamental concepts and results to recent advances in computational social choice, this open access book provides a thorough and in-depth look at multi-winner voting based on approval preferences. The main focus is on axiomatic analysis, algorithmic results and several applications that are relevant in artificial intelligence, computer science and elections of any kind. What is the best way to select a set of candidates for a shortlist, for an executive committee, or for product recommendations? Multi-winner voting is the process of selecting a fixed-size set of candidates based on the preferences expressed by the voters. A wide variety of decision processes in settings ranging from politics (parliamentary elections) to the design of modern computer applications (collaborative filtering, dynamic Q&A platforms, diversity in search results, etc.) share the problem of identifying a representative subset of alternatives. The study of multi-winner voting provides the principled analysis of this task. Approval-based committee voting rules (in short: ABC rules) are multi-winner voting rules particularly suitable for practical use. Their usability is founded on the straightforward form in which the voters can express preferences: voters simply have to differentiate between approved and disapproved candidates. Proposals for ABC rules are numerous, some dating back to the late 19th century while others have been introduced only very recently. This book explains and discusses these rules, highlighting their individual strengths and weaknesses. With the help of this book, the reader will be able to choose a suitable ABC voting rule in a principled fashion, participate in, and be up to date with the ongoing research on this topic

    On the Strategyproofness of the Geometric Median

    Full text link
    The geometric median of a tuple of vectors is the vector that minimizes the sum of Euclidean distances to the vectors of the tuple. Classically called the Fermat-Weber problem and applied to facility location, it has become a major component of the robust learning toolbox. It is typically used to aggregate the (processed) inputs of different data providers, whose motivations may diverge, especially in applications like content moderation. Interestingly, as a voting system, the geometric median has well-known desirable properties: it is a provably good average approximation, it is robust to a minority of malicious voters, and it satisfies the "one voter, one unit force" fairness principle. However, what was not known is the extent to which the geometric median is strategyproof. Namely, can a strategic voter significantly gain by misreporting their preferred vector? We prove in this paper that, perhaps surprisingly, the geometric median is not even α\alpha-strategyproof, where α\alpha bounds what a voter can gain by deviating from truthfulness. But we also prove that, in the limit of a large number of voters with i.i.d. preferred vectors, the geometric median is asymptotically α\alpha-strategyproof. We show how to compute this bound α\alpha. We then generalize our results to voters who care more about some dimensions. Roughly, we show that, if some dimensions are more polarized and regarded as more important, then the geometric median becomes less strategyproof. Interestingly, we also show how the skewed geometric medians can improve strategyproofness. Nevertheless, if voters care differently about different dimensions, we prove that no skewed geometric median can achieve strategyproofness for all. Overall, our results constitute a coherent set of insights into the extent to which the geometric median is suitable to aggregate high-dimensional disagreements.Comment: 55 pages, 7 figure
    corecore