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Chapter 1

Introduction

“The board decided...”, “The council does not approve...”, “Our preference is...”.
Collective decisions are so ubiquitous in most of our daily lives that we can read
statements like these without batting an eye. But there is a lot lurking under the
surface when we talk about collective preferences or opinions. What does it mean,
for example, that the council does not approve of something if they are a group
made up of possibly disagreeing individuals? These questions, and similar ones,
are explored in the field known as social choice theory (McLean and Urken, 1995;
Arrow et al., 2002). The typical social choice problem is arguably the aggregation
of individual preferences over a set of alternatives into a collective preference (or
a winning alternative). For example, everyone in the council might rank a set
of proposals and desire to choose one proposal among several options. In other
words, they are looking to aggregate their preferences into a collective decision.

The field of social choice theory is co-parented by two fathers, Nicolas de
Condorcet and Jean-Charles de Borda, whose famous disagreement in the late
1700s highlighted that there are contrasting methods for aggregating preferences.
While Condorcet argued that an alternative that beats every competitor in a
pairwise majority contest should always be chosen as the winner, Borda argued
that a better method for determining the best alternative was to sum over scores
based on the position of alternatives in each individual’s ranking. This disagree-
ment made a case for the systematic study of aggregation methods, and built the
foundation for social choice theory as a discipline. Just a few centuries later, Ken-
neth Arrow built upon this foundation with his eponymous impossibility theorem
(Arrow, 1950). Not long after this, Gibbard and Satterthwaite (independently)
showed, in essence, that all reasonable voting methods are susceptible to strategic
manipulation by voters (Gibbard, 1973; Satterthwaite, 1975). This result—the

1



2 Chapter 1. Introduction

Gibbard-Satterthwaite Theorem—is often listed together with Condorcet’s obser-
vation of majority cycles and Arrow’s impossibility theorem as one of the classical
results in social choice. The theorem’s inclusion in this exclusive list highlights
the prominence of strategic manipulation in the social choice literature.

Strategic manipulation is also the topic of this thesis. We will be visiting three
frameworks that formalise what it means for a group of agents to hold an opinion,
elect a committee that represents them, or decide on their preferred candidate
among several options. Our particular focus is on these agents themselves and
when our choices for how to reach collective decisions a↵ect their incentives and
abilities to vote strategically.

1.1 Strategic Manipulation

Before really diving in, let’s start with an example of strategic voting.

1.1. Example (Strategic Manipulation in Voting). Suppose three agents want
to choose a shape among five alternatives. We represent their preferences be-
low with each agent’s shapes ordered from top to bottom, starting with their
favourite and ending with their least preferred. For example, the first agent’s top
choice is the square while their least preferred shape is the pentagon.

The agents decide to use the Copeland rule to aggregate their preferences in
order to choose a winner. This rule looks at how many times an alternative wins
a pairwise majority contest and elects those alternatives that beat the highest
number of other candidates. If all agents report their truthful preferences, the
Copeland rule would tell them that the winning shape is the triangle. The first
agent however, really wants the square to win and sees an opportunity—by sub-
mitting an untruthful ranking, she can force this outcome. If she shu✏es her
preference to place the triangle below the circle and diamond (represented here
to the left of her initial preference), the rule will choose the square as the sole
winner.

!
!
!

This example demonstrates that the Copeland rule (as well as many other voting
methods) sometimes incentivises agents to submit untruthful preferences, as doing
so may result in a more preferred outcome. M

In general, we’d like our aggregation methods to be strategyproof—meaning they
do not incentivise agents to be untruthful as in the example above. Strate-
gyproofness guarantees that the outcome of the aggregation does indeed reflect



1.1. Strategic Manipulation 3

the opinions of the individual agents as much as possible. It also ensures that
we do not place the burden on the agents to figure out what the best strategy
is in terms of what preferences or opinions to submit. Truth-telling is by defi-
nition a (weakly) dominant strategy when the aggregation method being used is
strategyproof.

Throughout this thesis, we look at strategyproofness in three areas of social
choice theory. We will first look at the typical voting framework for electing a
single winner by taking into account agents’ rankings over a set of alternatives. We
will then see multiwinner elections where the goal is to elect a set of winners (or
a committee) based on agents’ approvals and disapprovals of candidates. Finally,
we will explore the framework of judgment aggregation, where agents give their
opinion on a set of possibly interconnected binary issues, and we aim to select a
consistent judgment over these issues. For the purposes of this introduction, we
stick to the aggregation of preference rankings in voting as our running example,
though we note that the broad ideas we discuss also appear in the other two
frameworks, as we will see when moving through the chapters.

When strategic behaviour comes up within the context of social choice, it
mainly refers to possible manipulation of collective outcomes—can a voter or a
group of voters sway the outcome of an election by misrepresenting their prefer-
ences when they submit their ballot(s)? As the Gibbard-Satterthwaite Theorem
indicates, the answer to this question is often, unfortunately, a resounding yes.
Strategic manipulation is di�cult to completely avoid. This di�culty is not just
present in voting theory; similar negative results also exist for multiwinner voting
and judgment aggregation. Because of the pervasiveness of this issue in social
choice, there are a host of di↵erent methods in the literature for finding settings
where these negative results do not apply. A well-known and often used ap-
proach is to consider specific types of input to the aggregation method—so-called
restricted domains. A voting method (or voting rule) takes as input a collection
of preference rankings that we call a preference profile. We can examine these
profiles to find common structures, or identify particular types of profiles where
di�culties in aggregation can be avoided. Focusing on specific domains can often
yield positive results, including results related to strategyproofness. For example,
if we restrict our attention to the domain of unanimous profiles—meaning those
where all voters submit the same preference ranking—it is easy to see that any
reasonable voting rule should simply output this same ranking, and that no agent
has an incentive to misreport their preference if they all agree on the ranking of
the alternatives. This thesis builds on these ideas in order to tease out when we
are actually able to establish some level of immunity to strategic manipulation,
and—a related question—when the lack of strategyproofness can undermine some
of the properties of the aggregation methods we study.

First, as we will often be speaking of domains and restricted domains, let’s
clarify exactly what we mean by this. In general, an aggregation method that ac-
cepts all inputs is said to have a universal domain. Often we only allow “rational”
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inputs—for example, individual agents cannot submit a cyclic preference—but do
not put any further conditions on the profiles. When we look at an aggregation
method with a restricted domain, this simply means that the aggregation method
only accepts inputs that fall within that domain. Often we will speak of restricted
domains without reference to a particular aggregation method.

Among the domains that are commonly encountered, the best-known is the
set of single-peaked preference profiles (Black, 1948), which we will use as our
example here. A preference profile is single-peaked if the agents can agree on
some ordering of the alternatives such that each agent’s preferences are in line
with the proximity to their top alternative in this ordering—for all the alternatives
that come before (after) the agent’s top choice in the ordering, her preferences
coincide with the distance from her top choice. A natural domain restriction
will often define profiles that can be expected to appear in real-life collective
decision making. For example, it is reasonable to assume in many cases that
political preferences are single-peaked along a left-to-right axis. In voting, we
know that if we are aggregating preferences that are single-peaked along the
same order, we do not have to worry about Condorcet cycles in the majority
preference.1 If agents are truthful, and truthful preferences more often than not
fall within the single-peaked domain, then we can be reassured that such cycles
in the collective preference order will not often appear in practice. We also know
that if we restrict the input of the aggregation function to single-peaked profiles,
then we get strategyproofness “for free” within this domain (Moulin, 1980). Of
course, this requires that we really only consider profiles within the restricted
domain—agents cannot move outside the domain even when voting strategically,
because the voting rule will not accept these profiles as input. But restricting the
input to the voting rule is arguably inadvisable in settings where many, but not
all, “truthful” profiles fall within the domain in question. This is the problem
we examine: can we use previously identified domains of profiles to establish
positive strategyproofness results, without actually restricting the input to the
voting rule? Or do we create new incentives for manipulation on profiles within a
certain domain, where such incentives would not exist if the input to the voting
rule were to be restricted to profiles in this domain only?

1.2. Example (Manipulating from Restricted Domain). Consider the following
illustration, where each black dot represents a profile and the blue area represents
the profiles that are within our favourite restricted domain—for example, single-
peakedness. We have zoomed in on a particular single-peaked three-agent profile
(upper right) where each column represents an agent’s preference order. For
example, the first agent has ranked the smallest size (yellow circle) at the top
and the largest (blue circle) at the bottom. We can see that this profile is single-

1A Condorcet cycle occurs when, for example, a majority of agents prefer an alternative a
to b, b to c, and c to a, despite all individual agents having acyclic preferences over these same
alternatives.
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peaked along the small-to-large axis. Imagine these three agents have given us
their preferences over t-shirt sizes because they are going to place an order for
group t-shirts. They get a considerable discount when ordering the same size for
all three, so must therefore choose one size based on everyone’s preferences. It
makes sense then, that the first agent (who is a size small) prefers the smallest
size, and likes the options less and less the further away they are from her true
size.

J1

J2

J3

J4

J5

J6

?

J3

J4

Existing results on strategyproofness can be restated as follows: agents do not
have any incentive to manipulate between profiles within the blue area. Our
question is whether it is possible to manipulate from inside the blue area to outside
it. For example, can the first agent benefit from misreporting her preferences as
in the bottom left profile (where she claims she’d go for the largest size if she
cannot have the smallest size—which is the size that properly fits her). While
this may be an unusual preference, we do not want to disallow such inputs as
they can in theory appear even in truthful profiles (an agent might choose an
oversized shirt over one that almost fits, if they cannot have their true size). M

As we have hinted above, our examination of strategyproofness relative to a
particular type of profile also has an axiomatic motivation. There are axioms,
or normative properties of voting rules, that directly relate to a specific type
of profile. The most prominent of these is Condorcet consistency. This axiom
states that if a profile admits a Condorcet winner—a candidate that beats every
other candidate in a pairwise majority contest—then this candidate should be
the sole winner in this profile. Next to scoring rules (the more Bordaesque class),
Condorcet-consistent voting rules make up the bulk of rules studied. It is of
interest, therefore, to see how this axiom interacts with strategic manipulation
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by voters. Looking back at Example 1.1, we can see that the triangle (the chosen
shape in the “truthful” profile) is a Condorcet winner. Yet the first agent is
able to manipulate in a way that undermines the Condorcet consistency of the
Copeland rule.

1.2 Our Motivation

The main question we ask in this thesis is the following:

Is it possible to manipulate from a profile in a “well-behaved”
domain to one outside the domain in question?2

We ask this with a dual motivation in mind. The first is to establish strategyproof-
ness on particular domains where we know manipulation within the domain is not
possible. In this way we argue that we do not “lose” the existing safeguard against
manipulation on these profiles, even when we allow the full domain of profiles as
input. The second is to understand how strategyproofness (or lack thereof) on
these domains can interact with axiomatic properties of our aggregation methods.
Let us explore in further detail why we ask this question, and what kind of results
we are chasing, while keeping the voting framework as our example.

Simply put, our goal is to establish strategyproofness on domains where we
know manipulation within the domain is not possible. The particular domains
we look at are known to be well-behaved and, in a sense, natural domains to
examine. For example, the likelihood of a Condorcet cycle is arguably quite low
in large elections (Gehrlein, 2006; Regenwetter et al., 2006), meaning profiles
with these cycles are not likely to appear in practice. This reasoning can be used
to motivate restricting the domain of voting rules to only those profiles with a
Condorcet winner. If these are the profiles that will realistically show up in any
case, why risk the trouble of allowing others? Our work here pushes against this
idea of restricting the input to any aggregation method in a twofold manner:

• First, if we assume most profiles that appear in practice have a Condorcet
winner, then establishing that no manipulation can occur in those profiles
amounts to showing that manipulation will be the exception and not the
rule—even when all profiles are allowed as input to the voting rule. Only
when the truthful profile does not have a Condorcet winner will anyone
possibly be able to successfully shift the outcome in their favour. However,
if the truthful profile does not have a Condorcet winner and we restrict the
input to the voting rule, agents will be forced to misreport their preferences
by necessity.

2In Chapter 5 we also consider, for judgment aggregation rules, whether it is possible to
manipulate from outside the domain in.
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• Second, if it turns out that all truthful profiles have a Condorcet winner,
then showing no manipulation can occur in those profiles amounts to show-
ing that we do not create any additional incentives for manipulation by
allowing all profiles as input (as opposed to restricting the domain). This
would mean there is no reason to restrict the input to the voting rule. If
the truthful profile is in the Condorcet domain, that will certainly be the
reported profile, even when we allow agents the freedom to move to any
other profile.

Let us now look at our axiomatic motivation, using the axiom of Condorcet
consistency as our example. Our aim is to provide a more fine-grained way of
distinguishing between Condorcet-consistent voting rules in terms of how strategic
manipulation interacts with the existence of Condorcet winners in the reported
profile when we know the truthful profile has a Condorcet winner. How much
can we throw at a Condorcet-consistent rule before deserving Condorcet winners
start losing elections?

• If a Condorcet winner exists and the rule we use is Condorcet-consistent,
establishing that no manipulation can occur in profiles with a Condorcet
winner would tell us that no agent has any incentive to manipulate in a way
that “dethrones” a Condorcet winner.

Chapters 3, 4, and 5 each focus on our “main question” in a di↵erent framework
within the area of social choice theory.

1.3 Thesis Overview

In each chapter of this thesis we focus on a particular domain, and a particular
class of aggregation methods. The classes of methods we look at are particularly
salient representatives within each framework.

Preferences. We dedicate Chapter 2 to preferences. Studying strategyproof-
ness boils down to looking at whether agents can bring about “more preferred”
outcomes for themselves. Therefore, preferences are central in our work. Many
times we have to make decisions about how agents’ preferences are structured.
For example, if you tell me only which foods you like and which you dislike, or
give me a ranking of a set of dishes, I may not be able to determine your favourite
three-course meal without making some extra assumptions. A key aspect of this
chapter is the topic of preference extensions. The aggregation rules we consider
are irresolute, meaning they do not break ties for us. We will therefore discuss
how to lift preferences over winners (or committees, or judgments) to preferences
over sets of winners (or committees, or judgments)—a necessary evil when con-
sidering strategyproofness of irresolute rules. All the strategyproofness results
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throughout this thesis will be relative to a certain preference extension, or a class
of extensions.

Voting. Chapter 3 looks at (single-winner) voting. This is arguably the sim-
plest framework we consider in this thesis. Each agent submits a strict preference
ordering over a set of alternatives, and a voting rule takes these preference orders
and returns a winner. We consider the class of (weighted) tournament solutions—
voting rules which only require the majority relation as input. The domain we
focus on in this chapter is the set of profiles where a Condorcet winner exists.
For tournament solutions, we ask the question “will these voting rules return the
Condorcet winner whenever one exists, also under the assumption that agents will
behave strategically?” Our main result here ties the preservation of Condorcet
winners to the decisiveness of the voting rule. Knowing that indecisiveness is re-
quired for robustness, we go about establishing positive results for more indecisive
tournament solutions. This chapter is based on Botan and Endriss (2021).

Approval-Based Multiwinner Voting. Chapter 4 considers approval-based
multiwinner voting. In this framework, each agent distinguishes between the
alternatives they approve—their approval set—and those which they do not ap-
prove. An aggregation method takes this input and returns a set of alternatives,
often called a committee. In our setting, we are looking for committees of a fixed
size k. The domain of interest in this chapter is the set of party-list profiles,
where any two approval sets either coincide or are disjoint. The class of rules we
examine are the well-known Thiele methods. In this chapter we consider three
types of manipulation actions, among them the existing notion of free-riding—
agents relying on the popularity of some candidates they like and instead putting
their weight behind others. Happily, we are able to establish quite a few positive
results for the whole class of Thiele methods. The key result in this chapter is
that Thiele rules are immune to free-riding on party-list profiles for a large class
of preference extensions. This chapter is based on Botan (2021).

Judgment Aggregation. Chapter 5 discusses strategyproofness in judgment
aggregation, the most general framework we consider in this thesis. Here, agents
give their opinion on several binary issues represented by formulas of propositional
logic. An aggregation rule returns the collective opinion over these issues based
on the opinions of the individual agents. We consider majoritarian rules in this
chapter, meaning those that return the outcome of the majority on all issues
whenever doing so results in a logically consistent collective opinion. The natural
domain to consider for these rules—and indeed the one we do consider—is the set
of profiles that result in a consistent majority opinion. This chapter considers the
most notable majoritarian judgment aggregation rules, from Slater to Dodgson.
We obtain a range of strategyproofness results. Our strongest results are for the
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class of additive majority rules, which includes the well-known Kemeny and Slater
rules. This chapter is based on Botan and Endriss (2020).

In Chapter 6 we summarise our results and discuss directions for possible future
work.





Chapter 2

Lifting Preferences

The aggregation methods we examine throughout this thesis are irresolute—
meaning they do not always return a single winner. To reason about agents’
incentives for strategic manipulation, we need to lift their preferences over ob-
jects to preferences over sets of objects. We do this by means of a preference
extension—a function that takes a ranking over objects and returns a ranking
over sets of objects. Here, “object” can take on a di↵erent meaning based on the
framework. In Chapter 3, we look at voting, and an object is a single candidate—
the winner. For the multiwinner elections we study in Chapter 4, these objects
are sets of candidates. In Chapter 5, where we study judgment aggregation, the
objects are sets of propositional logic formulas.

In general, we can interpret preferences over sets of objects in two distinct
ways. The first is to see the sets as bundles of objects the agent will receive,
meaning the set itself is the final outcome. The second is to see them as a set of
mutually exclusive alternatives, one of which will be chosen in the end. We will
consider only this second interpretation as this is what fits with our motivation.
After all, our goal in the end is to choose one winner from a set of tied winners.

Throughout this thesis, we use ⌫ to speak about preferences over objects, and
⌫̊ to speak about the corresponding preferences over sets of objects. Let us look
at an example to illustrate the problem ahead of us.

2.1. Example. The princess of Arrovia has declared that she would like to have
dinner at one of the country’s finest restaurants tonight. Her trusty assistant
knows that the princess prefers Arrovian food to Thai to Italian. He must choose
between two restaurants; one which serves either Arrovian or Italian cuisine,
depending on which chef is available (though the diners do not know in advance
who will be working, or how the work schedule is made), and one which serves

11
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Thai cuisine every day. Which restaurant does the princess prefer? If the princess
wants to guarantee that she at least gets her second choice, she may prefer the
Thai restaurant. However, if she would risk ending up with Italian for a shot
at some delicious Arrovian food, she may prefer the Arrovian-Italian one. Her
assistant cannot be sure which the princess prefers based just on the information
he has about her food preferences. M

2.1 Ranking Sets of Objects

The question of how to lift preferences over objects to preferences over sets of
objects is not a new one. The study of preference extensions from an axiomatic
point of view gained traction with the impossibility theorem of Kannai and Peleg
(1984). They demonstrated that an extension cannot simultaneously satisfy two
quite weak conditions—a dominance axiom and an independence axiom. This
axiomatic work was continued by, among others, Barberà and Pattanaik (1984),
Barberà et al. (1984), Fishburn (1984a), Bossert et al. (2000), and Pattanaik
and Peleg (1984). Much of this work was directly inspired by the Kannai-Peleg
Theorem, and featured similar impossibility results, as well as axiomatic charac-
terisations of concrete extensions. More recently the preference lifting problem
was studied by Geist and Endriss (2011), who used a SAT-solver to automatically
generate a large number of impossibility results, as well as by Maly et al. (2019)
who show one can circumvent the Kannai-Peleg impossibility when considering
only certain families of sets (rather than ranking all sets of objects). For a thor-
ough review of the problem of lifting preferences from an axiomatic viewpoint we
refer the reader to Barberà et al. (2004).

The preference lifting problem predates the Kannai-Peleg Theorem. Much
of the interest in the question of how to lift preferences was spurred on by the
Gibbard-Satterthwaite Theorem (Gibbard, 1973; Satterthwaite, 1975). While the
Gibbard-Satterthwaite Theorem deals a blow to resolute voting rules—which al-
ways return a single winner—it says nothing about irresolute rules. Many exten-
sions were defined out of necessity by those studying strategic aspects of irresolute
voting rules. Notable examples of extensions defined with this goal in mind are
those by Fishburn (1972), Gärdenfors (1976), Kelly (1977), and Barberà (1977).
In the aftermath of Gibbard-Satterthwaite, we saw many similar impossibility
results for irresolute rules (Duggan and Schwartz, 2000; Gärdenfors, 1976; Kelly,
1977; Barberà, 1977). These results di↵er from Gibbard-Satterthwaite in how
they define manipulability as they by necessity must make assumptions about
agents’ preferences over sets of alternatives. Moving to the irresolute setting also
allowed for some more positive results. To give one example, Gärdenfors (1976)
identifies two strategyproof voting rules for the Gärdenfors extension. The voting
rule that returns all alternatives ranked first by at least one agent—also known
as the omninomination rule—is in fact strategyproof for Gärdenfors preferences.
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The same holds for the rule returning the Condorcet winner when one exists and
the whole set of alternatives when one does not—sometimes called the Condorcet
rule. In more recent years, we have seen a renewed interest in the strategyproof-
ness of irresolute voting rules. We will go into more detail on this in Chapter 3.

2.2 The Formal Framework

We now define the notation we will use for preferences and preference extensions
throughout this thesis. Recall that we use ⌫ to speak about preferences over ob-
jects, and use ⌫̊ to speak about the corresponding preferences over sets of objects.
A preference order is a binary relation that is reflexive, transitive, antisymmetric,
and connex. For a preference order ⌫ over a set X, we define the corresponding
strict order �, and indi↵erence relation ⇠ in the usual way. We say a � b if a ⌫ b

and b 6⌫ a, and a ⇠ b if a ⌫ b and b ⌫ a. The same holds for preference orders
over sets of objects: A �̊ B if A ⌫̊ B and B 6⌫̊ A, and A ⇠̊ B if A ⌫̊ B and
B ⌫̊ A.

A preference extension is a function e mapping any given preference relation ⌫
over objects—elements of X—to a relation e(⌫) over sets of objects—nonempty
subsets of X:

e(⌫) = ⌫̊

While⌫ is a complete (though possibly weak) order, ⌫̊ is not necessarily complete,
meaning some sets may be incomparable under certain preference extensions.
For notational simplicity, we will occasionally omit any reference to the specific
extension e and speak about ⌫̊, rather than e(⌫). We will sometimes go even
further, and refer to ⌫̊ as an extension. We hope the reader can forgive this slight
abuse of notation.

We require, for all preference extensions, that a ⌫ b implies {a} ⌫̊ {b},
and a � b implies {a} �̊ {b}. This requirement simply dictates that e stays
faithful to the agent’s preferences over objects when comparing singleton sets
and corresponds to the extension rule of Barberà et al. (2004).

Finally, we say an agent i has e-preferences if ⌫̊i = e(⌫i), meaning her pref-
erence ranking ⌫i over objects is extended to a preference order ⌫̊i over sets of
objects according to e.

Conditions on Extensions. We say an extension is reflective if

A �̊ B implies that there is some a 2 A and b 2 B such that a � b,

and strongly reflective if

A �̊ B implies there is some a 2 A and b 2 B s.t. a � b and {a, b} 6✓ A \B.
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Reflectiveness simply formalises the idea that the preferences over sets should
reflect the preferences over object that they are extending. Strong reflectiveness is
(clearly) a strengthening of reflectiveness, and is similar in spirit to the l-extension
of Kruger and Terzopoulou (2020). Finally, we say a preference extension is weakly
pessimistic if X �̊ Y implies that there exists some y 2 Y such that x ⌫ y for all
x 2 X.

Defining Extensions. We now define some well-known extensions from the
literature that will appear throughout the thesis. Let A and B be two sets such
that A [ B ⇢ X, and let ⌫ be a preference order over X. We first define the
optimistic extension, which we refer to as eo and the pessimistic extension—which
we refer to as ep. Let ⌫o = eo(⌫) and ⌫p = ep(⌫).

• A ⌫o
B if and only if there is some a 2 A s.t. a ⌫ b for all b 2 B.

• A ⌫p
B if and only if for all a 2 A there exists some b 2 B s.t. a ⌫ b.

Simply put, the optimistic extension looks only at the “best” object in each set—
according to ⌫—and compares them, while the pessimistic extension looks only
at the “worst” object in each set. We say an agent has optimistic preferences
(or is an optimistic agent) if their preferences are extended according to the opti-
mistic extension. This extension has a very natural interpretation, as is implied
by the name; when comparing two sets, an optimistic agent operates under the
assumption that their top choice within each set will be chosen as the final out-
come. The pessimistic extension has a similar interpretation—a pessimistic agent
operates under the assumption that their bottom choice will always be chosen as
the final outcome.

2.2. Proposition. Both eo and ep are strongly reflective.

Proposition 2.2 follows directly from the definition of these extensions.
We now define three of the most well-studied extensions that we mentioned

in the introduction to this chapter. The Kelly extension (Kelly, 1977)—which we
refer to as ek, The Fishburn extension (Fishburn, 1972)—which we refer to as ef ,
and the Gärdenfors extension (Gärdenfors, 1976), which we refer to as eg. We say
an agent has Kelly preferences if her preferences over objects are extended to sets
of objects according to the Kelly extension. We define Fishburn and Gärdenfors
preferences analogously. Let ⌫k = ek(⌫), ⌫f = ef (⌫), and ⌫g = eg(⌫). The
Kelly and Fishburn extensions are defined as follows:

• A ⌫k
B if and only if a ⌫ b for all a 2 A and all b 2 B.

• A ⌫f
B i↵ a ⌫ b ⌫ c for all a 2 A \B, b 2 A \B and c 2 B \ A.
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A set A is (weakly) preferred to B under the Kelly extension if and only if all ele-
ments of A are (weakly) preferred to all elements of B. A common interpretation
of this extension is that agents have no idea about the tie-breaking mechanism
that will be used to choose a winner from each set. Agents only express a pref-
erence when they know that the chosen winner from A will be preferred to the
chosen winner from B, no matter what tie-breaking mechanism is used. The Fish-
burn extension is similar to Kelly, though it treats those elements that appear in
both sets di↵erently. So the objects in only A are preferred to those in both A

and B, which are in turn preferred to those only in B.

2.3. Example. Let use compare the Kelly and Fishburn extensions. Suppose
we have the following preference ranking over shapes: � � � .

A B

Here we can see that it is not the case that A ⌫k
B (nor is it the case that B ⌫k

A)
as we have an element of A, mainly , that is not preferred to all elements of B—

� . However, we do have that A �f
B as is (strictly) preferred to both

and , which are in turn both (strictly) preferred to . Note that any two sets
with an intersection that contains more than one element cannot be compared
under the Kelly extension if we are extending strict preferences. M

Finally, the Gärdenfors extension is defined as follows:

• A ⌫g
B if and only if one of the following three conditions is satisfied:

(i) A ⇢ B and a ⌫ b for all a 2 A and b 2 B \ A
(ii) B ⇢ A and a ⌫ b for all a 2 A \B and b 2 B

(iii) Neither A ⇢ B nor B ⇢ A, and a ⌫ b for all a 2 A \B and b 2 B \ A

The Gärdenfors extension dictates that, if one set is to be preferred over another,
then new elements added should be preferred to those already in the initial set.
Similarly, the elements removed should be less preferred.

2.4. Example. Let use compare the Fishburn and Gärdenfors extensions with
an example. We compare the same sets A and B from Example 2.3, though
we are extending a di↵erent order over shapes. Suppose we have the following
preference ranking over shapes: � � � .
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A B

Clearly it is not the case that A ⌫f
B—the shapes in the intersection of the two

sets are not preferred to . However, we do have that A �g
B, as � . M

We now state two propositions that follow directly from the definitions above,
and show the relative strength of the extensions.

2.5. Proposition. A �k
B implies A �f

B.

2.6. Proposition. A �f
B implies A �g

B.

These connections do not exists between the three “named” extensions—ek, ef ,
and eg—and the optimistic and pessimistic extensions. We can see this in the
following example where we extend weak preferences.

2.7. Example. Suppose we have the following (weak) preference ranking over
shapes: ⇠ � . We compare the two sets A and B below.

A B

In this case A �k
B (and therefore also A �f

B and A �g
B). However, since

the top alternatives in both sets are equally preferred, the optimistic extension
will be indi↵erent between them. A similar example can be constructed for the
pessimistic extension. M

The three extensions ek, ef , and eg all satisfy strong reflectiveness and weak pes-
simism. This follows from simple examination of the axioms and the definition
of the extensions.

2.8. Proposition. The Kelly, Fishburn, and Gärdenfors extensions are strongly
reflective.

2.9. Proposition. The Kelly, Fishburn, and Gärdenfors extensions are weakly
pessimistic.
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What does all this mean for strategyproofness results that are related to some
preference extension? Propositions 2.5 and 2.6 tell us that if we can show strat-
egyproofness under the Gärdenfors extension, this immediately gives us strate-
gyproofness for Kelly and Fishburn. Thus, a result using Gärdenfors is stronger
than one using Fishburn or Kelly. On the other hand, a strategyproofness result
for either the optimistic or pessimistic extension does not imply Kelly, Fishburn
or Gärdenfors strategyproofness. Propositions 2.2, 2.8, and 2.9 tell us that if
we can show strategyproofness for reflective, strongly reflective, or weakly pes-
simistic preferences, this immediately gives us strategyproofness under all three
extensions—Kelly, Fishburn, and Gärdenfors.

General Gärdenfors Preferences. We now define a larger class of preference
extensions which includes both the Gärdenfors and optimistic preference exten-
sions (as well as the Fishburn and Kelly preference extensions). We will use this
class for strategyproofness results in Chapter 4. We say a preference extension is
a general Gärdenfors preference extension in case that A �̊ B holds only if one
of the following holds:

(i) A 6⇢ B and there exists a 2 A \B and b 2 B such that a � b.

(ii) A ⇢ B, a ⌫ b for all a 2 A and b 2 B \ A, and there exists a 2 A and
b 2 B \ A such that a � b.

Note that while the Gärdenfors preference extension is one specific preference
extension, general Gärdenfors extensions are a class of preference extensions, of
which the Gärdenfors extension is a member. We give an example below of
preferences that fall into the class of general Gärdenfors preferences that are not
captured by the specific extensions we have mentioned.

2.10. Example (General Gärdenfors Preference). Suppose we have an agent i

who prefers all triangles to all circles (represented on the left). We can define
the following preferences over sets of shapes: If A is a subset of B, A �̊i B if
and only if condition (ii) above is satisfied. The agent only wants to move to
a subset—thereby excluding some possibilities without adding new ones—when
certain guarantees are met. Otherwise, the agent prefers the outcome with the
best ratio of triangles to circles.

, , ,

, ,
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With such preferences, agent i would prefer a set of three triangles and two circles
to one with two of each (represented on the right). This is an example of a type
of preference that can be captured by the class of general Gärdenfors preferences.
In this specific instance, the Gärdenfors extension would not be able to compare
the two sets, as each set contains an element that is strictly preferred to an
element (only) in the other; �i , and �i . An optimistic agent would be
indi↵erent between the two outcomes. M

As we move through the chapters, we will continue to encounter the notions and
extensions we have defined here.



Chapter 3

Preserving Condorcet Winners in
Voting

Voting theory is used to aggregate individual preferences with the aim of choosing
a winner from a set of alternatives. In this setting, each agent (or voter) submits
their strict preference order over a set of alternatives and a voting rule (or social
choice function) is used to find the collectively “most preferred” alternative. There
are many important considerations when deciding on what type of voting rule to
use. Does it treat all voters the same? Does it unfairly favour some alternatives?
Will it ever choose an alternative that is disliked by all the voters?

One central concern when choosing a voting rule is whether it is possible for
agents to strategically manipulate the outcome in their favour. In other words,
can a voter lie and ensure that a more preferred alternative will win compared to
when she submits her truthful preference? In Chapter 1 we saw some examples
of strategic manipulation and briefly mentioned the Gibbard-Satterthwaite Theo-
rem, a central result in social choice that concerns precisely this kind of strategic
behaviour. We now formally state the theorem. Recall that a voting rule is res-
olute when it always returns a singleton. A resolute voting rule is nonimposed
if every alternative wins in some profile, and it is a dictatorship when the top
alternative of the same agent—the dictator—is always chosen as the winner.

3.1. Theorem (Gibbard, 1973; Satterthwaite, 1975). Every resolute, nonim-
posed, and strategyproof voting rule is a dictatorship.

In the aftermath of the Gibbard-Satterthwaite Theorem, we have seen similar
impossibility results for irresolute rules. These results di↵er in how they define
manipulability as they must make a choice about how to define agents’ preferences
over sets of alternatives. We present the most well-known such result. Duggan
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and Schwartz (2000) generalise the Gibbard-Satterthwaite Theorem to irresolute
rules. They do so for the optimistic and pessimistic preference extensions that
we saw in Chapter 2. First note that an irresolute rule is nonimposed if every
singleton is returned as the winning set in some profile. Further, an irresolute
rule is weakly dictatorial is there is some agent whose top alternative is always
included in the outcome. We can now state the theorem.

3.2. Theorem (Duggan and Schwartz, 2000). Any nonimposed irresolute social
choice function that is strategyproof under both the optimistic and pessimistic
extension must be weakly dictatorial.

Although impossibilities abound, shifting focus away from resoluteness has also
led to positive results regarding the strategyproofness of social choice functions.
As we stated in Chapter 2, one of example of this is Gärdenfors (1976), who
identified two strategyproof functions for the Gärdenfors extension. Building on
these earlier results, Brandt (2015) characterises the pairwise social choice func-
tions that are strategyproof under the Kelly preference extension. Among these
are the bipartisan set and the minimal covering set. We discuss in Section 3.3.1
the connection between our work and Kelly-strategyproofness. Brandt and Brill
(2011) further add to these results and find su�cient conditions for strategyproof-
ness under the stronger Fishburn and Gärdenfors preferences as well, thereby
identifying further social choice functions that are strategyproof for each of the
three extensions.

In addition to focusing on irresolute rules, another well-employed strategy to
deal with strategic manipulation that is relevant for our purposes is to consider a
restricted domain for the social choice function. Among these domain restrictions,
the best-known is the single-peaked domain of Black (1948), which we saw an
example of in Chapter 1. Many such restricted domains ensure strategyproofness
for Condorcet extensions given that the voting rule only allows profiles from the
domain as input. While our motivation in this chapter is primarily of an axiomatic
nature, strategyproofness on profiles with a Condorcet winner—or domains that
are subsets of this set of profiles—is also appealing from a practical viewpoint
as real-world elections have a high probability of giving us a Condorcet winner
(Gehrlein, 2006; Gehrlein and Lepelley, 2011).

There are also many examples of positive results relative to more fine-grained
axioms that focus on—and limit—the type of manipulation performed by the
agent. In preference aggregation, both Sato (2013) and Bossert and Sprumont
(2014) obtain positive results for strategyproofness when considering specific ma-
nipulations based on the distance between and agent’s initial preferences and the
outcome. More recently, Kruger and Terzopoulou (2020) have found voting rules
that are strategyproof to manipulation by adding, removing, or swapping alter-
natives in agents’ (incomplete) preference orders. In some sense, our method of
considering strategyproofness on a particular set of profiles is in line with this
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approach as we are focusing on a specific type of manipulation—only those ma-
nipulations that start from a profile with a Condorcet winner.

Similar positive results have been obtained by considering voters’ ignorance
of others’ preference as an informational barrier (Conitzer et al., 2011; Reijngoud
and Endriss, 2012; Osborne and Rubinstein, 2003). Another successful approach
has been to argue for the computational hardness of computing a possible ma-
nipulation strategy as a barrier to manipulation (Bartholdi et al., 1989; Conitzer
and Walsh, 2016).

Our particular focus in this chapter is strategic manipulation of Condorcet
extensions—voting rules that will return the Condorcet winner as the unique
winner whenever such an alternative exists. Condorcet extensions have long held
a prominent place in social choice theory, and for good reason. Going against
the opinion of the majority is generally frowned upon. However, the definition of
a Condorcet extension does not take into account possible manipulation by the
voters. A profile where all agents vote truthfully may have a Condorcet winner,
but this alternative may not end up in the set of winners if agents are acting
strategically and the reported profile di↵ers from the truthful one. We examine
exactly when the lack of strategyproofness a↵ects whether we can trust that a
Condorcet extension will give us all “true” Condorcet winners, even under the
assumption that agents might vote strategically. By doing this, we distinguish
between rules that do not incentivise manipulation from profiles with Condorcet
winners, and those that do. We call the former robust Condorcet extensions,
and they are the Condorcet extensions that always return the Condorcet winner
whenever the truthful profile has one. Further, we highlight the relationship
between the decisiveness of a social choice function and whether it incentivises
agents to unseat a Condorcet winner via manipulation. Decisiveness as a concept
turns out to be a relevant consideration for strategyproofness of irresolute rules,
in particular for Kelly-strategyproofness (Brandt et al., 2021). Though their
technical definition for indecisiveness is di↵erent from ours, we both speak about
the size of the set returned by voting rules.

The idea of preserving Condorcet winners has also been examined in the
setting of probabilistic social choice. Hoang (2017) shows that maximal lotter-
ies (Fishburn, 1984b) are strategyproof on profiles with Condorcet winners when
based on the majority relation. Brandl et al. (2018) extend this result to all
maximal lotteries.

This chapter is organised as follows. We introduce the framework and relevant
literature in Section 3.1. In Section 3.2 we present impossibility results that tell us
many Condorcet extensions cannot be robust. We first show that no Condorcet-
consistent tournament solution can be robust for all preference extensions. We
then redirect our search to look for rules that can satisfy robustness for at least
some extensions. Our main result tells us this is not a possibility for a large class
of more decisive rules. In Section 3.3 we examine the connection between Kelly-
strategyproofness and robustness, and present a number of su�cient conditions
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for a Condorcet extension to be robust. We identify several attractive social choice
functions that are robust Condorcet extensions for a large class of preferences.
This includes, in particular, the minimal extending set (Brandt, 2011) and its
coarsenings. We conclude in Section 3.4.

3.1 The Model

Let A be a finite set of alternatives, and N = {1, . . . , n} a finite set of agents.
A preference profile P = (�P

1 , . . . ,�P
n ) is a vector of strict linear orders over

A, where �P
i is the preference relation of agent i in the profile P . We write

⌫P ,e
i to denote agent i’s preference relation extended according to the preference

extension e—i.e., �P ,e
i = e(�P

i ). For two profiles P and P 0, and agent i 2 N ,
we write P =�i P 0, and say they are i-variants, if �P

j = �P 0
j for all j 2 N \ {i}.

L(A) denotes the set of all linear orders over A, and L(A)n denotes the set of
all profiles for n agents. We write N

P
aa0 = {i 2 N | a �i a

0} to denote the set of
agents who prefer alternative a to a

0.
For a profile P , ⌫P (with asymmetric part �P ) is the major-

ity relation for P and is defined such that a ⌫P
a
0 if and only if

|{i 2 N | a �P
i a

0}| � |{i 2 N | a0 �P
i a}|, for all a, a0 2 A. An alternative a 2 A

is a Condorcet winner in profile P if it defeats every other alternative in a pair-
wise majority contest, meaning a �P

a
0 for all a0 2 A \ {a}. We define DCondorcet

as the set of all profiles with a Condorcet winner. We say a relation ⌫ over A

is complete if for all a, b 2 A it is the case that a ⌫ b or b ⌫ a. A relation � is
connex if a � b or b � a for all distinct a, b 2 A. Note that the majority relation
of any profile is complete, and any individual preference relation is connex. We
write top(�) to denote the maximal element of the strict linear order �.

An irresolute social choice function (SCF) f is a mapping from profiles to
nonempty subsets of alternatives:

f : L(A)n ! 2A \ {;}

To avoid having to break majority ties, we will most of the time focus on SCFs
for odd n. Of course we do not strictly speaking need odd n, but rather that
profiles input to the function have a strict majority relation. We will explicitly
mention when we talk about profiles with an even number of agents. A SCF
f is a Condorcet extension, or is Condorcet-consistent , if it returns (only) the
Condorcet winner whenever one exists.

For irresolute SCF, the size of the set of winning alternatives is an important
consideration. All things being equal, it is preferable that the SCF does not
outsource the decision-making to a tie-breaking mechanism, but rather does most
of the work of selecting a winner itself. More simply put, we would rather a SCF
return small sets more often than it returns large ones. Of course, an irresolute
SCF cannot always avoid tie-breaking—a single winner will often need to be
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chosen from the outcome using some tie breaking rule—but the SCF should ideally
break as many ties as possible before an outside tie-breaking method is applied.
As an example of a rule that returns quite large sets, take the rule that returns
the Condorcet winner if one exists, and returns the whole set of alternatives
otherwise. While this is clearly a Condorcet extension, it is a very indecisive
rule, as it often results in many ties in the outcome.

Recall that a resolute SCF always returns a singleton. In order to quantify
one aspect of how decisive an irresolute rule is, we define a weaker notion of
resoluteness. We say f is weakly resolute if there exists a profile P 2 L(A)n \
DCondorcet for which |f(P )| = 1. So, a rule is weakly resolute if it sometimes
returns a singleton for a profile without a Condorcet winner. For some SCFs, we
can directly compare how decisive they are relative to each other. A SCF f is a
refinement of f 0 if for all profiles P 2 L(A)n it is the case that f(P ) ✓ f

0(P ),
meaning f always returns a subset of f 0. If f is a refinement of f 0, we say f

0 is a
coarsening of f . If a rule is a refinement of another, it is clearly the more decisive
of the two.

3.1.1 Tournaments and Tournament Solutions

A tournament T is a pair (S,�T ), where S is a set of nodes (or alternatives) and
�T is an asymmetric and connex relation over S, which we call the dominance
relation of the tournament. For a set S, we denote by T (S) all tournaments on S.

For a tournament T = (S,�T ), we say an alternative a 2 S dominates a
0 2 S

in the tournament T if a �T
a
0. The dominion of a in T is defined as DT (a) =

{a0 2 S | a �T
a
0}, the set of alternatives it dominates. The set of dominators

of a in T is defined as DT (a) = {a0 2 S | a0 �T
a}, the set of alternatives that

dominate it. For S 0 ✓ S, we define the restriction �T
S0= {(a, a0) 2 S

0 ⇥ S
0 | a �T

a
0}, which is �T restricted to the set S 0. A subtournament of T = (S,�T ) is a

tournament (S 0
,�T

S0) where S
0 ✓ S. Thus, a subtournament of T is a subset of

the nodes in T , together with the edges between those nodes. We say ⇡ : S ! S
0

is an isomorphism between two tournaments T = (S,�T ) and T 0 = (S 0
,�T 0

) if
⇡ is a bijection, and a �T

a
0 , ⇡(a) �T 0

⇡(a0) for all (a, a0) 2 S ⇥ S.
We say a profile P 2 L(A)n induces tournament T = (A,�T ) if �P = �T .

So a profile induces a tournament if they range over the same alternatives, and
the strict part of the majority relation is exactly the dominance relation of the
tournament. Note that if a profile induces a tournament, the strict component
of the majority relation of that profile must be connex. As tournaments do
not speak about agents, we cannot directly talk about two tournaments being
i-variants for some agent i 2 N . Instead, we say two tournaments T = (A,�T )
and T 0 = (A,�T 0

) are single-agent variants, and write T =�1 T 0, if there exist a
set of agents N and profiles P ,P 0 2 L(A)n, for n = |N |, such that P =�i P 0 for
some agent i 2 N , and the profiles P and P 0 induce the tournaments T and T 0,
respectively.
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We say an element a 2 S is the Condorcet winner of the tournament T = (S,�T )
if DT (a) = ;. This corresponds to the notion of a Condorcet winner of a profile;
if a tournament has a Condorcet winner, that alternative will be the Condorcet
winner in any profile that induces this tournament. We write TCondorcet to refer to
the set of tournaments that have a Condorcet winner. A tournament solution F

is a mapping from tournaments to sets of alternatives, that does not distinguish
between isomorphic tournaments:

F : T (S) ! 2S \ {;}

So F (T 0) = {⇡(a) | a 2 F (T )} if ⇡ is an isomorphism between T and T 0. For
ease of reading, we sometimes write F (�T ) to mean F (S,�T ) when S is clear
from context.

A SCF f is equivalent to a tournament solution F if f(P ) = F (A,�P ) for
all P 2 L(A)n. Note that the majority relation of this profile P must be a
strict order, as the SCF f is defined for odd n only. In a slight muddling of
terminology, we will refer to SCFs that are equivalent to tournament solutions as
tournament-solution SCFs.

Tournament solutions roughly correspond to Fishburn’s C1 functions (Fish-
burn, 1977), which require only the information in the majority graph to de-
termine the winners. More precisely, tournament-solution SCFs correspond to
neutral C1 functions. A SCF satisfies neutrality if for any profile P and any
permutation ⇡ : A ! A it is the case that f(⇡(P )) = ⇡(f(P )). This is because
tournament solutions do not distinguish between isomorphic tournaments, and
therefore do not favour any alternatives over others. While it is sometimes as-
sumed that tournament solutions are Condorcet-consistent, we will not impose
this restriction. We do, however, only consider Condorcet extensions in this chap-
ter.

3.1.2 Weighted Tournaments

Some of our results also extend to weighted tournament solution SCFs. These cor-
respond to neutral C2 functions under Fishburn’s classification (Fishburn, 1977),
and require the strength of the majorities as input to determine the winner. First,
let’s define what we mean by a weighted tournament. A weighted tournament is
a pair (S,W ) where S is a set of nodes, and W : S ⇥ S ! Z is a weight function
such that W (a, a) = 0. Alternatively, we can think of this as a graph where each
edge has a weight. For any profile P we can define a corresponding weighted
tournament. We first define the majority margin m

P (a, a0) of an alternative a

over another alternative a
0, relative to a profile P . The majority margin tells us

the di↵erence between the number of agents who prefer a to a
0 and the number

of agents who prefer a0 to a:

m
P (a, a0) = |{i 2 N | a �P

i a
0}|� |{i 2 N | a0 �P

i a}|
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The weighted tournament corresponding to P is then T = (A,W ) where W is
such that W (a, a0) = m

P (a, a0) for all a, a0 2 A such that a 6= a
0. Note that this

entails W (a, a) = 0.
We say a weighted tournament solution F

0 is the weighted counterpart to a
tournament solution F if the two functions agree whenever all edges with posi-
tive weight have the same weight (and as a consequence all edges with negative
weight have the same weight). More formally, for a tournament T = (A,�T ) and
weighted tournament T 0 = (A,W ) where W (a, a0) = k for some k > 0 if and only
if a �T

a
0, it is the case that F (T ) = F

0(T 0).

3.1.3 Particular Tournament Solutions

We have already seen the Copeland rule in action in Chapter 1, but we now define
the Copeland tournament solution—which corresponds to the Copeland SCF—
formally. The Copeland score of an alternative in a tournament is the number
of other alternatives it dominates. The Copeland rule selects those alternatives
with the highest Copeland scores (Copeland, 1951). Thus, Copeland selects those
alternatives with the largest dominion.

FCop(T ) = argmax
a2A

|DT (a)|

Another prominent SCF is the Slater rule. For a tournament T , we define the
Slater set as Sla(T ) = argmax

�2L(A)
|�\�T |. The Slater tournament solution is then

defined as follows.

FSla(T ) = {top(�) | � 2 Sla(T )}

The Slater rule returns the top element of those linear orders that are closest to
�T . In other words, Slater “flips” the smallest number of edges in the tournament
until we reach a linear order, and then returns the maximal alternative of the
linear orders reached by a minimal number of flips.

3.3. Example (Copeland and Slater). Let T be the tournament below.

We first determine the winners under the Copeland rule. Both and are each
dominated by a single other alternative and they are the only such alternatives.
Thus, these are our Copeland winners. Note however that, while we can reverse
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the edge ( , ) to obtain a Condorcet winner, the resulting tournament (bottom
left, with reversed edge represented as dashed) will still have a 3-cycle comprising
, , and . On the other hand, the tournament resulting from reversing the

edge ( , ) (bottom right) is cycle-free.

We conclude that is not a winner under Slater, while is, and is in fact the
only winner. M

We now move on to two SCFs with slightly more complex definitions. First,
we will need the notion of a maximal transitive subtournament. A tournament
T 0 = (S 0

,�T 0
) is a maximal transitive subtournament of T = (S,�T ) if

1. T 0 is a subtournament of T ,

2. �T 0
is a transitive relation, and

3. there is no other transitive subtournament (S 00
,�T 00

) of T such that S 0 ⇢ S
00.

We write T̂ to denote the set of all maximal transitive subtournaments of tourna-
ment T . Note that if a tournament T has a Condorcet winner, it will be the max-
imal element of all maximal transitive subtournaments.1 The Banks set (Banks,
1985) is the set of maximal elements of all maximal transitive subtournaments of
a tournament:

FBa(T ) = {top(�T
S ) | (S,�T

S ) 2 T̂ }.

Because the Condorcet winner will top all maximal transitive subtournaments,
the Banks set is a Condorcet extension.

A set S ✓ A is a FBa-stable set of a tournament T if a 62 FBa(S [ {a},�T
S[{a})

for all a 2 A\S. A FBa-stable set of a tournament T is minimal if there is no FBa-
stable set S 0 of T such that S 0 ⇢ S. The minimal extending set FME(T ) (Brandt,
2011) of a tournament T is the union of all minimal FBa-stable sets of T :

FME(T ) =
[

{S ✓ A | S is a minimal FBa-stable set of T }.

We give an example to shed some light on these definitions.

1As the existence of a Condorcet winner does not imply no cycles are present, there may
indeed be several maximal transitive subtournaments.
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3.4. Example. In the tournament T below, the two maximal transitive sub-
tournaments are indicated using darker edges. It is clear that the subtourna-
ments are transitive, and they are both maximal; adding the last alternative
will break transitivity. From examining these subtournaments, we can see that
FBa(T ) = { , }.

This tournament has two minimal FBa-stable sets: { , , }—because 62
FBa(T ), and { , , }—because 62 FBa(T ). FME will output the union of
these sets: FME(T ) = { , , , }. Note that the set { , , } is not FBa-
stable, as 2 FBa(T ). M

3.1.4 Particular Weighted Tournament Solutions

We now define the Kemeny rule (Kemeny, 1959) as our first example of a weighted
tournament solution and an example of a rule that is a weighted counterpart of
a tournament solution—Slater. More precisely, we define the equivalent Kemeny
SCF. For a profile P , we define the Kemeny set as Kem(P ) = argmax

�2L(A)

P
i2N

|�\�i|.

The Kemeny SCF is then defined as follows.

fKem(P ) = {top(�) | � 2 Kem(P )}
Where Slater tries to flip the smallest number of edges needed to reach a linear
order, the Kemeny rule looks to reach a linear order by flipping a set of edges
with the smallest sum of weights possible. It then returns the top element of
those orders.

3.5. Example (Kemeny). Let T be the weighted tournament below, which is a
weighted counterpart to the tournament we saw in Example 3.3. We omit the
weights for edges where the weight equals 1.

3

3 3

3

Recall that is the sole winner under Slater and that we arrive at this winner
after reversing an edge with weight 3 (dashed edge in weighted tournament on
the left below).
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3

3 3

3

3

3 3

3

However, there is a linear order that requires us to reverse two edges each with
weight 1 (dashed edges in weighted tournament on the right below). As Kemeny
tries to minimise the weight of edges reversed until arriving at a linear order, we
see that the rule will return as the sole winner. M

A second well-known weighted tournament solution is the ranked pairs rule
FRP (Tideman, 1987). Intuitively, FRP orders pairs of alternatives by the strength
of the majority margins, then iteratively builds a linear order, starting with pairs
of alternatives with a high majority margin. If we look at a weighted tournament,
this amounts to adding (one of) the edge(s) with highest weight. We continue
adding edges from highest to lowest weight whenever adding an edge does not
create a cycle. We now formally define this iterative process. For any weighted
tournament T , and any order p1, . . . , p(m2 )

, where pk is an edge in T such that

that W (pk) � W (pk+1) for k 2 [1,
�
m
2

�
� 1], ranked pairs proceeds as follows. Let

�0 = ;. At step k, where pk = (a, b):

• �k = �k�1 [ {(a, b)} if �k�1 [ {(a, b)} is acyclic,

• �k = �k�1 [ {(b, a)} if �k�1 [ (a, b)} contains a cycle.

This process will terminate after step
�
m
2

�
, and top(�(m2 )

) 2 FRP(T ). Note that

because two edges may have the same weight, there can be several orders of edges
that satisfy our requirement. Thus, the iterative process may result in di↵erent
orders depending on which edge we look at first. The definition for ranked pairs
becomes much clearer with an example.

3.6. Example (Ranked Pairs). Consider the weighted tournament below. We
omit weights where they equal 1. We want to determine the winners under the
ranked pairs rule.

5

5 3

3
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We start the iterative process by adding the two edges with weight 5 as they do
not create a cycle. We then choose one of the edges with weight 3. This leads
to a “branching” depending on which edge we choose. We use dashed lines to
indicate those edges that we have reversed to prevent cycles.

5

5

5

5 3

5

5 3

5

5

3
5

5 3

3
5

5 3

5

5 3

5

5 3

5

5 3

5

5 3

3
5

5 3

3

5

5 3

3
5

5 3

3

We see that the iterative process returns two unique linear orders. This gives us
two winners: and . M

3.1.5 Robust Condorcet Extensions

Recall that we use ⌫̊P
i to refer to agent i’s preferences over sets of candidates. We

say an irresolute SCF f is Condorcet-manipulable by agent i in profile P if there

exists another profile P 0 =�i P such that f(P 0) ⌫̊P
i f(P ) and P 2 DCondorcet.

We are now ready to present our central definition.
A SCF f is a robust Condorcet extension under a preference extension e if

f is Condorcet-consistent and not Condorcet-manipulable in any profile P 2
DCondorcet by any agent i 2 N with preferences ⌫̊P

i = e(�P
i ).

We sometimes write that a SCF is robust to mean that it is a robust Condorcet
extension, as robustness is a property of Condorcet extensions. So a SCF is robust
under a certain preference extension, if it is a Condorcet extension, and it is not
Condorcet-manipulable by any agent whose preferences over alternatives have
been extended to sets of alternatives according to that extension.

While robustness is a weak strategyproofness requirement, it also speaks about
how well a rule can preserve Condorcet winners. A robust Condorcet extension
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ensures that, if the truthful profile has a Condorcet winner, then it is a weakly
dominant strategy for all agents to report their true preferences, thus ensuring
that no Condorcet winner loses that designation because of strategic manipula-
tion. A robust Condorcet extension therefore ensures that profiles with Condorcet
winners are, in a sense, stable. We give an example of a Condorcet manipulation
of the Copeland SCF to demonstrate what failure of robustness looks like.

3.7. Example. Recall the example in Chapter 1 where three agents want to
choose a shape among five alternatives. We represent their preferences below with
each agent’s shapes ordered from top to bottom, starting with their favourite and
ending with their least preferred. For example, the first agent’s top choice is
while their least preferred shape is .The corresponding tournament is shown on
the right.

We use the Copeland rule to aggregate their preferences in order to choose a
winner. If all agents report their truthful preferences, the winning shape is . As
we saw in Chapter 1 however, if the first agent shu✏es her preference to place
below both and (represented here to the left of her initial preference), will
be the sole winner.

!
!
!

As the Copeland winner is the alternative with the smallest number of incoming
edges in the majority graph, would be the lone Copeland winner if agent 1 misre-
ports her preferences, meaning, Copeland incentivises a Condorcet-manipulation
in this profile. M

While the truthful profile in Example 3.7 has a Condorcet winner, Copeland is
not guaranteed to return this alternative as the winner (or even among them)
unless we assume all agents vote truthfully. In the same scenario, a robust Con-
dorcet extension would ensure no agent would have an incentive to misreport
her preferences, and thus ensure that the truthful profile and the reported profile
coincide.

3.1.6 Relation to Domain Restrictions

One consequence of a Condorcet extension being robust is that it is not manipula-
ble on profiles that fall within several known domain restrictions. This is because
many restrictions are subsets of DCondorcet. We define two of the most well known
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such restrictions here—one based on an ordering of the alternatives and one based
on an ordering of the agents. These domain restrictions are examples of types of
structures that may arise naturally in many contexts where agents are asked to
rank a set of alternatives.

• Given a linear order . over A, we say �i is single-peaked with respect to
. if for all alternatives a, a

0 2 A such that either top(�i) . a . a
0 or

a
0
. a . top(�i), we have a �i a

0. A profile P is single-peaked whenever
there exists a linear ordering . of the alternatives such that for every i 2 N ,
�i is single-peaked with respect ..

• Given a linear order . of the agents, a profile P is single-crossing with
respect to . if for every pair of alternatives a, a0 2 A we have that NP

aa0 and
N

P
a0a are intervals of the order ..

We give an example of a profile that is both single-peaked and single-crossing.

3.8. Example. Recall the example from Chapter 1 where agents gave their pref-
erences over t-shirt sizes. We examine a variant of this scenario here. Three agents
have expressed their preferences over t-shirt sizes—small, medium, and large—in
the profile below, as they are going to place an order for group t-shirts. For
example, agent 1 prefers a size small to medium to large.

Agent 1: S � M � L
Agent 2: M � S � L
Agent 3: L � M � S

This profile is single-peaked along the small-to-large axis. In the figure on the left
we have represented the t-shirt sizes by circles—a small yellow circle, a medium
pink circle, and a large blue circle. Each agent’s preferences can be placed such
that there is a single-peak. The dashed line represents agent 1’s preferences where
the peak is the small size. The solid black line (agent 2’s preferences) has a single
peak at the medium. The dotted line represents agent 3’s preferences where the
peak is the large size. The profile is also single-crossing with respect to the order
Agent 1 . Agent 2 . Agent 3. In the figure on the right each agent’s preferences
are represented by a single column—for example the leftmost column is agent 1’s
preferences—small over medium over large. We can see that for any two sizes,
the lines representing them only cross a single time (take for example the blue
and yellow lines which cross when we move from agent 2 to agent 3). This means
that all agents who prefer blue over yellow will form an interval of the order.
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Of course we can imagine this same structure popping up in scenarios that concern
more serious topics. For example, agents preferences over tax rates might be single
peaked with regard to the low-to-high axis. M
Restricting the possible input to a social choice function can be a way to avoid
majority cycles as well as manipulation. All single-peaked and single-crossing
profiles have a Condorcet winner. Therefore, any positive result for the Condorcet
domain will hold for these domains as well. If we are considering a scenario
where the profile is expected to be single-peaked or single-crossing, for example,
robustness of a SCF can tell us that manipulation is unlikely to be a central
concern.

3.2 Failure of Robustness

As decisive social choice functions are often preferred to indecisive ones, the ex-
istence of a weakly resolute tournament solution that is also a robust Condorcet
extension would be a welcome result. Unfortunately, we will see that this goal
is not achievable. We present a first impossibility result, showing there is no
function that can meet our robustness requirement for all preference extensions.

3.9. Proposition. For m � 3 and n > 1, no (weighted) tournament-solution
SCF is robust under all preference extensions.

Proof: Let A = {a1, . . . , am} and let f be a Condorcet-consistent SCF equivalent
to the weighted tournament solution F , and let n be odd. We show that there
must exist some preference over sets of alternatives such that F fails robustness.
To that end, suppose agent 1’s preferences over sets of alternatives ⌫̊1 are such
that X �̊1 Y if

• |X| > 1 and |Y | = 1, or

• X = {x} and Y = {y} for some x, y 2 A s.t. x � y.

These preferences satisfy our requirements for preference extensions.
Let P be the profile shown below, with the induced weighted tournament T

depicted below that. We have omitted the weights, but it is easy to see that all
edges have weight 1.

a3

a1

!
!

agent 1 agent 2 agent 3 n�3
2 agents n�3

2 agents

a4 a1 a3 a1 am
... a2 a1 a2 am�1

am a3 a2 a3 am�2

a2 a4 a4 a4 am�3

a1
...

...
...

...
a3 am am am a1
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a1 a2

a3

a4
...
am

Note that W (a1, x) = 1 for all x 2 A \ {a1}, W (a2, x) = 1 for all x 2 A \ {a1, a2},
and W (a3, x) = 1 for all x 2 A \ {a1, a2, a3}. As f is a Condorcet extension,
f(P ) = {a1}.

Let P 0 =�1 P , where a3 �P 0
1 a1 (depicted on the left of the profile), meaning

agent 1 reverses the edge (a1, a3) in the induced tournament T 0 by reversing the
order of these alternatives in her ranking. Note that this is the case because
W (a1, a3) = 1 meaning a single agent has the power to reverse this edge in the
tournament. The weighted tournament T 0, induced by P 0, consists of a 3-cycle
where all edges in the cycle have the same weight. This means any tournament
that results from permuting these three alternatives would be isomorphic to T 0.
The three alternatives a1, a2, and a3 must therefore be treated symmetrically by
F and any SCF f corresponding to F . In other words, either a1, a2, a3 2 f(P 0)
or a1, a2, a3 62 f(P 0). There are two cases we need to consider:

• |f(P 0)| > 1. If this is the case, we know f(P 0) �̊i f(P ).

• |f(P 0)| = 1. If this is the case, the single winner cannot be in {a1, a2, a3}.
But for any other alternative x, agent 1 strictly prefers x to a1.

In either case, agent 1 will be able to successfully perform a Condorcet-
manipulation in the profile P , meaning f cannot be robust. 2

We can state an equivalent result for even n. As we are not guaranteed that the
(weighted) majority is a tournament when n is even—given that there may be
ties in the majority relation, we state the result for SCFs directly.

3.10. Proposition. For m � 3 and n being even, no neutral, Condorcet-
consistent C2 SCF is robust under all preference extensions.

Proof: Let A = {a1, . . . , am} and let f be a neutral, Condorcet-consistent C2
SCF. Suppose agent 1’s preferences over sets of alternatives ⌫̊1 are such that
X �̊1 Y if and only if one of the following holds:

• |X| > 1 and |Y | = 1, or

• X = {x} and Y = {y} for some x, y 2 A s.t. x � y.
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These preferences are the same as those in the proof of Proposition 3.9.
Let P be the profile shown below.

agent 1 n
2 � 1 agents n

2 agents

am a1 am
...

...
...

a1 am a1

Note that am is a Condorcet winner in P , so f(P ) = {am}. Let P 0 be the profile
where agent 1 reverses her preference order, and no other agent changes their
preferences. Note that when agent 1 reverses her submitted order, all majority
margins will be exactly 0, meaning all alternatives will be tied, and the resulting
weighted majority graph will simply be the complete graph where all edges have
weight 0. Thus f(P 0) = A, meaning f(P 0) �̊i f(P ). So as was the case in
Proposition 3.9, agent 1 will be able to successfully manipulate in a profile with
a Condorcet winner, meaning f cannot be robust. 2

As no SCFs can be robust for all preference extensions, we redirect our search to
those that may be robust for some preference extension. We first recall a result
by McGarvey (1953), which we will use to prove the main result of this section.
We include the proof for the sake of completeness.

3.11. Theorem (McGarvey, 1953). Let A be a set of alternatives, and let � be
a complete relation over A. Then there is a profile P 2 L(A)n for some even n

such that ⌫P = �, and if a > b, there are n
2 +2 agents ranking a over b in P .

Proof: For a set of alternatives A and a relation � (with strict component >)
over A, the profile P is constructed for an even number of agents N = {iab, jab |
(a, b) 2 >} as follows. For every pair of alternatives such that a > b, there are
two voters iab and jab, with the following preferences:

a �P
iab

b �P
iab

x1 �P
iab

· · · �P
iab

x|A|�2 and

x|A|�2 �P
jab

· · · �P
jab

x1 �P
jab

a �P
jab

b,

Here {x1, . . . x|A|�2} = A \ {a, b}. For each agent in N \ {iab, jab} who prefers
a over b, there will be exactly one corresponding agent who prefers b over a,
meaning in the profile P exactly n

2 +2 agents prefer a to b. As this holds for any
pair of alternatives, it is clear that ⌫P = �. 2

We now show that weakly resolute rules fail robustness for all preference exten-
sions, and further, that they are the only rules that do so. This strengthens an
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T 0

xyz

· . . . ·

.
.
.

S

T
xyz

· . . . ·

.
.
.

S

⌫M

xyz

· . . . ·

.
.
.

S

flip S

�P
i to �P 0

i

+i

Figure 3.1: Tournaments T and T 0—with winners marked in bold—and relation
⌫M from the proof of Theorem 3.12. Ties are represented by bidirectional arrows.

observation from Brandt et al. (2016) stating that all weakly resolute rules are
Kelly-manipulable.

3.12. Theorem. A tournament-solution SCF is weakly resolute if and only if it
fails robustness under all preference extensions.

Proof: For the right-to-left direction we prove the contrapositive. That is, we
suppose f is a tournament-solution SCF that fails weak resoluteness and show
it must be robust under some preference extension. To see that this must be
the case, note that any rule failing weak resoluteness never returns singletons
outside DCondorcet. This means the preference extension ranging only over sin-
gletons would never (strictly) favour a larger set over the singleton set with the
Condorcet winner.2 As f will always return a set larger than a singleton outside
the Condorcet domain, Condorcet-manipulation under these preferences is not
possible, thereby making f robust under this preference extension.

For the left-to-right direction, let A be our set of alternatives. Suppose f is
a weakly resolute tournament-solution SCF, equivalent to a tournament solution
F . We show it is possible for an agent to manipulate f from a profile with a
Condorcet winner under an arbitrary preference extension e, meaning f cannot
be robust under any preference extension.

We first define two tournaments T and T 0, which we will show are single-agent
variants. As F is equivalent to a weakly resolute SCF, there is some tournament
T 0 = (A,�T 0

) 2 T (A) \ TCondorcet such that F (T 0) = {x} for an alternative
x 2 A. As x is not a Condorcet winner in T 0, there must be some y 2 A such

2Note that all relevant manipulations here would be between singleton outcomes, meaning
we are taking advantage of strategyproofness of the Condorcet, or majority, rule (Campbell and
Kelly, 2003).
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that y �T 0
x, and by the same reasoning, there must be at least one alternative

z 2 A such that z �T 0
y. We conclude that the nodes {x, y, z} and the edges

(y, x), (z, y) must be present in T 0. For a visual representation, see Figure 3.1.
Let S = DT 0(y) be the dominators of y in T 0. We define a second tournament

T = (A,�T ), where y �T
a for all a 2 S, and �T agrees with �T 0

on all other
pairs of alternatives. In other words, we simply reverse all incoming edges of y
in T 0 to obtain T . Note that this makes y a Condorcet winner in T , meaning
F (T ) = {y}.

We now show that T and T 0 are single-agent variants. We start by construct-
ing a profile P that induces T . To this end, consider a complete relation ⌫M

(with strict component �M , and symmetric component ⇠M) over A, such that
⌫M = �T [ {(a, y) | a 2 S}. This means ⌫M and �T agree on all pairs
of alternatives except those for which T and T 0 di↵er. In those cases, ⌫M gives
a tie between the alternatives. By Theorem 3.11, we know there exists a profile
P ⇤ = (�P ⇤

1 , . . . ,�P ⇤
n ) with majority relation ⌫M . Further, we know that we can

construct P ⇤ with an even number of agents n, such that for any a, a
0 2 A, where

a �M a
0, there are exactly n

2 + 2 agents who prefer a to a
0 in P ⇤. We use P ⇤ to

construct the profile P . Let P = (�P ⇤
1 , . . . ,�P ⇤

n ,�P
i ), where x �P

i y �P
i a for

all a 2 A \ {x, y}.
To see that P induces tournament T , note that for any pair of alternatives

(a, a0), either

(i) a �M a
0—meaning a �T

a
0, and n

2 + 2 prefer a to a
0 in P ⇤, or

(ii) a ⇠M a
0—meaning a

0 = y, and a 2 S (or vice versa).

If (i) is the case, a majority of agents in P will prefer a to a
0 regardless of agent

i’s preferences; n
2 + 2 agents still form a strict majority of n+ 1 agents. If on the

other hand (ii) is the case, we know from agent i’s preferences that y �P
i a. As

these alternatives were tied in P ⇤, adding agent i to the profile breaks these ties
in favour of y, so a majority of agents in P will now prefer y to a. Thus the only
di↵erences between ⌫M and ⌫P relate to the pairs on which ⌫M and ⌫T di↵er.
As the changes agree with �T , this makes �T = �P , meaning P induces T .
As F (T ) = {y}, we can conclude that f(P ) = {y}.

It now remains to construct a profile P 0 such that P =�i P 0 and P 0 induces
T 0. Let P 0 = (�P

1 , . . . ,�P
n ,�P 0

i ), and x �P 0
i a �P 0

i y, for all a 2 A \ {x, y},
meaning agent i moves y to the bottom of their ranking. Clearly, P 0 is an i-
variant of P . In the tournament induced by P 0, it must be the case that the
edges (a, y) for all a 2 S are present as the majority on these alternatives is
dictated by agent i (and all other edges remain as they were in T ). As these
edges correspond exactly to those where T and T 0 di↵er, P 0 must induce T 0, and
as F (T 0) = {x} we conclude f(P 0) = {x}.

Finally, let ⌫P ,e
i be agent i’s true preferences over sets of alternatives,

extended according to e. It is immediately clear, as both outcomes are singletons
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and x �P
i y, that f(P 0) �P ,e

i f(P ). As P has a Condorcet winner, this
constitutes a Condorcet-manipulation, meaning f cannot be robust under
preference extension e. 2

We note that Theorem 3.12 applies to two of the most prominent Condorcet
extensions—Copeland, and Slater. We now show that we can extend this result
to all weighted counterparts of Slater, among them the Kemeny rule and the
ranked pairs rule.

3.13. Proposition. Any Condorcet-consistent weighted counterpart to Slater
fails robustness.

Proof: Let P be the 3-agent profile to the left with the corresponding weighted
tournament to the right. Let f be a Condorcet-consistent weighted tournament
solution SCF that corresponds to Slater.

Agent 1: c � a � b � d � e
Agent 2: a � c � e � d � b
Agent 3: e � b � d � a � c

a b

e c

d

Note that while we have omitted the weights in the graph, every edge in the
tournament has weight 1. Because a is the Condorcet winner, f(P ) = {a}. Let
P 0 be the profile where agent 1 submits the order c � b � d � a � e—meaning
she drops a below both b and d, and all other agents submit the same order
as in P . Note that by doing so, agent 1 reverses edges (a, b) and (a, d) in
the tournament, meaning there is no longer a Condorcet winner, though all
weights remain 1. It is easy to see that c is the Slater winner in the equivalent
(unweighted) tournament—reversing the edge (c, a) results in a linear order, and
this is the only order that is reachable with a single flip. As all weights in the
weighted tournament are 1, any weighted counterpart to Slater will therefore
also return c, so f(P 0) = {c}. This means that f(P 0) �̊1 f(P ), making this a
successful manipulation for agent 1 from a profile with a Condorcet winner. So
f cannot be robust. 2

Theorem 3.12 ceases to hold for even n, as the following shows. We will need the
following notion. An alternative a 2 A is a weak Condorcet winner in profile P if
for all a0 2 A we have a ⌫P

a
0. We now give an example of a Condorcet-consistent

C1 SCF that is robust for some preference extension.

3.14. Example (Robust C1 SCF for even n). We define a C1 SCF f and a pref-
erence extension e such that �̊i = e(�i) for some agent i, and f is robust under
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e. Let f be the following SCF. If there is a Condorcet winner a, then f returns
a, and only a. If there are any weak Condorcet winners, f returns the set of all
Condorcet winners. Otherwise, f returns A. We define e as follows: X �̊i Y if
and only if X = {x}, Y = {y}, and x �i y.

Let P be an arbitrary n-agent profile with a Condorcet winner a. Because a

is a Condorcet winner, we know that W (a, x) � 2 for any x 2 A \ {a}. Let P 0

be an i-variant of P . Clearly agent i cannot change her submitted preference in
a way that creates some alternative a0 2 A such that W (a0, a) > 0. This means a
remains a weak Condorcet winner in P 0. So it must be the case that a 2 f(P 0).
Thus it cannot be the case that f(P 0) �̊i f(P ) by definition of �̊i So f must be
a robust Condorcet extension under e. M

3.3 Robust Tournament Solutions

In this section, we present our robustness results for several tournament-solution
SCF, and their coarsenings. Our results hold for all weakly pessimistic extensions.

3.3.1 Relation to Kelly-Strategyproofness

While strategyproofness for, say, Gärdenfors preferences, is not easily satisfied,
there are several tournament-solution SCFs that have been shown to be strate-
gyproof for the Kelly preference extension (Kelly, 1977). Recall from Chapter 2
the definition of the Kelly extension: For any two sets X and Y in 2A \ {;},
X �k

Y if and only if x ⌫ y for all x 2 X and all y 2 Y , and there exists an
x 2 X and a y 2 Y such that x � y. We say a SCF f is Kelly-strategyproof if no
agent with Kelly preferences can successfully manipulate.

A SCF satisfying Gärdenfors-strategyproofness implies it also satisfies Kelly-
strategyproofness, as the former must exclude more cases of manipulation to be
satisfied. However, as robustness only requires taking into account comparisons
where at least one singleton set is present, we can use strategyproofness results
for Kelly preferences to show robustness for all weakly pessimistic extensions,
including Gärdenfors.

3.15. Proposition. If a Condorcet-consistent SCF f is Kelly-strategyproof,
then it is a robust Condorcet extension under any weakly pessimistic preference
extension.

Proof: Let f be a rule that is Kelly-strategyproof and let e be a weakly
pessimistic extension. That is, for any two profiles P and P 0, and any agent
i 2 N , if P 0 =�i P , then f(P 0) 6�P ,k

i f(P ). Suppose P has a Condorcet
winner, meaning f(P ) = {a} for some a 2 A. Because f(P 0) 6�P ,k

i f(P ), it
cannot be the case that all elements of f(P 0) are preferred to a. So either
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f(P 0) = f(P ) or there is some a
0 2 f(P 0) s.t. a �P

i a
0. It is then immedi-

ate from the definition of a weakly pessimistic extension that f(P 0) 6�P ,e
i f(P ). 2

Proposition 3.15 shows that we get robustness under weakly pessimistic prefer-
ences “for free” for Condorcet extensions known to be Kelly-strategyproof, such
as the bipartisan set and the minimal covering set (Brandt, 2015).

3.3.2 Minimal Extending Set & Beyond

In this section we show that robustness for Condorcet extensions diverges from
Kelly-strategyproofness, as we can find rules that satisfy the former while fail-
ing the latter. The minimal extending set FME is one of several tournament
solutions that can be defined based on this notion of stability. The top cycle
for example, is the union of all minimal CNL-stable sets (Brandt, 2011), where
CNL is the tournament solution returning the set of all Condorcet nonlosers—
meaning alternatives with at least one outgoing edge. The minimal extending set
is Kelly-manipulable. However, we show it is still robust under weakly pessimistic
preferences, and extend this result to all coarsenings of FME.

3.16. Theorem. FME is a robust Condorcet extension under all weakly pes-
simistic preference extensions.

Proof: For a set of alternatives A, and a set of agents N , let P =�i P 0 be
i-variant profiles for an agent i 2 N . Let P be such that x 2 A is the Condorcet
winner in P . Let T = (A,�T ) and T 0 = (A,�T 0

) be the (single-agent variant)
tournaments induced by P and P 0, respectively.

We assume FME(T 0) 6= FME(T ).3 Because of this, we know DT 0(x) is
nonempty, as the two outcomes cannot di↵er if x remains a Condorcet winner
in T 0. As P =�i P 0, any changes going from T to T 0 must be counter to agent
i’s preferences. This implies x �P

i a for all a 2 DT 0(x). So, all alternatives in
DT 0(x) are worse than x to agent i.

We want to show that there is some minimal FBa-stable set S of T 0, such that
S \DT 0(x) 6= ;. This would guarantee the existence of an alternative a 2 DT 0(x)
that is also in FME(T 0), precluding agent i with weakly pessimistic preferences
from preferring this outcome to FME(T ).

So suppose for contradiction that S is a minimal FBa-stable set of T 0 such
that S \DT 0(x) = ;. The only way this can be the case is if S ✓ DT 0(x) [ {x}.
We consider two cases.

Case 1: Suppose x 62 S. As x dominates all alternatives in DT 0(x), it will
dominate all alternatives in S, as S ✓ DT 0(x). This means x is a Condorcet
winner in the tournament (S [ {x},�T 0

S[{x}), and thus, x 2 FBa(�T 0
S[{x}). So S

cannot be a FBa-stable set, contradicting our assumption that it is a minimal one.

3If no such single-agent variants exist, robustness of the rule would immediately follow.
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Case 2: Suppose instead x 2 S. To reach our contradiction, we want to show
there exists an alternative a 2 DT 0(x) such that a 2 FBa(�T 0

S[{a})—which would
imply S is not FBa-stable. We use an algorithm proposed by Hudry (2004) to
find such an alternative a 2 FBa(�T 0

S[{a}). We start at step 1 with a transitive

subtournament of (S [ {a},�T 0
S[{a}). Let S1 = ({x, a},�T 0

{x,a}), for some a 2
DT 0(x). We label all remaining elements of S—which are all elements ofDT 0(x)—
in any order from 2 to |S|. At step k, we look at the alternative labelled k, and
add it to the tournament Sk�1 to create Sk, if it does not break transitivity to do
so. As a dominates x, and x dominates all a0 2 DT 0(x), adding any alternative
outside the dominion of a will break transitivity, as it will create a 3-cycle. Thus,
at any step, an alternative a

0 2 DT 0(x) will only be added to the tournament if
a �T 0

a
0. When the algorithm terminates after iterating through all alternatives,

we will be left with a subtournament S|S| of (S[{a},�T 0
S[{a}). It is easy to see the

resulting tournament will be transitive, and it will indeed be a maximal transitive
subtournament of (S[{a},�T 0

S[{a}), as no further alternatives can be added to the
tournament without breaking transitivity. Importantly, the maximal element of
the resulting subtournament will be a, meaning a 2 FBa(�T 0

S[{a}). Thus, S cannot
be an FBa-stable set, which contradicts our assumption that it is a minimal one.

As we have shown that no subset of DT 0(x) [ {x} can be a FBa-stable set
of T 0, any minimal FBa-stable set must contain at least one element of DT 0(x),
meaning it cannot be the case that FME(T 0) �P ,e

i FME(T ) when e is a weakly
pessimistic preference extension. 2

In terms of decisiveness, FME is among the more decisive tournament solutions
that fail weak resoluteness, as it is a refinement of several prominent tournament
solutions, including the top cycle and the Banks set (Brandt et al., 2017). We
now show that all coarsenings of a robust SCF inherit the robustness property.

3.17. Lemma. If a Condorcet-consistent SCF f is robust under weakly pes-
simistic preferences, then all Condorcet-consistent coarsenings of f are robust
under weakly pessimistic preferences.

Proof: Let f be a SCF that is robust under weakly pessimistic preferences,
and let f

0 be a Condorcet-consistent coarsening of f . Let P be a profile with
a Condorcet winner a. Note that f(P ) = f

0(P ) = {a} as both are Condorcet
extensions.

Suppose P 0 is an i-variant of P for some agent i 2 N . Because f is robust
under weakly pessimistic preferences, either (i) there must be some a

0 2 f(P 0)
such that a �P

i a
0, or (ii) f(P ) = f(P 0).

If (i) is the case, then as f(P 0) ✓ f
0(P 0), a0 is also an element of f 0(P 0). As

f
0(P ) = {a}, we know a

0 2 f
0(P 0) \ f

0(P ), meaning by definition of a weakly
pessimistic extension that it cannot be the case that f 0(P 0) �P ,e

i f
0(P ) for any

weakly pessimistic extension e.
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If (ii) is the case, we know a must also be the Condorcet winner in P 0

as f cannot satisfy weak resoluteness if it is robust under any preference
extension, and therefore does not return singletons outside the Condorcet
domain. Since f

0 is also a Condorcet extension, we know f
0(P 0) = {a}, meaning

f
0(P 0) 6�P ,e

i f
0(P ). 2

3.18. Corollary. Condorcet-consistent coarsenings of FME are robust under
weakly pessimistic preferences.

Corollary 3.18 follows from Lemma 3.17 and Theorem 3.16, and it establishes
the robustness of the Banks set. Note that Corollary 3.18 is not restricted to
tournament-solution SCFs, but holds for all Condorcet-consistent SCFs.

3.4 Summary

In this chapter, we have introduced the strategyproofness-related notion of a
robust Condorcet extension. We have argued that Condorcet extensions that are
robust are preferable to those that are not, as we can trust that they will return
true Condorcet winners when they exists. We have introduced an axiom—weak
resoluteness—and shown that no weakly resolute tournament solution can be a
robust Condorcet extension. Finally, we have shown that the minimal extending
set is a robust Condorcet extension under all weakly pessimistic preferences, and
have extended this result to all coarsenings of FME.

We have argued that in lieu of searching for fully strategyproof rules, a fruitful
endeavour is to explore immunity against more specific manipulations that may
interact with, and compromise, other desirable properties satisfied by manipulable
social choice functions. We have scratched the surface in this chapter, but have
limited our exploration to robustness of irresolute rules in general, and (weighted)
tournament solutions in particular. These are, of course, only a small class of all
Condorcet extensions, and it remains to be seen if similar results can be obtained
for other classes.





Chapter 4

Strategyproofness on Party-List Profiles
in Multiwinner Voting

In multiwinner voting, agents vote on a set of candidates with the goal of electing
a committee, or a subset of the candidates (Faliszewski et al., 2017). Applications
for multiwinner voting rules range from parliamentary elections, to determining
a list of nominees for an award, to online recommender systems. In this chapter
we study strategyproofness of approval-based multiwinner voting rules (Kilgour,
2010). In this setting, each agent is asked to provide a subset of candidates that
she approves of, and a set of winning candidates is chosen based on the approvals
of the agents. We will look at rules that return committees of a fixed size k,
which is a standard assumption in the literature. In many settings, however, it
can also make sense to allow for committees of various sizes (Faliszewski et al.,
2020; Kilgour, 2016), for example as an alternative to arbitrarily breaking ties.

As with other areas of social choice theory, an important aspect of studying
multiwinner voting rules is determining their susceptibility to strategic manip-
ulation. In recent years, we have seen impossibility results for approval-based
multiwinner voting rules demonstrating that strategyproof rules are di�cult to
come by if we would like them to ensure some level of proportional representation.
Peters (2018) establishes that no resolute approval-based rule—one that always
returns a single winning committee—can be both proportional and strategyproof,
even for very weak notions of proportionality and strategyproofness. Kluiving
et al. (2020) show that an impossibility still remains when moving to irresolute
rules. Our aim in this chapter is to examine whether there are any domain-specific
“escape routes” for these impossibility results in the approval-based multiwinner
voting framework. We devote focus in particular to a type of manipulation that
is known as free-riding (Hylland, 1992; Schulze, 2004) (or subset-manipulation).

43
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This is a simple and often successful way of manipulating multiwinner elections.
Free-riding describes when an agent omits some alternative from their set of ap-
proved candidates, and in doing so, obtains a better outcome for herself. We also
study what we call superset-manipulation, and disjoint-set-manipulation, defined
analogously. We dip our toe in the water with an example of free-riding. Here
we look at proportional approval voting (PAV). PAV maximises the total utility
of agents, where an agent’s utility for a committee containing ` of her approved
candidates is determined by the following formula.

1 +
1

2
+

1

3
+ · · ·+ 1

`

4.1. Example (Manipulating by Free-Riding). Consider the profile depicted
below. Here, agents 1, 2, and 3 all approve the candidates a, b and c, while voters
4 and 5 approve candidates b, c, and d. Suppose we want to elect a committee
comprising three candidates. In this profile, PAV will elect the committee
{a, b, c} as the unique winning committee.

a b c d

1
2
3

4
5

If the last voter, agent 5 drops b and c from her approval set (represented in
the lighter blue colour) and submits the approval set {d}, however, the unique
winner will be {b, c, d}—her most preferred committee. The candidates b and c

have enough support without agent 5, and dropping them from her approval set
results in the inclusion of candidate d as PAV attempts to ensure all voters are
represented in the outcome. Thus, agent 5 has an incentive to manipulate in this
profile by submitting a subset of her truthful approval set. M

Because strategyproofness results for approval-based multiwinner voting have
largely been negative, we consider weakening requirements to identify cases where
we can obtain positive results. We do this by considering strategyproofness on a
particular type of input—so-called party-list profiles. Intuitively, these are pro-
files where each candidate belongs to a single party, and agents approve of parties
as a whole rather than any subset of the candidates. Our focus here is to ex-
amine whether manipulation is possible from a party-list profile to any other
profile, not just those in the party-list domain. In particular, we look at a class of
multiwinner voting rules known as Thiele methods (Thiele, 1895; Janson, 2016).
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As we’ve seen in Chapter 3, honing in on a more well-behaved domain of pro-
files is a tried-and-true method for obtaining strategyproofness. Luckily for us,
such restricted domains have already been studied for approval-based profiles.
For example, Elkind and Lackner (2015) study a number of novel restrictions for
this setting, including the party-list domain. We will consider several of these
restrictions in more detail in Section 4.2.4.

Why do we care about strategyproofness on party-list profiles in particular?
In many multiwinner elections, particularly parliamentary elections, the system
used is a “closed-party” system that does not allow voters the freedom to pick
and choose candidates from across parties. Party-list profiles can also appear
in settings with lower stakes. A restaurant that only allows you to choose a
fixed three-course meal for the table, for example, rather than creating your
own from among all possible dishes is perhaps unknowingly creating “parties”
for diners to choose among (if each dish only appears in one three-course meal).
As we argued in Chapter 1, establishing barriers to manipulation on party-list
profiles is appealing as it provides an argument against restricting the input to
the voting rule. If your voting rule is strategyproof on party-lists you can do away
with restricting the input to the rule without incurring needless risk of strategic
voting. If the “true” profile is a party-list profile and we use a voting rule that
is strategyproof on party-list profiles, it will not matter whether we restrict the
domain of the voting rule. The reported profile will be the same, even under
the assumption that agents behave strategically. If the “true profile” is not a
party-list profile the reported profile will obviously di↵er if we only allow party-
list profiles as input as the true profile falls outside that domain. We know agents
cannot fully express their true opinion, and thus, the outcome cannot claim to
reflect the true opinions of voters. With no domain restriction, agents can fully
express their opinion on the candidates, though of course we run the risk of the
outcome being the result of a manipulation by a voter—even with a rule that
is strategyproof on party-list profiles. Of course, we cannot know ahead of time
whether the party-list domain is in fact expressive enough. Strategyproofness
on party-list profiles guarantees that we only risk strategic manipulation in the
unrestricted case if the domain restriction would not allow voters to express their
true opinion in the first place. Let us demonstrate this idea with an example.

4.2. Example. The country of Arrovia is holding a multiwinner election. They
have three parties—the circle party, the square party, and the triangle party. They
will use an approval-based multiwinner voting rule f that is strategyproof on
party-list profiles, and are deciding whether to restrict the domain of f . Through
opinion polling they have determined that there are two possible “truthful” pro-
files of approval ballots, though they are not sure which is the real one.

Let’s first look at the profile on the left—what we’ve called ‘possible world A’.
Here the first agent approves all circles, the second agent approves all triangles,
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and the third agent approves all squares. We assume that these are the truthful
opinions of the agents in this possible world.

• Suppose we restrict the domain of f , in this case to the party-list domain.
Because this is a party-list profile, we know that we will not run into any
problems by doing this.

• Suppose we do not restrict the domain of the voting rule. Then, because
f is strategyproof on party-list profiles, we can exclude the possibility of
manipulation.

A B

Thus, there is no benefit to restricting the input to f in this possible world.
Let us now look at the right profile—‘possible world B’. Again we suppose

this is a profile of truthful opinions in this possible world. Here the first agent
approves all circles, the second agent approves all triangles, and the third agent
approves all blue shapes. Note that this is not a party-list profile. The bottom
agent approves candidates from all parties (and there is no way to redefine the
parties to make this a party-list profile).

• Suppose we do not restrict the domain of f . Then it is possible that at least
one agent will have an incentive to manipulate. The reported profile may,
therefore, di↵er from this truthful one.

• Suppose we do restrict the domain of f to the party-list domain in an
attempt to prevent manipulation. Because this is a not party-list profile,
we can say with certainty that at least one agent must report an approval
set that is not their truthful one.

This example shows that restricting the domain of f will prevent manipulation,
but at the cost of limiting the voters ability to express their true opinion. Of
course we cannot know ahead of time which world is the real one. But if Arrovia
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uses a voting rule that is strategyproof on party-list profiles, the two systems—
restricted vs. unrestricted domain—would produce the same outcome if the truth-
ful profile is a party-list one. And if in fact the party-list ballots are not expressive
enough, the outcome of the non-restricted election will potentially better reflect
Arrovians’ interests (after all, there is no guarantee someone will manipulate on
all non party-list profiles). M

As mentioned, we will discuss three types of manipulation in this chapter. We
devote Section 4.3 to free-riding, and present strategyproofness results for a large
class of preferences. We then study superset-strategyproofness and disjoint-set-
strategyproofness in Section 4.4. While these types of manipulation are not as
well studied, they are natural extensions of the idea of free-riding. For superset-
and disjoint-set-strategyproofness, we are able to obtain results that are inde-
pendent of the preference extension. For optimistic agents, we are able to show
that Thiele rules are fully strategyproof on party-list profiles. We present these
results in Section 4.5. Sections 4.4 and 4.5 together demonstrate the interplay be-
tween the choice of preference extension and the strength of the strategyproofness
axioms we use. Our results for superset-strategyproofness hold for all strongly
reflective preference extensions, as this is a somewhat weak strategyproofness
axiom. In contrast, our positive result in Section 4.5 hold for a much stronger
strategyproofness axiom, but in turn pertains only to one particular preference
extension.

4.1 Preliminaries

Let C be a finite set of candidates, and N = {1, . . . , n} a finite set of agents or
voters—we will use these terms interchangeably. A profile A = (A1, . . . , An) is a
vector of approval sets, where Ai ✓ C is the set of candidates approved by agent i
in the profile A. The set of supporters N

A
a of a candidate a in profile A is the set

of agents who approve it—N
A
a = {i 2 N | a 2 Ai}. We write P(C) to denote all

subsets of C—in other words, all possible approval sets—and P(C)n to denote the
set of all profiles for n agents. We write Pk(C) to mean the set of all k-size subsets
of C. We will often call these subsets committees. For two profiles A and A0, and
an agent i 2 N , we write A =�i A0—and say they are i-variants—if Aj = A

0
j

for all j 2 N \ {i}. We restrict our attention in this chapter to manipulation
on party-list profiles. A profile A is a party-list profile if for all i, j 2 N , either
Ai = Aj or Ai \ Aj = ;.

4.1.1 Approval-Based Multiwinner Voting Rules

We define voting rules relative to an outcome of size k. An (irresolute) approval-
based k-committee rule f takes as input a profile A and returns a set f(A) of
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k-sized committees—or k-committees. Formally f is a function from profiles to
k-sized subsets of C:

f : P(C)n ! 2Pk(C) \ {;}

A resolute rule is one that always returns singletons. We will sometimes refer
to these functions as multiwinner voting rules (or simply voting rules), mainly
when k is clear from context. Note that our definition di↵ers from the common
approach of using a profile and target committee size as input to the voting rule.
In this alternate framework, it is not necessary to define a separate voting rule
for each k. Our results hold for either framework, as they do not depend on the
value of k.

The rules we will examine in this chapter are Thiele methods (Thiele, 1895;
Janson, 2016). Given a vector of weights w = (w1, w2, . . . ), we define the utility

u
A
i (C,w) =

|Ai\C|X

x=1

wx

of agent i for committee C, given the approval set Ai. Thew-score of a committee
C in a profile A is

u
A
N(C,w) =

X

i2N

u
A
i (C,w).

When the weight vector w is clear from context, we will omit it from the notation
and simply write u

A
i (C). A k-committee rule fw is a Thiele method (or Thiele

rule) if for a vector of nonnegative weights w = (w1, w2, . . . ), where w1 = 1
and wj � wj+1, and a profile A, the rule fw includes a committee C in the
outcome if and only if C is a k-committee with a maximal w-score in A.1 Thiele
methods are based on the notion of diminishing returns for the agents—the second
representative gained does not increase the agents’ utility as much as the first
representative. Thus, tasked with deciding whether to give one agent a second
representative or to give another agent their first, Thiele rules will never opt for
the former over the latter. Let us now define three well-known Thiele methods.

• Approval voting (AV) is the Thiele method defined by weight vector
(1, . . . , 1).

• Approval-based Chamberlin-Courant (approval-based CC) is defined by
weight vector (1, 0, . . . , 0).

• Proportional approval voting (PAV) is the Thiele method defined by the
weight vector (1, 12 ,

1
3 , . . . ).

1Note that while we require that w1 = 1, we can always rescale any weight vector where this
is not the case given that all weights are non-negative.
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4.3. Example (Outcomes of AV, approval-based-CC, and PAV). Suppose we
are looking for a committee of size 2. Consider the following profile of approval
ballots:

a b c d

1
4

5

2

6

3

AV will return the committee C = {b, c} as candidate b has 4 approvals, candidate
c has 3 approvals, and both a and d have only 2 approvals each. So u

A
N(C) =

0 + 1 + 0 + 2 + 2 + 2 = 7, and this is the highest possible sum of utilities.
Approval-CC on the other hand, will return the committees C1 = {a, b} and

C2 = {b, d} as these committees “represent” 5 agents each, while any other com-
mittee of size 2 “represents” only 4 agents. Let’s check the utilities for the
committee C1. Note that the utility of each agent can be either 0 or 1. So
u
A
N(C1) = 1 + 1 + 0 + 1 + 1 + 1 = 5. This is indeed the highest value we can get.

If we try to find a committee of size 2 that also represents agent 3, we have to
omit either a or b, each of which are the only possible representative for voters 1
and 2, respectively.

Finally, PAV will return the committees C1 = {a, b}, C2 = {b, c} and C3 =
{b, d}, which each have a “PAV score” of 5.5. For example {a, b} gives voter 4
utility 1.5—two of her approved candidates are included and so u

A
i (C1) = 1+ 1

2—
and gives voters 1, 4, 2 and 6 each utility 1, summing to a score of 5.5. It is easy
to check that any other committee of size 2 will have a lower score. For example,
the committee {a, c} has score 4.5, again voter 4 gets utility 1.5, but there are
now only 3 other voters who each get utility 1—voters 1, 4 and 6. M

4.1.2 Proportionality and Voter Representation

A selling point for Thiele methods is the fact that they emphasise voter repre-
sentation. PAV has been shown by Aziz et al. (2017) to satisfy a particularly
strong proportional representation axiom—extended justified representation, and
is therefore of special interest. Here we formulate these representation axioms
for irresolute rules by requiring that every committee in the outcome meet the
required conditions, and state their results for irresolute rules. We can do this
because these particular results do not depend in any way on the tie-breaking
rule—meaning all committees in the outcome satisfy the relevant axioms.

For any profile A and a positive integer `  k, we say a committee C 2 Pk(C)
provides `-representation in A if there is no subset N 0 ✓ N of voters such that
|N 0| � ` · n

k and |
T

i2N 0 Ai| � `, but |C \ Ai| < ` for all voters i 2 N . A rule f
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satisfies justified representation if for any profile A we have that every C 2 f(A)
provides 1-representation. More simply put, justified representation requires that
if if k candidates are to be selected, then each group of size n

k should have at least
one “representative”. So if a su�ciently large portion of the electorate manage to
agree on at least one candidate they want, then we cannot not leave every member
of that group unrepresented. We say f satisfies extended justified representation if
for any profile A we have that every C 2 f(A) provides `-representation for all `,
1  `  k. Extended justified representation strengthens justified representation
by requiring that if a large enough group of agents agree on ` candidates, then for
every committee in the outcome there should be at least one agent in the group
who gets ` representatives—meaning ` of this agent’s approved candidates are
included in the committee.

4.4. Example. Consider the approval profile A below, and let f be some 3-
committee rule such that f(A) = {{a, c, e}}.

a b c d e

1
2
3
4

5
6

In order to check whether this committee provides 1-representation (and thus
whether f could satisfy justified representation) we need to check every subset
of voters of size 6

3 to see if they are given proper representation. First, as agents
1 through 4 agree on a (and b), they are a cohesive group deserving of a rep-
resentative. As A1 \ {a, c, e} = {a}, this group is properly represented in the
outcome. Then, agents 5 and 6 agree on candidate d, and A6 \ {a, c, e} = {e}, so
this group is also properly represented. We can see that justified representation
is not violated in this instance.

Can f possibly satisfy extended justified representation? A simple counterex-
ample tells us this is not possible. Agents 1 through 4 agree on two candidates,
a and b. In order for f to satisfy 2-representation, there must be at least one
agent among the four who has at least two approved candidates in the outcome.
But we can easily see that this is not the case, for each agent in the set, only one
of their approved candidates appears in the outcome. Thus f does not satisfy
extended justified representation. M

We now state two results by Aziz et al. (2017) that pertain to these axioms.

4.5. Theorem (Aziz et al., 2017). For weight vectors w such that w1 = 1 and
wj  1

j , the Thiele rule fw satisfies justified representation.
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4.6. Theorem (Aziz et al., 2017). PAV is the only Thiele rule with w1 = 1 that
satisfies extended justified representation.

Theorem 4.5 covers both PAV and approval-CC. These results confirm the in-
tuition that Thiele rules are attempting to achieve some type of proportional
representation, and that PAV is particularly successful in this endeavour. While
this is good news for representative democracy, we’ll see that it does not bode
well in terms of strategyproofness.

4.2 Strategyproofness in Multiwinner Voting

Strategic manipulation in multiwinner elections has been studied from several
angles. Most relevant for us is the axiomatic study initiated by Lackner and
Skowron (2018) who confirm that most approval-based multiwinner voting rules—
with the exception of AV—are susceptible to strategic manipulation. In contrast
with other axiomatic work on strategyproofness in multiwinner voting (see for
example, Peters (2018)), they do not assume resoluteness. Lackner and Skowron
(2018) study three axioms—independence of irrelevant alternatives, monotonic-
ity, and SD-strategyproofness (a strategyproofness axiom rooted in the notion of
stochastic dominance (Bogomolnaia and Moulin, 2001)). They find that inde-
pendence and monotonicity each exclude a certain type of manipulation. Their
monotonicity axiom is closely related to the notion of free-riding. Informally,
monotonicity requires that an extra approval for a candidate that is already in a
winning committee never results in that committee going from winning to losing.
Thus, monotonicity implies that an agent cannot get a committee to go from los-
ing to winning by removing a candidate in the committee from their approval set.
Lackner and Skowron (2018) show that most Thiele rules fail this axiom, which
is in some sense expected, as we know these rules are susceptible to free-riding.
They do show however, that Thiele rules satisfy their independence axiom.

Further from our focus, Yang and Wang (2018) study strategic aspects of
multiwinner voting relative to various graph-based restrictions on the winning
committees. Among these restrictions is the often-seen assumption that commit-
tees must be of a fixed size k. Laslier and Van der Straeten (2016) study strategic
voting of multiwinner approval voting in a probabilistic setting. Bredereck et al.
(2016) examine the related notion of bribery in a multiwinner setting. On the
more computational side, Bartholdi and Orlin (1991) show, for example, that
determining whether there exists a possible manipulation of Single Transferable
Vote is NP-complete, establishing that computational complexity can be a barrier
to manipulation also for multiwinner voting. More recently, the computational
complexity of strategic manipulation in multiwinner voting has been studied by
Aziz et al. (2015), Bredereck et al. (2018), and Meir et al. (2008). As an ex-
ample of a more negative result, Obraztsova et al. (2013) give polynomial-time
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algorithms for manipulation of multiwinner scoring rules. On the related notion
of robustness, Bredereck et al. (2017) examine how robust the outcome of multi-
winner voting rules are to small changes in the input. While they interpret this
as the possibility of mistakes made by agents when submitting their preferences,
we can also think of these small perturbations as strategic actions by the voters.
Gawron and Faliszewski (2019) study robustness in approval-based multiwinner
rules, and Misra and Sonar (2019) study robustness in restricted domains.

4.2.1 Preferences and Manipulability

As agents submit approval sets, we need to explicitly specify their preference
ranking over committees. We define agent i’s preferences over k-committees ⌫i

(with strict part �i) as follows: For two k-committees C and C
0, it is the case

that C ⌫i C
0 if and only if |Ai \ C| � |Ai \ C

0|. We write C ⇠i C
0 if C ⌫i C

0

and C
0 ⌫i C—meaning agent i is indi↵erent between the two sets. Agents will

never be confronted with committees of di↵erent sizes, so such committees are
considered incomparable. Note that ⌫i is defined relative to Ai, which is what
we take to be the agent’s truthful approval set.

Given a preference order ⌫̊i over outcomes (i.e., sets of committees), we say
an irresolute rule f is manipulable by agent i in the profile A if there exists
another profile A0 =�i A such that f(A0) �̊i f(A). A rule is strategyproof under
the preference extension e if it is not manipulable in any profile by any agent
with preferences ⌫̊i = e(⌫i). Of the three Thiele rules we have defined, approval
voting is strategyproof (but fails our proportionality axioms). Both PAV and
approval-CC are manipulable. We have already seen an example of PAV being
manipulable. Here we also demonstrate a manipulation of approval-CC.

4.7. Example. Let k = 3 and consider the 2-agent profile below.

a b c d

1
2

Even in this very simple profile, manipulation of approval-CC is possi-
ble. First, note that any size-3 subset of the candidates will repre-
sent both agents, and will therefore be included in the outcome—f(A) =
{{a, b, c}, {a, c, d}, {a, b, d}, {b, c, d}} Note however, that if agent 2 (untruth-
fully) approves only candidate d, then any committee that does not include
d will no longer represent all agents. So the outcome now becomes f(A) =
{{a, c, d}, {a, b, d}, {b, c, d}}. For agent 2 all the remaining committees are
(weakly) preferred to the committee {a, b, c} that is no longer in the outcome,
and there is a committee that is strictly preferred. This would therefore be a



4.2. Strategyproofness in Multiwinner Voting 53

successful manipulation if agent 2’s preferences are extended according to, for
example, the Kelly preference extension. M

This susceptibility to manipulation is not limited to PAV and approval-CC. The
negative results we have seen a↵ect many other Thiele rules (when we consider
the domain of all profiles).

4.2.2 Impossibilities

Peters (2018) has shown that there are no resolute approval-based multiwinner
voting rules that can simultaneously satisfy even very weak strategyproofness and
proportionality axioms. Before we state his result, we need to define three axioms
for resolute voting rules. A rule f satisfies...

• ...strategyproofness if for any profile A and i-variant A0 such that A0
i ✓ Ai,

we do not have f(A0) \ Ai � f(A) \ Ai.

• ...proportionality if for any party-list profile A where some singleton ap-
proval set {a} appears in the profile at least n

k times, we have that a 2 f(A).

• ...weak e�ciency if for any profile A where we have |
S

i2N Ai| � k and
there is some a 2 C s.t. a 62 Ai for all i, it is not the case that a 2 f(A).

4.8. Theorem (Peters, 2018). There exists no resolute approval-based multiwin-
ner voting rule that satisfies strategyproofness, proportionality, and weak e�-
ciency.

Note that this strategyproofness axiom is not only weakened by considering subset
manipulations, but also by looking at a particular type of set-based preferences.
Here, an agent prefers the outcome f(A0) only if this committee adds additional
candidates from the agent’s approval set, and removes none of the agent’s ap-
proved candidates that were already present in f(A).

Among the customary responses to such an impossibility result in social choice
is to consider what happens in the irresolute case. Kluiving et al. (2020) did just
that for irresolute approval-based multiwinner rules. They obtain a similar result
using the following axioms for irresolute rules. Recall from Chapter 2 that a set A
is strictly “Kelly-preferred” to a set B if all elements of A are weakly preferred to
all elements of B, and at least one element of A is strictly preferred to an element
of B. A voting rule is Kelly-manipulable if an agent with Kelly preferences can
bring about a more preferred outcome by submitting an untruthful vote. A rule
f is...

• ...Kelly-strategyproof if it is not manipulable in any profile by an agent with
Kelly preferences.
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• ...minimally proportional if for any party-list profile A and any candidate
a 2 C, if some singleton approval set {a} appears in the profile at least n

k
times, then a 2 C for all C 2 f(A).

• ...Pareto e�cient if for any profile A and any two committees C,C 0 where
C ⌫i C

0 for all i 2 N and C �i C
0 for some i 2 N , it is not the case that

C
0 2 f(A).

4.9. Theorem (Kluiving et al., 2020). There exists no irresolute approval-based
multiwinner voting rule that is minimally proportional, Pareto e�cient, and
Kelly-strategyproof.

How do these results relate to our project in this chapter? We do two things to
circumvent the impossibility by Peters (2018). The first is to consider irresolute
rules—which we know from Kluiving et al. (2020) is not a solution on its own.
The second is to consider only manipulations that occur from a profile of a cer-
tain type—party-list profiles. In fact, we can show that simply considering the
restriction to party-list profiles alone would also not solve our problem in the case
of resolute rules. As we will see in Section 4.3, it is still possible to manipulate the
resolute PAV rule on a party-list profile. The more surprising part of our results is
that we are able to establish strategyproofness on party-list profiles for irresolute
rules, and indeed are able to do so i) for rules that satisfy Pareto e�ciency (such
as PAV) and ii) for several more permissive preference extensions (compared to
Kelly).

4.2.3 Types of Manipulation

Our focus is domains on which proportional multiwinner rules can be immune to
certain types of manipulation by certain types of agents. We now define the three
types of manipulation we will consider in this chapter: subset-manipulation—or
free-riding—superset-manipulation, and disjoint-set-manipulation. We will then
define their corresponding strategyproofness axioms.

Given a rule f and two profiles A and A0 such that A =i A0 for some agent i
with preference order ⌫̊i over outcomes, we say an agent is able to free-ride if
A

0
i ⇢ Ai and f(A0) �̊i f(A). Free-riding is particularly relevant for rules that

attempt to achieve some level of representation for all voters. A free-rider often
omits a popular candidate from their approvals so this candidate does not count
toward their own representation. A rule f is superset-manipulable by agent i

if A0
i � Ai and f(A0) �̊i f(A). Finally, a rule f is disjoint-set-manipulable if

A
0
i \ Ai = ; and f(A0) �̊i f(A).
A rule f is is immune to free-riding under the preference extension e if no agent

with preferences ⌫̊i = e(⌫i) can free-ride in any profile. It is superset-strategyproof
under the preference extension e if no agent with preferences ⌫̊i = e(⌫i) can
superset-manipulate in any profile, and is disjoint-set-strategyproof under the
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preference extension e if no agent with preferences ⌫̊i = e(⌫i) can disjoint-set-
manipulate in any profile.

4.2.4 Manipulation on Restricted Domains

Recall that a profile A is a party-list profile if for all i, j 2 N , either Ai = Aj

or Ai \ Aj = ;. The main notion we explore in this chapter is strategyproofness
relative to the domain of party-list profiles. We say a rule is strategyproof on
party-list profiles—or party-list-strategyproof—under a preference extension e if
no agent with preferences ⌫̊i = e(⌫i) can manipulate on a party-list profile.

As we touched on in the introduction to this chapter, party-list profiles have
practical relevance for multiwinner elections. There are also other natural ways
we can restrict the domain of approval profiles. Domain restrictions for dichoto-
mous preferences have not gotten as much attention compared to the myriad
restricted domains that exist for ranked preference profiles. Nevertheless, several
such domains have been studied by Elkind and Lackner (2015). Our goal in this
chapter is to find domains where agents have no incentive to manipulate. As such,
these domains are excellent candidates for our project. We now define four of the
twelve domain restrictions for approval profiles defined by Elkind and Lackner
(2015) and show how PAV fails strategyproofness on these domains. This result
holds for all domains studied by Elkind and Lackner (2015), with the exception
of party-list profiles.

• A profile A satisfies voter extrema interval if there exists an ordering . of
the agents in N such that for every candidate a 2 C, we have that for all
i 2 N

A
a and all i0 62 N

A
a , it is the case that i . i0.

• A profile A satisfies voter interval if there exists an ordering . of the agents
such that for every a 2 C, we have that NA

a = {i 2 N | i` . i . ir} for some
i`, ir 2 N .

• A profile A satisfies candidate extrema interval if there exists an ordering
. of the candidates in C such that for every agent i 2 N , we have that for
all a 2 Ai and all b 62 Ai, it is the case that a . b.

• A profile A satisfies candidate interval if there exists an ordering . of the
candidates in C such that for every agent i 2 N , we have that for all
Ai = {a 2 C | ` . a . r} for some `, r 2 C.

We can show with a simple counterexample that strategyproofness for the class
of Thiele rules is not attainable for any of these domains, and that this is the case
independent of the preference extension. Because the domains studied by Elkind
and Lackner (2015), with the exception of the party-list domain, are defined by
weaker conditions than the four domains above, this counterexample also applies
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to them. This is a strong indication that the party-list domain is indeed the most
fruitful avenue for us to explore.

4.10. Example (Strategyproofness for Other Domains). Recall the profile from
Example 4.1.

a b c d

1
2
3

4
5

First, note that in the profile represented above, both the agents and the can-
didates are represented in an ordering that shows they satisfy each of the four
restrictions above.2 As we saw in Example 4.1, when agent 5 submits her truth-
ful approval set, PAV elects {a, b, c} as the unique winning committee. If she
submits a subset of her true approval set she obtains an outcome, {b, c, d}, that
she strictly prefers to {a, b, c}. Both outcomes are single committees, making the
preference extension irrelevant. So PAV cannot be immune to free-riding on these
domains, or on any that contain them. M

4.3 Free-Riding

Recall that free-riding describes when an agent submits a subset of their truthful
approval set, in order to obtain a better outcome. Recall also, from Chapter 2,
that general Gärdenfors preferences are a class of preference extensions that gen-
eralise the concept behind the Gärdenfors extension. We show that free-riding on
party-list profiles is not possible for agents with general Gärdenfors preferences.
However, we will also see quite reasonable scenarios where such manipulation,
even on party-list profiles, remains possible. For example, immunity to free-riding
is the strategyproofness notion used by Peters (2018), meaning his impossibility
result holds even for this limited type of manipulation.

Our first order of business is to establish two lemmas. We write ⌫0
i to mean

agent i’s preference order over committees, under the assumption that A0
i is the

agent’s truthful approval set—i.e., C 0 ⌫0
i C if |A0

i \ C
0| � |A0

i \ C|. Lemma 4.11
identifies cases where the preference orders ⌫i and ⌫0

i coincide.

2As noted, the profile also falls under the other restrictions considered by Elkind and Lackner
(2015) that are more permissive that the party-list restriction, meaning they define domains
that are supersets of the party-list domain.
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4.11. Lemma. For profiles A =�i A0 and a Thiele rule f such that C 2 f(A)
and C

0 2 f(A0), C 0 �i C implies C
0 �0

i C.

Proof: Let f be a Thiele rule defined by weight vector w, let A and A0 be
i-variants for some agent i. Suppose further that C 2 f(A), C 0 2 f(A0), and
C

0 �i C. Our aim is to show that C 0 �0
i C.

As C 2 f(A), we know the w-score of C in profile A must be at least as high
as that of C 0. We write this as follows, separating the utility of agent i from the
utilities of agents in N \ {i}:

u
A
i (C) +

X

j2N\{i}

u
A
j (C) � u

A
i (C

0) +
X

j2N\{i}

u
A
j (C

0)

By assumption, we know that uA
i (C) < u

A
i (C

0), so in order for the w-score of C
to be at least as high as that of C 0, agents in N \{i} must, in a sense, collectively
prefer C to C

0: X

j2N\{i}

u
A
j (C) >

X

j2N\{i}

u
A
j (C

0)

Because A =�i A0, the utility of an agent in N \ {i} for any committee remains
the same relative to A and A0—in other words, uA

j (C) = u
A0
j (C) and u

A
j (C

0) =

u
A0
j (C 0) for all j 2 N \ {i}. Thus, we have that:

X

j2N\{i}

u
A0
j (C) >

X

j2N\{i}

u
A0
j (C 0) (i)

Finally, C 0 2 f(A0) implies that w-score of C 0 in profile A0 is at least as high
as that of C. This, together with Equation (i) implies u

A0
i (C 0) > u

A0
i (C)—or

C
0 �0

i C—as desired. 2

We now prove a slightly more technical lemma that we will utilise multiple times
throughout this chapter. Lemma 4.12 establishes the existence of a particular
committee C

⇤ in the initial outcome, whenever an agent attempts free-riding.
We construct this committee C

⇤ by replacing any candidates from a winning
committee C that are in Ai but not A

0
i with candidates from A

0
i that are in C.

We do this until either C
⇤ contains enough candidates, or until all candidates

from A
0
i are in C

⇤.

4.12. Lemma. Let f be a Thiele rule. For a party-list profile A, agent i, and
an i-variant A0 =�i A where A

0
i ⇢ Ai, it is the case that C 2 f(A) implies that

there is some k-committee C
⇤ 2 f(A) such that

I C
⇤ ⇠i C, and

I for C
0 2 f(A0) we have that C 0 �i C implies (Ai \ C

⇤) ✓ A
0
i.
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Ai

A
0
i

C

S

Figure 4.1: Approval sets Ai and A
0
i in relation to committee C. Blue area is

Cstart. To construct C⇤, we add candidates from A
0
i until the set reaches desired

size or we run out of candidates.

Proof: Let S = (Ai \ C) \ A
0
i. This is the set of all candidates that Ai and C

agree on, except those also approved by A
0
i. We will be building up C

⇤ by starting
with Cstart = C \ S and adding candidates until we reach a committee of size
k. See Figure 4.1 for a visual representation of these sets and how they relate to
each other. We add candidates to Cstart as follows:

I If |A0
i \ Cstart| � |S|—meaning if there are enough candidates in A

0
i to fill

the |S| “open spots”—we add candidates from A
0
i \ Cstart until we reach a

committee C
⇤ such that |C⇤| = k.

I Otherwise, we add all candidates in A
0
i to the committee. We then fill the

remaining “open slots” with candidates from S until we reach a committee
C

⇤ of size k.

Because A is a party-list profile, it is clear from the construction of C
⇤ that

u
A
j (C

⇤) = u
A
j (C) for all j 2 N—as C and C

⇤ only di↵er on alternatives in Ai,
and the two committees are of equal size. So we already know that C ⇠i C

0. As
C 2 f(A), it must therefore also be the case that C⇤ 2 f(A).

In order to prove the second part of the statement, suppose C
0 2 f(A0) and

C
0 �i C. Suppose further |A0

i \ Cstart| 6� |S|. This means we have exhausted all
candidates in A

0
i when building C

⇤, and so A
0
i ✓ C

⇤. Because A
0
i is contained in

C
⇤, we know that C⇤ ⌫0

i C
0. However as C⇤ 2 f(A) and C

0 �i C
⇤, Lemma 4.11

tells us that C 0 �0
i C

⇤, which is, of course, a contradiction.
As it cannot be the case that C

0 �i C
⇤ and |A0

i \ Cstart| 6� |S|, it remains
only to show that |A0

i \ Cstart| � |S| implies (A \ C
⇤) ✓ A

0. If |A0
i \ Cstart| � |S|,

then we know that all candidates added to Cstart to create C
⇤ must come from

A
0
i. In other words, we know that C⇤ \ Cstart ✓ A

0
i—so Ai \ (C⇤ \ Cstart) ✓ A

0
i.

Additionally, the candidates that remain in Cstart \ Ai are only those that
are also in A

0
i—so (Cstart \ Ai) ✓ A

0
i. Putting this together, we can see that

(Ai \ C
⇤) ✓ A

0
i Thus, we have shown that C

0 2 f(A0) and C
0 �i C implies

(Ai \ C
⇤) ✓ A

0
i. 2
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We can now, with the help of these two lemmas, prove a result pertaining to
free-riding. Broadly, Proposition 4.13 establishes two things. If free-riding brings
about a “more preferred” committee in the manipulated outcome, then i) that
committee will already have been in the initial outcome, and ii) this committee
will be accompanied by a “less preferred” committee in the manipulated outcome.
We will take advantage of both these facts, separately, in results that build on
Proposition 4.13.

4.13. Proposition. Let f be a Thiele rule. Given an agent i 2 N , profiles
A =�i A0—where A is a party-list profile, and approval sets A0

i ⇢ Ai: if C 0 �i C

for committees C 0 2 f(A0) and C 2 f(A), then there exists a committee C
⇤ such

that C ⇠i C
⇤, and {C⇤

, C
0} ✓ f(A) \ f(A0).

Proof: Let f be a Thiele rule. Suppose we have two profiles A and A0—where A
is a party-list profile—and an agent i such that A =�i A, and A

0
i ⇢ Ai. Suppose

further that we have committees C 0 2 f(A0) and C 2 f(A), such that C 0 �i C.
As A is a party-list profile, Lemma 4.12 tells us there must be some C

⇤ 2 f(A)
such that C⇤ ⇠i C and (Ai \ C

⇤) ✓ A
0
i.

We first show that C⇤ 2 f(A0). Note that (Ai\C
⇤) ✓ A

0
i and A

0
i ⇢ Ai implies

that |Ai\C
⇤| = |A0

i\C
⇤|. We also know that Aj = A

0
j for all agents j 6= i. So we

conclude that |Aj \ C
⇤| = |A0

j \ C
⇤| for all j 2 N . We can express this in terms

of agents’ utilities.
u
A
N(C

⇤) = u
A0
N (C⇤) (ii)

Because C
⇤ 2 f(A), it must hold that u

A
N(C

⇤) � u
A
N(C

0). This together with
Equation (ii) implies:

u
A0
N (C⇤) � u

A
N(C

0)

Additionally, as A
0
i ⇢ Ai, we know that |Ai \ C

0| � |A0
i \ C

0|. Since all other
agents submit the same approval set in both profiles, we have uA

N(C
0) � u

A0
N (C 0),

which means:
u
A0
N (C⇤) � u

A0
N (C 0)

As f is a Thiele rule, and C
0 2 f(A0), this implies that C⇤ 2 f(A0).

We show that C
0 2 f(A) in a similar manner. First, since C

0 2 f(A0), by
definition of f we know that uA0

N (C 0) � u
A0
N (C⇤). We use Equation (ii) again to

conclude u
A0
N (C 0) � u

A
N(C

⇤). Since A =�i A0 and A
0
i ⇢ Ai, we have u

A
N(C

0) �
u
A0
N (C 0), which implies uA

N(C
0) � u

A
N(C

⇤). As f is a Thiele rule and C
⇤ 2 f(A),

it must also be the case that C 0 2 f(A).
So we have {C⇤

, C
0} ✓ f(A) \ f(A0), as desired. 2

While Proposition 4.13 does not explicitly reference any preferences over out-
comes, we still see a hint of what’s to come. We build on Proposition 4.13 in
several of our strategyproofness results. Theorem 4.15 below is the first of these.
We first state a corollary that follows from Proposition 4.13 alone.
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4.14. Corollary. On party-list profiles, Thiele methods are immune to free-
riding by optimistic agents.

We are now ready to state the main result of this section. Theorem 4.15 is a
strategyproofness result that pertains to a specific class of preference extensions.

4.15. Theorem. On party-list profiles, Thiele methods are immune to free-riding
by agents with general Gärdenfors preferences.

Proof: Let f be a Thiele rule defined by weight vector w. Suppose we have
a party-list profile A, and profile A0 such that A =�i A0, and A

0
i ⇢ Ai. Let

⌫̊i be the preference order ⌫i extended according to some general Gärdenfors
extension. We want to show that f(A0) 6�̊i f(A). To this end, suppose we have
committees C 2 f(A) and C

0 2 f(A0) such that C 0 �i C. If no such committees
exist, the desired result immediately follows. Proposition 4.13 then tells us that
C

0 2 f(A). Thus, if f(A0) 6⇢ f(A), it cannot be the case that f(A0) �̊i f(A)
for any general Gärdenfors preference—as f(A0) �̊i f(A) implies there is some
C

0 2 f(A0) \ f(A) that is strictly preferred by agent i to some C 2 f(A).
So suppose f(A0) ⇢ f(A). From Lemma 4.12 we know there exists a com-

mittee C
⇤ 2 f(A) such that C

⇤ ⇠i C, and (Ai \ C
⇤) ⇢ A

0
i. Note that because

A
0
i ⇢ Ai we also have that |A0

i \ C
⇤| = |Ai \ C

⇤|. To prove our claim, we need to
consider two cases.

Case 1: Suppose Ai ✓ C
0—meaning C

0 is one of agent i’s top choices. We
show that this implies C

0 62 f(A0), reaching a contradiction. We know that
u
A0
N (C⇤) = u

A
N(C

⇤) as |A0
i \ C

⇤| = |Ai \ C
⇤| and A =�i A0. As {C⇤

, C
0} ✓ f(A),

we also know that uA
N(C

⇤) = u
A
N(C

0), so we can conclude:

u
A0
N (C⇤) = u

A
N(C

0) (iii)

Finally, as Ai ✓ C
0 by assumption, we know that |Ai \ C

0| = |Ai|. As A
0
i ⇢

Ai, this implies that |A0
i \ C

0| < |Ai \ C
0|, which, as A and A0 are i-variants,

implies that uA0
N (C 0) < u

A
N(C

0). Using Equation (iii), we can thus conclude that
u
A0
N (C 0) < u

A0
N (C⇤), meaning C

0 62 f(A0). So we have reached a contradiction.
Case 2: Suppose instead that Ai 6✓ C

0. We then need to consider two sub-
cases.

I If for all a 2 Ai \ A
0
i we have a 2 C

0, then this means that Ai \ C
0 ✓ A

0
i.

Because A0
i ⇢ Ai, there must exist candidates a 2 Ai \C

0 such that a 62 A
0
i,

and b 2 Ai \ C 0 such that b 2 A
0
i. Let C̃ = C

0 \ {a} [ {b}. Consider that
for all j 6= i, C̃ ⇠0

i C
0—candidates a and b are either both accepted by j or

both rejected. For agent i, clearly C̃ �0
i C

0, so we have that

u
A0
N (C̃) > u

A0
N (C 0)

This implies C 0 62 f(A0), contradiction our initial assumption.



4.3. Free-Riding 61

I Suppose instead that there exists some a 2 Ai \ A
0
i such that a 62 C

0.
Because Lemma 4.11 tells us that |A0

i\C
0| > |A0

i\C|, we know that A0
i\C

0

is nonempty. Thus there must also exist an alternative b 2 A
0
i \ C

0, and
clearly b 2 Ai. We construct a committee C̃ = C

0 \ {b} [ {a}. Because
the w-score of the two committees C

0 and C̃ are the same in A, and we
know that C

0 2 f(A), it must also be the case that C̃ 2 f(A). However,
C̃ 62 f(A0), as C 0 ⇠0

j C̃ for all j 6= i, and C
0 �0

i C̃, meaning C
0 has a strictly

higher w-score in A0. So C̃ 2 f(A)\f(A0). We know from Proposition 4.13
that there is some C

⇤ 2 f(A0) s.t. C
⇤ ⇠i C. As C̃ ⇠i C

0, we know that
C̃ �i C

⇤. Therefore it cannot be the case that f(A0) �̊i f(A).

Thus we can conclude that for any general Gärdenfors preference we have that
f(A0) 6�̊i f(A), as desired. 2

The following is an immediate consequence of Theorem 4.15, and covers three
well-known preference extensions.

4.16. Corollary. On party-list profiles, Thiele methods are immune to free-
riding for the Gärdenfors, Fishburn, and Kelly preference extensions.

Theorem 4.15 should be interpreted as a positive result. As we have emphasised,
free-riding is a simple method of manipulation, and is a very natural way to vote
strategically in approval elections. Excluding this type of strategising paints a
hopeful picture. Additionally, our result holds for a large class of preferences.
This class includes many natural extensions that have received much attention in
the social choice literature. Of course, the theorem does not hold for all possible
ways of extending preferences. We now give an example of a specific preference
extension that is not captured by our definition of general Gärdenfors preferences,
and show free-riding on party-list profiles becomes possible under this extension.

4.17. Example (Preferences not Covered by Theorem 4.15). Let A be the pro-
file depicted below where agents 1 and 2 approve of the candidates a, b and c,
while agent 3 approves of only d, and agent 4 approves of only e. Clearly, A is a
party-list profile.

Let k = 3. We use proportional approval voting to demonstrate that a manip-
ulation is possible in this profile for agent 1. The outcome under PAV comprises
nine committees in total; six with two candidates from agent 1’s approval set:
{a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, {b, c, d}, {b, c, e}, and three with a single can-
didate each from agent 1’s approval set: {a, d, e}, {b, d, e}, {c, d, e}. Suppose agent
1 prefers smaller sets to larger ones, provided that for any C in the larger set,
there is some C

0 in the smaller set such that C ⇠1 C
0.
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a b c d e

1
2

3
4

Consider what happens when agent 1 drops c from their judgment set (repre-
sented in lighter blue). Because committees containing c will now have a lower
w-score, the new outcome will contain a total of four committees; two com-
mittees {a, b, d}, {a, b, e} with two of agent 1’s approved candidates, and two—
{a, d, e}, {b, d, e}—each with a single candidate from A1. We can see from agent
1’s preferences that she would prefer the second (manipulated) outcome in this
case. Thus, agent 1 has an incentive to free-ride in this profile. M

4.18. Remark. Example 4.17 also demonstrates that our results do not hold for
resolute rules that break ties according to a linear order over committees. Suppose
for example that the tie-breaking order > is such that {c, d, e} > {a, b, d}, and
{a, b, d} > {a, b, e} > {a, d, e} > {b, d, e}. Then the outcome in the first profile is
{c, d, e}, while the outcome in the second is {a, b, d}—an improvement for agent 1.

Recall from Section 4.2.4 that we were not able to establish immunity to free-
riding for other known restricted domains. We want to note here that our results
do not simply hold on party-lists because it is a relatively strong restriction.
Similar restrictions (such as those we defined in Section 4.2.4) do not have the
same properties that enable strategyproofness. Among the natural restrictions
discussed in the literature, the party-list domain is indeed the largest domain we
can find where we are able to establish some barriers to manipulation for Thiele
rules as a class.

4.4 Superset- and Disjoint-set-Manipulation

We will now show strategyproofness for two additional types of manipulation,
superset-strategyproofness and disjoint-set-strategyproofness. This result holds
for all strongly reflective preference extensions, including, of course, all general
Gärdenfors preferences.

4.19. Theorem. On party-list profiles, Thiele methods are immune to superset-
manipulation and disjoint-set-manipulation for all strongly reflective preference
extensions.

Proof: Let A be a party-list profile, and f a Thiele rule defined by a weight
vector w. Suppose there is a profile A0, and committees C and C

0 such that
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Ai

C
0

Ĉ

C

a

b

Figure 4.2: Representation of committees C,C
0 and Ĉ, and candidates a and b

used in proof of Theorem 4.19.

A =�i A0, C 2 f(A), and C
0 2 f(A0). Suppose also that either A

0
i � Ai, or

Ai\A
0
i = ;. We want to show that C 0 �i C implies {C,C 0} ✓ f(A)\f(A0). This

is enough to establish superset and disjoint-set-strategyproofness for all strongly
reflective preferences. With this goal in mind, suppose C

0 �i C.
We first show that C 0 2 f(A). Because A is a party-list profile and C

0 �i C,
there must be some Ĉ 2 f(A) such that Ĉ ⇠i C and (Ai \C

0) � (Ai \ Ĉ), where
C and Ĉ only di↵er on alternatives in Ai. To see why this is the case, note that
the di↵erences among C and Ĉ pertain only to candidates in Ai, and as such Ĉ

will have the same w-score as C in A. We use the fact that Ĉ 2 f(A) to show
C

0 2 f(A). For a visual representation of these committees and the candidates
we will reference, see Figure 4.2.

Let a 2 Ai be an alternative such that a 2 C
0 \ Ĉ. Such an alternative must

exist as C
0 �i Ĉ. Because A is a party-list profile, and |C 0| = |Ĉ|, we know

there must be some party with (strictly) fewer representatives in C
0 than in Ĉ.

In other words, there exists some alternative b 62 Ai such that b 2 Ĉ \ C
0 and

|Aj \ Ĉ| > |Aj \C
0| for all j 2 N

A
b . We define a k-committee C1 = Ĉ \ {b}[ {a}.

Our immediate goal is to show C1 2 f(A). Note that the w-score of C1 in A
cannot be higher than that of Ĉ, as this would imply Ĉ 62 f(A). Because the two
committees di↵er only with regard to alternatives a and b, we can express this as
follows: X

j2NA
b

w|Aj\Ĉ| �
X

j2NA
a

w|Aj\Ĉ|+1

Similarly, the committee C
0 \ {a} [ {b} cannot have a higher w-score than C

0 in
A0, so it must hold that:

X

j2NA0
a

w|A0
j\C0| �

X

j2NA0
b

w|A0
j\C0|+1

We want to connect the two inequalities above. We know that |Aj\C 0| > |Aj\Ĉ|
for all j 2 N

A
a . For all j 6= i this immediately tells us |A0

j \ C
0| > |Aj \ Ĉ|, as

A =�i A0. For agent i, we know either A
0
i � Ai, or A

0
i \ Ai = ;. If a 2 A

0
i,
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then it must be that A0
i � Ai, meaning |A0

i \ Ĉ| � |Ai \ Ĉ|. From Lemma 4.11
we know that C 0 �i Ĉ, Ĉ 2 f(A), and C

0 2 f(A0) implies |A0
i \ C

0| > |A0
i \ Ĉ|,

so we can conclude that |A0
j \ C

0| > |Aj \ Ĉ| for all j 2 N
A0
a . Because w is a

non-increasing weight vector, this implies w|A0
j\C0|  w|Aj\Ĉ|+1 for all j 2 N

A0
a .

Given that NA
a ◆ N

A0
a , we can conclude that:

X

j2NA
a

w|Aj\Ĉ|+1 �
X

j2NA0
a

w|A0
j\C0|

We can now build the following chain of inequalities:

X

j2NA
b

w|Aj\Ĉ| �
X

j2NA
a

w|Aj\Ĉ|+1

�
X

j2NA0
a

w|A0
j\C0|

�
X

j2NA0
b

w|A0
j\C0|+1

(iv)

Recall that for all j 2 N
A
b , it is the case that |Aj \ Ĉ| > |Aj \ C

0|, which—as
Aj = A

0
j—is equivalent to |Aj \ Ĉ| > |A0

j \C
0|. This implies w|Aj\Ĉ|  w|A0

j\C0|+1.

As NA
b ✓ N

A0
b , we then have that:

X

j2NA
b

w|Aj\Ĉ| 
X

j2NA0
b

w|A0
j\C0|+1 (v)

Equations (iv) and (v) together imply that our chain of inequalities “collapses”,
meaning we get: X

j2NA
b

w|Aj\Ĉ| =
X

j2NA
a

w|Aj\Ĉ|+1

This can only be the case if C1 2 f(A).
Finally, to see that C1 2 f(A) implies that C 0 2 f(A), consider the following.

We know that C1 is created by adding one candidate from C
0 and removing one

candidate that is not in C
0. If |Ĉ \ C

0| = 1, then C1 = C
0 and we are done.

Otherwise, note that |C1 \C 0| = |Ĉ \C 0|� 1, meaning C1 is one candidate closer
to C

0 than Ĉ. Importantly, we also know the following:

(i) C
0 �i C1,

(ii) (Ai \ C
0) � (Ai \ C1), and

(iii) C1 2 f(A).
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Thus, we can use the same argument we used to show that C1 2 f(A) to show
there is some committee C2 2 f(A) such that |C2 \ C 0| = |Ĉ \ C 0| � 2. We can
repeat this argument until we reach a committee Cm 2 f(A) where m = |Ĉ \C 0|,
meaning Cm = C

0.
We now show that C 2 f(A0). We omit some details as the proof proceeds

in a similar fashion as above. Note that as C
0 2 f(A), and A is a party-list

profile, we know there must be some Ĉ
0 2 f(A) such that |Aj \ C

0| = |Aj \ Ĉ
0|

for all j 2 N , and Ai \ Ĉ
0 � Ai \ C, where C

0 and Ĉ
0 only di↵er on alternatives

in Ai. This is because C
0 2 f(A), and Ĉ

0 will have the same w-score as C
0 in

A. Because C
0 and Ĉ

0 only di↵er on alternatives in Ai, and both are k-sized
committees, it must be the case that |A0

i \ Ĉ
0| = |A0

i \ C
0|. As A = A0, we know

|A0
j \ Ĉ

0| = |Aj \C
0| for all j 6= i as well, so we can conclude that Ĉ 0 2 f(A0)—as

it would have the same w-score as C 0 in A0.
We repeat a similar argument as we did when showing C

0 2 f(A). We have
some a

0 2 Ai such that Ĉ 0 \C, and some b
0 2 C \ Ĉ 0 such that for all j 2 N

A
b we

have |Aj \ C| > |Aj \ Ĉ
0|. Let C 0

1 = C
0 \ {b} [ {a}. Arguing in almost exactly

the same way as above, we show that:
X

j2NA0
b

w|A0
j\C0|+1 =

X

j2NA0
a

w|A0
j\C0|

Thus Ĉ 0
1 2 f(A0). We can again repeat this argument to show that C 2 f(A0).

So we have shown that for any C
0 2 f(A0) and C 2 f(A), if C 0 �i C, then

{C,C 0} ✓ f(A) \ f(A0), meaning it cannot be the case that f(A0) �e
i f(A) for

any strongly reflective extension e. 2

Corollary 4.20 follows from Theorem 4.15 and Theorem 4.19.

4.20. Corollary. On party-list profiles, Thiele methods are superset-
strategyproof, disjoint-set-strategyproof, and immune to free-riding for general
Gärdenfors preferences.

Our results paint a positive picture for Thiele rules on party-list profiles as they
rule out all three types of manipulation considered in this chapter for a large
class of preferences. Importantly, we are also able to establish some level of
strategyproofness for these rules that does not depend much on the choice of
preference extension. The class of strongly reflective preferences is large, and
arguably includes many extensions of interest.

4.5 Optimistic Agents

We obtain our strongest result for the optimistic preference extension, as we can
establish full strategyproofness for Thiele methods on party-list profiles.
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We will be working with profiles which are not party-list profiles, but are,
informally speaking, one agent away from a party-list profile. We write A�i to
mean the profile A with the approval set of agent i removed. An agent i casts a
separable vote in a profile A if for all agents j 2 N either Ai ✓ Aj or Ai\Aj = ;.

We now show that optimistic agents have no incentive to superset-manipulate.
We will use this to establish our full strategyproofness result for optimistic agents.

4.21. Lemma. Let f be a Thiele rule, and A a profile such that A�i is a party-
list profile, and Ai is a separable vote in A. Given an agent i 2 N , and a profile
A0 =�i A such that A0

i � Ai: if C 0 �i C for all C 2 f(A), then C
0 62 f(A0).

Proof: Let f be a Thiele rule defined by weight vector w. Suppose we have A
and A0—where A�i is a party-list profile, and Ai is a separable vote in A—and
an agent i 2 N such that A =�i A, and A

0
i � Ai. Let C 2 f(A) be among

the most preferred committees for agent i in f(A), and suppose there exists a
k-committee C

0, such that C 0 �i C. We want to show that C 0 62 f(A0).
We identify two candidates relevant for our purposes. Because C

0 �i C, we
know there must exist at least one candidate a 2 Ai \ (C 0 \ C). We know that
there is at least one party with strictly fewer representatives in C

0 than in C,
as they are both committees of the same size. More formally, because A�i is a
party-list profile, there must also exist some candidate b 2 C \ (C 0 \ Ai), such
that for all j 2 N

A
b , it is the case that |Aj \ C| > |Aj \ C

0|. If this were not the
case, then C

0 ⌫j C for all j 6= i and C
0 �i C, meaning C 62 f(A), contradicting

our initial assumption.
First, we want to show that Aj \ C = Ai \ C for all j 2 N

A
a . We know that

Ai ✓ Aj for all j 2 N
A
a (and Aj = Aj0 for j, j0 2 N

A
a \ {i}). Recall that a 62 C.

Suppose (Aj \Ai)\C 6= ;, meaning there is some alternative x 2 Aj \Ai such that
x 2 C. Then the committee C \ {x} [ {a} will have a w-score higher than C in
the profile A. As this implies C 62 f(A), we can conclude that (Aj \Ai)\C = ;.
In other words, we have that Aj \C = Ai \C for all j 2 N

A
a . As Ai ✓ Aj for all

j 2 N
A
a , we know |Aj \ C

0| � |Ai \ C
0|. As |Ai \ C

0| > |Ai \ C| by assumption,
this implies that |Aj \ C

0| > |Aj \ C|. As w is a non-increasing weight vector,
we this implies that w|Aj\C0|  w|Aj\C|+1 for all j 2 N

A
a . Similarly we know

|Aj \ C| > |Aj \ C
0| for all j 2 N

A
b . Thus we have:

X

j2NA
b

w|Aj\C0|+1 �
X

j2NA
b

w|Aj\C|

X

j2NA
a

w|Aj\C|+1 �
X

j2NA
a

w|Aj\C0|

We also claim the following:
X

j2NA
b

w|Aj\C| >
X

j2NA
a

w|Aj\C|+1
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To see why this is the case, note that if it did not hold, then the committee
(C \ {b}) [ {a} would have a w-score at least as high as C, and thus would
be among the winning committees in f(A). This would clearly contradict our
assumption that C 2 f(A) is one of the most preferred outcomes for agent i in
f(A), as (C \ {b}) [ {a} �i C. Putting together the above, we conclude that:

X

j2NA
b

w|Aj\C0|+1 >

X

j2NA
a

w|Aj\C0| (vi)

We can now show C
0 62 f(A0). Let C̃ = (C 0 \ {a}) [ {b} be a k-committee. We

calculate the w-score of C̃ in A0.

u
A0
N (C̃) = u

A0
N (C 0)�

X

j2NA
a

w|Aj\C0| +
X

j2NA
b

w|Aj\C0|+1

Taken together with Equation (vi), the above implies that C̃ has a w-score
strictly higher than C

0 in A0, meaning C
0 62 f(A0). 2

We use Proposition 4.13, which speaks only about free-riding, and Lemma 4.21,
which pertains to superset-manipulation, to prove the following Theorem for op-
timistic agents.

4.22. Theorem. Thiele methods are party-list-strategyproof for optimistic
agents.

Proof: Let A be a party-list profile, and let A0 be a profile such that A =�i A0.
Suppose there exists some C

0 such that C 0 �i C for any C 2 f(A). Let f be a
Thiele rule. We show that C 0 62 f(A0).

Suppose for contradiction that C 0 2 f(A0). We construct a third, intermedi-
ate, profile A⇤ where A⇤ =�i A and A

⇤
i = Ai\A

0
i. Note that A

⇤
�i is a party-list

profile, and A
⇤
i is a separable vote in A⇤. We assume A

⇤
i 6= Ai—if this were

not the case, then f(A) = f(A⇤), and Lemma 4.21 alone would be enough to
establish our claim.

As C
0 2 f(A0) and A

0
i � A

⇤
i , we know from Lemma 4.21 that there exists

some C
⇤ 2 f(A⇤) such that C⇤ ⌫i C

0. If this were not the case, then C
0 would

be strictly preferred to all committees in f(A⇤), and so C
0 62 f(A0), which would

be a contradiction. As C⇤ ⌫i C
0, we know that C⇤ �i C. Because A

⇤
i ⇢ Ai, we

can use Proposition 4.13 to show that C
⇤ 2 f(A⇤) implies C

⇤ 2 f(A). This
contradicts our assumption that C 0 �i C for all C 2 f(A) as C⇤ ⌫i C

0. 2

Note that Theorem 4.22 makes no assumptions about how agents may manipulate,
as any possible manipulation amounts to an agent first removing some candidates
from their approval set (possibly none), and subsequently adding new candidates
(again, possibly none). As the optimistic preference extension is a very natural
and intuitive extension, Theorem 4.22 is a very welcome result.
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4.6 Summary

In this chapter, we have studied strategyproofness of Thiele methods on party-
list profiles. In particular, we focused on three types of manipulation: free-riding,
superset-manipulation, and disjoint-set-manipulation. We have shown for general
Gärdenfors preferences that it is not possible to manipulate Thiele rules in any of
the three manners we considered—subset-manipulation, superset-manipulation,
and disjoint-set-manipulation—on party-list profiles. For superset and disjoint-
set-manipulation, this holds for all strongly reflective preference extensions. We
have also shown that Thiele methods are fully strategyproof on party-list profiles
for optimistic agents.

Strategyproofness on party-list profiles spells good news for many applications
of multiwinner voting. Our results also suggest that focusing on specific domains
or profiles may be a fruitful avenue of study for establishing further strategyproof-
ness results. Our particular focus here has been on approval-based rules. We are
hopeful that similar methods may also yield strategyproofness results for multi-
winner rules that aggregate preference rankings.



Chapter 5

Majoritarianism and Strategyproofness
in Judgment Aggregation

Our playground in this chapter is the world of judgment aggregation—a rich
framework for analysing all kinds of multiagent decision making scenarios (List
and Pettit, 2002; Grossi and Pigozzi, 2014). Judgment aggregation (JA) is an area
in the broader field of social choice theory concerned with aggregating individual
opinions on a set of possibly interconnected issues. In judgment aggregation we
model the views held by individual agents as sets of propositional formulas. We
then design rules for aggregating such judgments into a collective judgment that
adequately represents the views held by the group. This framework generalises
preference aggregation as traditionally studied in social choice theory (Dietrich
and List, 2007a) and is closely related to the field of belief merging as long studied
in AI (Everaere et al., 2017). We revisit a classical example from legal theory
due to Kornhauser and Sager (1993), both to demonstrate the framework in
action and to show a classic problem that has arguably played a large part in
inspiring the study of JA as a framework. This example is dubbed the doctrinal
paradox as Kornhauser and Sager were concerned specifically with aggregation
of opinions related to legal doctrine. A more general version of this example,
which abstracts away from any specific context or application, is known as the
discursive dilemma (List and Pettit, 2002).

5.1. Example (The Doctrinal Paradox). We are back in the kingdom of Ar-
rovia. A defendant is facing prosecution and their fate will be determined by
three judges. The job of the judges is to determine whether the defendant is
liable for a breach of contract. The Arrovian legal doctrine is clear: a defendant
is liable if and only if there has been a breach of the language in the contract,
and the contract itself is legally valid. Determining the validity of the contract
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and whether it has been breached is ultimately up to the three judges. Each
judge has their opinion on the issues at hand—represented in the table below.
Judge 1 for example, believes the contract is valid and that it has been breached.
Consequently she finds the defendant is indeed liable. Given the opinions of the
three judges, how should they determine the final judgment?

Valid Breached Liable (Valid + Breached) $ Liable

Judge 1 Yes Yes Yes Yes
Judge 2 Yes No No Yes
Judge 3 No Yes No Yes

One option is to ask each judge whether they think the contract is valid, and
whether it was breached. Since a majority of the judges do believe that a valid
contract has been breached, we might want to conclude that the defendant is
liable. However, if we ask each judge directly about the defendant’s liability,
a majority of judges will say the defendant is not liable. This discrepancy—or
“paradox”—occurs because looking at the majority on each issue may give us an
inconsistent collective opinion. Indeed, as a group, the three judges believe (i)
that the contract is valid, (ii) that it was breached, and (iii) that the defendant
is not liable—an outcome that is not consistent with the legal doctrine they all
support. M

The fact that taking the propositionwise majority can result in an inconsistent
collective opinion is at the heart of much of the JA literature. This problem has
implications for topics ranging from the computational complexity of determining
the outcome of aggregation to the strategyproofness of aggregation rules. Our
focus in this chapter is on this last topic: the susceptibility of judgment aggre-
gation rules to strategic manipulation by self-interested agents. It should come
as no surprise to you by now, dear reader, that finding strategyproof aggregation
rules in JA is not a simple goal. As is the case in many areas of social choice,
there is a tradeo↵ in judgment aggregation between strategyproofness and certain
requirements on the output of the aggregation. By a combination of well-known
results, we know that it is essentially impossible to design an aggregation rule
that simultaneously guarantees an outcome that is logically consistent and im-
mune to strategic manipulation (Dietrich and List, 2007c; Dokow and Holzman,
2010; List and Pettit, 2002; Nehring and Puppe, 2007). Let us revisit Example 5.1
to demonstrate what exactly we mean by strategic manipulation in judgment ag-
gregation.

5.2. Example (Strategic Manipulation). Suppose the three judges from Exam-
ple 5.1 decide to use the premise-based aggregation rule. That is, they will check
the majority opinion on whether the contract is valid, and whether it has been
breached. They will then use this to determine the liability of the defendant.
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Judge 3 however, knows his colleagues well, and can guess what their opinions
will be. He does a quick calculation and realises that if he submits his truth-
ful opinion, they will be convicting who he believes to be an innocent person.
Judge 3 therefore claims to his colleagues that he believes the contract has not
been breached. His quick thinking pays o↵, the judges now collectively believe
the contract is valid, but not that it has been breached. The defendant goes free
thanks to judge 3! M

In this chapter we put forward a novel notion of strategyproofness, which requires
immunity to strategic manipulation only in certain well-defined situations—
namely when either the truthful profile of individual judgments or the profile
a would-be manipulator is trying to reach are majority-consistent—meaning the
outcome of the propositionwise majority is consistent.1 We argue that this type
of strategyproofness o↵ers a reasonable compromise for aggregation rules one may
want to use in practice. In this chapter we study the most commonly encoun-
tered majoritarian rules in judgment aggregation and prove that several important
rules—including the Kemeny rule and the Slater rule—are strategyproof in this
sense. This new notion of domain-strategyproofness is particularly useful when
trying to improve upon aggregation rules that are known to be (fully) strate-
gyproof but that can guarantee consistent outcomes only on a restricted domain
(as is the case for the majority rule). In such a case, a rule that is guaranteed
to always return consistent outcomes and that is strategyproof relative to that
same domain is an attractive alternative. Indeed, if a rule is strategyproof for a
restricted domain then this tells us two things. First, if the truthful profile is in
the domain, then no agent has an incentive to manipulate. Second, if the profile
that results after all judgments have been submitted is in the domain, then we
can be certain that the profile reported cannot have been the result of strategic
manipulation. Note that, as in previous chapters, while we work with a restricted
domains, agents may attempt to manipulate to, or from, any profile both within
and outside the domain.

The axiom—and associated domain—we look at in this chapter is majori-
tarianism. Rules that are majoritarian agree with the propositionwise majority
whenever possible. While the outcome of the propositionwise majority may some-
times be inconsistent, its use as a benchmark in JA cannot be disputed—if the
majority opinion is consistent, we usually do not want to go against it. Many
domain restrictions in JA fall within the domain of profiles with a consistent ma-
jority. Thus, these are natural scenarios we might encounter in application and
strategyproofness on these profiles is a positive result. Our results are again an
argument against restricting the domain of the aggregation rule.

Recall our safe “island” from Chapter 1. Whereas we until now have only
examined the question of whether an agent can manipulate from a profile in

1Note that this di↵ers from our approach in Chapters 3 and 4—here we also examine whether
it is possible to manipulate to the domain in question.
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the “safe” domain, we will now also look at whether an agent can manipulate
to a profile in the domain of interest (represented below with the second arrow
pointing in to the domain).

J1

J2

J3

J4

J5

J6

J3

J4

?

?

5.3. Example. It is getting close to the winter holidays in Arrovia. The king
is running an opinion poll to determine what the citizens want at the winter
fair. The poll is quite complex and many of the possible activities and potential
food stalls are interconnected. For example, it is not possible to have both a
gingerbread stall and a cinnamon cookie stall as the baker can only run one.
The king knows this is a problem he should solve with judgment aggregation.
Knowing that aggregating using the propositionwise majority will often result
in inconsistent collective opinions, he decides to use an aggregation rule that
is majoritarian and strategyproof relative to the domain of majority-consistent
profiles. When the results of the poll come back, he is delighted to see that the
result is consistent. The king can announce the winter fair plans with a clear
conscience, knowing that no manipulation could have occurred. M

This chapter is an examination of strategyproofness of majoritarian rules relative
to profiles where the propositionwise majority returns a consistent outcome. In
Sections 5.1 and 5.2 we go over the judgment aggregation framework and define
the aggregation rules we will study. Section 5.3 is devoted to the topic of strate-
gyproofness. Here we go over relevant work from the literature as well as further
motivate our choice to study a restricted domain by presenting a negative strate-
gyproofness result for profiles outside our well-behaved domain. In Section 5.4 we
present the main positive strategyproofness result of this chapter that pertain to
the class of rules knows as additive majority rules. In Section 5.5 we study coars-
enings of additive majority rules. While the strategyproofness results we present
here are not as strong as those of the preceding section, we see that these rules
still manage to put up some barriers against manipulation. Finally, we examine
the Dodgson rule in Section 5.6, which turns out to be the most manipulable rule
we study.

5.1 Preliminaries

As always, let N = {1, . . . , n} be our finite set of agents. We will assume that
n is odd to avoid having to make tie-breaking decisions when computing the
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outcome of the propositionwise majority. We have a (nonempty) set of formulas
of propositional logic � = �+ [ ��, called the agenda, where �+ is a set of
nonnegated formulas, and �� = {¬' | ' 2 �+}.

A judgment J is a subset of �. We use J (�) ✓ 2� to denote the set of
all judgments that are (logically) consistent as well as complete—meaning they
include one of ' and ¬' for every ' 2 �+. Observe that any consistent judgment
will also be complement-free, meaning that it cannot include both ' and ¬' for
any ' 2 �+. Any element of J (�) is a permissible judgment Ji for an agent
i 2 N . This amounts to requiring agents are rational in that they always submit
a complete and consistent judgment. We write J =' J

0 to mean that judgments
J and J

0 agree on formula '.
The Hamming distance between two judgments J and J

0 in J (�) is defined
as H(J, J 0) := |J \ J

0| = |J 0 \ J |. Thus, H(J, J 0) is the number of elements
in �+ on which J and J

0 disagree. We say that judgment J
0 is between J and

J
00, if J \ J

00 ✓ J
0 ✓ J [ J

00. For example, if J = {', }, J 0 = {¬', } and
J
00 = {',¬ }, then J is between J

0 and J
00 but J

0 is not between J and J
00.

Observe that J \ J
00 ✓ J

0 if and only if J 0 ✓ J [ J
00 in case all three judgments

are both complete and complement-free.
A profile J = (J1, . . . , Jn) 2 J (�)n is a vector of individual judgments, one

for each agent in N . For any such profile J and any ' 2 �, the set NJ
' := {i 2 N |

' 2 Ji} is the set of supporters of proposition ', with n
J
' := |NJ

' |. The majority
judgment associated with a given profile J is defined as m(J) := {' 2 � | nJ

' >
n
2}. We will sometimes refer to m(J) as the outcome of the (propositionwise)
majority. We say that profiles J and J 0 are i-variants, and we write J =�i J 0, if
Jj = J

0
j for all agents j 6= i (and possibly Ji 6= J

0
i for agent i).

Let M(�, n) ✓ J (�)n be the domain of all profiles for a given agenda and a
given number of agents for which the majority outcome is consistent: M(�, n) :=
{J | m(J) 6|= ?}. If � and n are clear from context, we simply write M.

5.2 Judgment Aggregation Rules

Intuitively, a judgment aggregation rule is a function that maps any given profile
to the collective judgment of the group. We restrict our attention to aggregation
rules that, for any given profile of complete and consistent judgments, will only
return collective judgments that are complete and consistent. As we saw in the
introduction, the majority rule—which returns m(J) for any given profile J—
does not meet this requirement. While we have been speaking of a collective
judgment, in practice most natural rules are irresolute—meaning that they allow
for the possibility of ties between several collective judgments and thus require a
tie-breaking mechanism to settle on a single outcome. This remains the case even
for an odd number of agents. With all this in mind, formally, an aggregation rule
is a function
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f : J (�)n ! 2J (�) \ {;}.

So f takes a profile and returns a (nonempty) set of judgments. Note, again, that
we require that f returns a complete and consistent outcome in order to qualify
as an aggregation rule.

5.2.1 Majority-Preserving Rules

Our focus is on majoritarian (or majority-preserving) rules. A rule f is majoritar-
ian if f(J) = {m(J)} for all profiles J such that m(J) is consistent. Thus, such
a rule returns the outcome of the propositionwise majority when it is consistent,
and does something else when it is not. Majoritarian rules constitute the bulk of
well-studied rules in judgment aggregation (Lang et al., 2017), and are a natural
starting point for studying domain-specific strategyproofness—by definition there
is a subdomain of profiles where they are known to be “well-behaved”. Impor-
tantly, the majority is in many cases the ideal, “democratic”, outcome. Thus, its
use as a benchmark is not just for technical reasons, but also normative ones.

We now define the majoritarian rules we study in this chapter. Often ag-
gregation rules are categorised based on how much information they require to
determine the outcome. Specifically, we distinguish between rules that are based
on the majoritarian set—similar to tournament solutions in voting—and rules
based on the weighted majoritarian set. We will also see an example of an ag-
gregation rule that requires the actual judgments given in the profile in order to
determine the winning judgments—the so-called Dodgson rule.

Rules based on the majoritarian set only need the outcome of the proposition-
wise majority in order to determine the collective opinion. Meaning they need
only the information given by m(J). So f(J) = f(J 0) if m(J) = m(J 0). Within
this class, one rule reigns supreme over the rest—the Slater rule fSla.

fSla(J) = argmin
J2J (�)

H(J,m(J))

Slater returns those consistent judgments that maximise the number of proposi-
tions on which they agree with a majority of the agents, without di↵erentiating
between majorities of di↵erent strengths. Clearly, fSla generalises the Slater rule
familiar from preference aggregation (Slater, 1961). It also known under several
other names, such as the endpoint rule (Miller and Osherson, 2009) and maxcard
Condorcet rule (Lang et al., 2017).

A second prominent rule based on the majoritarian set is the maximal Con-
dorcet rule, fCon—also known as the Condorcet admissible set (Nehring et al.,
2014). For a set of formulas S ✓ �, a set S 0 ✓ S is a maximally consistent subset
of S if and only if (i) S 0 is consistent and (ii) there is no consistent set S 00 such
that S 0 ⇢ S

00 ✓ S. Let C(J) denote the set of all maximally consistent subsets
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of the judgment J , and let S+ = {J 2 J (�) | J ◆ S}. The maximal Condorcet
rule is defined as follows:

fCon(J) = {J+ | J 2 C(m(J))}
We give an example to illustrate these two aggregation rules.

5.4. Example. Let J be the five-agent profile below.

p ^ r p ^ s q p ^ q

1 agent Yes Yes Yes Yes
2 agents No No Yes No
2 agents Yes Yes No No

m(J) Yes Yes Yes No

It is easy to see that m(J) can be made consistent by negating only one propo-
sition in the set—for example (p ^ q)—meaning any judgment returned by the
Slater rule must ‘flip’ only one proposition. Thus fSla(J) = {{(p^r), (p^s), q, (p^
q)}, {(p ^ r), (p ^ s),¬q,¬(p ^ q)}}. For the maximal Condorcet rule, things are
a bit more complicated. We have a majority judgment m(J) = {(p ^ r), (p ^
s), q,¬(p ^ q)}, so the set of maximally consistent subsets of the majority is
C(m(J)) = {{(p^r), (p^s),¬(p^q)}, {(p^r), (p^s), q}, {q,¬(p^q)}}. Given this,
we can calculate the outcome of the maximal Condorcet rule, fCon(J) = {{(p ^
r), (p^s), q, (p^q)}, {(p^r), (p^s),¬q,¬(p^q)}, {¬(p^r),¬(p^s), q,¬(p^q)}}.
We can now easily see that fSla(J) 6= fCon(J). M

Rules based on the weighted majoritarian set look at the size of the majorities in
order to determine the winning judgments. The most prominent such rule is the
Kemeny rule fKem.

fKem(J) = argmin
J2J (�)

X

i2N

H(J, Ji)

We can think of the Kemeny rule as returning those judgments that minimise
the average Hamming distance to the judgments in the profile. This rule gen-
eralises the well-known Kemeny rule for preference aggregation (Kemeny, 1959)
and is also known under a number of other names, notably the distance-based rule
(Pigozzi, 2006), median rule (Nehring et al., 2014), and prototype rule (Miller and
Osherson, 2009).

5.5. Example. Consider again the five-agent profile J from Example 5.4. Note
that we have three out of five agents accepting the first three formulas, while four
out of the five reject p^q. Thus, we know that {(p^r), (p^s), q, (p^q)} 62 fKem(J)
as we would need to reject a formula accepted by four out of five agents to
reach this judgment (and we know there is another, smaller, majority we can go
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against). In fact fKem(J) = {(p ^ r), (p ^ s),¬q,¬(p ^ q)} as we can reach this
outcome by going against the three-agent majority on q.2 M

A second well-known rule based on the weighted majority is the ranked agenda
rule fRA. Ranked agenda is a generalisation of the ranked pairs voting rule (Tide-
man, 1987). Intuitively, fRA orders the propositions by the size of their support,
then iteratively determines the truth value of each proposition, starting with those
propositions that have a larger support and setting each proposition to true when
possible—meaning when this does not create inconsistencies. We now formally
define this iterative process. Let m = |�|. For any profile J , and any order
'1, . . . ,'m of propositions in � such that nJ

'k
� n

J
'k+1

for k 2 [1,m� 1], ranked
agenda proceeds as follows. Let S0 = ;. At step k:

• Sk = Sk�1 [ {'k} if Sk�1 [ {'k} is consistent,

• Sk = Sk�1 [ {¬'k} if Sk�1 [ 'k} is not consistent.

This process will terminate after step m, and Sm 2 fRA(J). Note that because
two propositions may have an equal number of supporters, there can be several
orders that satisfy our requirement. We can think of this as the iterative process,
in a sense, “branching” if 'k and 'k+1 have the same number of supporters.

Finally, we define the leximax rule flex (Everaere et al., 2014; Nehring and
Pivato, 2019). Given a profile J and a judgment J 2 J (�), we define a dominance
relation �J such that J �J J

0 if and only if there is some k 2 {dn
2 e, . . . , n} such

that

• |{' 2 � | nJ
' = k} \ J | > |{' 2 � | nJ

' = k} \ J
0|—the judgment J accepts

a larger number of propositions with k supporters than J
0—and,

• for all k0
> k we have that |{' 2 � | nJ

' = k
0} \ J | = |{' 2 � | nJ

' =
k
0} \ J

0|—for formulas with more than k supporters, the two sets do not
di↵er in the number of formulas they accept.

flex(J) is defined as the set of judgments that are not �J -dominated.

flex(J) = {J | J ⌫J J
0 for all J 0 2 J (�)}

Ranked agenda and leximax are similar in that they both prioritise large majori-
ties over small one, and iteratively add propositions to a set, starting from those
with highest support. Ranked agenda, however, does not break ties by “looking
ahead” as leximax does. When no two propositions have equal support, the two
rules will output the same judgments. We give an example of a profile where the
two rules return di↵erent outcomes to demonstrate exactly why and how they
di↵er.

2While here we have fKem(J) ✓ fSla(J), this is not always the case. Kemeny may in some
cases go against the majority on a larger number of formulas than Slater if the majorities
supporting these formulas is small enough.
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5.6. Example. Take the following nine-agent profile J .

p q p ^ q p ^ r q ^ r

3 agents Yes No No Yes No
3 agents No Yes No No Yes
2 agents Yes Yes Yes Yes Yes
1 agent Yes Yes Yes No No

m(J) Yes Yes No Yes Yes

.

.

.

.

.

.

.

.

.

S1 = {p, q, (p ^ q)} S2 = {p,¬q,¬(p ^ q)} S3 = {¬p, q,¬(p ^ q)}

S1 [ {(p ^ r)} S1 [ {(q ^ r)}

{p, q, (p ^ q), (p ^ r), (q ^ r)}

S2 [ {(p ^ r)} S2 [ (q ^ r)

{p,¬q,¬(p ^ q), (p ^ r),¬(q ^ r)}

S3 [ {(q ^ r)} S3 [ {(p ^ r)}

{¬p, q,¬(p ^ q), (q ^ r),¬(p ^ r)}

Let us first order these formulas by the size of their support: nJ
p = n

J
q = n

J
¬(p^q) =

6, and n
J
(p^r) = n

J
(q^r) = 5. Both fRA and flex start with the formula with largest

support and they both “add formulas” based on the size of their support as long
as adding the formula to the set does not cause inconsistencies. First, note that
any judgment in the outcome (for both RA and leximax) will include two of the
formulas accepted by a 6-to-3 majority—p, q, and ¬(p ^ q). There are three of
these sets as we see in the first “tier” of the graph above, S1, S2 and S3. We
then add formulas with a smaller majority margin. Dashed edges show where we
are unable to add a formula due to inconsistencies. It is clear from the picture
that ranked agenda will return all three leaves—{p, q, (p ^ q), (p ^ r), (q ^ r)},
{p,¬q,¬(p ^ q), (p ^ r),¬(q ^ r)}, and {¬p, q,¬(p ^ q), (q ^ r),¬(p ^ r)}.

For leximax however, we can see that the last two leaves are both �J -
dominated by the leftmost leaf. The leftmost judgment accepts two formulas
with a 5-to-4 majority, whereas the other two accept only one such formula. For
formulas with larger majorities, the two sets each accept two formulas. Thus we
can conclude that flex(J) = {p, q, (p ^ q), (p ^ r), (q ^ r)}. M

Finally, we examine a rule based on elementary changes in the profile. In order
to define this, we first define the Hamming distance between two profiles J and
J 0 as HP (J ,J 0) :=

P
i2N H(Ji, J 0

i). The Dodgson rule (for odd n) is defined as
follows:

fDod(J) = {m(J 0) | argmin
J 02M(�,n)

HP (J ,J
0) }

This rule is also known as the minimal-profile-change rule (Lang et al., 2017)
and as the “full” distance-based rule (Miller and Osherson, 2009). The Dodgson
rule chooses those judgments that can be reached by making the smallest number
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of atomic changes to the profile before reaching a consistent majority, where an
atomic change consists in changing the judgment of a single agent on a single
formula (and its negation). Dodgson then returns the majority outcome of these
profiles.

We will see that among these rules, Slater, Kemeny and leximax fall within
a class of rules called additive majority rules, and ranked agenda and maximal
Condorcet are closely related to rules in this class. Additive majority rules will
be our main focus in this chapter, and this is also the class of rules for which we
are able to establish the strongest positive results. We do not consider the class
of scoring rules in judgment aggregation defined by Dietrich (2014), or distance-
based rules that are not majoritarian. This is because our results are, at their core,
based on the domain where the majority outcome is consistent. Majoritarian rules
are by definition exactly those that are well-behaved on this particular domain.

5.2.2 Additive Majority Rules

In this section we review the large family of aggregation rules called additive
majority rules . This family includes some of the most important aggregation
rules discussed in the literature, notably the Kemeny rule and the Slater rule.
We first define and review this family of rules in some detail. We then show that
its most prominent exponents are not fully strategyproof, before proving that
nevertheless all rules in the family are strategyproof on profiles with a consistent
majority.

Recall that our rules are defined for odd n. A judgment aggregation rule f

is an additive majority rule (AMR) if there exists a non-decreasing gain function
g : [0, n] ! R with g(k) < g(k0) for any k <

n
2 and k

0 � n
2 such that, for any

profile J 2 J (�)n, the following condition is satisfied:

f(J) = argmax
J2J (�)

X

'2J

g(nJ
')

The family of additive majority rules was first identified by Nehring and Pivato
(2019). Here we have slightly adapted their original definition to our needs: on
the one hand, we only consider rules that weight all formulas equally, and on
the other, we consider a slightly larger family of gain functions g. Because of
this, Slater is an AMR by our definition, but falls outside of the class according
to theirs. Additive majority rules are based on the weighted majoritarian set,
meaning that for each formula ' in the agenda the rule only looks at how many
agents have ' in their judgment. Rules within this family di↵er only in how
much they prioritise large majorities over small ones. Nehring and Pivato (2019)
call this the elasticity of the gain function. Elasticity quantifies how far we can
“stretch” the size of the majority before the aggregation rule will “snap”, and
change the outcome it returns. On one end of this spectrum lie rules for which
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the size of the majority does not play a large (or even any) role; on the other
end, we find rules that prioritise large majorities over small ones. Observe that
the requirement of g(k) < g(k0) for k <

n
2 and k

0 � n
2 ensures that every AMR is

majority-preserving.
The additive majority rules include three of the most studied majority-

preserving rules in judgment aggregation. Let us now give their definitions in
terms of a gain function. The first is the Kemeny rule fKem, defined by the
simplest of gain functions:

g(x) = x

The Slater rule fSla is defined by the following gain function:

g(x) =

(
0 if 0  x <

n
2

1 if n
2  x  n

Thus, fSla rule considers all formulas accepted by a majority of agents as equal,
and tries to respect as many of these majorities as is possible without violating
consistency. In particular, it will not distinguish between a unanimously accepted
formula and one accepted by just dn

2 e agents.
A third AMR of prominence is the leximax rule flex. Recall that leximax gives

maximal preference to stronger majorities, meaning that it orders the formulas
in the agenda in terms of the number of agents supporting them and then tries
to accept as many formulas supported by a given number of agents as possible
before moving on to formulas with fewer supporters. The leximax rule is the
AMR with the following gain function:

g(x) = |�|x

Leximax lands on the opposite side of the elasticity spectrum compared to Slater;
while Slater does not distinguish at all between small majorities and large ones,
flex will never prioritise any number of small majorities over a single large one.
For example, it will choose a single formula accepted by n agents, over |�| � 1
formulas each accepted by n� 1 agents.

It is clear that our definitions of Slater and Kemeny in terms of the gain
function are equivalent to the standard definitions of these rules that we gave in
Section 5.2.1. The same holds, of course, for leximax. Our definition ensures that
if nJ

' > n
J
 , then no matter the support for any other formulas in �, if adding '

to the outcome will not break consistency, then  will never be chosen over '.
The class of additive majority rules includes many more rules of practical

interest. Let us highlight two further examples, characterised by the following
gain functions:

g(x) =
xX

k=1

1

k
g(x) = x

xX

k=0

✏
k for ✏⌧ 1
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Figure 5.1: AMRs on the elasticity spectrum.

Kemeny

g(x) = x

Slater

g(x) =

(
0 if x <

n
2

1 if n
2  x

Leximax

g(x) = |�|x

The first rule falls somewhere between Slater and Kemeny in terms of elastic-
ity; like Kemeny, it distinguishes between small and large majorities, but the
“marginal returns” gained from additional support diminish as majorities grow
larger. The second rule is very close to the Kemeny rule, but will prioritise large
majorities slightly more. The rule can be seen as a way to break ties between
Kemeny outcomes; it gives extra importance to larger majorities only insofar as
this can be helpful in di↵erentiating between outcomes that othewise would be
considered equally appealing.

5.3 Strategyproofness in Judgment Aggregation

As we’ve more than hinted, it is essentially impossible to design an aggregation
rule that is immune to manipulation by strategic agents while also ensuring that
the rule will always return an outcome that is logically consistent. In this section
we will formalise what we mean by this, review some of the literature on strate-
gyproofness in JA, and delve into the formal definition of our new domain-specific
strategyproofness axiom.

5.3.1 Preferences and Manipulability

We have so far avoided explicitly discussing agents’ preferences over judgments,
but to discuss strategyproofness and incentives for manipulation, we need to
define an agent’s preferences. Since agents hold and submit judgments rather than
rankings over possible outcomes, we cannot directly reason about their preferences
over these judgments. Still, following Dietrich and List (2007c), we will assume
that an agent’s preferences over outcomes are related to their truthfully held
judgments and that we can glean at least some information about their preferences
by extrapolating from those judgments. Specifically, we assume that an agent’s
most preferred outcome is their own truthful judgment. In many cases it makes
sense to also assume that agents like outcomes less the further away they are from
their true judgment, according to some notion of distance.

An agent i with true judgment Ji 2 J (�) is said to have closeness-respecting
preferences if J \ Ji ◆ J

0 \ Ji implies J ⌫i J
0 for all J, J

0 2 J (�). We
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focus on a special case of closeness-respecting preferences based on the Ham-
ming distance: agent i has Hamming preferences in case J ⌫i J

0 if and only if
H(J, Ji)  H(J 0

, Ji). In this chapter, we will only consider agents with Hamming
preferences over judgments, unless otherwise stated. Assuming that agents have
Hamming preferences amounts to assuming that they care equally about every
proposition in the agenda. This is a strong assumption that will not be justi-
fied in all circumstances, but in the absence of domain-specific information about
preferences it is arguably the most natural way to proceed. Hamming preferences
have indeed been the dominant choice in the literature on strategic behaviour
in judgment aggregation to date (Baumeister et al., 2017). They have also been
used to analyse strategic manipulation of social welfare functions (Bossert and
Storcken, 1992; Athanasoglou, 2016).

5.3.2 Strategyproof Aggregation Rules

Let us now recall the standard definition of strategyproofness that we will use
to review a well-known result showing that designing rules of practical interest
that are strategyproof in this sense is essentially impossible. Let J be a profile
such that Ji is agent i’s truthful judgment, inducing her preference order ⌫i

over judgments. Then a resolute aggregation rule f is manipulable by agent i

in profile J , if there exists a profile J 0 =�i J such that f(J 0) �i f(J). An
aggregation rule is strategyproof if it is not manipulable by any agent in any
profile J 2 J (�)n.

The study of strategic manipulation in judgment aggregation was initiated
by Dietrich and List (2007c). They showed that only rules belonging to a very
narrowly defined family—the most attractive representatives of which are the
majority rule and other so-called quota rules that accept a given proposition
whenever a certain number of agents do—are immune to strategic manipulation.
These rules, however, are inadequate for many applications, because they cannot
guarantee the consistency of outcomes.

5.7. Theorem (Dietrich and List, 2007c). A resolute judgment aggregation rule
is strategyproof for all closeness-respecting preferences if and only if it is indepen-
dent and monotonic.

The axiom of independence requires that deciding whether f will accept ' is pos-
sible by only considering how the individual agents judge ', while monotonicity
requires that additional support for an accepted proposition ' never gets ' re-
jected. Formally, f is independent and monotonic if and only if NJ

' ✓ N
J 0
' implies

' 2 J ) ' 2 J
0 for f(J) = {J} and f(J 0) = {J 0} (Botan et al., 2016). Both ax-

ioms feature prominently in impossibility theorems, which essentially show that
any rule that satisfies them is bound to return inconsistent outcomes for some
profiles (Dokow and Holzman, 2010; List and Pettit, 2002; Nehring and Puppe,
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2007). Among the standard aggregation rules, the only ones that satisfy both
independence and monotonicity are the quota rules (Dietrich and List, 2007b).
Although this class of rules can guarantee strategyproofness for a large family of
preferences, they do not always return a consistent outcome and thus, arguably,
are of little practical interest. This is why Theorem 5.7 must be interpreted as a
negative result. Indeed, the characterisation result by Dietrich and List (2007c)
is most often viewed under a similar lens as the Gibbard-Sattertwaite Theorem:
it suggests that there are no attractive rules that are strategyproof.

Prior work aimed at addressing this dilemma has identified various fruitful
directions. We mention three particularly successful approaches. One way of cir-
cumventing the conflict between strategyproofness and a consistent majority is
to identify restricted domains of profiles of individual judgments for which better
performance of certain rules, notably the majority rule, can be guaranteed (List,
2003). We will go into further detail on several existing domain restrictions in
Section 5.3.5. A more recent approach has been to analyse the computational
complexity of the manipulation problem as a means of providing complexity bar-
riers against unwanted behaviour (Endriss et al., 2012; de Haan, 2017; Baumeis-
ter et al., 2017). Finally, positive results can be found by studying the extent
to which limiting access to relevant information may serve as an e↵ective infor-
mational barrier against manipulation (Terzopoulou and Endriss, 2019). The
route we take in this chapter—which is to o↵er a more fine-grained analysis of
the concept of strategyproofness itself—is complementary to these approaches.
Another natural approach to overcoming the lack of strategyproof rules is to re-
strict attention to strategyproofness for Hamming preferences only, rather than
strategyproofness for all closeness-respecting preferences. Unfortunately we will
see in Section 5.3.3 that for the most well-known majority-preserving rules this
also is not attainable.

The most closely related body of research to our own work concerns the ma-
nipulation of social welfare functions that map profiles of preference orders to
collective preference orders. Bossert and Storcken (1992) were the first to study
this problem and suggested to model the preferences of agents over preference
orders in terms of the Kendall-tau distance between orders.3 While guaranteeing
strategyproofness in this model is generally impossible (Bossert and Storcken,
1992; Athanasoglou, 2016), Bossert and Sprumont (2014) obtain positive results
for a weak form of strategyproofness that considers only manipulations which
bring about an outcome that is between an agent’s true preference order and the
current outcome. This means that the outcome of any manipulation must be
comprised only of atomic changes in the agent’s favour. They find that several
important preference aggregation rules, among them the Kemeny and the Slater
rule, are strategyproof in this sense. Sato (2015) presents several refinements

3This corresponds to using the Hamming distance to model preference over judgments, which
is what we will do in this chapter.
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of these results. Athanasoglou (2016) considers strategyproofness for Hamming
preferences in preference aggregation, and shows that for a su�cient number of
alternatives, several of the rules considered by Bossert and Sprumont (2014) fail
this stronger strategyproofness requirement.

5.3.3 Hamming Strategyproofness

As we’ve seen, Theorem 5.7 excludes the possibility of Kemeny, Slater, or lexi-
max being strategyproof for all closeness-respecting preferences. It leaves open,
however, the possibility that they are strategyproof for Hamming preferences.
Indeed Kemeny and Slater, whose standard distance-based definitions are closely
tied to the Hamming distance, seem to be promising candidates for rules that are
strategyproof in this sense. We are now going to see that this is not the case,
and that all three rules are manipulable on the full domain for a su�ciently large
agenda.

Athanasoglou (2016) shows for social welfare functions that both Kemeny and
Slater are manipulable for all preference extensions, when the number of alter-
natives exceeds three. As any preference profile can be embedded into judgment
aggregation (Endriss, 2016), and as the outcomes of the Kemeny and Slater judg-
ment aggregation rules will agree with their social welfare function counterparts
in the preference aggregation domain, we obtain the following result. While we
restrict the set of complete and consistent judgments without explicitly spelling
out the formulas in the agenda themselves, we note that, by a result of Dokow
and Holzman (2010), it is possible to construct an agenda with these structural
properties (and we can, conveniently, abstract away from the specifics of �). We
will use this fact several times in this chapter.

5.8. Proposition (Athanasoglou, 2016). The Kemeny rule and the Slater rule
are manipulable under all preference extensions.

Proof: Let the agenda � be such that the following are the only complete and
consistent judgments:

'1 '2 '3 '4 '5 '6

J1 No No No Yes No No
J2 No Yes Yes No No No
J3 Yes Yes Yes Yes Yes Yes
J4 Yes No Yes Yes No No
J5 Yes No No Yes No Yes

Let J be the following profile:



84 Chapter 5. Majoritarianism and Strategyproofness in Judgment Aggregation

'1 '2 '3 '4 '5 '6

J1 No No No Yes No No
J2 No Yes Yes No No No
J3 Yes Yes Yes Yes Yes Yes

m(J) No Yes Yes Yes No No

Let J 0 =�1 J , and suppose now agent 1 submits J 0
1 = J4 in profile J 0 and no one

else changes their judgment. It is a (frustrating but) simple matter to check that
fKem(J) = fSla(J) = {J2} and fKem(J 0) = fSla(J 0) = {J4}. First, note that for
both profiles J and J , all majorities are two to one, meaning Slater and Kemeny
must coincide in these profiles. We can check the distance from the majority
outcome to each of the sets J1, . . . J5, which will give us the outcomes {J2} and
{J4}, respectively.

Because J2 �i J4—and both outcomes are singletons—we see that for
any preference extension where a �i b implies {a} �̊i {b}, both Slater and
Kemeny are manipulable by agents with Hamming preferences over judgments. 2

We now show that the same holds for the leximax rule.

5.9. Proposition. The leximax rule is manipulable under all preference exten-
sions.

Proof: Let J be the profile below (borrowed from Lang et al. (2017)), with
�+ = {p ^ r, p ^ s, q, p ^ q, t} and 16 agents, including one distinguished agent i:

p ^ r p ^ s q p ^ q t

6 agents Yes Yes Yes Yes Yes
7 agents No No Yes No No
2 agents Yes Yes No No Yes
Ji Yes Yes No No Yes

Maj Yes Yes Yes No Yes

We first note the support for the formulas in the agenda �:

n
J
q = 13 n

J
¬(p^q) = 10 n

J
p^r = n

J
p^s = n

J
t = 9

It is clear then that flex(J) = J = {¬(p ^ r),¬(p ^ s), q,¬(p ^ q), t}—if we
iteratively add formulas to our set, we can see that q, and ¬(p ^ q) must be
included, implying that both (p ^ r) and (p ^ s) must be excluded. Finally,
including t does not create any inconsistency. Let now J 0 be an i-variant of J
where J 0

i = {p^ r, p^ s, q, p^ q, t}—meaning the grey cells in the table above are
“flipped”. Then:

n
J 0
¬(p^q) = n

J 0
p^r = n

J 0
p^s = n

J 0
t = 9
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Rejecting p ^ q will therefore no longer maximise gain, and simple calcu-
lation tells us flex(J 0) = J

0
i . As agent i has Hamming preferences and

H(Ji, J) = 3 > 2 = H(Ji, J), we know J
0
i �i J , which implies flex(J 0) �̊i flex(J)

for any preference extension ⌫̊i. 2

We can see that strategyproofness on the full domain is is too demanding a
property. It is unattainable for the salient additive majority rules, even when we
restrict attention to Hamming preferences and are free to choose any preference
extension.

5.3.4 Domain-Strategyproofness

Our proposal in this chapter is to consider a carefully weakened notion of strate-
gyproofness, parametrised by some domain D of profiles of individual judgments.
Under this novel notion of strategyproofness we require immunity to manipula-
tion only in two situations: when the truthful profile belongs to D, or when the
profile the manipulating agent might deviate to belongs to D. While this notion
is related to the idea of imposing a restriction on the domain on which the aggre-
gation rule is defined (List, 2003), we do not actually impose any such restriction
in our work.

Our specific focus is on the domain M of profiles that guarantee consistent
outcomes under the majority rule. A rule that isM-strategyproof will be immune
to manipulation in all those cases in which the (strategyproof) majority rule
would return a consistent outcome (and thus would be useable at all), while also
returning consistent outcomes for all other profiles.

Let J 2 J (�)n be a profile, with Ji being agent i’s truthful judgment. Let
⌫i be agent i’s preference order over judgments, and ⌫̊i her preference order over
sets of judgments. Then f is manipulable by agent i in profile J , if there exists
a profile J 0 =�i J such that f(J 0) �̊i f(J). An irresolute aggregation rule is
strategyproof under a given preference extension e if it is not manipulable by any
agent i where ⌫̊i = e(⌫i). We say that f is D-manipulable by agent i in J if
there exists another profile J 0 =�i J such that f(J 0) �̊i f(J) and at least one of
J and J 0 belong to D. If only J 0 belongs to D, we say agent i can manipulate
to D. If only J belongs to D, we say agent i can manipulate from D. A rule is
called D-strategyproof under a preference extension e if it is not D-manipulable
by any agent i 2 N where ⌫̊i = e(⌫i).

The main notion of strategyproofness we will investigate in this chapter is M-
strategyproofness, ormajority-strategyproofness . Note that a rule being majority-
preserving does not guaranteeM-strategyproofness. For example, a rule that out-
puts the majority judgment if consistent and otherwise outputs a fixed judgment
clearly is majority-preserving but not M-strategyproof. M-strategyproofness of
a majority-preserving rule guarantees that the majority outcome will in fact be
preserved, even under the assumption that agents will manipulate if they have
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an incentive to do so. Such a rule would also guarantee that the set of “manip-
ulable” profiles are a subset of the profiles resulting in an inconsistent outcome
when using the (strategyproof) majority rule, as any manipulation must be be-
tween profiles where the majority rule would result in an inconsistent outcome.
Thus, there is a sense in which M-strategyproof rules will minimise the regret
of the mechanism designer; if we—as the mechanism designer—care to a great
extent about consistency and non-manipulability, it will never be preferable to
use the majority rule over an M-strategyproof majority-preserving rule that can
guarantee consistency.

5.3.5 Restricted Domains

Before moving on, let us highlight the close connection between strategyproofness
and domain restrictions in the literature (Dietrich and List, 2010). We briefly
review four of the central domain restrictions in judgment aggregation, and ex-
amine how exactly they relate to our notion of domain-strategyproofness—and
the domain M.

Utilising a domain restriction amounts to restricting the potential input of
an aggregation rule to a set of well-behaved profiles. Domain-strategyproofness
similarly exploits the well-behavedness of a (sub)domain of profiles, but does
so without restricting the actual input to the aggregation rule. There are sev-
eral domain restrictions in judgment aggregation that are used to obtain positive
results—mainly, that a consistent majority outcome can be guaranteed on these
domains. Thus, many known domain restrictions will give positive results in terms
of domain-strategyproofness as well, as they are built to guarantee a consistent
majority outcome within the domain. We define four known domain restrictions
in judgment aggregation. Common among them all is that they rely on an order-
ing, either of the agents or of the agenda—similar to, say, the single-peakedness
condition we’ve seen for preference profiles (Black, 1948).

The first restriction we consider is unidimensional alignment (List, 2003). Uni-
dimensional alignment requires that the agents accepting a proposition are either
all to the left, or all to right of those rejecting that proposition. A second restric-
tion based on an ordering of the agents is unidimensional orderedness (Dietrich
and List, 2010). Unidimensional orderedness is a slightly weaker condition that
only requires the agents accepting a proposition are adjacent to each other. Often
this ordering of agents is thought of as placing each agent in a position on, say,
a political spectrum. Finally, single-plateauedness and single-canyonedness (Di-
etrich and List, 2010) both rely on an ordering of the agenda. One example of
such an ordering might be an order of gift ideas for a friend from least to most
expensive. In a single-plateaued profile each agent would give a price-interval
that indicates how much they are willing to spend. In a single-canyoned profile
agents might be seen as wanting either to go all out and spend a lot of money on
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the gift (within some range), or otherwise just buy a cheap item (again within
some low-cost range).

• A profile J is unidimensionally aligned whenever there exists a linear order-
ing . of the agents such that for every ' 2 �, we have that for all i 2 N

J
'

and all i0 2 N
J
¬', it is the case that i . i0.

• A profile J is unidimensionally ordered whenever there exists a linear or-
dering . of the agents such that for every ' 2 �, we have that NJ

' = {i 2
N | i` . i . ir} for some i`, ir 2 N .

• A profile J is single-plateaued whenever there exists a linear ordering . of
the agenda such that for all i 2 N we have Ai = {' 2 � | '` . ' . 'r}.

• A profile J is single-canyoned whenever there exists a linear ordering . of
the agenda such that for all i 2 N we have Ai = � \ {' 2 � | '` . ' . 'r}.

Common among all these domain restrictions in judgment aggregation is that they
enable the majority to return a logically consistent outcome for any profile in the
domain, meaning that the set of unidimensionally aligned profiles, for example,
is indeed a subset of M.

5.10. Theorem (List, 2003; Dietrich and List, 2010). For odd n, if J is uni-
dimensionally ordered, unidimensionally aligned, single-plateauded, or single-
canyoned, then m(J) is consistent.

This is particularly nice as these restrictions have an intuitive explanation and
describe a particular structure that we may see in a real-life profile of judgments.
Thus, we know that the domain of profiles with a consistent majority include
many natural structures that can arise in practice. We also know that an agent
cannot manipulate a majority-preserving rule within the domain of unidimension-
ally aligned profiles; domain-strategyproofness looks to strengthen such results by
excluding the possibility of any incentive for manipulation from or to, for example,
a unidimensionally aligned profile.

5.4 Majority-Strategyproofness of Additive
Majority Rules

While we cannot guarantee strategyproofness on the full domain, it turns out that
M-strategyproofness is attainable for Hamming preferences and a large class of
preference extensions. Before presenting our main result, we prove three techni-
cal lemmas. The first establishes a relation between majority outcomes in two
profiles that are i-variants, and the second links the notion of betweenness to the
Hamming distance.
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5.11. Lemma. For profiles J =�i J 0, m(J) is between Ji and m(J 0).

Proof: As all judgments involved are complete and complement-free, we simply
need to show m(J) ✓ Ji [ m(J 0). Take any ' 2 m(J). Suppose ' 62 Ji. If
J
0
i =' Ji, then N

J 0
' = N

J
' , so ' 2 m(J 0). But if J 0

i 6=' Ji, then ' 2 J
0
i and

n
J 0
' > n

J
' , so again ' 2 m(J 0). 2

The following lemma is a somewhat well-known fact—implicit in the work of
Duddy and Piggins (2012) for example, who prove the equivalent statement for
preference orders. We give a proof for the context of judgment aggregation in the
interest of completeness.

5.12. Lemma. If for complete and complement-free judgment sets J, J
0
, J

00, it is
the case that J 0 is between J and J

00, then we have that H(J, J 00) = H(J, J 0) +
H(J 0

, J
00).

Proof: By definition of betweenness, J 0 ✓ J [ J
00. To see that

H(J 0
, J) +H(J 0

, J
00) = |(J 00 \ J [ J \ J 00) \ J

0|

note that for any ' 2 J
0, there are three cases we need to consider: either

' 2 J \ J
0, or ' 2 J

0 \ J , or ' 2 J \ J
0. If ' 2 J \ J

0, this means that
considering ' does not add to the Hamming distance from J

0 to J nor to the
Hamming distance from J to J

00. Thus we only need to consider the first two
of three possible cases in order to find the sum of the two Hamming distances.
In other words, we can simply count the number of times J and J

00 disagree on
formulas in J

0.
Since H(J 0

, J) + H(J 0
, J

00) is the Hamming distance between J and J
00 re-

stricted only to the formulas present in J
0, this distance cannot exceed H(J, J 00),

meaning it must be the case that H(J, J 0) +H(J 0
, J

00)  H(J, J 00). This together
with the triangle inequality, H(J, J 00)  H(J, J 0) + H(J 0

, J
00), proves the claim.

2

Our final lemma establishes a relationship between majority outcomes and the
outcomes of an AMR, in terms of the Hamming distance. By definition, the Slater
rule satisfies the property in Lemma 5.13. We show that the same is true for any
AMR when restricting our scope to i-variants. This will be useful for proving
M-strategyproofness for the class as a whole.

5.13. Lemma. Let f be an additive majority rule and let J and J 0 be two profiles
such that J =�i J 0 for some agent i, and such that m(J 0) is consistent. Then
H(m(J),m(J 0)) � H(m(J), J⇤) for all J⇤ 2 f(J).
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Proof: Let g be the non-decreasing gain function defining f and fix an arbitrary
judgment set J⇤ 2 f(J). Let k = H(m(J),m(J 0)) and k

0 = H(m(J), J⇤). So we
need to show that k � k

0.
We first derive a constraint on k. Observe that agent i can change the majority

outcome for a formula ' under profile J only in case n
J
' is equal to either bn

2 c
or dn

2 e. With this in mind, we can write the total gain for formulas ' 2 m(J 0)
under profile J as follows:

X

'2m(J 0)

g(nJ
')

=
X

'2m(J)

g(nJ
') +

X

'2m(J 0)\m(J)

g(nJ
') �

X

'2m(J)\m(J 0)

g(nJ
')

=
X

'2m(J)

g(nJ
') + k · g(bn

2 c) � k · g(dn
2 e)

Next, we derive a similar constraint on k
0. Let us compute the total gain for

formulas ' 2 J
⇤ under the same profile J :

X

'2J⇤

g(nJ
')

=
X

'2m(J)

g(nJ
') +

X

'2J⇤\m(J)

g(nJ
') �

X

'2m(J)\J⇤

g(nJ
')

=
X

'2m(J)

g(nJ
') +

X

'2J⇤\m(J)

g(nJ
') �

X

'2J⇤\m(J)

g(n� n
J
')

=
X

'2m(J)

g(nJ
') +

X

'2J⇤\m(J)

⇥
g(nJ

')� g(n� n
J
')
⇤

As g is a non-decreasing function, g(nJ
') � g(n � n

J
') is non-decreasing in n

J
' .

Hence, given that the maximal value that n
J
' can take for any ' 62 m(J)—and

thus for any ' 2 J
⇤ \m(J)—is bn

2 c, the last sum in the equation above is at most
equal to k

0 ·
⇥
g(bn

2 c)� g(n� bn
2 c)

⇤
= k

0 ·
⇥
g(bn

2 c)� g(dn
2 e)

⇤
. So we obtain:

X

'2J⇤

g(nJ
') 

X

'2m(J)

g(nJ
') + k

0 ·
⇥
g(bn

2 c)� g(dn
2 e)

⇤

Finally, let us combine the constraints on k and k
0 that we have derived. Recall

that, by assumption, m(J 0) is a consistent judgment set. So it is available as
a potential outcome under profile J . Thus, the score of J⇤, one of the actual
outcomes under J , must be at least as high as that of m(J 0):

X

'2J⇤

g(nJ
') �

X

'2m(J 0)

g(nJ
')
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Putting everything together, and keeping in mind that g(bn
2 c) � g(dn

2 e) < 0, we
obtain k � k

0 as claimed. 2

We can now combine the three lemmas to get our main result.

5.14. Theorem. Additive majority rules are M-strategyproof under all reflective
preference extensions.

Proof: Let f be the AMR defined by the non-decreasing gain function g, and let
J and J 0 be two profiles such that J =�i J 0 for some agent i, and Ji is agent i’s
truthful opinion. We need to show that, if m(J) or m(J 0) is consistent, then it
cannot be the case that f(J 0) ⌫i f(J) for any reflective preference extension ⌫̊i.
In other words, we need to show for all J 2 f(J) and J

0 2 f(J 0) that J 0 6�i J .
From Lemmas 5.11 and 5.12 together, we obtain:

H(Ji,m(J 0)) = H(Ji,m(J)) +H(m(J),m(J 0)) (i)

Note that if bothm(J) andm(J 0) are consistent, then as f is majority-preserving,
f(J) = {m(J)} and f(J 0) = {m(J 0)}. Any possible manipulation between
these profiles would therefore imply a possible manipulation of the majority rule.
However, Theorem 5.7 tells us no manipulation of the majority rule is possible.
Thus, we need only consider the following two cases.

Case 1 : For inconsistent m(J) and consistent m(J 0), Lemma 5.13 says that for
any outcome J

⇤ 2 f(J), it is the case that H(m(J), J⇤)  H(m(J),m(J 0)).
We need to show that H(Ji, J⇤)  H(Ji,m(J 0))—or that J

⇤ ⌫i m(J 0). With
this in mind, take an arbitrary judgment set J⇤ 2 f(J). Combining the triangle
inequality with Lemma 5.13 and (i), we get (ii):

H(Ji, J
⇤)  H(Ji,m(J)) +H(m(J), J⇤)

 H(Ji,m(J)) +H(m(J),m(J 0))

= H(Ji,m(J 0)) (ii)

In other words, for any J
⇤ 2 f(J) and the unique J

0 = m(J 0) 2 F (J 0), we have
that J⇤ ⌫i J

0. So for any reflective preference extension ⌫̊i it cannot be the case
that f(J 0) �̊i f(J).

Case 2 : For consistent m(J) and inconsistent m(J 0), we know by Lemma 5.13
that H(m(J 0), J⇤)  H(m(J),m(J 0)) for any J

⇤ 2 f(J 0). We now need to show
that H(Ji, J⇤) � H(Ji,m(J))—or that m(J 0) ⌫i J

⇤.
Take an arbitrary judgment set J

⇤ 2 F (J 0). We again use the triangle in-
equality, Lemma 5.13, and (i) to get (iii):

H(Ji, J
⇤) � H(Ji,m(J 0))�H(m(J 0), J⇤)

� H(Ji,m(J 0))�H(m(J),m(J 0))

= H(Ji,m(J)) (iii)
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In other words, for any J
⇤ 2 f(J 0) and the unique J = m(J) 2 f(J), we have

that J ⌫i J
⇤. So again, for any reflective preference extension ⌫̊i it cannot be

the case that f(J 0) �̊i f(J).
Taking these cases together we have shown that f(J 0) 6�̊i f(J) as desired,

meaning agent i cannot successfully manipulate by submitting any untruthful
judgment J 0

i in place of Ji. 2

5.15. Corollary. The Kemeny, Slater, and leximax rules are M-strategyproof
under all reflective preference extensions.

The majority-strategyproofness of additive majority rules presents a strong ar-
gument for their use in lieu of the majority rule. They o↵er an alternative that
guarantees consistency, and ensures that the majority will be preserved in all
cases. Importantly they also o↵er the post-aggregation “check” for majority con-
sistent outcomes, meaning it is possible to recognise cases where no manipulation
can have occurred, thereby ensuring we can trust the outcome.

The following proposition tells us that M-strategyproofness of additive ma-
jority rules does not hold for closeness-respecting preferences in general.

5.16. Proposition. For any AMR f there is some closeness-respecting prefer-
ence under which f is not M-strategyproof.

Proof: Let J be the profile below—we assume � is such that J1, J2, J3 are the
only consistent judgments—and suppose J1 is agent 1’s truthful opinion. Suppose
further that agent 1 has closeness-respecting preferences, but J3 �1 J2, meaning
she does not have Hamming Preferences. Note that this is possible only because
J1\J3 6✓ J1\J2. Note further that because the strength of all majorities is equal
(a two-to-one majority), all AMRs will agree with the Slater rule on this profile.

'1 '2 '3 '4 '5

J1 Yes Yes No No No
J2 No Yes No Yes Yes
J3 Yes No Yes Yes Yes

m(J) Yes Yes No Yes Yes

We calculate the distance from the majority to each possible outcome and
find that fSla(J) = {J2}. Suppose J 0 = (J 0

1, J2, J3), and J
0
1 = J3. Then,

fSla(J 0) = {m(J 0)} = {J3}. Since i prefers this outcome to J2, she will have an
incentive to manipulate to the majority. Since any AMR will agree with Slater
both in J and J 0, this is enough to prove our claim. 2
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Figure 5.2: Coarsenings of known AMRs.

KemenySlater Leximax

Max Condorcet
✓

Ranked agenda
✓

Results for Other Domains

Let us briefly review how our results relate to the domain restrictions in Sec-
tion 5.3.4, the most prominent example of which is unidimensional alignment.
Let U(�, n) be the domain of unidimensionally aligned profiles for � and n. As
U(�, n) ✓ M(�, n) (List, 2003), we immediately obtain:

5.17. Corollary. Additive majority rules are U-strategyproof under all reflec-
tive preference extensions.

Clearly, this result is not unique to unidimensionally aligned profiles, but holds
for any domain restriction in judgment aggregation that guarantees a consistent
majority—including the domain of unidimensionally ordered, single-canyoned,
and single-plateaued profiles.

5.5 Coarsenings of Additive Majority Rules

In this section we first examine two rules, the maximal Condorcet rule and the
ranked agenda rule. These rules are related to the additive majority rules in that
they will always return a superset of the outcome of some AMR. It turns out that
this particular relationship a↵ords these rules a certain level of protection against
manipulation.

We say that an aggregation rule f
0 is a coarsening of a rule f (and f is a

refinement of f 0) if f 0(J) ◆ f(J) for all profiles J . We will examine two such
coarsenings of AMRs—the maximal Condorcet rule and the ranked agenda rule,
both defined in Section 5.2.1. Their relationship with the AMRs we have seen in
this chapter are shown in Figure 5.2. We first show that our strategyproofness
results for AMRs do not extend to these rules—we can find a coarsening of an
AMR that is manipulable under some preference extension, both to and from M.
We will then see that their proximity to the additive majority rules means that
they are nevertheless a↵orded some level of immunity to manipulation. More
specifically, we are going to show that for the Kelly preference extension, these
rules are M-strategyproof.

Observe that fSla is a refinement of fCon in that fSla(J) ✓ fCon(J) for all
profiles J . This is clear from the definition of fSla given in Section 5.2.1 as the rule
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that selects the maximal consistent subset of the majority in terms of cardinality.4

We are going to show that for the Kelly extension, fCon is M-strategyproof. We
first state some weaker strategyproofness results for pessimistic and optimistic
agents.

5.18. Proposition. For any coarsening f of an additive majority rule, there
exists some reflective preferences under which f fails M-strategyproofness—both
from or to M.

Proof: Manipulation to Majority: Let J be the profile below, where J1 is agent
1’s truthful opinion, she has pessimistic preferences, and J 0 =�1 J is such that
J
0
1 = {p,¬q,¬(p ^ q), p ^ r}.

p q p ^ q p ^ r

J1 Yes Yes Yes Yes
J2 Yes No No Yes
J3 No Yes No No

m(J) Yes Yes No Yes

We can see that fCon(J) = {{p, q, p^q, p^r}, {p,¬q,¬(p^q), p^r}, {¬p, q,¬(p^
q),¬(p^ r)}}, and since m(J 0) is consistent, fCon(J 0) = {{p,¬q,¬(p^ q), p^ r}}.
As {p,¬q,¬(p ^ q), p ^ r} �1 {¬p, q,¬(p ^ q),¬(p ^ r)}, agent 1 can successfully
manipulate from from J to J 0—meaning to the majority.

Manipulation from Majority: Let J be the profile below, suppose J1 is agent
1’s truthful opinion and suppose that she is optimistic. Further, let J 0 =�1 J be
the profile which di↵ers only in that agent 1 submits J 0

1 = {a, b, c,¬d, (a^¬d) !
(b ^ c)}.

p q r s (p ^ ¬s) ! (q ^ r)

J1 Yes Yes Yes Yes Yes
J2 Yes No No Yes Yes
J3 No No No No Yes

m(J) Yes No No Yes Yes

As m(J) is consistent, fCon(J) = {m(J)}. For J 0, the majority,
m(J 0) = {p,¬q,¬r,¬s, (p ^ ¬s) ! (q ^ r)}, is not consistent. It is sim-
ple to confirm {p,¬s, (p ^ ¬s) ! (q ^ r)} 2 C(m(J 0)), and thus that
J
⇤ = {p, q, r,¬s, (p ^ ¬s) ! (q ^ r)} 2 fCon(J 0). We calculate the dis-

tances from J1 to find that J
⇤ �1 m(J). As there exists some strictly better

outcome in fCon(J 0), agent 1 can manipulate maximal Condorcet from majority.2

4In fact this relationship holds between fCon and fKem as well as between fCon and flex
(Lang et al., 2017), meaning fCon is a coarsening of several AMRs.
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All hope for these coarsenings is not lost, however. While the proof of Proposi-
tion 5.18 shows that pessimistic agents can manipulate a coarsening of an AMR
to majority, and optimistic agents can manipulate from majority, these rules still
provide some level of protection against manipulation for both pessimistic and
optimistic agents.

5.19. Proposition. For any coarsening of an additive majority rule a pes-
simistic agent cannot manipulate from majority.

Proof: Let f
0 be a coarsening of an AMR f . Further, let J and J 0 be two

profiles such that J =�i J 0 and f
0(J) = {m(J)}. Suppose for contradiction

that there is a pessimistic agent i, with truthful opinion Ji, who can manipulate
from J to J 0. Then J

0 �i m(J) for all J 0 2 f
0(J 0). As f(J 0) ✓ f

0(J 0), this
would constitute a successful manipulation of f by a pessimistic agent, which
contradicts Theorem 5.14, as f is an AMR. 2

5.20. Proposition. For any coarsening of an additive majority rule an opti-
mistic agent cannot manipulate to majority.

Proof: Let f
0 be a coarsening of an AMR f . Further, let J and J 0 be two

profiles such that J =�i J 0 and f
0(J 0) = {m(J 0)}. Suppose for contradiction

that there is an optimistic agent i, with truthful opinion Ji, who can manipulate
from J to J 0. Then m(J 0) �i J

⇤ for all J⇤ 2 f
0(J). As f(J) ✓ f

0(J), this
would constitute a successful manipulation of f by an optimistic agent, which
contradicts Theorem 5.14, as f is an AMR. 2

We can now use Proposition 5.19 and Proposition 5.20 to prove the following
theorem.

5.21. Theorem. Coarsenings of additive majority rules are M-strategyproof un-
der the Kelly extension.

Proof: Let f be a coarsening of an AMR. By definition, if an optimistic agent
cannot manipulate a rule to the majority, then an agent with Kelly preferences
cannot either. This, together with Proposition 5.20, shows that agents with
Kelly preferences cannot manipulate f to majority. Similarly, if a pessimistic
agent cannot manipulate a rule from the majority, then an agent with Kelly
preferences cannot either. This, together with Proposition 5.19 shows that
agents with Kelly preferences cannot manipulate f from majority. Putting these
together establishes M-strategyproofness of coarsening of AMRs under the Kelly
extension. 2
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Thus, while a pessimistic or optimistic agent might manipulate a coarsening of
an AMR—say the maximal Condorcet rule—these rules do benefit from their
relationship with AMRs in terms of M-strategyproofness for agents with Kelly
preferences.

Due to the aforementioned relationship between maximal Condorcet and
Slater, we get the following result.

5.22. Corollary. The maximal Condorcet rule is M-strategyproof under the
Kelly extension.

While fRA is not itself an AMR, it is a coarsening of the leximax rule as we have
that flex(J) ✓ fRA(J) for all profiles J (Lang et al., 2017). Therefore, our result
also applies for the ranked agenda rule.

5.23. Corollary. The ranked agenda rule is M-strategyproof under the Kelly
extension.

Thus, both maximal Condorcet and ranked agenda benefit from their proximity
to known additive majority rules.

5.6 The Dodgson Rule

We conclude our examination by straying even further from the additive majority
rules. Recall that the Dodgson rule returns the majority outcome of profiles that
can be reached by making the smallest number of atomic changes to the initial
profile before reaching a consistent majority. This is clearly a majority-preserving
rule, but it is not an AMR. Indeed, it also lacks the strategyproofness properties
of the previous majority-preserving rules examined in this chapter.

5.24. Proposition. The Dodgson rule fails M-strategyproofness for all prefer-
ence extensions.

Proof: Let � be an agenda with |�+| = 10. Consider the profile J below, with
J1 being agent 1’s true judgment:

'1 '2 '3 '4 '5 '6 '7 '8 '9 '10

J1 No Yes Yes No No No No No No No
J2 No No No Yes No Yes Yes No Yes Yes
J3 No No No No Yes Yes Yes Yes Yes No

m(J) No No No No No Yes Yes No Yes No

Suppose that—besides J1, J2, and J3 appearing J—the only other judgments that
are consistent are J4, J5, J6, and J7 shown below.
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'1 '2 '3 '4 '5 '6 '7 '8 '9 '10

J4 No No No No No Yes Yes No Yes No
J5 Yes Yes No Yes No No No No No No
J6 No Yes No Yes No Yes Yes No Yes Yes
J7 No Yes No Yes No Yes Yes No No No

As the majority outcome is consistent, fDod(J) = {m(J)} = {J4}.
Let J 0 be an i-variant of J with J

0
1 = J5, making m(J 0) inconsistent. We

calculate the relevant distances between the allowed judgments and the judgments
in the profile J 0, shown in the following table.

J1 J2 J3 J4 J5 J6 J7

J2 7 0 4 2 6 1 2
J3 7 4 0 2 8 5 4
J5 3 6 7 6 0 5 4

We see that the minimal number of atomic changes we can make to the profile
J 0—while ensuring all input judgments are consistent—is 1, as H(J2, J6) = 1.
For all other relevant pairwise comparisons of admissible judgments, the Ham-
ming distance between them is 2 or greater. Indeed, replacing J2 with J6 will
result in profile J⇤ = (J5, J6, J3), with a consistent majority outcome. Thus
fDod(J

0) = {m(J⇤)} = {J7}. As J7 �1 J4, it must be the case that f(J 0) �̊1 f(J)
for any preference extension (as we are comparing singleton sets), making this a
successful manipulation from M. 2

Recall that strategyproofness from M ensures that a majority-preserving rule
agrees with the majority, even when accounting for possible strategic manipula-
tion.

For agents with Kelly (and pessimistic) preferences, the following example
shows manipulation is possible both to and from M. Thus, for this type of
agent, Dodgson will also fail to provide the post-aggregation guarantee that no
manipulation has occurred.

5.25. Example (Dodgson Manipulation to Majority). Let J be the profile be-
low, where J1 is agent 1’s true judgment, and suppose her preferences are extended
according to the Kelly extension. Let � be an agenda such that J1, J2, and J3

are the only consistent judgments.

'1 '2 '3 '4 '5 '6

J1 No No No Yes No No
J2 No No Yes No Yes Yes
J3 Yes Yes Yes Yes Yes Yes

m(J) No No Yes Yes Yes Yes
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Note that the majority outcome is not consistent. It is easy to check that f(J) =
{J2, J3}. Now let J 0 be an i-variant of J , where J

0
1 = J2. Then fDod(J 0) =

m(J 0) = J2, as agent 1 prefers J2 over J3. As she has Kelly preferences, we have
fDod(J 0) �̊1 fDod(J) which is a successful manipulation to M. M

The Dodgson rule exemplifies that by no means all majority-preserving rules are
associated with some level of M-strategyproofness. Not only does it fail M-
strategyproofness for the types of agents we have considered in this chapter, but
it is highly susceptible to manipulation by agents with an even wider variety of
preferences. This means it presents ample opportunities for manipulation.

5.7 Summary

In this chapter, we have introduced a novel weakening of strategyproofness, which
we called domain-strategyproofness. We have argued that in the absence of
full strategyproofness, domain-strategyproofness often o↵ers a su�ciently strong
barrier against manipulation. We have focused in particular on the majority-
consistent domain, and examined majority-preserving aggregation rules, showing
varying levels of strategyproofness for several prominent rules from the judgment
aggregation literature. Our results make a strong case for the use of additive
majority rules, a class of rules that includes both the Kemeny rule and the Slater
rule.





Chapter 6

Conclusion

In Chapter 1 we outlined the main question addressed in this thesis:

Is it possible to manipulate from a profile in a “well-behaved”
domain to one outside the domain in question?

With this question in mind, we set out to identify natural “well-behaved” do-
mains in three di↵erent settings. We looked at the Condorcet domain in voting,
the party-list domain in multiwinner voting, and the majoritarian domain in
judgment aggregation. Throughout the thesis, we made strides towards answer-
ing our question in all three settings and we found a mix of positive and negative
answers. In Chapter 3 our answers were largely negative as we excluded the
possibility that many well-known and axiomatically convincing rules can be ro-
bust Condorcet extensions. In Chapters 4 and 5 we were luckier and obtained
strategyproofness results for large classes of natural rules—Thiele methods in
multiwinner voting and additive majority rules in judgment aggregation.

We now briefly summarise our results and discuss some of the connections
between the three main chapters of the thesis. We will then discuss some possible
future directions.

6.1 Looking Back

After setting the stage in Chapter 1, we moved on to the topic of preferences
and preference extensions in Chapter 2. Having briefly gone over the history of
the problem of lifting preferences, we outlined axioms for extensions and defined
specific extensions that have parameterised our results throughout the rest of the
thesis. After this prep work, we delved into the three main chapters.

99
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In Chapter 3 we looked at the connection between Condorcet consistency
and strategic manipulation. Specifically, we examined Condorcet-consistent
(weighted) tournament solutions and strategyproofness on profiles where a Con-
dorcet winner exists. We defined the notion of a robust Condorcet extension as
a means of distinguishing between Condorcet-consistent rules that do not incen-
tivise manipulation on profiles with Condorcet winners and those that do. We
first established that no weighted tournament solution (and thus no tournament
solution) can satisfy robustness for all preference extensions. This held true for
all neutral C2 social choice functions, for both an odd and even number of agents.
Knowing this, we went looking for tournament solutions that may be robust for
some preference extensions. Our characterisation result told us that robustness
and weak resoluteness are incompatible for all preference extensions. In addition,
the result also extended to several well-known weighted tournament solutions such
as Kemeny and ranked pairs (this result held for an odd number of agents, but
for an even number of agents we were able to find a neutral Condorcet-consistent
C1 rule that did in fact satisfy robustness). As a consequence of this impossi-
bility result, we narrowed our search to more indecisive rules. After outlining
the connections between Kelly-strategyproofness and robustness—which helped
us establish robustness for several well-known Condorcet-consistent tournament
solutions—we saw our main positive result of this chapter. We established ro-
bustness under all weakly pessimistic extensions for the minimal extending set
and all its coarsenings, which included rules that are not Kelly-strategyproof.

In Chapter 4 we shifted our focus to multiwinner voting rules. In partic-
ular we looked at strategyproofness on party-list profiles for the class of Thiele
methods. Our interest in Thiele methods was in part based on several impossi-
bility results that highlighted the incompatibility of proportionality and strate-
gyproofness. As Thiele rules as a class aim for some level of proportional rep-
resentation, this was a natural place to look for possibilities by weakening the
strategyproofness requirement. For approval-based elections, we identified the
party-list domain as the most fruitful area to hunt for positive results. We had
several moving parts to play with here: for all results in this chapter, we spec-
ified what type of manipulation—of the three types we looked at—as well as
which preference extension(s) the result holds for. We looked at three types of
manipulation—free-riding, superset-manipulation, and disjoint-set-manipulation.
We showed that Thiele methods are immune to free-riding on party-list profiles
for the class of general Gärdenfors preferences. For superset-manipulation and
disjoint-set-manipulation, the corresponding result was stronger in that it held for
all strongly reflective preference extensions—a larger class of preferences. We also
identified a specific preference extension—the optimistic extension—where Thiele
methods are fully strategyproof on party-list profiles. Our results in this chapter
highlight the trade-o↵ between the strength of the strategyproofness axioms and
the preference extensions. For a stronger strategyproofness axiom we were only
able to show it was satisfied relative to a specific class of extensions. When weak-
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ening the strategyproofness requirement further (by, for example, considering only
free-riding) we found results that held for a much larger class of preferences.

Finally, inChapter 5 we looked at majoritarian rules in judgment aggregation
and studied strategyproofness on profiles with a consistent majority outcome. We
studied the most prominent majoritarian judgment aggregation rules and were
able to establish varying levels of strategyproofness on profiles with a consistent
majority outcome. We first rid ourselves of the notion that we might be able to get
strategyproofness results by considering manipulation by agents with Hamming
preferences without playing around with any specific domains. After settling on
the domain of profiles with a consistent majority outcome, we moved from good
to bad in this chapter. Our first—and strongest—result pertained to additive
majority rules. We showed that rules in this class are majority-strategyproof for
all reflective preferences. This result applies to prominent aggregation rules such
as Slater, Kemeny, and leximax. We promptly moved on to coarsenings of addi-
tive majority rules. For this class, we were able to establish strategyproofness for
the Kelly extension. The main representative rules in this class were the ranked
agenda rule and the maximal Condorcet rule. Finally, we examined the Dodg-
son rule, and showed that it fails majority-strategyproofness for all preference
extensions.

As the observant (and not so observant) reader will have noticed, many of the
judgment aggregation rules we study in Chapter 5 are counterparts to the voting
rules we studied in Chapter 3. More accurately, they are counterparts to the
preference aggregation rules that give rise to these voting rules. For example, the
Slater preference aggregation rule returns all Slater orders, while the voting rule
we studied returned only the top elements of these orders. In addition to this,
the judgment aggregation counterparts to preference profiles with a Condorcet
winner will always return a consistent majority outcome. Because we can embed
any preference aggregation problem into the judgment aggregation framework, it
stands to reason that the results we state in Chapter 5 for judgment aggregation
rules also hold for preference aggregation rules. It is interesting to note that,
while our results from Chapter 5 must hold for preference aggregation rules like
Slater and Kemeny, this is not in fact the case for the Slater and Kemeny voting
rules, which are not robust on profiles with a Condorcet winner. This means
that while it is indeed possible for an agent to change the top element of the
orders output by, say, the Slater rule, this improvement must be accompanied by
changes against an agent’s preferences further down the order. This also hints at
unexplored territories in the more general judgment aggregation framework. Our
positive results held for Hamming preferences, but for more limited preferences
(agents who care about only one formula for example), our findings in Chapter 3
indicate that these strategyproofness results will break down, even if intuitively
these preferences seem like they would be more conducive to positive results.
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6.2 Looking Forward

Before closing, we reflect on some directions for future research.
As we know by now, strategyproofness results rely heavily on the type of

preferences under consideration. While an agent with a certain type of preferences
may be incentivised to misreport her preferences or opinions, another may find
truth-telling is the best strategy. Pragmatism has forced us to make some—
arguably justifiable—choices regarding what types of preferences we ascribe to
our agents. In Chapter 4 we assumed agents’ preferences in the approval-based
multiwinner setting are based solely on the number of approved alternatives the
agent has in common with the outcome. In Chapter 5 we assumed agents have
Hamming preferences over judgments. While both choices are reasonable, they
are not the only possibilities.

We also made choices about which frameworks to study in this thesis. While
we have considered three di↵erent settings in this thesis, they all have in common
that the output is a “collective decision”. However, domain-specific strategyproof-
ness axioms are likely to lead to interesting results also in other areas of social
choice, where the end goal is not a collective decision in this sense. Consider
for example, the area of matching where we know that there is no algorithm
that guarantees stable outcomes while also being strategyproof (Roth, 1982). A
domain-specific weakening of strategyproofness can help give insight into when
and how it is possible for agents to manipulate a matching algorithm that guar-
antees stable outcomes. We know there are domain restrictions in this setting,
such as top-dominance, where stability and strategyproofness manage to coexist
(Alcalde and Barberà, 1994). The area is seemingly ripe for an analysis similar
to the one we have conducted here: can agents manipulate from a profile satisfy-
ing top-dominance to one that does not? And what e↵ect does this have on the
“guarantee” of stability?

In general, this thesis is yet another argument for considering a wider range
of strategyproofness axioms. Weakening strategyproofness is a clear way to avoid
impossibility results. This approach contributes to a clearer understanding of
when and why manipulation occurs. This in turn can inform decisions about
how to go about aggregating preferences or opinions. For example, if we find
that a particular voting rule is strategyproof under partial information, we may
want to use that rule in cases where we know the voters do not know anything
about others’ preferences. If we are in a setting where the votes are likely to
be single-peaked, we might want to use a rule that incentivises truth-telling on
those profiles. If we know agents are hesitant to make big sweeping changes to
their opinion, we may only need to safeguard against, for example, swaps of ad-
jacent alternatives in an agent’s ranking. By considering many di↵erent notions
of strategyproofness—among them, our domain-specific notions—we are able to
paint a much clearer picture of when manipulation occurs, and why strategyproof-
ness fails in some cases and not others.
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Abstract

This thesis examines strategic manipulation in three areas of social choice
theory—single-winner voting, multiwinner voting, and judgment aggregation. It
is widely accepted that strategyproofness often does not play nice with other ax-
ioms. While we would like our aggregation methods to be strategyproof—meaning
no agent has an incentive to misreport her preferences or opinions—strategic ma-
nipulation is di�cult to avoid, no matter what specific framework we consider.

A well-known and often used approach is to consider only specific types of
input to the aggregation method—so-called restricted domains. Our approach
here is to consider manipulation on profiles that fall within certain restricted
domains where existing results tell us manipulation within the domain is not
possible. In general we ask whether agents can manipulate from a profile in a
“well-behaved” domain to one outside the domain in question.

By showing that an aggregation method is strategyproof in this sense, we show
that allowing all inputs will not create unnecessary possibilities for manipulation.
Thus, our work is an argument against restricting the domain of the aggregation
method. We also aim to understand how strategyproofness on these domains can
interact with the axiomatic properties of our aggregation methods.

Chapters 3, 4, and 5 each focus on this larger question in a di↵erent framework
within the area of social choice. In each chapter we focus on a particular domain,
and a particular class of aggregation methods. Chapter 3 looks at (single-winner)
voting, focusing on the domain of profiles with a Condorcet winner. Chapter 4
considers approval-based multiwinner voting, where we study strategyproofness
on party-list profiles, where any two approval sets either coincide or are disjoint.
Chapter 5 discusses strategyproofness of majoritarian judgment aggregation rules
on profiles with a consistent majority.
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Samenvatting

In deze dissertatie onderzoeken we strategische manipulatie in drie gebieden van
de socialekeuzetheorie: verkiezingen met één winnaar (single-winner voting),
verkiezingen met meerdere winnaars (multiwinner voting), en het aggregeren
van oordelen (judgment aggregation). Het is breed geaccepteerd dat strate-
giebestendigheid vaak niet goed samen gaat met andere axioma’s. Hoewel
we graag zouden willen dat aggregatiemethoden strategiebestendig zijn—wat
betekent dat geen van de individuele agents een belang heeft bij het geven van een
oneerlijke weergave van haar voorkeuren of meningen—is strategische manipulatie
lastig om te voorkomen, ongeacht welk specifiek raamwerk we beschouwen.

Een welbekende en vaak gebruikte aanpak is om alleen bepaalde soorten invoer
voor de aggregatiemethoden te beschouwen—zogenaamde beperkte domeinen.
Onze aanpak in deze dissertatie is om manipulatie op profielen te beschouwen
die in bepaalde van zulke beperkte domeinen vallen waarvoor bestaande resul-
taten laten zien dat manipulatie binnen deze domeinen niet mogelijk is. In het
algemeen stellen we de vraag of agents kunnen manipuleren vanaf een profiel in
een “zich goedgedragend” domein naar een profiel buiten het domein in kwestie.

Door te laten zien dat een aggregatiemethode strategiebestendig is in deze
betekenis laten we zien dat het toestaan van alle mogelijke invoer geen onnodige
mogelijkheden voor manipulatie creëert. Daarmee vormt ons werk een argument
tegen het beperken van het domein voor aggregatiemethoden. We streven er ook
naar om te begrijpen hoe strategiebestendigheid op deze domeinen en andere
axiomatische eigenschappen van aggregatiemethoden op elkaar inwerken.

Hoofdstukken 3, 4 en 5 richten zich ieder op deze grotere vraag binnen een
ander raamwerk in het gebied van de socialekeuzetheorie. In elk hoofdstuk richten
we ons op een bepaald domein en een bepaalde klasse van aggregatiemethoden.
In Hoofdstuk 3 bekijken we verkiezingen (met één winnaar) en richten we ons
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op het domein met profielen die een Condorcetwinnaar hebben. In Hoofdstuk 4
beschouwen we op goedkeuring gebaseerde verkiezingen met meerdere winnaars
en bestuderen we strategiebestendigheid op partijlijstprofielen, waar elke twee
verzamelingen van goedkeuringen ofwel samenvallen, ofwel een lege doorsnede
hebben. In Hoofdstuk 5, ten slotte, behandelen we strategiebestendigheid van op
meerderheid gerichte oordeelaggregatiemethoden op profielen met een consistent
meerderheidsoordeel.
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