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To my grandmother Ntina,
who knew how to make the best collective decisions,

usually by only asking herself

Στη γιαγιά τη Ντίνα,

που ήξερε πώς να παίρνει τις καλύτερες συλλογικές αποφάσεις,

συνήθως ρωτώντας μόνο τον εαυτό της
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Chapter 1
Introduction

The defense date of this thesis has been arranged for June 2nd, 2021. As is customary,
the committee members were asked to express their preferences over several alternative
dates in June, and a consensus was found amongst them. This example is far from
being an isolated one. Myriad other processes of collective decision making take place
in our everyday life. From finding the best compromise when choosing a restaurant
to have dinner with friends, to selecting the US president, collective decisions come
in all shapes and sizes: they can materialise in a small or large scale, and they can be
attached to low or high stakes.

Considering the prevalence of collective decisions in all functioning societies, it
is not hard to believe that their systematic study has been ongoing for a long time—
characteristically, it was taken upon by a marquess during the French Revolution:
Nicolas de Condorcet. Condorcet and his antagonists (including, notoriously, another
Frenchmathematician of that period, Jean-Charles de Borda) found interest in disputing
the methods that the French Academy of Sciences used to elect its members, planting
seeds for the field that is now known as social choice theory (Arrow et al., 2002).

The second wave of social choice theory was instigated by the famous work of
Kenneth Arrow around two centuries later, in the 1950’s, with other representatives
of that era being Amartya Sen and Duncan Black. Arrow came up with a simple, yet
tragic answer to the disagreements of Condorcet and Borda, who were trying to single
out the best voting method for making collective decisions: Not only did he prove that
none of their suggested methods fit the role, but he also showed that the only method
that did has to take the form of a dictatorship of one specific individual. Gradually, the
field became saturated with ample results of that kind, painting a pessimistic picture
for the future of social choice.

Luckily for this thesis, we are currently experiencing a renaissance in the area.
Building upon social choice theorists that traditionally were trained in the disciplines
of economics, mathematics, and political science, the growth of computer science
and artificial intelligence has opened the way for many more research expeditions
on collective decision making, giving birth to the sub-field of computational social
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2 Chapter 1. Introduction

choice (Brandt et al., 2016). Today, models of social choice must tackle a twofold,
unprecedented challenge: First, accounting for decisions made by artificial agents in
addition to human ones; second, providing sufficient flexibility for decision processes
that take place in online forums rather than in physical environments. But besides
bringing to the surface further problems demanding a solution, computer science has
also shed new light on several classical topics of social choice theory. For instance,
Gibbard (1973) and Satterthwaite (1975) independently showed that the participants of
many collective decision tasks will have an incentive to lie about their personal views
in order to achieve a preferable outcome. Yet, it is now proven that such behaviour
may be computationally expensive, and thus arguably difficult to achieve in practice
(Faliszewski et al., 2010).

Coming back to the matter of choosing a defense date for this thesis, let me disclose
that expressing my own preferences over the possible options was not an easy affair. I
found dates at the beginning of June attractive, in that they were promising of a long
summer break; but I also deemed the dates in late June desirable, since they would
afford me a more comfortable writing period in spring. If I had to strictly rank June 5th
and June 25th, I would not be able to do it. Many of the popular models in social
choice theory are not able to account for such situations of incomplete preferences, a
problem that also is not addressed by most of the modern frameworks in computational
social choice. Related considerations constitute the driving force of this thesis, posing
a collection of fundamental research questions.

Incompleteness arises naturally in many scenarios where the members of
a group—that need to make a decision together—are not able to form their
personal opinions about all issues under consideration. In order for models
of collective decision making to be practically appealing in such contexts,
they need to allow for incomplete individual opinions and treat them in
an appropriate manner. How can collective decisions be produced then?
Which of all possible mechanisms that aggregate individual opinions are
normatively compelling? Which of them are effective in discovering the
true state of a given situation, in incentivising the agents to be sincere, or
in achieving several of the above in parallel?

The departing point of our analysis is that agents who abstain on a given issue to be
decided upon do not hold any positive or negative opinion about that issue. Simi-
larly, agents who do not report any comparison between two options do not have any
preference over them. In that sense, individual opinions are intrinsically incomplete.

Incompleteness may stem from several factors that influence the formation of in-
dividual opinions. A basic one has been noted, and widely studied, in the area of
multicriteria decision making: Every issue at stake in a decision scenario can be seen
as a bundle of criteria that are satisfied in various degrees. For example, a certain car
that an agent may consider buying is associated with a given gas consumption, a given
colour, a given seat comfort, and a given price. When contemplating an option, the
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agent evaluates the criteria, in comparison to other potential options. Informally, we
can say that an agent prefers option 0 to option 1 if 0 is better than 1 on all criteria, that
the agent is indifferent between the two options if they are equally good on all criteria,
and that the agent considers the options incomparable if 0 is better on some criteria
but 1 is better on some others.

A different cause for incomplete individual opinions is that the agents may only
know the names of the options involved in the decision making process, without being
aware of all their attributes. The severity of this cause is exacerbated nowadays, where
multiple decisions are made on the Internet—the amount of available options in online
settings exceeds the ability of any single agent to critically evaluate them. In this thesis,
we wish to take the very fact that some of the individual opinions may be incomplete
into account for the produced collective decisions. We consider incompleteness as an
elementary feature of an agent’s opinion, including cases where it could potentially be
alleviated in some decision making context (e.g., two board games that I have never
playedmay be part of a very clear ordering for you), and cases where the agent’s opinion
is theoretically uncompletable (e.g., because it tries to compare apples with oranges),

We will see many more examples of collective decisions, often relatable ones, but
sometimes abstract. We will follow a group of three friends, Ann, Bea, and Cal, while
they are making decisions together in all kinds of situations: They will be reviewing
scientific papers, examining patients, visiting hotels, and being members of juries. We
will also eavesdrop on people decidingwhether fresh fruit should be offered on a college
campus, after forming agreements with farms of dubious moral quality.

All collective decisions that we will explore will be formalised within one of two
mathematical frameworks: judgment aggregation and preference aggregation. The
former encodes decisions on binary issues that are possibly connected through logic
(such as the decision to organise an online event, which requires a decision about a web
conferencing app); the latter captures decisions about a set of alternatives on which the
members of a group have preferences (for example, the selection of movies to include
in a family’s watch-list). Let us elaborate on these two frameworks a bit further.

Judgment Aggregation. The need for a general and flexible model of collective
decisions led to the introduction of judgment aggregation less than twenty years ago (List
and Pettit, 2002)—a framework that has its origins in the work of Wilson (1975) on
aggregating binary values. In judgment aggregation, agents express yes/no opinions
on interrelated issues, which may range from topics of a referendum and evidence of
a juridical case to the assessment of the room temperature. As such, this framework
transcends disciplinary boundaries, providing a rich playground for researchers in
political science and law, as well as in multiagent systems and artificial intelligence.

An infamous way to introduce judgment aggregation is through the discursive
dilemma (Pettit, 2001)—we will now explain it in yet another variation. Imagine three
flatmates having to reach a collective agreement on three issues: whether the flat’s
expenses of last month were reasonable, whether watching TV shows is a fun hobby,
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and whether a subscription for Netflix should be bought. They all agree that the best
way to deal with the situation is to buy the subscription if and only if the first two
conditions are satisfied. One of the friends finds the expenses reasonable but dislikes
TV and thus is against Netlfix. Another one of the friends loves watching TV but thinks
that they already spent enough money on the flat last month, so she also rejects the idea
of Netflix. The third friend agrees with the first on that the expenses were quite low, and
with the second on that TV is great, and thus supports a Netflix subscription. Overall,
for each of the two conditions that were set by the flatmates, a majority is in favour.
Yet, a majority is also opposed to the subscription. Although the friends individually
followed the consistency requirements of the decision making problem, a collective
outcome based on majority did not. Achieving consistent collective decisions is a
common struggle of scholarly work in judgment aggregation, which usually assumes
that all agents hold a concrete opinion about all issues in question.

But the theme of including incompleteness in studies of judgment aggregation is
not new. Prior work in the area has already considered incomplete judgments, both at
the collective and at the individual level. In the former direction, the assumption that an
aggregation mechanism has to produce a complete collective decision has been relaxed
by Gärdenfors (2006), Dietrich and List (2008), and Dokow and Holzman (2010) in the
hope of circumventing typical impossibility results of the field stating that there does
not exist any reasonable aggregation mechanism satisfying simultaneously a handful
of desirable properties. Allowing agents to possibly abstain on some of the issues has
been explored by the same authors as well, again in the light of some positive news re-
garding possibility results (with no great success). Additional papers have specifically
focused on the design of new aggregation mechanisms tailored to incomplete inputs.
For instance, Slavkovik and Jamroga (2011) have treated an abstention as a vote bearing
a third value (in parallel to positive and negative values) and have defined a class of
distance-based rules in this setting. Jiang et al. (2018) have constructed an aggrega-
tion mechanism that hinges on a hierarchy over the agents and have shown that this
mechanism satisfies a number of desirable properties in scenarios with incompleteness.

Preference Aggregation. There is no doubt that general frameworks like judgment
aggregation are valuable, since they highlight common properties amongst the many
situations they capture (in our case, situations of collective decision making). But
narrower models come with their own benefits too; they provide structure that is
important for technical observations, and they also allow for the more careful inspection
of properties that may be specific to given contexts. Preference aggregation is such
a model, narrower mathematically speaking, yet an interesting and widely established
one. Settings of preference aggregation can be simulated within judgment aggregation:
A yes judgment on a pair of alternatives 0 and 1 translates to a preference of 0 over 1,
while a no judgment is interpreted as a preference of 1 over 0.

A collective decision based on individual preferences over a set of alternatives may
have various purposes, amongst which is selecting the single favourite alternative of
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the group on the one hand (which commonly takes place in voting), and yielding a
collective ranking over all alternatives on the other hand. The aggregation functions
that can produce collective outcomes and that are employed in the economics literature
are called social choice functions in the former case, and social welfare functions in the
latter. In this thesis, we will simply use the terms voting and preference aggregation
to refer to collective decision making that involves individual preferences instead of
judgments. The type of aggregation mechanisms used will be clear within our results.

Preference aggregation does not escape precarious instances of collective decision
making as the discursive dilemma that we demonstrated in judgment aggregation—the
much older counterpart of the discursive dilemma in preference aggregation is due to
de Condorcet (1785), and is known as a Condorcet cycle. Consider three friends, with
preferences over three alternatives 0, 1, 2. One prefers 0 to 1, 1 to 2, and 0 to 2, another
one ranks 1 first, 2 second, and 0 third, while the last one has 2 as her favourite option,
followed by 0 and 1. What is the preference of the majority then? It is easy to see that
two out of the three friends prefer 0 to 1, while another pair prefers 1 to 2, and a third
pair prefers 2 to 0, implying a cyclic ranking.

A plethora of articles explore the circumvention of Condorcet cycles, typically by
inspecting their frequency through simulations (e.g., Gehrlein, 2002), or by imposing
constraints on the possible preferences of the agents. The work that is closest to this
thesis as far as assumptions are concerned emanates from economics: For incomplete
(partial) individual preferences, Fishburn (1970) has studied conditions under which
simple majority leads to transitive collective preferences; his article is a nice starting
point for the reader who is interested in discussions that were taking place in the social
choice circles during the period following Arrow’s theorem.

Some authors in computational social choice have also explored the aggregation
of incomplete preferences, but they have commonly handled incompleteness as an un-
avoidable inconvenience; either they try to escape from it by considering compatible
ways of completing the relevant preferences, or they analyse in depth the ways that neg-
ative results of the field are extended under its presence (see, e.g., Konczak and Lang,
2005; Pini et al., 2007, 2008, 2011; Xia and Conitzer, 2011). As we already explained,
here we adopt a radically different, constructive attitude towards incompleteness (an
attitude that is shared, for example, by Zwicker (2018), who has proposed multiple
generalisations of the voting rule known as Kemeny for special domains of preferences).

Throughout the thesis, some text appears framed by a vertical line on the left:

Here, we comment upon technical or conceptual details that are not necessary for the
general understanding of our ideas and results. The reader is welcome to skip this.

Figure 1.1 provides a graphical overview of the main body of this thesis, with arrows
indicating dependency relationships between the chapters (information from the chapter
at the starting point of an arrow is used in the chapter at the ending point of the same
arrow). A synopsis of these chapters’ content comes next.
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2. Frameworks for Collective Decisions

3. Aggregation Rules

5. Strategic
Manipulation

4. Axiomatic
Properties

6. Discovering a
Ground Truth(for Sect. 5.1)

Figure 1.1: Thesis overview and dependency graph.

We promised that this thesis will lay the groundwork for manifold collective decisions
that can be made when the members of a group hold incomplete individual opinions.
Our endeavour begins with Chapter 2, where we provide the essential background
for collective decisions in formal contexts. We explain the frameworks of judgment
aggregation and of preference aggregation in mathematical terms, and we provide
all essential definitions for notions that will frequently appear in the remainder of the
thesis (such as preferences and judgments, but also agents, alternatives, and aggregation
rules). Chapter 2 elucidates what it means to study collective decision making within
(computational) social choice.

1.1 Collective Decisions
Suppose that we have a framework that allows the members of a group to report the
incomplete opinions they might possibly have. What kind of mechanisms can be em-
ployed for making a collective decision then? For example, how could I, systematically,
aggregate the preferences of my committee members in order to decide on a final date
for my defense? Chapter 3 makes several suggestions by means of aggregation rules
for incomplete preferences and judgments.

We introduce a class of rules that assign weights to agents depending on the size of
their reported opinions, a different class of rules that examine whether the number of
agents that are in favour of a given option exceeds a fixed threshold, and finally a class
of rules according to which alternatives get scores based on their positions in an agent’s
preference. Chapter 3 (based on the work by Terzopoulou et al., 2018; Terzopoulou and
Endriss, 2019a; Kruger and Terzopoulou, 2020; Terzopoulou, 2020; Terzopoulou and
Endriss, 2021) thus offers a rich collection of decision making mechanisms for agents
with incomplete opinions, all of which are paired with intuitive definitions and natural
motivations—however, this chapter does not provide any information about which of
the recommended mechanisms are actually good to use (in fact, it does not even discuss
what it means for an aggregation rule to be a good one).
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1.2 Good Collective Decisions

Chapter 4 responds to the question of what a good aggregation rule is, for situations of
incompleteness. We take a normative stance, and propose a number of properties that
an aggregation rule should satisfy in order to be compelling. Such properties are known
to the social choice community as axioms, and our method as the axiomatic method.
The novel element of our work consists in incorporating incompleteness; not only in the
definitions of the axioms themselves, but also in the axiomatic characterisations of our
aggregation rules (we say that an aggregation rule is characterised by a set of axioms
if it is the unique rule that satisfies them). For example, suppose that after becoming
aware of the preferences of my committee members, I simply choose the favourite date
of my supervisor for my defense. The inappropriateness of this mechanism can be
easily understood, since only a tiny part of the information provided by the members
of the group is used. Even more straightforwardly, this mechanism violates the axiom
of anonymity: had the preferences of the committee members been reported to me
anonymously, I would not be able to pick the date that my supervisor favoured.

In the axiomatic analysis of Chapter 4, we extend known axioms for the standard
case of complete individual opinions (like the axiom of anonymity above), but we
also construct new axioms that are customised for contexts of incompleteness. Many
aggregation rules presented in Chapter 3 are characterised via our axioms, and are
thus justified through them. However, we also show that certain axioms can never
hold simultaneously within specific classes of aggregation rules, which stresses that
there exist relevant axiomatic properties that are mutually incompatible. The results of
this chapter have been included in a number of publications: Terzopoulou et al. (2018),
Terzopoulou andEndriss (2019a), Kruger andTerzopoulou (2020), Terzopoulou (2020),
and Terzopoulou and Endriss (2021).

1.3 Sincere Collective Decisions

Even if, thanks to Chapter 4, good aggregation rules can be part of our toolbox for
making collective decisions with incomplete individual opinions, the members of a
group may be happier with an outcome different from what these rules suggest. For
example, consider the hypothetical case where June 2nd is the best option for seven
out of the eight committee members, but the second favourite option of my supervisor,
while June 22nd is the best option for my supervisor and the second best for the rest
of the committee. Suppose that my supervisor gets informed about the preferences of
all the committee members, by being included in our email correspondence, prior to
asserting his own preference. Suppose moreover he knows that I will use a popular
aggregation rule to select the defense date, which would result being June 2nd. If my
supervisor thinks strategically, instead of revealing his true preferences, he can pretend
that June 2nd is his least favourite option in order to steer the collective decision towards
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June 22nd. Chapter 5 investigates the kind of incentives that arise when collective
decisions are made with incomplete individual opinions.

The study of strategic behaviour has a long tradition in social choice theory, and
is especially pertinent today, when a significant part of decision making takes place
online. Internet users can—and do—express falsehoods, using anonymity to avoid ac-
countability. Further more, allowing agents the freedom to report incomplete opinions
comes with the risk of them misrepresenting their sincere preferences or judgments in
original ways: by withholding opinions they actually have, by declaring opinions they
do not have, or by explicitly altering their opinions. We explore these possibilities with
respect to the aggregation rules of Chapter 3 and find that incentivising the members
of the group to remain sincere is often—although not always—possible. We also ex-
amine processes of collective decision making that occur in iteration, granting agents
the option to change their submitted preferences in rounds, in view of better outcomes
they target. Our question in such settings is whether we can identify processes that
are guaranteed to terminate relatively fast—we adopt both analytical and experimental
tools to answer it. The results of this chapter rely on published work by Kruger and
Terzopoulou (2020) and Terzopoulou (2020), and on work in progress in collaboration
with Ulle Endriss and Panagiotis Terzopoulos.

1.4 Correct Collective Decisions
Collective decision making is frequently linked to the search of a compromise between
the agents in a group, as was the case for the examples we have seen so far. A different,
prominent domain where collective decision making is essential concerns the search of
a ground truth in a given problem: It is meaningless to look for the objectively best date
for a PhD defense, but it is imperative to know whether a vaccine objectively works
against a virus. Proposing collective choice methods for the latter kind of situations is
part of the epistemic approach to social choice theory.

Chapter 6 complements Chapters 3, 4, and 5, and examines how groups can make
decisions that have high probability to reflect the true answer of a question given that
their members are more accurate in finding that answer than a random guesser. Bearing
in mind that the source of incompleteness of the agents’ opinions may also have an
effect on their accuracy, we ask what is the optimal aggregation rule to apply in order
to combine the information provided by the agents, as well as what is the ideal way to
distribute tasks to the group (in which case a tradeoff emerges between the quality and
the quantity of the desired information). The results presented in this chapter are due
to Terzopoulou and Endriss (2019b).

The thesis concludes with Chapter 7, where the reader can find a summary of our
most important results concerning incomplete opinions in collective decision making,
as well as the trailhead to further open questions.



Chapter 2
Frameworks for Collective Decisions

This chapter provides the formal background for this thesis. We review all relevant
notation and terminology concerning models of collective decision making. The reader
only needs to be familiar with some basic propositional logic.

We already know that different formal frameworks are of use in scenarios where
collective decisions are to be made, depending on the kind of opinions the members
of a group hold, as well as on the type of collective outcome that is sought. When
the opinions are binary judgments over logically interconnected propositions (e.g.,
?, @, ?∧@), then our relevant frameworkwill be judgment aggregation (see Section 2.1);
when the opinions are preferences over a set of alternatives (e.g., 0, 1, 2), we will work
within preference aggregation (presented in Section 2.2). Figure 2.1 below exemplifies
the two frameworks in an abstract manner, for a group consisting of Ann, Bea, and Cal.

Ann: ?: �3 @: � ? ∧ @: �

Bea: ?: �7 @: �3 ? ∧ @: �7

Cal: ?: � @: �7 ? ∧ @: �7

Group: ?: ? @: ? ? ∧ @: ?

(a) Judgment aggregation
(for the propositions ?, @, ? ∧ @).

Ann: 0 1 2

Bea: 1 2

Cal: 0 2

Group: ?

(b) Preference aggregation
(for the alternatives 0, 1, 2).

Figure 2.1: Two frameworks for collective decision making.

Starting off, we consider all potential agents that may ever participate in a scenario of
collective decision making. These, for example, may be conceived as all adults that are
simultaneously alive on earth, or as all artificially intelligent bots that are designed by
such adults. We define the superpopulation #★ to be a countable set of size |#★| > 2
that includes all potential agents. The superpopulation can be assumed to be either finite

9
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or countably infinite (in the latter case, the reader may think of it as the set of natural
numbers N). The finiteness assumption is realistic if our goal is to build mechanisms
for collective decision making that can operate at a specific moment in time—then,
|#★| simply denotes the number of the existing agents at that moment; on the other
hand, assuming an infinite superpopulation is important if we want to have mechanisms
that allow for an arbitrarily large number of agents to participate in a collective decision
(for instance, as the population of earth increases, we cannot guarantee that fixing a
superpopulation of size 7.8 billion will be sufficient tomorrow). We will clarify our
assumptions about the cardinality of #★ whenever these play a role in our proofs.

Each concrete problem of collective decision making involves a finite group of
agents # , selected from the superpopulation, who hold and report their opinions about
some topics in question. For example, in Figure 2.1, the group consisted of three
agents: Ann, Bea, and Cal. We will use natural numbers (1,2, etc.) to denote agents,
and the letter = for the size of a group. The topics about which a group engages in
collective decision making may regard the ranking of certain alternatives (like in voting
and preference aggregation) or the acceptance/rejection of given propositions (as is the
case in judgment aggregation).

Our key aim is to propose appropriate methods for making collective decisions,
given the individual, and frequently diverting, opinions of the agents in a group. To that
end, the main protagonists of our work are various aggregation rules. An aggregation
rule � is a function, that takes as input any collection of individual opinions and outputs
a set of collective opinions. For example, an aggregation rule � should yield a collective
decision given the opinions of Ann, Bea, and Cal that we saw in Figure 2.1.

� : (Ann’s opinion, Bea’s opinion, Cal’s opinion) ↦→ collective decision

Depending on the kind of opinions present in a context of collective decision making,
an aggregation rule may be referred to as a “preference aggregation rule” or a “judgment
aggregation rule”—usually, we will simply call it a “rule”.

2.1 Judgment Aggregation

In this section, we introduce an elementary model of judgment aggregation that allows
for incomplete individual judgments. Our framework builds on the existing literature
regarding the aggregation of complete judgments (List and Pettit, 2002; List, 2012;
Grossi and Pigozzi, 2014; Endriss, 2016).

We assume that all possible (binary, and logically interconnected) issues about
which a group of agents may ever have to decide belong to the superagenda Φ★, which
is a countable set of formulas in propositional logic. The superagenda captures the
pool of all issues with which collective decisions will ever be concerned. For instance,
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it can simply be the (countably infinite) set of all formulas of propositional logic.1 In a
concrete scenario of judgment aggregation, the agents judge issues drawn from a finite
and non-empty subset of the superagenda, called the agenda. The agenda Φ contains
two propositions, i and ¬i, for every issue ĩ at stake. Slightly abusing notation, we
will assume that double negations cancel each other: ¬¬i = i. We will routinely use
the letters ?, @, etc. for atomic propositions.

Given an agenda Φ ⊆ Φ★, each agent 8 in the group is assumed to hold a judgment
set (or simply judgment) �8 ⊆ Φ, which formally captures her opinion on the issues
under consideration (that is, i ∈ �8 denotes that agent 8 has a positive—yes—judgment
on ĩ; similarly, ¬i ∈ �8 means that she has a negative—no—judgment on ĩ). For
convenience, we will often depict a yes (no) judgment on an issue ĩ as a yes (no) on
the relevant positive proposition i. Recall Figure 2.1a: Cal has a positive judgment on
issue ?̃ and a negative judgment on @̃ and �? ∧ @, so his judgment set is {?,¬@,¬?∧@}.

Individual judgments � are logically consistent sets of propositional logic (e.g., an
agent cannot be positive on i and on k but negative on i ∧ k), but not necessarily
complete: There may exist some issue ĩ such that i ∉ �8 and ¬i ∉ �8 (in this case, we
say that 8 abstains on ĩ).2 Also, we say that agent 8 supports/accepts proposition i if
i ∈ �8, and she rejects proposition i if she does not accept it, that is, if i ∉ �8.
J (Φ) is the set of all logically consistent subsets of the agendaΦ, and J (Φ)• those

that are also complete (e.g., Bea’s judgment in Figure 2.1a is complete):

� ∈ J (Φ)• if (8) � ∈ J (Φ) and (88) i ∈ � or ¬i ∈ �, for all i ∈ Φ

Given the individual judgments of all agents, we have a profile P of judgments:

P = (�1, . . . �=) ∈ J (Φ)=

We also write (P−8, �′8 ) for the profile where agent 8 reports the judgment �′
8
, and all

other agents report the same judgments as in profile P. We denote by # P
i the set of

agents who accept i in the profile P:

# P
i = {8 ∈ # | i ∈ �8}

Analogously, # P
ĩ
is the set of agents who do not abstain on the issue ĩ in the profile P

(that is, # P
ĩ
= # P

i ∪ # P
¬i). We write =Pi = |# P

i | and =Pĩ = |#
P
ĩ
|.

Now, in order to obtain a collective decision given the judgments of the agents,
we need an aggregation rule. In the framework of judgment aggregation, a judgment

1As a technical note, for any cardinal numbers :, ℓ ∈ N∪{ℵ0}, wewrite : 6 ℓwhenever: (8) :, ℓ ∈ N
and : 6 ℓ in the familiar way of comparing natural numbers, (88) : ∈ N and ℓ = ℵ0, or (888) : = ℓ = ℵ0.
Moreover, we adopt the following convention: ℵ0/2 = ℵ0 + 1 = ℵ0. We use ℵ0 to denote the cardinality
of every countably infinite set.

2Gärdenfors (2006) and the authors of follow-up papers require deductive closure of (incomplete)
judgment sets. We do not make this assumption. Our model is designed to only take into consideration
the agents’ explicitly declared opinions, which might not be closed under logical implication.
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aggregation rule � is a function that maps any profile of judgments P ∈ J (Φ)= for any
agendaΦ and any group # , to a set of collective judgment sets for the same agenda, i.e.,
to a subset of 2Φ. Thus, there may be a tie between several “best” judgment sets and
these judgments need not be consistent or complete in general. A rule is called resolute
if it always returns a single outcome—i.e., if |� (P) | = 1 for all profiles P. Whenever a
rule � is clearly resolute, we will simply treat � (P) as a judgment set, rather than as a
set of judgment sets. We will shortly present some examples of judgment aggregation
rules, focusing on the special case where the judgments of all agents in the group are
complete. For more general judgment aggregation rules that allow for incompleteness,
the reader shall have to wait until Chapter 3.

The Special Case of Complete Judgments. In our framework, a group of agents
may all still hold, and report, complete judgments. We can then consult the traditional
literature for relevant judgment aggregation rules.

The simplest such rules probably are the quota rules, which collectively accept
a given proposition if and only if a sufficiently large number of agents include it in
their judgment sets. Unfortunately, quota rules often lead to logically inconsistent
outcomes—they may even simultaneously accept a proposition i and its negation ¬i.
For an example, consider the ubiquitous majority rule (a quota rule that collectively
accepts a proposition whenever more than half of the agents also accept it) and see
Table 2.1, which illustrates the discursive dilemma (discussed in the introduction) for
an agenda with the positive propositions ?, @, and ? ∧ @. In Section 3.2, we delve into
quota rules in their full generality, also taking into account incomplete judgments.

? @ ? ∧ @

Agent 1: �3 �7 �7
Agent 2: �7 �3 �7
Agent 3: �3 �3 �3

Majority: �3 �3 �7

Table 2.1: The discursive dilemma for complete individual judgments.

On the other hand, there exist rules that circumvent the challenge of inconsistent
outcomes directly by construction. A prominent rule of this kind is the Kemeny rule,
defined as follows for all profiles of complete judgments in J (Φ)•:

Kemeny(P) = argmax
�∈J (Φ)•

∑
8∈#
|� ∩ �8 |

TheKemeny rule is knownunder a number of other names—notably: median rule (Nehring
et al., 2014), distance-based rule (Pigozzi, 2006), and prototype rule (Miller and Osh-
erson, 2009). We will discuss several ways of generalising the Kemeny rule to domains
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of incomplete judgments in Section 3.1.1. For the profile of Table 2.1, the Kemeny rule
outputs the set of all three judgments submitted by the agents, tied.

2.2 Voting and Preference Aggregation

In this section, we set the background for collective decisions that involve preferences.
The agents compare several alternatives with which they are presented, and express
preferences that are based on these comparisons. We include all potential alternatives
on which agents may ever form preferences in a set �★, which we assume to be
countably infinite. For each specific problem of collective decisionmaking that involves
preferences we have a finite set of alternatives � ⊆ �★, with < = |�| > 3, which
we naturally call the set of alternatives. We will denote concrete alternatives with the
letters 0, 1, 2, etc., and use the letters G, H, I, etc. as variables that range over �★.

To link this setting with the framework of judgment aggregation that we saw in
Section 2.1, consider two alternatives 0, 1 ∈ �. An agent may rank 0 above 1 (saying
yes to the proposition expressing that 0 is preferable to 1), she may rank 1 above 0
(corresponding to a no to the proposition expressing that 0 is preferable to 1), or she
may not compare 0 and 1 at all (abstaining on a possible ranking between 0 and 1).
Intuitively, preferences can thus be encoded as judgments—for further details on the
encoding of preference aggregation within judgment aggregation, we refer to the works
of List and Pettit (2004) and of Dietrich and List (2007a). Here we follow a more
straightforward route, directly building a framework for preference aggregation.

So, every agent performs pairwise comparisons over the alternatives in � and forms
her truthful preference ' ⊆ �×�: a binary relation over �. A preference ' may be
incomplete, that is, it may offer no comparison between two alternatives 0, 1 ∈ � (all
preferences in Figure 2.1b are incomplete). Different assumptions can be made regard-
ing other properties of these preferences, giving rise to various preference domains that
are worth exploring. In this thesis, we are mostly interested in two such properties:
whether the preferences allow the agents to be indifferent between two given alternatives
(in which case we will also say that the two alternatives are indistinguishable for the
relevant preference), and whether they are transitive (meaning whether G'H and H'I
implies G'I for all alternatives G, H, I ∈ �). We will always assume that the individual
preferences are acyclic: for all alternatives G1, . . . , G: , if G1'G2, G2'G3, . . . , G:−1'G: ,
then it does not hold that G:'G1, unless all alternatives G1, . . . , G: are indistinguishable
according to '. We thus define four concrete preference domains (see also Figure 2.2):

• D(�) : The set of all all acyclic preferences over � that allow for indifference.
We write ' ∈ D(�).

• P(�) : The set of all acyclic preferences over � that are strict (i.e, do not allow
for indifference). We write % ∈ P(�).
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transitive
strict (P(�))

(P(�)C) (D(�)C)

acyclic preferences,
allowing for indifference (D(�))

Figure 2.2: The space of incomplete and acyclic preference domains.

• D(�)C : The set of all acyclic preferences over � that allow for indifference and
also are transitive. We write % ∈ D(�)C .

• P(�)C : The set of all strict and acyclic preferences over � that also are transitive.
We write B ∈ P(�)C .

Formally, given a preference % ∈ D(�)C and two alternatives 0, 1 ∈ �, we write 0∼1
when 0 % 1 and 1 % 0, and 0�1 when 0 % 1 and it is not the case that 1 % 0. When
0∼1, then 0 and 1 are said to be indistinguishable. When 0�1 (or 0 % 1), then 0 is
said to be strongly (or weakly) preferred to 1. When none of 0 % 1 and 1 % 0 hold,
then 0 and 1 are said to be incomparable.

We can think of a strict preference % ∈ P(�) as a set of ordered pairs:

% = {(0, 1) ∈ �×� | 0 is ranked above 1}

It will often be convenient to think of pairwise preferences as directed acyclic graphs,
with nodes being alternatives, and with a directed edge from 0 to 1 if and only if 0 is
considered better than 1 according to the given preference. See, for example, Figure 2.3.

0

1

2

3

The preference {(0, 1), (1, 2), (0, 2), (2, 3)} ∈ P({0, 1, 2, 3}).

Figure 2.3: A pairwise preference represented as a directed acyclic graph.
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We already stated that we will not always impose the transitivity assumption on the
studied preferences, butwe did not clearly justify our reason for this choice. Example 2.1
serves as an explanation.

2.1. Example. Imagine you are asked by a travel website to rank different hotels
according to your preferences. You have only visited three hotels: Sandy Cabins
(which is by the seaside), Luxury Towers (which is in the city), and Snowy Chalets
(which is in the mountains). You prefer Sandy Cabins to Luxury Towers when it is
summer, and Luxury Towers to Snowy Chalets when it is winter. But you would only
go to the seaside during summer, and you would only go to the mountains in winter, so
comparing Sandy Cabins and Snowy Chalets does not make sense to you. M

We sometimes write 01 to abbreviate (0, 1). To talk about the transitive closure of a
preference set {0102, 0203, . . . , 0:−10: } ∈ P(�), we may also write 01 B 02 B · · ·B 0: .

A profile of preferences X captures the preferences of all agents in # , where '8
encodes the preference of agent 8 ∈ # (analogously, for preferences represented by
different symbols, we will denote profiles by the relevant symbol in boldface):

X = ('1, . . . , '=) ∈ D(�)=

We write 〈01〉 as shorthand for the permutation on � that swaps 0 and 1, and we write
'〈01〉 for the preference ' with every occurrence of 0 and 1 switched. We also apply
this notation to profiles: X〈01〉 is the profile X with 0 and 1 switched. See Figure 2.4
for an example with a strict and transitive preference profile.

B1 = 0 B 1 B 2

B2 = 1 B 2 B 0

B1 = 1 B 0 B 2

B2 = 0 B 2 B 1

Figure 2.4: The right profile is obtained from the left after swapping 0 and 1.

Given a subset of the agents #′ ⊆ # , a partial profile X−# ′ denotes the part of X
where all agents besides those in #′ report their preferences. By (', . . . , ', X−# ′) we
denote the profile where agents in #\#′ report the same preferences as in X, and all
agents in #′ report the preference '. Two profiles X = ('1, . . . , '=) ∈ D(�)= and
X′ = ('=+1, . . . , '=+: ) ∈ D(�): can be combined to form a new profile:

(X, X′) = ('1, . . . , '=, '=+1, . . . , '=+: ) ∈ D(�)=+:

#X
01

denotes the set of agents 8 for which 01 ∈ '8 in X, and =X
01
= |#X

01
|. A preference

aggregation rule � is a function that maps any profile X ∈ P(�)= for any set of
alternatives � and group # to a set of preferences on the same alternatives. Thus, the
set � (X) may contain several, tied, outcomes. Analogously, a voting rule produces a
set of winning alternatives (a subset of �), and amultiwinner voting rule outputs a set of
committees (which are sets of alternatives), given the preference profile of the agents.
We will soon discuss some concrete rules for the aggregation of complete individual
preferences. Chapter 3 is devoted to the design of such aggregation rules for the more
general case of incomplete preferences.
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The Special Case of Complete Preferences. The typical voting literature (for a
review, consult Zwicker, 2016) concerns agents that hold, and report, preferences in the
form of linear (acyclic, strict, and complete) orders, which we denote by ! ∈ L(�).
Given such orders submitted by a group, a very natural way to decide the winner is by
assigning points to each alternative depending on the position it appears in the order
of every agent, and then select those alternatives with the largest total score across
all agents. This procedure is followed by positional scoring rules. More precisely, a
positional scoring rule �p for profiles of linear orders over < alternatives is induced
by a positional scoring vector p = (?1, ?2, . . . , ?<) with ?1, . . . , ?< > 0, ?: > ?:+1
for all : ∈ {1, . . . , <}, and ?ℓ > ?ℓ+1 for some ℓ ∈ {1, . . . , < − 1}. When agent 8
ranks alternative 0 in the 9 th position of her preference, then she assigns to it score
?(!8, 0) = ? 9 . Given a profile R of linear preferences, we have the following definition:

�p (R) = argmax
G∈�

∑
8∈#

?(!8, G)

The most famous positional scoring rule for voting with complete preferences probably
is the Borda rule, introduced by Jean-Charles de Borda (1784). The Borda rule is
induced by the scoring vector (< − 1, < − 2, . . . , 0). It prescribes that 0 points be
assigned to the alternative ranked last by the agent, 1 point to the second to last
alternative, and so on, until the top alternative be assigned with < − 1 points. The
:-approval rules also are popular positional scoring rules, with the following vectors:

p:−approval = (1, . . . , 1︸   ︷︷   ︸
:

, 0, . . . , 0︸   ︷︷   ︸
<−:

), for 1 6 : 6 <

For : = 1, the corresponding approval rule is known as the plurality rule (selecting
as winner the alternative that most agents place at the top of their ranking), while for
: = < − 1 the corresponding approval rule is called the antiplurality rule (according to
which the winner should be among the alternatives ranked last by the agents the least
number of times). Note that positional scoring rules are irresolute, i.e., they may return
tied winners. See Figure 2.5 for an example.

0 1 2B B
1 2 0B B
0 2 1B B
2 1 0

0 1 2B B
1 2 0B B
0 2 1B B
1 1 0

Figure 2.5: On the left (Borda): 0 wins with score 4, 1 has score 3, and 2 has score 2;
on the right (2-approval): 0, 1, 2 all have score 2, and are the tied winners.

In Section 3.3, we describe an extension of positional scoring rules, including the Borda
rule, and the :-approval rules, to domains of incomplete preferences.

Positional scoring rules can easily be applied to settings where we need to determine
a set of winning alternatives—that is, a committee—as well. If a committee of size :
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is required, then we can select those : alternatives with the highest total score. For
example, the :-Borda rule for multiwinner voting with linear preferences chooses the
winners to be the : alternatives with the highest Borda score (Faliszewski et al., 2017).

Positional scoring rules can also be applied to obtain a collective ranking over the
alternatives, by placing on top the alternative with the largest total score across all
agents, placing second the alternative with the second largest total score, and so on, by
employing some tie-breaking function too, whenever more than one alternative have
the same score. A different way to perform preference aggregation over a profile R for
the purposes of creating a collective ranking is via the Kemeny rule, as follows:3

Kemeny(R) = argmax
!∈L(�)

∑
8∈#
|! ∩ !8 |

In Section 3.1.2, we will present a class of rules that generalise the Kemeny rule to
domains of incomplete preferences.

3One could also first obtain a collective preference ranking, and then select the winners from the
alternatives appearing at the top of that ranking.





Chapter 3
Aggregation Rules

The main question with which this chapter is concerned can be phrased as follows:

How can we aggregate the individual opinions of a group of agents, when
these opinions are incomplete?

The first, necessary step in the direction of an answer is to construct aggregation rules
that function specifically on domains of incomplete opinions. This is what we are going
to do in this chapter, moving between the frameworks of voting, preference aggregation,
and judgment aggregation. For most of our definitions, assuming a specific model
of collective decision making will be crucial: Some aggregation rules will only be
meaningful in preference aggregation and not in judgment aggregation, while for some
different rules it may be the other way around. We will always clarify the framework
with which we are working, to avoid possible misunderstandings.

The rules we are interested in reduce to known ones from the literature in the special
case where all the agents hold complete opinions. This fact directly reflects the spirit
of our work, which does not envision to give arbitrary definitions of aggregation rules
that would be intriguing just for the sake of their novelty; rather, it provides natural
extensions, in more general settings, of rules that are already used and accepted at large
within social choice theory. Let us present a high-level overview of this chapter.

Section 3.1 defines rules that take advantage of the idea that, given incomplete
opinions, the input provided by different agents during an aggregation process will
often vary in quantity—there may be agents who hold opinions about many of the
topics under consideration, and there may be agents who do not have an opinion about
most of these topics. This situation is relevant for both judgment and preference
aggregation (Sections 3.1.1 and 3.1.2, respectively). We construct rules that assign
weights to agents based on the size of their opinions.

Section 3.2 deals with quota rules, which are reasonable in the context of judgment
aggregation (where a proposition is collectively accepted whenever the number of
agents that support it is large enough). One could in theory also formulate quota rules
for preference aggregation, by looking at how many agents agree with given rankings

19
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between pairs of alternatives. However, this process cannot be epected to lead to
collective preferences of a desirable form. For example, quota rules for preference
aggregation may induce a collective decision in favour of three separate rankings “0 is
better than 1”, “2 is better than 3”, and “4 is better than 5 ” that is not useful for practical
purposes (not determining any winners, nor any order berween the alternatives).

Lastly, we return to the framework of voting in Section 3.3, where we examine
positional scoring rules. Positional scoring rules give scores to alternatives depending
on their position in the agents’ preferences. When we talk about positional scoring rules
in this thesis, we will exclusively refer to voting. An interpretation of scoring rules
within judgment aggregation, focusing on complete judgments, has been described
by Dietrich (2014). Bringing Dietrich’s ideas one step further, to scenarios with
incompleteness, we see that the weight rules for judgment aggregation discussed in
Section 3.1 in fact constitute a compelling kind of scoring rules.

3.1 Weight Rules
In this section, we present a class of aggregation rules that use weights as their main
component. These weights are assigned to the agents and depend specifically on the
size of the agents’ reported opinions, as motivated in Example 3.1.

3.1. Example. Consider a review phase of some scientific conference, and the review-
ers that take part in it. Suppose that one reviewer has read and formed an opinion
on only three out of the twenty submissions, while another reviewer has evaluated all
twenty of them. Should the same weight be assigned to those two reviewers? Should
the reviewer who holds an opinion on some selected few papers be given less, or maybe
more, weight? In a similar context, suppose that a group of reviewers consisting of
Ann, Bea, and Cal hold the opinions demonstrated in the table below, encoding the
acceptance of two papers (?1 and ?2).

?1 ?2

Ann: �3 �
Bea: �7 �3
Cal: �7 �3

Ann has an opinion only on one of the two relevant papers, which disagrees with the
opinion of Bea and Cal who have reviewed both of them. What should the conference
chair decide about that paper? On the one hand, if the reviewers spent the same, limited
time on their tasks, it is safe to assume that Ann invested all this time on paper 1, so her
opinion about that paper can be deemed of higher quality. On the other hand, we may
want to weigh more the opinions of the reviewers who have gathered further experience
by reviewing more papers. M
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This section builds a foundational toolbox to address questions like the ones raised
by Example 3.1. We will define weight rules both for preference aggregation and for
judgment aggregation, starting from the latter framework.

3.1.1 Judgment Aggregation
The class of weight rules that we are ready to introduce in the framework of judgment
aggregation can be thought off as a subclass of what has previously been defined by
Dietrich (2014) as the class of scoring rules.1 In this thesis, we choose the distinctive
term “weight rules” in order to be able to use the same name for the weight rules that
we will later define for voting (in Section 3.1.2).2

Our motivating example with the reviewers hinted upon the fact that weight rules
will need to determine how much to weigh an agent’s judgment, depending on how
many propositions she evaluates. To that end, we define a weight function F : N→ R+,
which assigns to every size of a judgment set, |�8 | ∈ N, a positive real numbermeasuring
how a proposition i ∈ �8 performs from the perspective of holding judgment �8. We
write F |�8 | as an alternative for F( |�8 |).

For instance, F1 designates the weight corresponding to all judgment sets that are
singletons. We may also think of F as a vector of infinite length:

w = (F1, F2, F3, . . .)

For example, w = (1, 1
2 ,

1
3 , . . .) means that we distribute a total weight of 1 equally

across all propositions in �8, whilew = (1, 1
"
, 1
"2 , ...), for a sufficiently large number" ,

weighs smaller judgment sets substantially more than larger ones. We stress that these
weights do not bear upon a specific agent, or the specific propositions evaluated by
that agent—the only thing that matters for a weight rule is the size of the submitted
judgments. In Example 3.1, using the weight vector w = (1, 1

2 ,
1
3 , . . .) entails that

the only proposition in Ann’s judgment set will get weight 1, while each of the two
propositions in Bea’s (or Cal’s) judgment set will be assigned weight 1

2 .
Then, we will encode the weight of a set of formulas � from the perspective of

holding judgment set �8, by counting the total weight of its members. Concretely:

F |�8 | (�) =
∑
i∈�

F |�8 | · 1i∈�8 = F |�8 | · |� ∩ �8 |

Suppose again that we use the weight vector w = (1, 1
2 ,

1
3 , . . .), and consider the

judgment set � = {¬?1,¬?2}. In Example 3.1, if Bea is agent 8, then we have that
F |�8 | (�) =

∑
i∈� F2 · 1i∈�8 = F2 · 1 = 1

2 .

1Although Dietrich (2014) works with complete individual judgments, his definitions naturally
extend to the incomplete case.

2Note that the term “scoring rules” traditionally refers to a separate class of rules in voting, which
we will consider in Section 3.3.
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Having a profile P = (�1, . . . , �=) and a weight function F, we define the weight of
judgment � with respect to P by taking the sum over all agents’ judgments:

FP (�) =
∑
8∈#

F |�8 | (�)

Then, given a superagendaΦ★ and a superpopulation #★, a weight rule �F determines
the collective judgments for any agenda Φ ⊆ Φ★ and group of agents # ⊆ #★ by
selecting the complete and consistent subsets of the agenda with the highest total
weight across all agents, for every profile P = (�1, . . . , �=):34

�F (P) = argmax
�∈J (Φ)•

FP (�) = argmax
�∈J (Φ)•

∑
8∈#

F |�8 | · |� ∩ �8 |

Given a superagenda Φ★, the length of the weight vector w with which a weight
rule �F is associated does not need to exceed the number of all issues in the supera-
genda, |Φ★2 |, since this is the largest possible size of a judgment set that an agent can
report. So, (possibly infinite) weight vectors look as follows: w = (F_)_∈N,_6 |Φ★ |/2,
with F_ > 0 for every _. For every agendaΦ ⊆ Φ★, only the prefix of w of cardinal-
ity |Φ2 | is relevant for �F. Furthermore, for every weight rule �F there are infinitely
many weight vectors that induce �F. For example, if we multiply all weights with
some positive constant, then the rule being induced does not change.

In this thesis, a few different weight rules will be spotlighted, due to their intuitive
definitions and (as will be shown in Chapter 4) their sensible axiomatic properties. We
now turn our attention to them.

3.2. Definition. Take any weight F with F_ = F_′ = 2 for all _ 6 |Φ
★ |

2 . We call the
weight rule �c that is induced by F the constant weight rule.

3.3. Definition. Take any weight function F with F_ = F1
_
> 0 for all _ 6 |Φ

★ |
2 . We

call the weight rule �ee that is induced by F the equal-and-even weight rule.

This rule, simply induced by the weight vector w = (1, 1
2 ,

1
3 , . . .), borrows its name from

its counterpart for voting with approval preferences, the equal-and-even cumulative
voting rule (Glasser, 1959; Alcalde-Unzu and Vorsatz, 2009).

Next, we introduce an aggregation rule that makes sense in settings where giving
strict priority to agents who report smaller judgment sets is recommendable. In words,

3We define weight rules to satisfy collective rationality, which requires that all collective judgment
sets must be complete and consistent. One could easily relax the completeness assumption, with no
important technical implications for our results. In their current form, weight rules produce outcomes
that are ready to use: They make a judgment about every issue at stake, without contradictions.

4Note that if an agent 8 does not express a yes/no judgment on any issue, that is, if �8 = ∅, then this
agent is completely disregarded as far as the collective outcome is concerned. In alternative frameworks,
empty judgment sets could influence the collective decision (see, e.g., Slavkovik and Jamroga, 2011).
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the upward-lexicographic rule first tries to agree as much as possible with the agents
holding the smallest judgment sets; in case this process inducesmore than one collective
judgment, the rule aims at maximising agreement with the agents with the second
smallest judgment sets, and so on, until no ties can be broken anymore.

In order to proceed to a formal definition of the aggregation rule, we first need
an additional technical notion, namely the one of the lexmax function. Consider
a set + = {v1, v2, . . . , v<} of equal-sized vectors of real numbers, and denote by
E:
8
∈ R the 8th element of vector v: . The function lexmax picks up the vector from

the set + the elements of which are maximal in a lexicographic sense. More precisely,
lexmax : + ↦→ v: , where v: ∈ + is such that if Eℓ

8
> E:

8
for some Eℓ

8
∈ + , then there

exists some 9 < 8 for which Eℓ
9
< E:

9
.

We fix an agenda Φ, a group of agents # , and a profile P ∈ J (Φ)=, and define the
“raw points” the agents with judgment sets of size _ assign to choosing �:

: P
_
(�) =

∑
8 | _=|�8 |

|� ∩ �8 |

Similarly, the “raw points” the agents with judgment sets of size up to _ assign to
choosing � are captured by the formula

 P
_
(�) =

 ∑
:=1

: P
_
(�)

The upward-lexicographic rule selects those complete and consistent judgment sets that
result in a lexicographically maximal vector (the argument function arg is defined in
the standard way):

�ulex(P) = arglexmax
�∈J (Φ)•

(
 P

1 (�), . . . ,  
P
|Φ|/2(�)

)
Example 3.4 highlights that applying different weight rules, even on very simple profiles
of judgments, can lead to completely diverse outcomes.

3.4. Example. Consider again Example 3.1, where Ann, Bea, and Cal provide the
following judgments:

�1 = {?1}
�2 = {¬?1, ?2}
�2 = {¬?1, ?2}

Here, propositions ?1 and ?2 are logically independent. Therefore, our weight rules
reduce to a simple weighted majority for every proposition separately. If we use the
constant weight rule, then the weight of proposition ¬?1 will be twice the weight of
proposition ?1, so paper 1 will not be collectively accepted. If we use the equal-and-
even weight rule, then ?1 and ¬?1 will get the same weight in total, so the collective
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decision will be a tie between acceptance and rejection. Then, suppose we apply the
upward-lexicographic weight rule. Ann’s judgment (�1) is the smallest one in the
profile, so the rule will agree with it, accepting ?1. As far as paper 2 is concerned,
since all agents that report a judgment on it agree that it should be accepted, all weight
rules will accept it as well. M

Recall that every weight rule is represented by many different weight vectors. The
upward-lexicographic rule is special, in the sense that, if we change the weight vector
in such a way that some or all of the ratios F_−1

F_
of consecutive weights increase, then

we do not change the corresponding aggregation rule. With Lemma 3.5 at hand, we
will then be able to give a second definition of the upward-lexicographic rule.

3.5. Lemma. For any superagenda Φ★ and finite superpopulation #★, let F be any
weight function with F_−1

F_
> _ · ( |#★| − 1) for all _ ∈ N, _ 6 |Φ

★ |
2 . Then �F is the

upward-lexicographic rule �ulex.

Proof. By definition, the upward-lexicographic rule is induced by a weight function F
with F_−1

F_
> _ · ( |#★| − 1) for all _ > 1 and is such that B_ > 0 for all _. It remains

to be shown that all weight functions of this kind in fact define the same aggregation
rule. So consider any two weight functions F and F′ with F_−1

F_
> _ · ( |#★| − 1) and

F′
_−1
F′
_

> _ · ( |#★| − 1) for all _ > 1. We need to show that �F = �F′. Consider an
arbitrary agenda Φ ⊆ Φ★, = 6 |#★|, and profile P ∈ J (Φ)=, as well as two arbitrary
judgment sets �, �′ ∈ J (Φ)•. We are done if we can show that FP (�) > FP (�′) holds
if and only if F′P (�) > F

′
P (�
′) does. We can rewrite FP (�) as follows:

FP (�) =
∑
8∈#

∑
i∈�

F�8 (i) =
∑
8∈#

F |�8 | · |� ∩ �8 | =
∑
_>1

F_ ·
∑

8 | _=|�8 |
|� ∩ �8 |

In case profile P is such that all agents report judgment sets of the same size _, our claim
clearly holds, as then FP (�) = F_ ·

∑
8∈# |�∩ �8 |, meaning that FP (�) > FP (�′) reduces

to
∑
8∈# |� ∩ �8 | >

∑
8∈# |�′ ∩ �8 | (because we know that F_ > 0). So, without loss of

generality, wemay assume that at most |#★|−1 agents report a judgment set of the same
size and thus

∑
8 | _=|�8 | |�∩�8 | 6 ( |#★| −1) ·_ for all _ (and accordingly for �′). Together

with our assumptions regarding the lower bounds for F_−1
F_

and F′
_−1
F′
_

, this implies that

FP (�) > FP (�′) holds if and only if the |Φ|2 -vector (∑8 | _=|�8 | |� ∩ �8 |)_>1 lexicograph-
ically precedes (∑8 | _=|�8 | |�′ ∩ �8 |)_>1. In other words, the relative ranking of � and
�′ does not depend on the exact choice of weights, provided the condition on ratios
is respected, i.e., we have shown that FP (�) > FP (�′) if and only if F′P (�) > F

′
P (�
′). �

We have defined the upward-lexicographic rule in terms of a procedure to be followed
to compute the outcome for a given profile. But we can also define the same rule in
terms of a weight vector: For #★ being finite, we observe that, if a weight function F
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is such that F_−1
F_

= _ · |#★|, this means that each formula of a small judgment set
that appears in a profile (which includes at most |#★| agents) has greater value for the
aggregation rule �F than all formulas in larger judgment sets; this precisely captures
the intuition behind the upward-lexicographic rule.

3.6. Definition. Given a superagenda Φ★ and a finite superpopulation #★, take the
weight function F such that F_ =

∏_
:=1

1
: ·|#★ | for all _ ∈ N, _ 6 |Φ

★ |
2 . We call the

weight rule �ulex that is induced by F the upward-lexicographic rule.

After having introduced the upward-lexicographic rule, it is natural to define the
downward-lexicographic rule, which selects those complete and consistent subsets
of the agenda that result in a lexicographically maximal vector prioritising the points
collected by all judgment sets in a profile. This rule breaks ties by excluding the points
collected by individual judgment sets of a fixed size in rounds, moving from the largest
to the smallest ones:5

�dlex(P) = arglexmax
�∈J (Φ)•

(
 P
|Φ|/2(�), . . . ,  

P
1 (�)

)
Even though at first sight the upward-lexicographic rule and the downward-lexicographic
rule seem to satisfy some notion of duality, we will show that this is not true in gen-
eral. In particular, for a superagenda that contains all propositional variables, the
downward-lexicographic rule is not even a weight rule.

3.7. Proposition. For any superagenda Φ★ that contains all propositional variables
and for any superpopulation #★, the downward-lexicographic rule �dlex is not in the
class of weight rules.

Proof. For a superagenda Φ★ that contains all propositional variables and for a super-
population #★, we assume, aiming for a contradiction, that the downward-lexicographic
rule �dlex is a weight rule. In other words, we will assume that �dlex is induced by a
weight F, or equivalently, by a weight vector w = (F1, F2, . . .). We show two things:

(8) The following must hold:

F_ > F_+1 > 0, for all _ ∈ N

This means that w corresponds to a decreasing and bounded sequence of real
numbers (note that the weights are strictly positive by definition), which by the
monotone convergence theorem (see, e.g., Schechter, 1996) has to converge to a
non-negative real number.

5The definition of the upward-lexicographic rule is not affected if we substitute all  P
_
by :P

_
, while

for the downward-lexicographic rule it is (and the new rule we obtain is not intuitively attractive).
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(88) The following must also hold:

F_ − F_+1 > F_−1 − F_, for all _ > 1

In plain words, consecutive members of the sequence w must be further and
further from each other as _ grows large, and hence the sequence cannot converge.

If we know that conditions (8) and (88) are true, wewill have that the sequence of weights
in w converges. Take 0 < U < F_−1 −F_. By the definition of convergence, there must
exist some :′ ∈ N such that F:−F:+1 < U for all : > :′. But by (88), this is impossible.
So a contradiction is reached, and we can conclude that the downward-lexicographic
rule �dlex is not in the class of weight rules.

It remains to prove the statements (8) and (88). Consider an arbitrary _ > 0 and a
consistent judgment set � of size _ such that �′ = (� \ {i}) ∪ {¬i} is also consistent,
where i ∈ � (such a � exists because the superagenda contains all propositional
variables; for example, � can be constructed to only contain atomic formulas). Take
the agenda Φ that includes all issues appearing in �.

For (8), take � and �′ as just described, and such that |� | = |�′| = _ + 1. Then,
consider a judgment set �′′ = �′ \ {k}, where k ≠ ¬i (that is, |�′′| = _). Using
the profile P′ = (∅, . . . , ∅, �, �′′) for an arbitrary group # ⊆ #★, the downward-
lexicographic rule prescribes that �dlex(P′) = {�′}, which implies that F_ > F_+1.

For (88), assume that _ > 1 and consider the judgment set �′′′ = � \ {k′, k′′}, where
k′, k′′ ≠ i, which is of size _ − 1. We construct the following profile, again for an
arbitrary group # ⊆ #★:

P′′′ = (∅, . . . , ∅, �′′, �′′, �, �′′′)

Then,  P′′′

_+1 (�) = 2 · (_ − 1) + _ + 1 + _ − 1 = 2 · _ + _ + _ − 2 =  P′′′

_+1 (�
′)

and  P′′′

_
(�) = 2 · (_ − 1) + _ − 1 < 2 · _ + _ − 2 =  P′′′

_
(�′),

which means that �dlex(P′′′) = {�′}. Thus it must be the case that 2 ·F_ > F_−1 +F_+1.
Equivalently: F_ − F_+1 > F_−1 − F_. �

Finally, let us remind the reader of the Kemeny rule, applicable in situations where
all agents submit complete judgment sets. The class of weight rules can be seen as a
generalisation of Kemeny for incomplete individual judgments. This is straightforward,
since the weights vary in the size of the reported judgment sets only—when all these
sets are complete, the weights do not play any role.

3.8. Proposition. For every profile P ∈ J (Φ)• of complete individual judgments, and
for every weight function F, it holds that �F (P) = Kemeny(P).
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3.1.2 Voting and Preference Aggregation

In this section, we transfer the concept of weight rules to the frameworks of voting and
preference aggregation. We thus zoom on a family of aggregation rules under which
the weight assigned to agent 8’s ranking of two alternatives depends on how many other
pairs of alternatives she ranks as well.

3.9. Example. Suppose that Ann, Bea, and Cal are asked to compare three hotels (0, 1,
and 2) according to their preferences. Every agent holds preferences about the hotels
she has visited and only those, giving us the following profile:

Ann

0

1

2

Bea

0

1

2

Cal

0

1

2

Ann and Bea, for example, both express a ranking between alternatives 0 and 1, but
they disagree on it; at the same time, Bea reports one more pairwise comparison than
Ann. How should a weight rule deal with this information? M

We consider different variants of weight rules, concerning the type of output required:
We may use a rule to obtain a consensus regarding the ranking of the alternatives, we
may look for a single winner amongst the alternatives, or we may need to select a set of
winners of a given size. Our model is flexible with respect to the collective outcomes
it produces. As far as the input of the aggregation is concerned, i.e., the type of the
individual preferences, we study strict and acyclic preferences (preferences % in the
domain P(�)). Working with strict preferences facilitates the utilisation of the relevant
framework we have developed for judgment aggregation in Section 3.1.1 above, since
every ranked pair of alternatives 01 directly corresponds to a proposition “0 is better
than 1”. Still, as we will see, ample new questions arise in the context of preference
aggregation, and original insights are required.

The primary constituent of a weight rule for aggregating preferences is again a
weight function F : N → R+, as we defined for judgment aggregation. A weight
function assigns to each natural number, representing a preference size |%8 |, a positive
real number F |%8 | = F( |%8 |), expressing how much any ordered pair 01 ∈ %8 weighs,
given the size of %8.

We use the following notation to refer to the total weight assigned to all the pairs of
alternatives in a preference % ⊆ �×� from the perspective of holding %8:

F%8 (%) =
∑
01∈%

F |%8 | · 101∈%8 = F |%8 | · |% ∩ %8 |
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Another component of the definition of a weight rule for preference aggregation is a
type T , which is a function that maps every set of alternatives � ⊆ �★ to a subset
T (�) ⊆ P(�) of preference sets. We examine four specific types.6

• First, in the literature on preference aggregation both individual preferences
and outcomes traditionally are complete rankings over the alternatives. So we
consider the type of linear orders L, where L(�) contains all acyclic, strict, and
complete, relations over �.

• Second, in voting theory we are mainly concerned with finding a (single) winner,
that is, an alternative ranked higher than any other alternative (Zwicker, 2016).
Hence, we also define the typeW, whereW(�) includes all pairwise preferences
of the form % = {00′ | 0′ ∈ � \ {0}}, for some 0 ∈ �.

• Third, in multiwinner voting the outcome should be a given number of winning
alternatives, constituting, for instance, a committee (Faliszewski et al., 2017). So
we define the typeW: , whereW: (�) consists of all pairwise preferences that
designate a set of : winners (for some fixed : > 1), i.e., that are of the form
% = {(01, 0

′), . . . , (0: , 0′) | 0′ ∈ � \ {01, . . . , 0: }}, for some 01, . . . , 0: ∈ �
with 08 ≠ 0 9 for 8 ≠ 9 .

• Fourth, we define the type C of chains, which are linear orders over subsets of �,
to model situations where agents rank part of the alternatives. Formally, C(�)
consists of all pairwise preferences of the form % = (01B02B · · ·B0: ), for some
: ∈ N and 01, . . . , 0: ∈ � with 08 ≠ 0 9 for 8 ≠ 9 .

We use the letter P to denote the type of all preference sets in P(�). Given a weight
function F, a weight rule of type T , denoted by �TF , decides the outcome of a
profile V = (%1, . . . , %=), for every specific set of alternatives � ⊆ �★ and group of
agents # ⊆ #★, by selecting those preference sets in T (�) that maximise the total
weight across all agents:

�TF (V) = argmax
%∈T (�)

∑
8∈#

F%8 (%)

As we pointed out for weight rules in judgment aggregation too, multiplying all weights
with any positive real number will not affect the induced rule. Two weight rules for
preference aggregation will play a role in this thesis.

3.10. Definition. Take any weight function F with F_ = F_′ for all _, _′ ∈ N. We call
the weight rule �Tc induced by F the constant weight rule of type T .

6Lang et al. (2017) define certain aggregation outcomes that include ours. For instance, their plain
dominating 1-chain and plain dominating :-subset correspond to our single-winner and :-winner sets,
respectively. But the model and the results they provide are restricted to complete input profiles.
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3.11. Definition. Take any weight function F with F_ = F1
_
for all _ ∈ N. We call the

weight rule �Tee induced by F the equal-and-even weight rule of type T .

These rules are natural analogues of the ones of Section 3.1.1, in judgment aggregation
(note that we do not include an upward-lexicographic rule in our analysis for preference
aggregation, although such a rule could also be constructed). Let us now try to better
understand how they work, returning to Example 3.9. Without loss of generality, we
set F1 to be equal to 1.

When the constant weight �c rule is applied, every pairwise comparison reported
by the agents weighs the same. For outcomes that are linear orders, the rule will try
to agree as much as possible with the input provided by the agents, similarly to the
standard Kemeny rule in preference aggregation. The collective preferences will then
be 0 B 1 B 2, 0 B 2 B 1, and 1 B 0 B 2, tied, with weight 4. For single-winner outcomes,
the preference corresponding to 0 being the winner will be the collective decision with
weight 3, and if we seek two winners, then 0 and 1 will do the job.

When the equal-and-even weight rule is applied, then every pairwise comparison
will be weighed as follows:

Ann

0

1

2

1/2

1/2

Bea

0

1

2

1/3 1/3

1/3

Cal

0

1

2

1

For outcomes that are linear orders, the collective preference now is 0 B 2 B 1, with
weight 1

3 +
1
2 +

1
2 + 1. For outcomes of single-winner type, the winner is again 0, with

the corresponding preference getting weight 1
3 +

1
2 +

1
2 .

Some further observations can be made regarding the constant weight rule and the
equal and even weight rule, and the way they operate for different types of outputs,
when the input consists of profiles of chains (i.e., on profiles I ∈ C(�)=).

We first inspect the constant, winner-type weight rule on chains, and find that it
coincides with a variant of the Borda rule: For a chain 01 B 02 B · · · B 0: , 01 gets : − 1
points, 02 gets : − 2 points, and so forth, with 0: and all alternatives not appearing in
the chain getting 0 points. Shortsighted Borda (sBorda)maximises the collected points
in a profile (Terzopoulou and Endriss, 2019a). This version of Borda agrees with the
rule assigning a score to an alternative based on the length of the longest path below
it (Endriss et al., 2009).

The constant weight :-winner rule is not :-sBorda for profiles of chains,7 but it gives
rise to a neat original definition of a multiwinner rule. Conceptually, when deciding for
a set of : winners, one could regard the potential outcome (for instance, the committee)

7For a counterexample, consider a profile with three preferences that are chains: 0 B 1 B 2 B 3,
2 B 3 B 0, and 3 B 0.
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as a whole and compare the power of its members (based on the voters’ explicitly
declared preferences) against its nonmembers: Consider the multiwinner voting rule
that makes a set ( ⊆ � of fixed size win when the alternatives in ( are preferred over
the alternatives outside ( the maximum number of times.

�Wee , when applied to profiles of chains, is reminiscent of a positional scoring
rule, suggesting the definition of a new family of voting rules that integrates positional
scoring rules (Zwicker, 2016) and cumulative voting rules (Glasser, 1959): Consider
the rule that associates a chain 01%02% · · · %0:−1%0: of length : with the weight
vector ( :−1

: (:−1)/2 ,
:−2

: (:−1)/2 , . . . ,
1

: (:−1)/2 , 0). Under this rule, every agent distributes a
total weight of 1 across the alternatives in her chain in a Borda-like fashion.

The equal-and-even weight :-winner rule, still for profiles of chains, closely follows
the constant weight rule of the same type; however, in this case, the power of a
committee member over an alternative outside the committee hinges also on the sizes
of the preferences that rank the member above the nonmember.

Type Restrictions

The restriction of a set of preferences ( ⊆ P(�) to a given type T is formally defined
as ( |T = ( ∩ T (�).

Recall that, to compute �TF (V), we go through all preferences % of typeT and select
those that maximise total weight. An alternative definition would be to first select all
preferences % of any type that maximise total weight and to then restrict the resulting
set to T , i.e., to compute (argmax%∈P(�)

∑
8∈# F%8 (%)) |T , which we can also write as

�PF (V) |T . When do these two alternative approaches yield the same outcomes?
To answer this question, we require some further terminology. Given two types T

and T ′ we say that T refines T ′ if T (�) ⊆ T ′(�) for all � ⊆ �★. We furthermore
say that T extends T ′ if for all � ⊆ �★ and preferences %′ ∈ T ′(�) there exists a
preference % ∈ T (�) with % ⊇ %′.

3.12. Proposition. IfT simultaneously refines and extendsT ′, then�TF (V) = �T
′

F (V) |T
for any F and V.

Proof. Since T (�) ⊆ T ′(�), which holds as T refines T ′, we have that �TF (V) =
argmax%∈T (�)

∑
8∈# F%8 (%) ⊇ T (�) ∩ argmax%∈T ′(�)

∑
8∈# F%8 (%) = �T

′
F (V) |T .

For the other direction, we first show that there exists at least one % ∈ T (�) with
% ∈ �T ′F (V). Take any %′ ∈ �T

′
F (V). Since T extends T ′, there exists an ' ∈ T (�)

with ' ⊇ '′. Observe the following:

F |%8 | · |%8 ∩ % | > F |%8 | · |%8 ∩ %′| for all 8 ∈ #

Thus, the following inequality also holds:∑
8∈#

F%8 (%) >
∑
8∈#

F%8 (%′)
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Hence, we indeed get % ∈ �T ′F (V) as claimed.
Now take any %∗ ∈ �TF (V). By definition of the weight rule, this entails that the

following holds, including the specific ' we know to exist in �T ′F (V):∑
8∈#

F%8 (%∗) >
∑
8∈#

F%8 (%) for all ' ∈ T (�)

As furthermore %∗ ∈ T ′(�), which is due to T (�) ⊆ T ′(�), we get %∗ ∈ �T ′F (V) and
thus also %∗ ∈ �T ′F (V) |T . We conclude that �TF (V) ⊆ �T

′
F (V) |T . �

Every type T refines P. But which types T also extend P? Certainly L extends P, as
every pairwise-preference set can be extended to a linear order, and therefore so does
every type T that includes all linear orders, answering our question.

3.13. Corollary. For any weight function F and type T that is refined by L, it holds
that �TF (V) = �PF (V) |T .

Weight rules reduce to some known rules in the special case of complete preference
profiles: TheKemeny rule in the context of preference aggregation (that is, for outcomes
that are linear order), the Borda rule in single-winner voting, and the :-Borda rule in
multiwinner voting with : winners.

3.14. Proposition. For all R ∈ L(�)= and weight functions F, the following hold:

• �LF (R) = Kemeny(R)

• �WF (R) = Borda(R)

• �W:
F (R) = :-Borda(R)

Proof. The statement clearly holds for the first case, where the output of the aggregation
is of the type of linear orders: When all input preferences are complete, the weights
corresponding to the sizes of these preferences are not important, since they all boil
down to the same constant number—the definition of every weight rule then coincides
with the definition of the Kemeny rule.

For the second case, where the output distinguishes single winners, the statement
follows from a careful observation regarding the scores associated with the Borda rule.
Consider a preference %0 ∈ W(�) that has alternative 0 on top. This preference
will be in the outcome of �WF (R), declaring 0 as the winner, if it gets maximum
total weight by the rule �WF in the profile R. The weight assigned to %0 from every
preference ! ∈ L(�) is determined by howmany ordered pairs of alternatives '0 and !
have in common—since '0 contains exactly the pairs where alternative 0 is considered
better than another alternative 1 for all 1 ∈ �\ {0}, its relevant weight from ! is exactly
equal to the position of the alternative 0 in the (transitive) ranking of !.8

8A similar result is also obtained in the work of Lang et al. (2017), and in that of Endriss (2018),
who simulates voting in the framework of judgment aggregation.



32 Chapter 3. Aggregation Rules

The reasoning for the third case with winning sets of alternatives is the same as the
single-winner case above. �

Comparing to the Concepts of Possible and Necessary Winners

A highly influential concept regarding the aggregation of incomplete preferences was
developed byKonczak and Lang (2005) and was subsequently studied further by several
authors (see, e.g., Pini et al., 2007; Xia and Conitzer, 2008; Betzler and Dorn, 2010).
The idea is that, given an aggregation rule � that is defined only on complete inputs
and a profile V with incomplete preferences, we can consider all those profiles that
contain completions of the preferences in V and apply � on them. We say that %∗

8
is a

completion of %8 if %∗8 ∈ L(�) and %∗8 ⊇ %8.
Then, an outcome is possible (necessary) if it is an outcome for some (all) comple-

tion(s) of V, and an alternative is a possible (necessary)winner if it is the top alternative
of a possible (necessary) outcome. We denote by %A (�, V), %F (�, V), and #A (�, V),
#F (�, V), the sets of possible and necessary rankings and winners, respectively.

These concepts are relevant in situations where the incompleteness of the agents’
preferences is due to the lack of information we have about those preferences. In
this thesis, we instead study intrinsically incomplete preferences. Nevertheless, it is
tempting to conjecture that our rules calculate (part of) the possible outcomes under the
terminology of Konczak and Lang. For instance, the possible outcomes of the Kemeny
rule might get confused with the outcomes induced by the constant weight rule �L2 .
However, this is not true. We find that the outcomes of the constant weight rule in fact
can be totally distinct from both the possible and the necessary outcomes under the
Kemeny rule. Given a set ( of linear orders, we write top-alt(() for those alternatives
that appear in the top position of some order in (.

3.15. Proposition. There exist (different) profiles V ∈ P(�)= and (different) alterna-
tives 0 ∈ � such that the following hold:

(1) 0 ∈ %F (Kemeny, V), 0 ∈ #F (Kemeny, V), 0 ∉ top-alt(�L2 (V))

(2) 0 ∉ %F (Kemeny, V), 0 ∉ #F (Kemeny, V), 0 ∈ top-alt(�L2 (V))

(3) 0 ∈ %F (Kemeny, V), 0 ∉ #F (Kemeny, V), 0 ∉ top-alt(�L2 (V))

(4) 0 ∈ %F (Kemeny, V), 0 ∉ #F (Kemeny, V), 0 ∈ top-alt(�L2 (V))

(5) 0 ∈ %F (Kemeny, V), 0 ∈ #F (Kemeny, V), 0 ∈ top-alt(�L2 (V))

And this is an exhaustive list of all possible cases.
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Proof. For statement (1): Take � = {0, 1, 2} ⊆ �★, and consider the profile V =

({21, 10, 20}, {02, 21}) and its completions in L(�)2:
%1 = {21, 10, 20} 2 B 1 B 0
%2 = {02, 21} 0 B 2 B 1

Then, 0 ∈ %F (Kemeny, V) = #F (Kemeny, V) = {0, 2}, but 0 ∉ top-alt(�L2 (V)) = {2}.

For statement (2): Take � = {0, 1, 2} ⊆ �★, and consider the profile V = ({01, 12, 02},
{01, 20}, {01, 20}) and its completions in L(�)2:

%1 = {01, 12, 02} 0 B 1 B 2
%2 = {20, 01} 2 B 0 B 1
%3 = {20, 01} 2 B 0 B 1

So, 0 ∉ %F (Kemeny, V) = #F (Kemeny, V) = {2}, but 0 ∈ top-alt(�L2 (V)) = {0, 2}.

For statement (3): Take � = {0, 1, 2} ⊆ �★, the profile V = (%1, %2) ∈ P(�)2, and its
three completions in L(�)2:

%1 = {21, 10, 20} 2 B 1 B 0 2 B 1 B 0 2 B 1 B 0
%2 = {02} 1 B 0 B 2 0 B 1 B 2 0 B 2 B 1

Then, 0 ∈ %F (Kemeny, V), yet #F (Kemeny, V) = {2} = top-alt(�L2 (V)).

For statement (4): Take � = {0, 1, 2} ⊆ �★, and consider the profile V = ({01, 12, 02},
{20, 01}, {20}) and its three completions in L(�)2:

%1 = {01, 12, 02} 0 B 1 B 2 0 B 1 B 2 0 B 1 B 2
%2 = {20, 01} 2 B 0 B 1 2 B 0 B 1 2 B 0 B 1
%3 = {20} 2 B 0 B 1 1 B 2 B 0 2 B 1 B 0

So, 0 ∈ %F (Kemeny, V) = top-alt(�L2 (V)) = {0, 1, 2}, but 0 ∉ #F (Kemeny, V) = {2}.

For statement (5): Take � = {0, 1, 2} ⊆ �★, and consider the profile V = ({01, 12, 02},
{20, 01}, {20}) and its three completions in L(�)2:

%1 = {21, 10, 20} 2 B 1 B 0 2 B 1 B 0 2 B 1 B 0
%2 = {02, 21} 0 B 2 B 1 0 B 2 B 1 0 B 2 B 1
%3 = {02} 0 B 2 B 1 1 B 0 B 2 0 B 1 B 2

So, 0 ∈ %F (Kemeny, V) = top(�L2 (V)) = {0, 1, 2}, and 0 ∈ #F (Kemeny, V) = {0}.
We have thus finished with all cases. �

Going beyond constant weights, we also show that, independently of the weight func-
tion F, a necessary Kemeny ranking does not have to be an outcome under �LF . This
refutes the intuition that necessary outcomes would be included in the outcomes of (at
least some) weight rules.
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3.16. Proposition. There exists a profile V ∈ P(�)= such that for any weight rule �LF ,
#A (Kemeny, V) * �LF (V).

Proof. Consider the set � = {0, 1, 2, 3} and the profile V = ({01, 12, 02, 03, 32},
{01, 20, 30, 32}) with two agents. By the calculations, we have that #A (Kemeny, V) =
{! ∈ L(�) | ! ⊇ {01, 32, 31}}. Now suppose, aiming for a contradiction, that
#A (Kemeny, V) ⊆ �LF (V) for some weight rule �LF (V). This would mean that the pref-
erence sets {01, 12, 02, 30, 32}, {01, 12, 02, 03, 32}, and {01, 20, 30, 32} (the com-
pletions of which belong to the necessary outcomes) have the same total weight in V.
Thus, it would be the case that 4F5 + 3F4 = 5F5 + 2F4 = 2F5 + 4F4 ⇔ F4 = F5 = 0,
contradicting our assumption that F_ > 0 for every _. �

Allowing for non-transitive individual preferences is essential for the construction of
the profiles used in Propositions 3.15 and 3.16.

Finally, let us stress that there is also a clear difference in complexity between using
weight rules and computing possible winners: �WF generalises the Borda rule, and its
outcomes can be computed in polynomial time. Yet, the possible-winner determination
problem for Borda is NP-complete (Xia and Conitzer, 2008).

3.2 Quota Rules in Judgment Aggregation
This section is centered on the framework of judgment aggregation, and introduces
the class of quota rules. Quota rules are very natural aggregation rules, requiring that
a proposition be collectively accepted if and only if the number of agents that agree
with it exceeds a given threshold. They provide a simple—easy to compute and easy
to explain—method for aggregating judgments that is commonly used in practice. For
instance, the referendum about monarchy/parliamentarism in Brazil9 and the post-war
referendum in Italy10 both concerned correlated issues and adopted quota rules.

When all agents are expected to submit complete opinions, quota rules are defined
in a straightforward fashion. But in cases where the agents may also abstain on some of
the issues and report incomplete judgments, there are several ways for determining the
relevant threshold, depending on the number of abstentions or the margin between those
that agree and those that disagree with a given proposition. We here systematically
design quota rules for incomplete inputs. Let us motivate our work with an example.

3.17. Example. Consider the board of a college in a small town, having to decide
whether to offer fresh fruit on campus during the coming academic year. In the town

9https://web.archive.org/web/20200501204603/https://en.wikipedia.org/wiki/
1993_Brazilian_constitutional_referendum

10https://web.archive.org/web/20201130140318/https://en.wikipedia.org/wiki/
1946_Italian_general_election

https://web.archive.org/web/20200501204603/https://en.wikipedia.org/wiki/1993_Brazilian_constitutional_referendum
https://web.archive.org/web/20200501204603/https://en.wikipedia.org/wiki/1993_Brazilian_constitutional_referendum
https://web.archive.org/web/20201130140318/https://en.wikipedia.org/wiki/1946_Italian_general_election
https://web.archive.org/web/20201130140318/https://en.wikipedia.org/wiki/1946_Italian_general_election
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there are only two farms (farm A and farm B) that can supply the college with fresh
fruit. The board members are thus asked to express their judgments on three issues:
whether a contract with farm A should be established, whether a contract with farm B
should be established, and whether fresh fruit should be offered on campus. It happens
that an 80% supermajority of the board members do not have any particular opinion
about fruit, or about farm A, but they really dislike farm B (which is rumoured to follow
unethical animal treatments). The rest of the board members report a clear judgment in
favour of farm B and against farm A, while also supporting the offer of fruit on campus.

farm a farm b fruit on campus

80% � �7 �
20% �7 �3 �3

How should the board decide? On the one hand, all members that expressed some
opinion about farm � were negative regarding a contract with it, and all those that
did not abstain with respect to the fruit issue were positive towards it. It would then
be natural for the board to respect these unanimous opinions. On the other hand,
a straightforward majority of the members were opposed to a contract with farm B,
leading to an impossible situation for the board: it would need to be able to offer fresh
fruit on campus without establishing a contract with any of the two providers. M

Theway to count agentswho abstain is not unequivocal: When designing an aggregation
rule, wemaywant to only rely on those agents that actually report a positive or a negative
judgment, orwemay alsowant to take into consideration those that abstain. What option
is better varies with the context. In practice, incomplete judgments are (or should be)
treated in several different ways, depending on the specific situation at hand and the
institution where the decision making takes place. We will present four alternative
formulations of quota rules that capture different applications and study how they relate
to each other.11 We will see that one of these formulations is the most general of all,
hinging on thresholds that vary in the number of abstentions.

Formal Definitions of Quota Rules for Incomplete Judgments. The threshold of
acceptance for a proposition i is defined based on (8) the absolute number of i’s
supporters, or (88) the margin of those who support i over those who support ¬i. We
consider two versions of each one of the aforementioned cases, regarding whether or
not the relevant threshold depends on the total number of abstentions on ĩ: if it does,
the threshold is called variable, otherwise it is called invariable. We thus have four
classes of quota rules, operating for every agenda Φ ⊆ Φ★ and group # ⊆ #★ (below,
we present them for a fixed agenda Φ and group #).

Table 3.1 provides a taxonomy of the different possibilities for defining quota rules
for incomplete judgments, upon which we will elaborate soon.

11Note, though, that we do not distinguish between agents who do not go to vote and those who
submit a blank/invalid vote, although many aggregation mechanisms in practice do.
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Abstentions
Margins do not matter matter

do not matter invariable absolute invariable marginal
matter variable absolute variable marginal

Table 3.1: A taxonomy of quota rules for incomplete judgments.

The first class contains the rules according to which an absolute threshold has to be
reached for a decision to be made, independently of the possible abstentions.

3.18. Definition. Consider a function 0 : Φ→ {0, . . . , =+1}, and denote the number
0(i) by 0i. The invariable absolute quota rule �0 is such that:

�0 (P) = {i ∈ Φ | =Pi > 0i}

For example, according to Article 27 of the UN Charter, decisions of the United
Nations Security Council on procedural matters (i) are confirmed if and only if there
is an affirmative vote of at least nine (out of the fifteen) members of the council. So, an
invariable absolute threshold 0i = 9 is employed in practice.

The second class contains rules imposing a minimum margin between positive and
negative votes, still independently of the possible abstentions.

3.19. Definition. Consider a function< : Φ→ {−=, . . . , =+1} and denote the number
<(i) by <i. The invariable marginal quota rule �< is such that:

�< (P) = {i ∈ Φ | =Pi − =P¬i > <i}

In the Brexit referendum of 2016, the difference between the Leave and the Remain
votes was not even 1.3 million, while the population of the United Kingdom is around
66 millions. An important decision with big consequences was decided by a very
small margin (less than 2% of the British people). For such a crucial change to be
implemented, many would find it desirable to have a rule requiring a minimum margin
between positive and negative votes. Hence, although this was not the case in reality, an
invariable marginal quota rule with threshold <i = 2 for some large constant 2 would
probably be appropriate.

Next, we have the class of rules that impose a threshold of acceptance for a propo-
sition depending on the total number of reported judgments. In a variable threshold 0:i
or <:

i, the parameter : codifies the total number of reported judgments about ĩ.

3.20. Definition. Consider a function va : {0, . . . , =}×Φ→ {0, . . . , =+1} and denote
the number va(:, i) by 0:i. The variable absolute quota rule �va is such that:

�va(P) = {i ∈ Φ | =Pi > 0
=P
ĩ

i }
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The most popular way of conducting a referendum (for instance in Switzerland) is
by letting a proposal go through if and only if it is accepted by the majority of the
submitted votes.12 Such referendums in practice use the simple majority rule, with a
variable absolute threshold 0:i = d :2 e, for all : .

For the last class, i is accepted if the difference between those that agree and those
that disagree with it exceed a threshold that depends on the number of abstentions.

3.21. Definition. Consider a function vm : {0, . . . , =}×Φ→ {−=, . . . , =+ 1}. Denote
the number vm(:, i) by <:

i. The variable marginal quota rule �vm is such that:

�vm(P) = {i ∈ Φ | =Pi − =P¬i > <
=P
ĩ

i }

In the European Union Council, an abstention on a matter decided by unanimity (e.g., a
matter on taxation, family law, or citizenship) has the effect of a yes vote:13 A decision
comes into force if and only if all non-abstaining votes are in favour of it. Concretely,
we have a variable marginal threshold <:

i = : , for all : .
Other commonly used rules can also be described within the model of quota rules

presented above. For example:

• The absolute majority uses an invariable absolute threshold 0i = d=2e.

• A procedure with a quorum A (where a decision goes through if and only if at least
A agents do not abstain and from those a majority supports the decision under
discussion) is equivalent to the implementation of a variable absolute threshold
such that 0:i = = + 1 if : < A and 0:i = d :2 e if : > A.

For the variable absolute (or marginal) quota rules and for any specific threshold 0:i
(or <:

i), if the threshold is at least : + 1, then proposition i will never be accepted
when : judgments about the issue ĩ are reported. This means that in practice, any rule
with threshold larger than : will behave the same. Analogously, for variable marginal
quota rules, all thresholds smaller than −: will effectively be the same, meaning that
the relevant proposition will always be accepted when : judgments on ĩ are reported.

The definitions we use may seem to lack in elegance, including multiple thresholds
with the same function, but are indispensable for establishing that the variable quota
rules constitute the most general class of rules.

Moreover, the above definitions include a class of (invariable) rules called trivial:
Trivial rules are such that, for all propositions i ∈ Φ, one of the following holds for all
numbers : = =P

ĩ
of reported judgments: (8) i is always accepted (that is, the relevant

absolute (marginal) threshold is equal to 0 (−=)), (88) i is always rejected (that is, the

12https://web.archive.org/web/20170110092314/https://www.ch.ch/en/referendum
13https://web.archive.org/web/20200429153617/https://www.consilium.europa.

eu/en/council-eu/voting-system/unanimity/

https://web.archive.org/web/20170110092314/https://www.ch.ch/en/referendum
https://web.archive.org/web/20200429153617/https://www.consilium.europa.eu/en/council-eu/voting-system/unanimity/
https://web.archive.org/web/20200429153617/https://www.consilium.europa.eu/en/council-eu/voting-system/unanimity/
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relevant (absolute or marginal) threshold is equal to = + 1), (888) i is accepted if and
only if there is a unanimous support in favour of it (that is, the relevant (absolute or
marginal) threshold is equal to =).

Note also that we only consider quota rules where the same type of threshold is
associated with every proposition—in particular, we cannot have an invariable absolute
threshold for some proposition i and an invariable marginal threshold for a different
proposition k within the same rule.

Example 3.22 illuminates the difference between the weight rules for judgment
aggregation that we defined in Section 3.1.1, and the quota rules of this section.

3.22. Example. Let us come back to Example 3.17 on page 34 and suppose that we
have ten agents. Take on the one hand the equal-and-even weight rule, and on the
other hand a marginal quota rule prescribing that a positive proposition be collectively
accepted if and only if at least two agents accept it (that is, 20% of the group), while
a negative proposition needs the support of at least nine agents to support it (that is, at
least 85% of the group). The equal-and-even weight rule will say no to farm B (because
the relevant proposition gets weight 1 from eight agents, which is more than the weight
of any other combination of propositions that the rule can choose to accept in order to
agree with the two remaining agents), and it will also say no to fruit on campus. On
the contrary, the described quota rule will follow the will of the two agents, agreeing
with the distribution of fruit on campus, and selecting farm B as the supplier. M

Relations between Different Quota Rules. Besides enlisting a number of different
quota rules for incomplete judgments, it is also interesting to explore the connections
between these rules. Intriguing questions that we shall answer read as follows:

Do all definitions we have so far provided generate distinct rules? Is one
particular way of describing quota rules in judgment aggregation the most
general one? If some definitions induce equivalent rules, to what classes
do these rules belong?

Figure 3.1 responds to our questions graphically, depicting the space of quota rules for
incomplete judgments on which we will shortly elaborate.

We next prove all relevant relations between our classes of rules. To start, variable
quota rules clearly aremore general than invariable quota rules, since variable thresholds
can simply be constant in order to capture invariable ones.

But what about the relations between absolute and marginal thresholds? As we will
see, the answers here differ completely across the classes of variable and invariable
quota rules: invariable ones, divided into absolute and marginal, are proven to define
two disjoint classes of rules (except for trivial cases), while variable ones, absolute and
marginal, define exactly the same class of rules.

3.23. Proposition. There is no non-trivial invariable absolute quota rule that coincides
with an invariable marginal quota rule (and vice versa).
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trivial invariable
absolute

invariable
marginal

variable
marginal/absolute

Figure 3.1: The space of quota rules for incomplete judgments.

Proof. Take an arbitrary non-trivial invariable absolute quota rule �0, induced by the
quota function 0. For some i ∈ Φ, it is the case that 0i ≠ 0, 0i ≠ = + 1, and 0i ≠ =
(thus, 1 6 0i 6 = − 1). Suppose—aiming for a contradiction—that �0 coincides with
some invariable marginal quota rule �<, induced by the quota function <. Consider
a profile P where exactly 0i agents accept i and one agent accepts ¬i (i.e., =Pi = 0i
and =P¬i = 1)—this is possible because 0i + 1 6 =. Then, it holds that i ∈ �0 (P), so
it must also be the case that i ∈ �< (P). But for i ∈ �< (P) to hold, we must have that
<i 6 =

P
i − =P¬i = 0i − 1.

Now, since 0i−1 > 0, we consider a different profile P′ where exactly 0i−1 agents
accept i and no-one accepts ¬i: =P′i = 0i − 1 and =P

′

¬i = 0. Since <i 6 =
P′
i − =P

′

¬i =
0i − 1, we have that i ∈ �< (P′). Thus, we must also have that i ∈ �0 (P′). But
=P
′

i = 0i − 1 < 0i, which means that i ∉ �0 (P′), implying a contradiction. �

3.24. Proposition. Every variable absolute quota rule coincides with some variable
marginal quota rule, and every variable marginal quota rule coincides with some
variable absolute quota rule.

Proof. Consider a variable absolute quota rule �va, associated with thresholds 0:i.
We need to construct a suitable variable marginal quota rule �vm (associated with
thresholds <:

i) and show that �va(P) = �vm(P) for all profiles P. For all propositions i
and numbers : , we define the following thresholds:

<:
i =

{
: + 1 if 0:i > : + 1
20:i − : otherwise



40 Chapter 3. Aggregation Rules

Take an arbitrary profile P and a proposition i ∈ Φ with i ∈ �va(P). By definition of

the variable absolute quota rule, i ∈ �va(P) means that =Pi > 0
=P
ĩ

i . But we also have

that =Pi + =P¬i = =Pĩ. Thus, =
P
i > 0

=P
ĩ

i implies that =P¬i 6 =Pĩ − 0
=P
ĩ

i , from which we can

derive that =Pi − =P¬i > 20
=P
ĩ

i − =Pĩ = <
=P
ĩ

i (since i is accepted by �va in the profile P,
we know that 0:i, <:

i 6 :). Hence, by definition of the variable marginal quota rule we
conclude that i ∈ �vm(P) and so that �va(P) ⊆ �vm(P).

Now, take a proposition i ∈ Φ with i ∈ �vm(P). By definition of the variable

marginal quota rule, i ∈ �vm(P) means that =Pi − =P¬i > <
=P
ĩ

i . Since we also know that

=Pi + =P¬i = =Pĩ, we obtain that 2=Pi > <
=P
ĩ

i + =Pĩ = 20
=P
ĩ

i − =Pĩ + =
P
ĩ
(again, since i is

accepted by �vm in the profile P, we know that <:
i, 0

:
i 6 :). Equivalently, =

P
i > 0

=P
ĩ

i ,
which implies that i ∈ �va(P). Thus, we also have that �(<:i) (P) ⊆ �va(P), concluding
that �va(P) = �vm(P).

The fact that every variable marginal quota rule coincides with some variable ab-
solute quota rule can be proven in a directly analogous manner. �

Thus, when considering quota rules for the aggregation of incomplete individual judg-
ments, it suffices to study variable absolute quota rules—all obtained results will also
hold for variable marginal quota rules.

CollectiveRationality Properties ofQuotaRules. Three14 properties of aggregation
rules � that capture different notions of collective rationality have been considered in
the literature, talking about desirable forms of the collective outcomes.15

Completeness requires that i ∈ � (P) or ¬i ∈ � (P), for all profiles P and propo-
sitions i ∈ Φ. Complement-freeness requires that i ∈ � (P) and ¬i ∈ � (P), for all
profiles P and propositions i ∈ Φ. Lastly, consistency requires that � (P) be logically
consistent, for all profiles P.

3.25. Example. Consider a profile regarding two issues ?̃ and @̃, as follows:

�1 = {?, @}
�2 = {¬?, @}
�3 = {¬@}

14A fourth rationality property that we do not discuss here requires that the judgment sets be deduc-
tively closed, i.e., that they contain all propositions that are logical consequences of their members.

15We use the term “collective rationality” referring to properties that are compelling for the outcome
of an aggregation process, but these properties are not necessarily desirable for individual judgments. In
particular, we may be interested in outcomes that are complete, i.e., that make a decision on each issue
at stake, although individual inputs may still be incomplete.
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Suppose that we employ the absolute majority rule for both issues, which collectively
accepts a proposition if and only if more than half of the agents accept it. Then,
the collective outcome would be {@}—since no collective decision is made about the
issue ?̃, the rule is not complete. To encourage completeness, suppose that we select a
rule that accepts a proposition if at least one agent includes it in her judgment. Then,
the collective outcome would be {?,¬?, @}. But since both a negative and a positive
opinion about ?̃ appear in the collective decision, this new rule is not complement-free.
Obviously, every rule that is not complement-free is not consistent either. M

Aswe already know, notions of collective rationality such as completeness, complement-
freeness, and consistency are not necessarily satisfied by quota rules.16

In the complete case, a prominent example is presented by the majority rule,
which collectively accepts a proposition when more than half of the agents agree
with this decision. The majority rule is complete for an odd number of agents and
complete inputs. However, it generates logical inconsistencies even in slightly more
complex agendas, like the one instantiated in the famous discursive dilemma illustrated
in Table 2.1, in Chapter 2, page 12. Thus, a natural question arises:

Can problematic cases of inconsistent collective outcomes be avoided by
allowing agents to report incomplete judgments?

Although this direction may look promising at first, we will soon see that individual
incompleteness is in fact detrimental to logical consistency, as soon as we require
complete outcomes (indeed, if completeness of the collective decision is dropped, then
inconsistencies can be trivially resolved).

3.26. Example. Consider the simple majority rule, which accepts a proposition i if
more agents report i than ¬i. This rule is guaranteed to induce complete outcomes
only in the special cases where an odd number of agents submit a judgment on ĩ. Still,
the discursive dilemma persists (consult Table 3.2). Note that this example does not go
through for the absolute majority rule. M

Even worse, inconsistencies appear under incompleteness also for very simple agendas
where only two propositions are incompatible together.

3.27. Example. Consider an agenda Φ = {i, k,¬i,¬k}, with {i, k} being inconsis-
tent, and see Table 3.3 for an inconsistent collective decision. This example works
specifically for the simple (not the absolute) majority rule. M

3.28. Proposition. For any agenda Φ that does not only consist of logically indepen-
dent issues, the simple majority rule for incomplete individual judgments is inconsistent.

16An important difference between weight rules and quota rules is that the former guarantee complete
and consistent collective judgments, while the latter do not. However, in the special case of logically
independent propositions and of complete individual judgments, weight rules reduce to a very familiar
quota rule: the majority rule.
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? @ ? ∧ @

Agent 1: �3 � �
Agent 2: �7 � �7
Agent 3: � �3 �
Agent 4: �3 � �

Simple majority: �3 �3 �7

Table 3.2: The discursive dilemma with incomplete individual judgments.

i k

Agent 1: �3 �
Agent 2: �7 �3
Agent 3: �3 �

Simple majority: �3 �3

Table 3.3: A logically inconsistent outcome {i, k} for incomplete individual judgments
on a simple agenda.

Proof. Consider an agenda Φ as in the statement, and an inconsistent set / ⊆ Φ such
that every strict subset of / is consistent (such sets are called minimally inconsistent).
Take two propositions i, k ∈ / such that k ≠ ¬i. Construct the profile where an
agent 8 accepts all propositions in / besides i, abstaining on everything else, and an
agent 9 accepts all propositions in Φ besides k, abstaining on everything else. The
remaining agents abstain on all issues. Then, the simple majority rule will include all
propositions of / in the collective outcome, making it inconsistent. �

Yet, some variable quota rules present immediate advantages in contexts where consis-
tency, together with completeness, is desired. Consider for instance the simple agenda
of Table 3.3, and assume that the group of agents is of an odd number. Then, there
exists a variable quota rule that is complete and consistent, and functions as follows: it
always accepts i and ¬k as the collective decision, besides the case where all agents
report their judgments on both issues; in the latter case of unanimous participation, the
rule follows the opinion of the majority on each issue.

A more detailed analysis of the conditions on the relevant thresholds that guarantee
properties of collective rationality for the associated quota rules has been conducted
by Terzopoulou (2020). The obtained results also imply that verifying whether a quota
rule is collectively rational under a given interpretation is never harder in the more
general incomplete setting compared to the framework of complete inputs. Thus,
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loosely speaking, the framework’s expressivity can be increased without paying a price
in terms of increased complexity.

3.3 Positional Scoring Rules in Voting
In this section we will get acquainted with the class of positional scoring rules for voting
with incomplete preferences. Positional scoring rules, which hinge on giving points to
alternatives depending on the position they occupy in an agent’s preference, have been
defined and widely used in the traditional setting with complete preferences—they are
very easy to understand, and straightforward to compute. In our broader framework,
these characteristics still apply. However, a more flexible notion of “position” is needed
when we talk about preferences that take the form of general directed acyclic graphs
rather than plain rankings. We give our definitions for arbitrary preferences ' ∈ D(�).

A scoring function is a function B : (D(�) × �) → R that assigns a score to every
alternative in a given preference, for all sets of alternatives � ⊆ �★ and groups # ⊆ #★.
We abbreviate B(', 0) by B' (0). A scoring function is non-trivial if B' (G) ≠ B' (H) for
some G, H ∈ � and ' ∈ D(�). Given a profile X = ('1, . . . , '=), we will often also
use the abbreviation BX (0) =

∑
8∈# B'8 (0).

A positional scoring function ensures the symmetrical treatment of all alternatives;
one may thus think of scores assigned to positions in a graph (see Figure 3.2 for an
example). Formally, a scoring function B is positional if and only if for all permutations
f : � → �, preferences ' ∈ D(�), and alternatives G ∈ �, we have that B' (G) =
B'f (Gf), where Gf = f(G) and 'f = f(') = {(0f, 1f) | 0'1}.

0

1 3

2 3

2 2

0 3

2 1

0

Figure 3.2: The center and right graphs represent possible scoring functions of the graph
on the left. The scoring function represented by the center graph is positional. The one
on the right is not positional, because the two alternatives 1 and 3 are assigned different
scores, while appearing in positions that are indistinguishable under permutation.

A scoring rule for incomplete preferences �B, associated with a scoring function B,
takes a profile of preferences for some � ⊆ �★ and # ⊆ #★, and returns all alternatives
with maximal scores, where the score of an alternative is the sum of the scores across
all agents. Formally, �B : D(�)= → 2�\{∅} is defined as follows:

�B (X) = argmax
G∈�

∑
8∈#

B'8 (G) = argmax
G∈�

BX (G)

Note that for distinct scoring functions B and B′ it may be the case that �B = �B′. Then, we
say that B and B′ are equivalent. More specifically, given an infinite superpopulation, two
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scoring functions B and B′ are equivalent if and only if there are real numbers {U'}'∈P(�)
and V > 0 such that for all alternatives G ∈ � and preferences ', B' (G) = U' + V · B′' (G).

An infinite superpopulation is essential in order to guarantee that a scoring function
that is not a positive affine transformation of another one, but is close to it, will give
rise to a different collective outcome for some preference profile.

3.3.1 A Few Selected Rules
Let us now see some concrete positional scoring functions, specifically defined for strict
incomplete preferences % ∈ P(�). We start off with two classes of such functions—
the approval class and the veto class—that generalise classical approval rules from
standard voting with linear orders. Given % ∈ P(�) and G ∈ �, for : ∈ {1, . . . , <},
the :-approval rule assigns to G score 0 if there exist at least : alternatives above G, and
score 1 otherwise; the :-veto rule assigns to G score 1 if there exist at least : alternatives
below G, and score 0 otherwise.

For complete preferences, :-approval (veto) entails that precisely : alternatives are
approved (disapproved), while for incomplete preferences, :-approval (veto) implies
that at least : alternatives are approved (disapproved). Furthermore, for complete
profiles :-approval and (< − :)-veto coincide (but this is not true for incomplete
ones—see Figure 3.3 for an example); also, 1-approval and (< − 1)-veto correspond to
the plurality rule, while 1-veto and (< − 1)-approval reduce to the antiplurality rule.

0

1

2

3

1

0

1

0

0

0

0

0

Figure 3.3: The scores assigned by the 1-approval scoring function (middle) and by
the 3-veto scoring function (right), given a strict preference (left) over four alternatives.
The 1-approval rule selects as winners the two alternatives on top, 0 and 2, but the
3-veto rule is indecisive between all four alternatives.

3.29. Definition. Given some number : ∈ {1, . . . , <}, define the k-approval scoring
function B:-approval : (P(�) × �) → R as follows:

B
:-approval
%

(G) =
{

1 if |{H ∈ � | H%G}| < :
0 if |{H ∈ � | H%G}| > :

3.30. Definition. Given some number : ∈ {1, . . . , <}, define the k-veto scoring func-
tion B:-veto : (P(�) × �) → R as follows:

B:-veto% (G) =
{

1 if |{H ∈ � | G%H}| > :
0 if |{H ∈ � | G%H}| < :
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We continue with the definition of a few more positional scoring functions for incom-
plete preferences, which do not belong in the two classes just presented.

3.31. Definition. The domination scoring function ds : (P(�) × �) → R is defined
as follows:

ds% (G) = |{H ∈ � | G%H}|

3.32. Definition. The cumulative scoring function cs : (P(�) × �) → R is defined
recursively, as follows:

cs% (G) =
{

0 if G%H for no H ∈ �
1 +∑

H∈�
G%H

cs% (H) otherwise

For the next scoring function, a new definition is first in order. Given a preference %,
we say that two alternatives 0 and 1 are connected if 0 = 1, or if there is a path from 0

to 1 in the undirected version of the graph defined by %. The alternatives 0 and 1 are
said to be in an undirected cycle if that graph has a cycle that contains both, or if 0 = 1.

3.33. Definition. The stepwise scoring function ss : (P(�) × �) → R is defined by

ss% (G) =
:∑
8=1

B(�8, �),

where C = {�1, . . . , �: } is a partition of � into sets of alternatives that are in the
same undirected cycle, G ∈ � for � ∈ C, and B : (C×C) → R is defined below (for %2D
denoting the undirected version of the relation %2 ⊆ C×C such that �8%2� 9 if and only
if G%H for some G ∈ �8 and H ∈ � 9 ):17

If �8 = � 9 , then B(�8, � 9 ) = 0, and if �8 ≠ � 9 , then we have the following:

B(�8, � 9 ) =


1/2 if �8%2D�1%

2
D . . . �<%

2� 9 for some < > 0
−1/2 if � 9%2�1%

2
D . . . �<%

2
D�8 for some < > 0

0 otherwise

Stepwise scoring assigns to two alternatives G and H the same score when they are in the
same undirected cycle. Otherwise, if G is preferred to H, then ss% (G) = ss% (H) +1.18 The
cumulative scoring function gives each alternative a score one greater than the summed
score of all the alternatives to which it is preferred. For complete input profiles, the
domination scoring rule reduces to the Borda rule; the cumulative scoring rule reduces
to the (complete) positional scoring rulewith score vector (2|�|−2, . . . , 4, 2, 1, 0); the
veto scoring rule reduces to the veto rule; and the stepwise scoring rule reduces to the
trivial rule that returns the set of all alternatives for all input profiles. See Figure 3.4 for
an illustration of the different scores these functions give for an example preference.

17Note that the stepwise scores of the alternatives in a preference % may need to be normalised in
order to ensure that min{B% (G) : G ∈ �} = 0.

18Note that B is well-defined, because the graph of B over C×C is a forest, and hence the three cases
in the relevant definition are the only possible ones.



46 Chapter 3. Aggregation Rules

3 2 1

1 0

1 1 0

0

7 4 1

2 0

2 1 0

0

2 2 1

2 0

2 1 0

1

Figure 3.4: Left to right; scores given by domination, cumulative, and stepwise scoring
for an example preference.

An intriguing link exists between the class of positional scoring ruleswe have introduced
in this section and the weight rules that produce single winners (recall Section 3.1.2).
Specifically, the latter constitute special cases of the former. The basic intuition can
be gained by inspecting the special case of complete individual preferences, where
single-winner weight rules reduce to the Borda rule: a renowned positional scoring
rule (Proposition 3.14). In the general case of incomplete preferences, single-winner
weight rules can be regarded as a weighted variant of the domination scoring rule
(Definition 3.31). We explain our reasoning formally:

Call %G ∈ W(�) the preference that identifies the alternative G ∈ � as the winner,
and for a set of such preferences ( ⊆ W(�), denote by top-alt(() ⊆ � all those
alternatives that are identified as the winner by some preference in (. Then, the
winning alternatives according to a weight rule of single-winner type (associated with
a weight function F) are the following:

top-alt
(
�WF (V)

)
= top-alt

(
argmax
%G∈W(�)

∑
8∈#

F |%8 | · |%G ∩ %8 |
)

= top-alt
(

argmax
%G∈W(�)

∑
8∈#

F |%8 | · |H ∈ � | G%8H |
)

= argmax
G∈�

∑
8∈#

F |%8 | · |H ∈ � | G%8H |

= argmax
G∈�

∑
8∈#

F |%8 | · ds%8 (G)

As an illustration, see Figure 3.5, where the equal-and-even weight rule is applied. The
scores corresponding to each alternative are depicted next to that alternative.

1/2
+ 1

/2 0

0

0

1

2
1/3 0

1/3 + 1/3

0

1

2

0 1

0

0

1

2

Figure 3.5: Example of equal-and-even scores in a preference profile.



3.3. Positional Scoring Rules in Voting 47

3.3.2 The Borda Class
Let us now exclusively focus on theBorda rule. This is a verywell-established positional
scoring rule, applied to profiles of complete preferences over< alternatives. Recall that
it prescribes for each voter that <−1 points be given to her top alternative, <−2 points
to her second-to-top alternative, and so forth, with 0 points given to the alternative
ranked last. The alternatives with the largest sum of points across all voters are then
announced the winners of the election.

What are appropriate extensions of the Borda rule for incompleteness?

We address this question for domains of preferences that are top-truncated. A prefer-
ence is called top-truncated if it consists of a linear order over a subset of the given
alternatives, with the assumption that all non-ranked alternatives are inferior to all
ranked alternatives. Top-truncated preferences provide a sensible model for real-world
applications. From choosing the members of a parliament to selecting favourite movies
to add to a watch-list, an agent is likely to be more interested in her most preferred
alternatives, and thus also more sensitive to their similarities and differences, deducing
a full ranking among these alternatives.

In this thesis, we specifically consider two domains of top-truncated preferences,
D1(�) andD2(�). In each of our domains, all preferences take the same form, which is
one of those depicted in Figure 3.6 (where transitive arrows are omitted for simplicity).

•

•

...

•

• · · · •∼ ∼

•

•

...

•

• · · · •

Figure 3.6: Types of top-truncated preferences in two domains: D1(�) on the left
and D2(�) on the right.

In particular,D1(�) contains top-truncated preferenceswhere : alternatives are ranked,
for any 0 6 : 6 <, and the alternatives that are not ranked are indistinguishable from
each other; D2(�) also contains top-truncated preferences where : alternatives are
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ranked, for any 0 6 : 6 <, but the alternatives that are not ranked are incomparable to
each other. Note thatD1(�) ⊂ D(�)C andD2(�) ⊂ P(�)C . Formally, a top-truncated
preference % consists of two parts: the top the bottom. Let us define TOPsets(%) as the
collection of all subsets �′ ⊆ � that contain strictly ordered alternatives in % that are
superior, according to %, to all alternatives not in �′:

TOPsets(%) = {�′ ⊆ � | (8) G�I for all G ∈ �′, I ∈ � \ �′ and
(88) G�H or H�G for all G, H ∈ �′}

TOP(%) is the unique largest set in TOPsets(%), and BOT(%) = � \ TOP(%). The
set of top alternatives in a profile % includes those alternatives that are on top for all
agents. That is, TOP(%) is defined as the unique largest set in

⋂
8∈# TOPsets(%8) if

that intersection is non-empty; otherwise, TOP(%) is the empty set. We also define
BOT(%) as the set � \TOP(%), but note that this defnition is intuitively meaningful (in
the sense of characterising a set of “bottom alternatives”) only when TOP(%) ≠ ∅.

See Figure 3.7 for an example.

01

02

03

04 05∼

02

01

0304 05∼ ∼

02

01

03

04

05

Figure 3.7: The top alternatives of each single preference are in blue. From left to right,
these are the sets {01, 02, 03}, {01, . . . , 05}, and {01, 02}, respectively. The TOPsets(%)
of the leftmost preference% are {{01}, {01, 02}, {01, 02, 03}}, and similarly for the other
preferences. The intersection of these sets is then the set {01, 02}, which includes the
top alternatives of the whole profile.

The Borda rule is commonly defined on domains of linear orders in one of two ways.
First, as a positional scoring rule with score-vector (< − 1, < − 2, . . . , 0); second, in
terms of the weighted majority graph, where the winning alternatives are those that
maximise the following function:19

�(0) =
∑
H∈�
|{8 ∈ # | 0�8H} − |{8 ∈ # | H�80}| | =

∑
8∈#

∑
H∈�
10�8H − 1H�80

We can think of �(0), the symmetric Borda score of 0, as �(0) = ∑
8∈# �8 (0) with

�8 (0) =
∑
H∈� 10�8H−1H�8 0 .

19The definition of the Borda rule based on the weighted majority graph can also be considered a
definition of a positional scoring rule on linear orders, with score-vector (<, < − 2, . . . ,−<).
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It seems sensible to presuppose that any interesting generalisation of the Borda rule
will also be defined in terms of a scoring function � with �(G) = ∑

8∈# �8 (G) for some
scoring functions �8 that each only makes reference to the preference of one agent 8. In
Figure 3.8 we present some options for how one could define such a function on general
domains of incomplete preferences allowing for indifference—all of them reduce to the
standard Borda rule for profiles of linear orders.

�8 (0) =
∑
H∈� 10�8H − 1H�80

(a) the symmetric Borda score.

�8 (0) =
∑
H∈� 10�8H

(b) based on strict dominance.

�8 (0) =
∑
H∈� 10%8H

(c) based on weak dominance.

�8 (0) = −
∑
H∈� 1H�80

(d) based on non strict dominance.

Figure 3.8: Domination-based scores for defining the Borda rule on (possibly) in-
complete preferences. When indistinguishability is not materialised in a domain,
definition (1) coincides with definition (2); when incomparability is not materialised,
definition (2) coincides with definition (3).

Some suggestions regarding appropriate generalisations of the Borda rule for top-
truncated preferences have been made in the literature already. All of them are reason-
able at first sight, but heavily depend on the interpretation of the preference domain,
and of the rule, we have in mind. For instance, given a preference with : ranked
alternatives out of a total of < alternatives overall, should the points assigned to the
unranked alternatives at the bottom be <− : −1 (as if they all were ranked at level : +1
from the top), or should the points be 0 (as if all unranked alternatives were ranked
at the very lowest level <)? Dummett (1997), Saari (2008), Baumeister et al. (2012),
Cullinan et al. (2014), and Caragiannis et al. (2015) have presented their own versions
of the Borda rule (some of which coincide). Emerson (2013) has informally discussed
the advantages and disadvantages of different such generalisations of the Borda rule,
concentrating on issues related to strategic behaviour.

All generalisations of the Borda rule that have appeared in previous work follow the
definition of a positional scoring rule in terms of score-vectors. Note that for domains
of top-truncated preferences we actually need < − 1 such vectors, one for each possible
number of the top alternatives in a preference (when this number is 0, all alternativeswill
always be assigned the same score, by the definition of positional scoring functions).
Now, the last < − : positions in a vector correspond to the scores associated with the
bottom alternatives in a top-truncated preference with : top alternatives. Note that all
bottom alternatives must have the same score, by the definition of positional scoring
functions. Generally, given a top-truncated preference % with |TOP(%) | = : 6 < − 1,
we will write B 9 for the score of the alternative ranked in the 9 th position within the top
part of % and B:+1 for the score of all alternatives in the bottom part of %. These are the
versions of the Borda rule for top-truncated preferences in the literature:
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• Pessimistic Borda (Baumeister et al., 2012):20

(< − 1, < − 2, . . . , < − :, 0, . . . , 0), for all 1 6 : 6 <

• Optimistic Borda (Saari, 2008; Baumeister et al., 2012):21

(< − 1, < − 2, . . . , < − :, < − : − 1, . . . , < − : − 1), for all 1 6 : 6 <

• Averaged Borda (Dummett, 1997):

(< − 1, < − 2, . . . , < − :, < − : − 1
2

, . . . ,
< − : − 1

2
), for all 1 6 : 6 <

Intuitively, the pessimistic Borda rule sees the non-ranked alternatives as placed on the
bottom position of a complete ranking, assigning them score 0; the optimistic Borda
rule however places those alternatives in the position that immediately follows the last
ranked alternative out of the : ones, assigning them score<−:−1. The averaged Borda
rule assigns to each non-ranked alternative the average of the Borda scores that this
alternative could be assigned with if the given top-truncated order were to be extended
to a linear order—this is a method that Ackerman et al. (2013) call bucket averaging.

Overall, we have reviewed two different—yet equally natural—directions one could
follow to generalise the Borda rule on incomplete preferences (and specifically on trun-
cated preferences). We will next see that defining the Borda rule using a domination-
based score or a scoring vector can lead to exactly the same outcome. What plays
a crucial role here is the particular domain we consider. Specifically, by combining
domination-based scores with different domains, we obtain already existing rules (con-
sult Table 3.4).22 The observations in Table 3.4 are straightforward, except perhaps
for the one concerning the averaged Borda rule and the symmetric Borda scores, made
explicit in Proposition 3.34.23

3.34. Proposition. The averaged Borda rule for top-truncated preferences (onD1(�)
or D2(�)) is the positional scoring rule with a corresponding scoring function based
on the symmetric Borda scores.

Proof. Take the symmetric Borda scores in a top-truncated preference. Divide them
by 2 and add the positive constant <2 . The new scores are exactly the ones associated

20This rule can also be found under the name truncated Borda (Ackerman et al., 2013).
21This rule has also been referred to as modified Borda by Caragiannis et al. (2015).
22In Section 3.1, we discussed yet another generalisation of the Borda rule, called shortsighted Borda,

which is based on the scoring vector (< − 1, < − 2, . . . , < − :, < − :, . . . , < − :). Note that this rule
cannot be obtained through domination-based scores, for these particular domains. Indeed, shortsighted
Borda is better suited to domains where the unranked alternatives are taken to be incomparable (rather
than inferior) to the ranked alternatives.

23Proposition 3.34 also holds for larger preference domains, like the one of weak orders, as discussed
for instance by Duddy et al. (2016).
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Scores
Domains D1(�) D2(�)

(0) symmetric averaged averaged
(1) domination pessimistic pessimistic
(2) weak domination optimistic pessimistic
(3) non-domination optimistic optimistic

Table 3.4: Borda rules for domains of top-truncated preferences.

with the averaged Borda rule. Since these scores are obtained through an affine trans-
formation of the old ones, the two corresponding rules are equivalent. �

Our three Borda rules often yield different outcomes. For an example, see Figure 3.9.
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Figure 3.9: Profile where the optimistic, the pessimistic, and the average Borda rule
yield different outcomes: {1}, {0, 2}, and {0, 1}, respectively.

All aforementioned rules belong to a class containing natural generalisations of the
Borda rule for top-truncated preferences: the Borda class (Figure 3.10).

01

02

...

0:

0:+1 · · · 0<∼ ∼

< − 1

< − 2

...

< − :

B:+1 B:+1

Figure 3.10: A rule in the Borda class on the domain D1(�), for B:+1 < < − : .

A rule for top-truncated preferences is in the Borda class if it is induced by some
positional scoring function that gives rise to scoring vectors of the following form, for
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a number B:+1 < < − : and 1 6 : 6 <:

(< − 1, < − 2, . . . , < − :, B:+1, . . . , B:+1)

To sum up this chapter, we have seen various ways in which aggregation rules can be
defined when agents hold incomplete opinions, either in the framework of judgment
aggregation or in that of preference aggregation and voting. Besides their definitions
and the motivation behind those definitions, the discussed rules carry different formal
properties, and vary in suitability when we want to reach good, sincere, or correct
collective decisions. In the chapters that follow, we will delve deeply in these topics.



Chapter 4
Axiomatic Properties

By now it is apparent that there are plenty of methods one could adopt in order to
aggregate (incomplete) individual opinions and produce a collective outcome. But one
essential concern regarding all those methods remains unresolved:

How can we distinguish good from bad procedures of collective decision
making, given specific aggregation contexts?

In this chapter, we will follow a simple and effective approach to answer this question.
For different aggregation contexts, we will first identify, and then formally define, a
number of properties that an appealing aggregation rule should satisfy. Subsequently,
we will investigate which ones from the relevant aggregation rules that we have seen
in Chapter 3 indeed satisfy the proposed properties. In the most interesting cases, we
will be able to show that some of our rules are the unique ones for which a collection
of desirable properties simultaneously hold (leading to a characterisation result). In
this way, we will provide a strong argument in favour of the selected rules: if we want
to ensure that certain normative criteria are going to be fulfilled, then our only option
will be to use the particular aggregation rules. On the other hand, we may also find that
certain properties can never hold at the same time, no matter what aggregation rule we
attempt to use (implying an impossibility result).

What we have so far described as properties of aggregation rules are known to the
social choice literature as axioms.

4.1. Example. Consider a group of three friends, Ann, Bea, and Cal, who need to
make a choice about what kind of food to order for dinner, between pizza and burger.
Suppose that they are thinking of making a decision by aggregating their preferences
as follows: If Ann wants to have pizza, then pizza will be selected; otherwise, they will
order what the majority prefers.

This mechanism does not sound very fair in the first place. On the on hand, it
assigns some unjustified power to Ann over her friends, and on the other hand, it also
distinguishes between the two types of food (since Ann’s preference will be followed
only in case she is in favour of pizza). In fact, the symmetrical treatment of (8) the
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agents of a group and (88) the alternatives about which a collective decision should be
reached is ensured by two ubiquitous axioms in social choice theory: anonymity and
neutrality, respectively. Most rules presented in Chapter 3 satisfy these axioms, but the
rule of this example does not. M

In this chapter, we will further define and analyse compelling axioms tailored to the
aggregation of incomplete opinions. The direction we will take consists of two com-
plementary paths. First, we will discuss the natural generalisation of several axioms
that are deemed classical in the field of social choice theory (like neutrality or inde-
pendence); second, we will design new axioms that serve their purposes exclusively in
domains of incomplete opinions (such an axiom that we will later see is splitting). For
ease of exposition, we will overload some names of axioms (like the one of anonymity),
using them across the formal frameworks of judgment aggregation and voting. Of
course, whenever applied in a specific section, the name of an axiom will refer to the
property defined for the framework within which that section is developed. Axioms
with the same name will encode exactly the same idea; on the other hand, general
concepts that get further specified within frameworks (like monotonicity in voting vs.
monotonicity in judgment aggregation) will be assigned different names.

Given some possibly infinite sets that encode the superpopulation #★, the supera-
genda Φ★, and the set of all potential alternatives �★, our aggregation rules function
on all finite subsets of those sets. For the sake of defining axioms in this chapter, we
will consider a fixed group of agents # ⊆ #★ of size =, an agenda Φ ⊆ Φ★, and a
set of alternatives � ⊆ �★. We will say that an aggregation rule satisfies a certain
axiom if the relevant definition holds for all such finite #,Φ, and �.

4.1 On Weight Rules
Let us come back to the class of weight rules that we introduced in Section 3.1.
Supposing that we are going to use some rule from this class, we wonder whether there
are natural axioms that can discriminate between all available options. We conduct
our analysis for the framework of judgment aggregation, as well as for preference
aggregation and voting. Although the core ideas behind our results remain the same
across all frameworks, the details in several proofs need to be accounted for separately.
We discuss the technical correspondence between our various findings as we proceed.

We present three kinds of axioms that encode attractive normative requirements for
aggregation rules that operate on possibly incomplete opinions:

• Majoritarianism. When deciding between accepting a proposition i and its
negation ¬i, or when contemplating how to rank two alternatives 0 and 1, it is
appealing to follow the opinion of the majority of agents. But, as is well known,
doing so can lead to logically inconsistent outcomes and cyclic preferences. We
therefore propose threeweakened forms ofmajoritarianism that avoid this conflict
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between logical consistency or acyclicity on the one hand, and responsiveness to
the will of the majority on the other hand.

• Splitting. Suppose that a subgroup of all agents observe that their (disjoint)
individual opinions are compatible with each other (meaning that the union of
these opinions constitutes a new admissible opinion). Then, they might consider
submitting that union rather than their own individual opinions. It seems desirable
to use an aggregation rule for which the outcome never changes when a subgroup
chooses to make such a move—we consider axioms of varying strength based on
this fundamental idea.

• Quality over quantity. Consider some agents that hold opinions on a small
number of topics. We may think that these agents have reflected on those topics
more carefully than other agents who have opinions on a large number of topics;
we may also regard it a matter of fairness to either give someone much influence
over a few topics or little influence over many, but not much influence over many
topics. We propose an axiom that takes an extreme position on this matter and
requires that a single “quality” agent with an opinion on few topics is always
more powerful than any number of agents with the same opinions on a strictly
larger set of topics.

Our main results are characterisations of weight rules that satisfy the axioms sketched
above. Under appropriate conditions, imposing majoritarianism demands constant
weights. A (weak form of the) splitting axiom causes weights to be inversely propor-
tional to the number of topics on which an agent reports an opinion (which is the case
for the equal-and-even weight rule). Finally, the quality-over-quantity axiom forces
the rule to be the upward-lexicographic one, making decisions by ordering the agents
lexicographicaly, according to the number of topics uponwhich they express an opinion.

4.1.1 Judgment Aggregation
In this section, we discuss a number of reasonable features ofweight rules for incomplete
individual judgments, andwe formalise them in terms of axioms. Then, we demonstrate
how specific weight rules are charaterised via these axioms.

Axioms

To begin with, making a collective decision based on the opinion of themajority on each
issue of the agenda separately is commonly considered as a desirable attribute of an
aggregation rule. However, we know that majorities easily lead to inconsistencies when
logical interconnections between the propositions are involved (we refer, for instance, to
the doctrinal paradox by Kornhauser and Sager, 1993). On the other hand, there clearly
are situations where the role of logic is not critical for the decision-making process,
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while the judgment of the majority is still considered a reliable indication concerning
the judgment of the whole group.

4.2. Example. Suppose that the jury of a court has to deliver a verdict on two distinct
cases, deciding whether the two defendants are guilty (propositions i1 and i2). In this
scenario, nomatter what the verdict on i1 is, the jury can independently decide in favour
of i2 or of ¬i2. Formally, for the agenda Φ = {i1, i2,¬i1,¬i2} and for a jury of
size =, it holds that i2 is logically independent of P for every profile P ∈ J (Φ)=. Now,
imagine that the jury consists of five members, three of which find that the defendant of
the second case is guilty. This means that a strict majority of the jury members accept
proposition i2. The axiom of forward majoritarianism says exactly that this majority
ought to be respected by an aggregation rule; regardless of what the jury decides about
the first case, any collective judgment should contain proposition i2. Then, suppose
that the judge of the court does not have access to the individual judgments of the
jury members, but she can observe the outcome of an aggregation rule, where every
collective judgment (in case there are more than one) contains i2. The judge cannot
avoid but announce the defendant of the second case guilty, without knowing how
many out of the five jury members agree with this verdict. The axiom of backward
majoritarianism provides the judge with the guarantee that a strict majority of the jury
members have deemed the defendant guilty. M

For a profile P ∈ J (Φ)=, let us define the simple-majority set, that is, the set of all
propositions that have more advocates than adversaries in P:

<(P) = {i ∈ Φ | =Pi > =P¬i}

One could also work with the absolute-majority set {i ∈ Φ | =Pi > =
2 } and obtain

the same technical results. By adopting this definition, our axioms of forward ma-
joritarianism and of general majoritarianism would become weaker, while backward
majoritarianism would be logically stronger.

Then, we say that a proposition i is logically independent of a profile P whenever i is
logically independent of each consistent subset of {k,¬k | k ∈ ⋃

8∈# �8} \ {i,¬i}.1
Intuitively, if a proposition is independent of a profile, then we can flip it in every
agent’s individual judgment (i.e., replace i with ¬i and vice versa) without damaging
logical consistency. See Figure 4.1 for an example.

Let us now formulate three concrete axioms that encode majoritarian ideals.

Axiom:ForwardMajoritarianism. For every profile P ∈ J (Φ)= and proposition i ∈
Φ that is logically independent of P, it holds that

if i ∈ <(P), then i ∈ � for all � ∈ � (P)
1Recall that a proposition i is logically independent of a set of propositions . if both . ∪ {i} and

. ∪ {¬i} are logically consistent.
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�1 = {?, @}
�2 = {?,¬@,¬(? ∧ @)}

�1 = {?, @, ? ∧ @}
�2 = {?,¬@,¬(? ∧ @)}

Figure 4.1: On the left, ? is independent of the profile; on the right, it is not.

Axiom: Backward Majoritarianism. For every profile P ∈ J (Φ)= and proposi-
tion i ∈ Φ that is logically independent of P, the following holds:

if i ∈ � for all � ∈ � (P), then i ∈ <(P)

Regarding the general matter of majority judgments conflicting with logical constraints,
a notion of minimal divergence from the majority outcome based on set-inclusion can
be defined: For a set of propositions. ⊆ Φ, . ′ ⊆ . is a maximal consistent subset of.
if and only if . ′ is consistent and there exists no other consistent set . ′′ such that . ′ ⊂
. ′′ ⊆ . . The set ofmaximal consistent subsets of. is denoted bymax(., ⊆). Following
Nehring et al. (2014), we call Con(P) = {. ′ | . ′ complete and consistent, and . ′ ⊇
., for some . ∈ max(<(P), ⊆)} the Condorcet set.

General majoritarianism ensures that the aggregation rule induces only judgment
sets that extend (possibly in an inconsistent way) judgment sets in the Condorcet set.2

Axiom: General Majoritarianism. For every profile P ∈ J (Φ)= and every judgment
set � ∈ � (P), there exists a judgment set �′ ∈ Con(P) such that �′ ⊆ �.

By inspecting our definitions, we can see that, as far as all aggregation rules are
concerned, general majoritarianism logically implies forward majoritarianism and both
these axioms are independent of backward majoritarianism. However, we will later
show that the relations between these axioms differ when we focus on weight rules.

We illustrate the intuition bared by our next axioms with an example.

4.3. Example. A group of doctors has to make a decision concerning the treatment of
a patient. They must decide whether treatment 1 is suitable (proposition i1), similarly
for treatment 2 (proposition i2), but also whether treatment 1 and 2 can be combined
(proposition i1 ∧ i2), etc. Suppose that the doctors have different specialisations (or
that they choose to spend their limited time investigating different issues regarding
the decision they have to make). This would result in a meeting where these doctors
submit judgments on different propositions. Suppose now that a subset of the doctors
have the chance to eat lunch together before the meeting, during which they discuss
their patient. They are then able to share the information they collected individually
and the judgments at which they arrived. This subset of the doctors realise that all
their judgments together form a consistent set of propositions {i1, . . . , i_}. Trusting

2If the aggregation rule induces only complete and consistent collective judgments, general majori-
tarianism means that � (P) ⊆ Con(P) for every profile P ∈ J (Φ)=.
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their colleagues, the doctors in this subset may report the whole set of propositions in
the meeting, instead of the more restricted judgments they held before the discussion.
We would like the aggregation rule employed by the group to reach the same outcome
independently of whether some of the doctors choose to combine their individual
judgments prior to aggregation. M

We present three axioms that enforce exactly the propoerty we hinted at in Exampe 4.3
in various degrees, ordered from stronger to weaker:

Axiom: Arbitrary Splitting. For every profile P ∈ J (Φ)= and subgroup ∅ ≠ #′ ⊆ #
of agents with pairwise disjoint and mutually consistent judgment sets, we have
� (P) = � (P′), where P′ arises from P by replacing the judgment set of each member
of #′ by the union

⋃
8∈# ′ �8.

Axiom: Equal Splitting. For every profile P ∈ J (Φ)= and subgroup ∅ ≠ #′ ⊆ #
of agents whose judgment sets are pairwise disjoint, mutually consistent, and of equal
size, we have � (P) = � (P′), where P′ arises from P by replacing the judgment set of
each member of #′ by the union

⋃
8∈# ′ �8.

Axiom: Single Splitting. For every profile P ∈ J (Φ)= and subgroup ∅ ≠ #′ ⊆ # of
agents whose judgment sets are pairwise disjoint, mutually consistent, and singletons,
we have � (P) = � (P′), where P′ arises from P by replacing the judgment set of each
member of #′ by the union

⋃
8∈# ′ �8.

The next property is particularly desirable when smaller judgment sets are significantly
more important to the collective decision than larger ones. For instance, in case the
agents have a fixed and limited amount of energy/time/cognitive effort at their disposal,
then one could expect that small judgment sets are more well-thought-out than large
ones, and hence of greater value to the group. We restrict attention to profiles where
only two judgments—which differ in size—are reported. The axiom of quality-over-
quantity states that the collective judgment ought to always agree with the smaller
individual judgment set, independently of how many agents adopt each opinion:3

Axiom: Quality-over-Quantity. Consider two arbitrary judgment sets ∅ ≠ �′, �′′ ∈
J (Φ) with |�′| < |�′′|. For every profile P ∈ J (Φ)= where a subgroup ∅ ≠ #′ ⊂ # of
agents declare judgment �′, another subgroup ∅ ≠ #′′ ⊂ # of agents declare judgment
�′′, and the rest of the agents submit an empty set, it holds that �′ ⊆ � for all � ∈ � (P).

3The property of quality-over-quantity may be judged as weak or strong, depending on different
considerations. On the one hand, the axiom’s scope (i.e., the profiles that its antecedent refers to) may
categorise it as weak, since it only mentions cases where just two distinct judgment sets are reported. On
the other hand, the axiom may also be considered strong, because it clearly prioritises small judgment
sets over large ones, not allowing for any compromise.
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Characterisation Results

Using the axioms that we have presented so far, we will provide axiomatic characteri-
sations for aggregation rules within the class of weight rules.

It will be important that the agendas containing the issues at stake have a minimum
level of variety. To that end, we define the notion of unconstrainedness.

For _ ∈ N, we say that a superagenda Φ★ is _-constrained if for every logically
consistent subset � ⊆ Φ★ with |� | = _, the following holds for all i ∈ �:

� \ {i} � i

In words, _-constrainedness means that every proposition in a consistent set of size _
is implied by all the other propositions in that set together. Suppose that Φ★ is not
_-constrained for some _. Then, there exist a consistent judgment set � of size _ and
a proposition i ∈ � such that (� \ i) ∪ {¬i} is logically consistent too, meaning that
we can replace i with its negation without damaging �’s consistency. We will often
exploit this attribute in our proofs.

A superagenda Φ★ is unconstrained if there is no _ 6 |Φ★ |
2 for which Φ★ is _-

constrained. Unconstrainedness is a very weak property. In particular, every super-
agenda becomes unconstrained if we add to it a new propositional variable and its
negation. Moreover, most agendas used in common judgment aggregation applications
(like those containing a conjunctive or disjunctive agenda with at least two premises
(Dietrich and List, 2007c), a preference agenda (Dietrich and List, 2007a) or a budget
agenda (Dietrich and List, 2010b)) are unconstrained.

We start by investigating the three majoritarian properties. For a finite superpopu-
lation, we show that each one of the axioms of general majoritarianism and of forward
majoritarianism characterises a family of rules with weights that are “close enough"
(Proposition 4.4), while if the superpopulation is infinite we obtain an axiomatisation
of the constant weight rule (Theorem 4.5).

4.4. Proposition. For any unconstrained superagendaΦ★, finite superpopulation #★,
and weight function F, the weight rule �F satisfies general majoritarianism if and only
if it satisfies forward majoritarianism if and only if F_

F_′
< :

:−1 for all _, _′ ∈ N with
_, _′ 6 |Φ

★ |
2 , where : = d |#

★ |
2 e.

Proof. We will explain the proof only for the property of general majoritarianism,
since the proof for forward majoritarianism is similar. Given an unconstrained super-
agenda Φ★ and a finite superpopulation #★, we address the case for an even number
|#★| = 2: (when |#★| is odd the proof is totally analogous). Consider an arbitrary
weight function F and its induced weight rule �F.

Suppose that �F satisfies general majoritarianism and consider two arbitrary _, _′ ∈
N. Then, if F_ = F_′, we have that F_F_′ <

:
:−1 . So, assume that F_ > F_′ and _ > _′ (if

_ < _′ the proof is analogous). Since Φ★ is unconstrained, there exists a consistent set
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� = {i1, i2, . . . , i_} ⊆ Φ★ such that �′ = {¬i1, i2, . . . , i_} is also consistent. Take
�′′ to be a consistent subset of �′ with ¬i1 ∈ �′′ and |�′′| = _′. Consider the following
profile, corresponding to a group of |#★| agents:

P = (∅, �, . . . , �︸   ︷︷   ︸
: − 1

, �′′, . . . , �′′︸      ︷︷      ︸
:

)

Since =P¬i1 > =Pi1 and �′′ ⊂ �′ = (� \ {i1}) ∪ {¬i1}, it is true that Con(P) = {�′}.
Then, �F satisfying general majoritarianism implies that �F (P) = {�′}, so i1 must
weigh strictly less than ¬i1 in P. That is, (: − 1) · F_ < : · F_′ or F_

F_′
< :

:−1 .
For the other direction we will show that if �F does not satisfy general majoritari-

anism, then F_
F_′
> :

:−1 for some _, _′.
We start with assuming that �F does not satisfy general majoritarianism. Since

�F—being aweight rule—produces only complete and consistent collective judgments,
failing general majoritarianism means that �F (P) * Con(P) for some agenda Φ ⊆ Φ★
and some profile P ∈ J (Φ)= with = 6 |#★|. This means that there exists a judgment
set � ∈ �F (P) such that � ∉ Con(P). The fact that � ∉ Con(P) implies that there
are some propositions i1, . . . , iℓ ∈ � such that =P¬i 9 > =

P
i 9 for all 9 ∈ {1, . . . , ℓ}, and

�′ = (� \ {i1, . . . , iℓ}) ∪ {¬i1, . . . ,¬iℓ} is consistent. Because of � ∈ �F (P), we
have the following: ∑

8∈#
F |�8 | · |� ∩ �8 | >

∑
8∈#

F |�8 | · |�′ ∩ �8 |

⇒
∑

9∈{1,...,ℓ}

∑
8∈#P

i 9

F |�8 | >
∑

9∈{1,...,ℓ}

∑
8∈#P

¬i 9

F |�8 |

⇒ (=Pi1
+ . . . + =Piℓ ) ·max

|�8 |
F |�8 | > (=P¬i + . . . + =P¬iℓ ) ·min

|�8 |
F |�8 |

Since =Pi1 + . . . + =
P
iℓ > 0, the following holds:

=P¬i1 + . . . + =
P
¬iℓ

=Pi1 + . . . + =
P
iℓ

>
=Pi1 + . . . + =

P
iℓ + ℓ

=Pi1 + . . . + =
P
iℓ

= 1+ ℓ

=Pi1 + . . . + =
P
iℓ

> 1+ ℓ

ℓ(: − 1) =
:

: − 1
.

We conclude that (: − 1) ·max|�8 | F |�8 | > : ·min_ F_; this means that for some _, _′, it
is the case that F_

F_′
> :

:−1 . �

4.5. Theorem. For any unconstrained superagendaΦ★ and infinite superpopulation#★,
a weight rule satisfies general majoritarianism if and only if it satisfies forward majori-
tarianism if and only if it is the constant weight rule �c.

Proof. If general (forward) majoritarianism holds for an infinite superpopulation #★,
then it has to hold for every finite group of agents. As in the proof of Proposition 4.4,
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we must have that F_
F_′

< :
:−1 for all : ∈ N. This only holds if F_ = F_′ for all _, _′. �

In case, however, we wish to make no assumptions regarding the superpopulation, the
constant weight rule �c is directly characterised by backward majoritarianism.

4.6. Theorem. For any superpopulation and unconstrained superagenda, a weight
rule satisfies backward majoritarianism if and only if it is the constant weight rule �c.

Proof. Consider an unconstrained superagenda Φ★ and a superpopulation #★. For
the first direction we take an arbitrary profile P = (�1, . . . , �=) ∈ J (Φ)= for some
Φ ⊆ Φ★ and some = 6 |#★| and a proposition i ∈ Φ logically independent of P. The
independence assumption for i implies that the constant weight rule �2 with 2 > 0 will
simply count how many agents agree with the propositions i and ¬i in the profile P,
and proceed as follows: if =Pi = =P¬i, then both i and ¬i will belong to some collective
judgment set in �2 (P); if =Pi > =P∼i, then only iwill belong to some collective judgment
set in �2 (P); and if =Pi < =P¬i, then only ¬i will belong to some collective judgment
set in �2 (P). This means that if i ∈ � for all � ∈ �2 (P), then =Pi > =P∼i, and i ∈ <(P).
So backward majoritarianism holds.

For the other direction, we need to show that if backwardmajoritarianism is satisfied
by some weight rule �F induced by a neutral weight function F, then it must hold that
F_ = F_′ for all _, _′. We proceed with proving the contrapositive. Take a weight
function F such that F_ ≠ F_′ for some _ ≠ _′. Suppose that F_ > F_′ and _ > _′

(if _ < _′ the proof is analogous). Then, since Φ★ is unconstrained, there is some
consistent judgment set � ⊆ Φ★ of size _ such that i ∈ � and �′ = (� \ {i}) ∪ {¬i}
is also consistent. Consider the agenda Φ ⊆ Φ★ that contains all propositions in � and
their negations, and take �′′ ⊂ �′ such that ¬i ∈ �′′ and |�′′| = _′. Then, we construct
the profile P = (∅, . . . , ∅, �, �′′), where by definition, i is logically independent of P.
Since F |� ′′ | = F_′ < F_ = F |� |, we will have that i ∈ � for all � ∈ �F (P). How-
ever, =Pi = =P¬i = 1, thus i ∉ <(P). We conclude that backwardmajoritarianism fails. �

Our results highlight an interesting fact about the logical relations between the three
majoritarian axioms, when restricting attention to the class of weight rules. Forward
and of general majoritarianism are now logically equivalent (even though in general the
latter is stronger than the former), and logically weaker than backward majoritarianism
(which in general is logically independent of both).

We proceed with exploring the splitting axioms with respsect to weight rules. For a
sufficiently large superpopulation, we show that the weakest axiom of the three, namely
single splitting, characterises the equal-and-even weight rule (Theorem 4.7), and by
Theorem 4.8 the same holds for equal splitting. Moreover, arbitrary splitting is proven
to be too strong: it is not satisfied by any weight rule (Proposition 4.9).
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The characterisation results that rely on splitting would fail without a sufficiently
large superpopulation; dropping this assumption would lead to a characterisation of
some uninspiring class of rules instead of a single rule.

4.7. Theorem. For any unconstrained superagenda Φ★ and superpopulation #★ with
|#★| > |Φ

★ |
2 + 1, a weight rule satisfies single splitting if and only if it is the equal-and-

even weight rule �ee.

Proof. Consider given an unconstrained superagenda Φ★ and a superpopulation #★

with |#★| > |Φ
★ |

2 + 1. For the first direction, we consider an arbitrary instance of the
single splitting axiom: an agenda Φ ⊆ Φ★, a group # of = 6 |#★| agents, a non-
empty subgroup #′ ⊆ # of agents whose judgment sets are pairwise disjoint, mutually
consistent, and singleton, and two profiles P = (�1, . . . , �=) and P′, where P′ arises
from P by replacing the judgment set of each member of #′ by the union

⋃
8∈# ′ �8. By

the definition of the weights for the rule �ee we know that every proposition in
⋃
8∈# ′ �8

weighs exactly the same in the profiles P and P′, because |�8 | = 1 for every 8 ∈ #′, and
F_ =

F1
_

for every _. The same holds for all propositions that are not in
⋃
8∈# ′ �8 too,

since they trivially appear in exactly the same judgment sets in both profiles P and P′.
This means that �ee(P) = �ee(P′).

For the other direction, consider an arbitrary _ 6 |#★| −1 (note that we do not need
to consider larger values for _ because |#★| > |Φ

★ |
2 + 1). Since Φ★ is unconstrained,

we take a consistent subset � = {i1, i2, . . . , i_} such that {¬i1, i2, . . . , i_} is also
consistent. Consider the agendaΦ that contains all propositions in � and their negations
and take two profiles as follows:

P = ({¬i1}, {i1}, {i2}, . . . , {i_})
P′ = ({¬i1}, {i1, i2, . . . , i_}, {i1, i2, . . . , i_}, . . . , {i1, i2, . . . , i_})

Note that this can be done because _ 6 |#★| − 1. Then, if a weight rule �F induced
by a weight function F satisfies the single splitting axiom, it must be the case that
�F (P) = �F (P′). So the weights of i1 and ¬i1 in profile P′ should coincide, that is,
F1 = _ · F_. Hence, by Definition 3.11, �F is the equal-and-even weight rule. �

4.8. Theorem. For any unconstrained superagenda Φ★ and any superpopulation #★

with |#★| > |Φ★ |
2 + 1, a weight rule satisfies equal splitting if and only if it is the

equal-and-even weight rule �ee.

Proof. Trivially, if a weight rule �F satisfies the equal splitting axiom, then it satisfies
the single splitting axiom too, so Theorem 4.7 implies that �F must be the equal-and-
even weight rule. For the other direction it is easy to see that for all weight of the form
F_ =

F1
_

(which induce the equal-and-even weight rule by Definition 3.11), the equal
splitting axiom is satisfied (note, however, that the arbitrary splitting axiom is not). �
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Recalling the formulations of the splitting axioms, the reader may be curious to know
how essential for our characterisation results the assumption of disjointness of the
individual judgments is. The answer is “very"—without it, the splitting properties
would fail for all weight rules.

Finally, we prove an impossibility result concerning the arbitrary splitting axiom and
the class of weight rules.

4.9. Proposition. For any unconstrained superagenda Φ★ and superpopulation #★
with |#★| > 2 and |Φ★| > 2, there exists no weight rule that satisfies arbitrary splitting.

Proof. For the sake of contradiction, assume that there exists some weight function F
for which the induced weight rule �F satisfies the arbitrary splitting axiom. Then,
�F should clearly also satisfy the single splitting axiom. Hence, by Theorem 4.7, we
should have that F_ = F1

_
for every _. However, we will now show that if this is the

case, then �F can in fact not satisfy the arbitrary splitting axiom, which stands in direct
contradiction to our assumption.

Consider three propositions i1, i2, i3 ∈ Φ★ such that both sets {i1, i2, i3} and
{¬i1, i2, i3} are consistent (which is possible due to unconstrainedness), and take the
agenda Φ = {i1, i2, i3,¬i1,¬i2,¬i3}. Then, consider two profiles

P = ({¬i1}, {i1}, {i2, i3})
P′ = ({¬i1}, {i1, i2, i3}, {i1, i2, i3})

Since both i1 and ¬i1 have weight F1 in profile P, it holds that both i1 and ¬i1 belong
to some judgment set in �F (P). Now, note that F |{i1,i2,i3}| =

F1
3 (this is true given

that |#★| > 4 and thus Theorem 4.7 holds). So, i1 scores 2F1
3 < F1 in P′. This means

that for every judgment set in �F (P′), only ¬i1 but not i1 will belong to that judg-
ment set. To conclude, �F (P) ≠ �F (P′), which violates the arbitrary splitting axiom. �

An alternative idea in the spirit of splitting would be to require that the outcome of
the aggregation process does not change when a subgroup of the agents combine
their individual judgments and submit the consistent union a single time (instead of
all members of the subgroup submitting that union). This axiom would characterise
the constant weight rule: The weight of a proposition will not depend on the size of
the judgment set to which it belongs.

Our results illuminate a straightforward separation between weight rules that are ma-
joritarian on the one hand, and those that satisfy the splitting axioms on the other, giving
rise to an impossibility result (stated for an infinite superpopulation for simplicity).

4.10. Corollary. For any unconstrained superagenda Φ★ and any infinite superpop-
ultation #★, there is no weight rule that satisfies some form of majoritarianism together
with some form of splitting.
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As the reader may have already predicted, we will finally prove that the axiom of
quality-over-quantity characterises the upward-lexicographic rule.

The axiomatisation of Theorem 4.11 holds for a finite superagenda Φ★ too, under
the condition that for every _ 6 |Φ★ |

2 there exists a set of propositional variables
{?1, . . . , ?_} ⊆ Φ★ such that ¬?1 ∧ · · · ∧ ¬?_ ∈ Φ★. However, if we take an infinite
superpopulation #★ instead of a finite one, then the characterisation result does not
hold. Specifically, the upward-lexicographic rule cannot be defined as a weight rule
anymore, and the quality-over-quantity axiom is not satisfied by any weight rule.

4.11. Theorem. For any superagenda that is closed under conjunction of literals and
contains all propositional variables ,and for any finite superpopulation, a weight rule
satisfies quality-over-quantity if and only if it is the upward-lexicographic rule �ulex.

Proof. It is easy to verify that the upward-lexicographic rule satisfies the quality-over-
quantity axiom. For the other direction, consider any finite superpopulation #★ and
any superagenda Φ★ of the required kind. Let �F be a weight rule induced by F.

Consider an arbitrary _ > 1. We are going to establish a lowe r bound on the ratio
F_−1
F_

based on quality-over-quantity. As Φ★ is closed under conjunction of literals and
contains all propositional variables, we can construct an agendaΦwith ?1, . . . , ?2_−2 ∈
Φ and ¬?1 ∧ · · · ∧ ¬?_ ∈ Φ. We then use the following two judgment sets � and �′, in
order to construct the profile P = (�, . . . , �︸   ︷︷   ︸

|#★ |−1

, �′):

� = {?1, . . . , ?_}
�′ = {¬?1 ∧ · · · ∧ ¬?_, ?_+1, . . . , ?2_−2}

As |� | = _ and |�′| = _ − 1, the quality-over-quantity axiom requires that �′ ⊆ �′′

for all �′′ ∈ �F (P). Given that the propositions ?_+1, . . . , ?2_−2 are logically inde-
pendent of the profile P, having that �′ ⊆ �′′ for all �′′ ∈ �F (P) means that accepting
¬?1∧· · ·∧¬?_ must have yielded a higher total weight than accepting all of ?1, . . . , ?_,
i.e., we must have that FP ({¬?1 ∧ · · · ∧ ¬?_}) > FP (�). But this is equivalent to
1 · 1 · F_−1 > ( |#★| − 1) · _ · F_, which in turn is equivalent to F_−1

F_
> _ · ( |#★| − 1).

The claim follows from the property of �ulex given by Lemma 3.5 in Chapter 3. �

4.1.2 Voting and Preference Aggregation
In this section, we investigate axioms that are counterparts of those that of Section 4.1.1,
but that this time apply to weight rules in the context of voting and preference aggre-
gation. Once more, it is important to remember that we can interpret a relative ranking
between two alternatives 0 and 1 as accepting a proposition of the form “0 is above 1”.
Hence, several of our formalisations and results will follow from the analogous ones in
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judgment aggregation. As in Section 3.1.2 where weight rules were defined, here we
also work with strict acyclic preferences %, which are not necessarily transitive.

For all results of this section, we have to assume an infinite set of potential alternatives.
There is a main difference with the framework of judgment aggregation, where we
did not always need to assume an infinite superagenda. In judgment aggregation,
the largest _ for which we need to define a weight F_ is the number of all positive
propositions in the superagenda, i.e., |Φ

★ |
2 . In order to prove statements for this

number, it suffices to consider an agenda Φ ⊆ Φ★ such that |Φ| = |Φ★|. But
in preference aggregation, the largest _ for which we need to define a weight F_
is the number of all pairs of alternatives from the set of all potential alternatives,
i.e., |�

★ | ( |�★ |−1)
2 . In order to prove statements for this number (specifically for rules that

output preferences of winner type), we may need to have a set of alternatives � ⊆ �★
such that |�| = |�

★ | ( |�★ |−1)
2 , which is not possible if |�★| is finite. Although we do

not construct such a large set of alternatives in our proofs, employing a set � with
|�| > _ to prove a statement about _ implies that we need an infinite �★.

Majoritarianism

We start with the elementary majority concept. In voting scenarios, respecting the
preferences of the majority is frequently taken on board as the ideal goal of an aggre-
gation process, although it easily leads to preference cycles (de Condorcet, 1785). For
a profile V ∈ P(�)=, we define the simple-majority set as follows:

<(V) = {(0, 1) ∈ �×� | =V01 > =
V
10}

There are clear situations where pairs of alternatives cannot cause a Condorcet-type
paradox on a profile. Such is the case when the alternatives 0, 1 are independent of
a profile V, i.e., when for each preference in V, 0 and 1 might be compared to each
other, but neither are compared to any other 2 (formally, 02, 20, 12, 21 ∉ %8 for all
2 ∈ � \ {0, 1}, 8 ∈ #). Figure 4.2 shows an example.

%1 = {01, 23, 24}
%2 = {34}

%1 = {01, 23, 21}
%2 = {34}

Figure 4.2: On the left, 0 and 1 are independent of the depicted profile; on the right,
they are not (because in %1 alternative 1 is also compared to 2).

The reader may wonder why we employ such a strong definition for the independence
of two alternatives with respect to a specific profile (which, also, does not directly
correspond to the independence definition we used in judgment aggregation). The
reason is twofold, bringing together a technical and a conceptual aspect.
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Conceptually, we adopt the more stringent notion of independence because it is
very intuitive for the purposes of preference aggregation, looking at cases where
following the opinion of the majority is undeniably safe and attractive, and leading
to a very weak axiom. Weak axioms imply strong characterisation results, showing
that a rule is the only one that can be chosen if certain basic conditions are satisfied.

Technically, suppose we replaced the aforementioned independence definition
with a weaker one in the spirit of the judgment aggregation model, saying that for
a pair 01 and a profile V, the new profile V〈01〉 in which alternatives 0 and 1 are
switched consists of acyclic preferences only. With this definition, we would not be
able to prove all characterisation theorems of this section regarding constant weights
(Theorem 4.12 for aggregation rules that output linear orders would go through, but
Theorems 4.13 and 4.14 would cease to hold). Consider, for example, a profile with
three agents and three alternatives, V = ({10, 02, 12}, {02}, {02}). Although 10 is
accepted by a majority of agents, the winner-type constant weight rule would select
alternative 0 as the winner, and 10 would not be in the collective outcome.

In Section 4.1.1 on judgment aggregation, we discussed three versions of majoritarian-
ism, all of which characterised the constant weight rule under certain assumptions on
the superpopulation size. Let us inspect them in the context of preference aggregation.

First, forward majoritarianism requires that for every pair of alternatives such that
a majority of the agents agrees about their relative ranking, all collective outcomes
should respect that ranking. This axiom makes sense as is for collective outcomes that
are linear orders, i.e., that rank every two alternatives. Indeed, Theorem 4.12 below is
the counterpart of Theorem 4.5, which was proven for judgment aggregation.

Axiom: Forward Majoritarianism. For every profile V ∈ P(�)= and alterna-
tives 0, 1 ∈ � that are independent of V, the following holds:

if 01 ∈ <(V), then 01 ∈ % for all % ∈ � (V)

However, asking for a specific ranked pair to be included in the collective decision is
not reasonable when that decision is incomplete (e.g., when it concerns some winning
alternatives rather than a full preference). In that case, we slightly modify the axiom, so
that it captures the same main idea: We say that for every pair of alternatives such that a
majority of the agents agrees about their relative ranking, all collective outcomes should
not directly violate that ranking. We call this axiom weak forward majoritarianism.

Axiom: Weak Forward Majoritarianism. For every profile V ∈ P(�)= and alterna-
tives 0, 1 ∈ � that are independent of V, the following holds:

if 01 ∈ <(V), then 10 ∉ % for all % ∈ � (V)

For aggregation rules that always yield complete outcomes, weak forward majoritari-
anism coincides with forward majoritarianism.
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In judgment aggregation, our characterisation results also required unconstrained-
ness of the agenda. All technical conditions that were guaranteed to hold by that
assumption are now fulfilled for a set of alternatives structured in terms of acyclic
preferences, so no additional assumptions are needed.

4.12. Theorem. For any infinite set of potential alternatives �★ and for any infinite
superpopulation #★, a weight rule of type L satisfies forward majoritarianism if and
only if it is the constant weight rule �L2 .

Proof. �L2 obviously satisfies forward majoritarianism. For the other direction,
consider an arbitrary weight function F that induces a weight rule �LF and suppose that
�LF satisfies forward majoritarianism. To prove that �LF is the constant weight rule it
suffices to show that F_ = F_′ for all _, _′ ∈ N.

We first show that �LF satisfying forward majoritarianism for a group # ⊆ #★ with
odd = > 1 implies that F_

F_′
< 1+ 2

=−1 for all _, _′. Indeed, consider two arbitrary _ > _′

and a set of alternatives � = {01, 11, 0
′
1, 1
′
1, . . . , 0_, 1_, 0

′
_
, 1′

_
} ⊆ �★ (it is possible to

select any suitable number of alternatives because �★ is assumed to be infinite). Then,
take two preference sets as follows:

% = {0111, 0212, . . . , 0_1_} ∈ P(�)
%′ = {1101, 0

′
21
′
2, . . . , 0

′
_′1
′
_′} ∈ P(�)

We construct the following profile V ∈ P(�)= for an odd = > 1:

V = (%, . . . , %︸    ︷︷    ︸
(=−1)/2

, %′, . . . , %′︸      ︷︷      ︸
(=+1)/2

)

Clearly, 01, 11 are independent of V, and 1101 ∈ <(V). Hence, by forward ma-
joritarianism it must be the case that 1101 ∈ %′′ for all %′′ ∈ �LF (V), implying that
=−1

2 F |% | <
=+1
2 F |%′ | and thus

F_
F_′

< 1 + 2
=−1 .

To conclude, we know that if �LF satisfies forward majoritarianism, then it does so
for every group # ⊆ #★ of odd cardinality. Thus, we must have that F_

F_′
< 1 + 2

=−1 for
every odd = > 1 and for every F_, F_′ ∈ R+. Letting = go to infinity, this implies that
F_ = F_′ for all _, _′. �

As we have proven in the context of judgment aggregation (Proposition 4.4), having a
finite superpopulation ensures that the weights will be very close, but not equal to each
other—for convenience, we here only elaborate on the infinite superpopulation case.
Interestingly, the characterisation of constant weights under an infinite superpopulation
is robust across different types of outcomes.

4.13. Theorem. For any infinite set of potential alternatives �★ and for any infinite
superpopulation #★, a weight rule of typeW satisfies weak forward majoritarianism
if and only if it is the constant weight rule �W2 .
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Proof. The proof matches that of Theorem 4.12, so we only explain here the part
that differs, after the construction of the profile V. Let %0 denote the preference set in
W(�) corresponding to 0 being the winning alternative. We have the following:∑

8∈#
F%8 (%01) =

∑
8∈#

F%8 (%02) = · · · =
∑
8∈#

F%8 (%0_) =
= − 1

2
F_

and ∑
8∈#

F%8 (%11) =
∑
8∈#

F%8 (%0
′
2) = · · · =

∑
8∈#

F%8 (%0
′
_′ ) = = + 1

2
F_′

Thus, either each of 01, 02, . . . , 0_ win in some outcome of the profile V or none of
them do, and the same is true for 11, 0

′
2, . . . , 0

′
_′. This means that it cannot be the case

that both 0111 ∉ %
′′ and 1101 ∉ %

′′ for all %′′ ∈ �WF (V), because then ∅ ∈ �WF (V),
which would be contrary to the definition of a weight rule. But 01, 11 are independent
of V, and 1101 ∈ <(V). Weak forward majoritarianism entails that 1101 ∈ %′′ for some
%′′ ∈ �WF (V). The remainder of the proof proceeds as for Theorem 4.12. �

4.14. Theorem. For any infinite set of potential alternatives �★ and for any infinite
superpopulation # , a weight rule of typeW: satisfies weak forward majoritarianism
if and only if it is the constant weight rule �W:

2 .

Proof. Analogous to the proof of Theorem 4.13 above. �

After concluding our study of forward majoritarianism for preferences aggregation set-
tings, let us proceed to the other two axioms, encoding different aspects if the idea
of respecting majority opinions, which we met in the previous section on judgment
aggregation, namely, backward majoritarianism and general majoritarianism. Loosely
speaking, backward majoritarianism prescribes that when an ordered paid of alterna-
tives 01 appears in the collective outcome, this should be because a majority of the
agents have ranked 0 above 1. Except for outcomes that are linear orders (in which case
the results and proofs go through similarly as for the judgment aggregation model), this
property does not make much sense in the context of voting, and it definitely does not
characterise the constant weight rule, as Example 4.15 illustrates.

4.15. Example. Consider alternatives 0, 1, and 2, a profile of two agents with prefer-
ences {02} and {02}, respectively, and the constant weight rule of single-winner type.
Then, alternative 0 will be the winner, and the pair 01 will be included in the outcome,
despite the fact that no majority of agents have 01 in their preference set. M

The axiom of general majoritarianism is even less appropriate for single-winner and
multiple-winner outcomes, which are incomplete by definition, as it presumes com-
pleteness of the collective opinions.
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Splitting

Recall the central motivation behind the splitting axioms in judgment aggregation: the
agents should not have the possibility to alter the final outcome by submitting a larger
consistent judgment, induced by the combination of their individual judgments. This
idea extends to preference aggregation as well, supposing that the agents could report
the union of the individual preference sets, when the corresponding new preference
remains acyclic. This is useful in practice: If some members of a council meet before
a vote and realise that they do not disagree on any of the relative rankings between
alternatives, they could send a messenger to the main meeting to vote on their behalf.

We now state the splitting axioms for preference aggregation. All axioms and rele-
vant results hold for the three types of weight rules in which we are interested, i.e., for
outcomes that are linear orders, or that denote a (set of) winner(s).

Axiom: Splitting, Equal Splitting, and Single Splitting. For every profile V ∈ P(�)=
and subgroup #′ ⊆ # of agents with pairwise disjoint ballots, it is the case that⋃
8∈# ′ %8 ∈ P(�) implies � (V) = � (V′), where V′ arises from V by replacing the

ballot of each member of #′ by the union
⋃
8∈# ′ %8. � furthermore is said to satisfy

equal splitting if the ballots of all agents in #′ are of equal size, and single splitting if
they are all singleton sets.

4.16. Theorem. For any infinite set of potential alternatives �★, any infinite superpop-
ulation #★, and any type T ∈ {L,W,W: }, a weight rule of type T satisfies single
splitting if and only if it is the equal-and-even weight rule �Tee .

Proof. Given a type T ∈ {L,W,W: }, we consider an arbitrary instance of the single
splitting axiom and show that �Tee satisfies it. Take two profiles V, V′, where V′ arises
from V by replacing the preference set of each member of #′ by the union

⋃
8∈# ′ %8.

By the definition of the weights for the rule �Tee , we know that every pair of alternatives
in

⋃
8∈# ′ %8 weighs exactly the same in V and in V′, because |%8 | = 1 for every 8 ∈ #′,

and F_ = F1
_
for every _. The same holds for all pairs that are not in

⋃
8∈# ′ %8 too, since

they trivially appear in exactly the same preference sets in both profiles V and V′. This
means that �Tee (V) = �Tee (V′).

For the other direction, consider an arbitrary _ ∈ N, a set of alternatives � =

{0, 1, 21, 22, . . . , 2_−2, 2_−1} ⊆ �★ (which is possible because �★ is infinite), and two
profiles V and V′ as follows, for a sufficiently large group # ⊆ #★:

V = ({01}, {10}, {211}, {221} . . . , {2_−21}, {2_−11})
V′ = ({01}, {10, 211, 221 . . . , 2_−21, 2_−11}, . . . , {10, 211, 221 . . . , 2_−21, 2_−11}︸                                                                                        ︷︷                                                                                        ︸

_

)

First, for any weight rule �LF we must have that !, !′ ∈ �LF (V) for some preferences
{01, 211, . . . , 2_−21, 2_−11} ⊆ ! and {10, 211, . . . , 2_−21, 2_−11} ⊆ !′. Moreover, if
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�LF satisfies single splitting, it must be the case that �LF (V) = �LF (V′). So the weights
of 01 and 10 should be the same in the profile V′, that is, F1 = _ · F_.

Second, for any weight rule �WF , the preference orders that have some alternative
from the set {0, 1, 21, 22, . . . , 2_−2, 2_−1} as the winner must all be in �WF (V). By the
satisfaction of single splitting, we should have that �LF (V) = �LF (V′), and hence the
weights of 01 and 10 should be the same in the profile V′. So, F1 = _ · F_. The same
argument holds for a weight rule �W:

F too. �

4.17. Theorem. For any infinite set of potential alternatives �★, any infinite superpop-
ulation #★, and any type T ∈ {L,W,W: }, a weight rule of type T satisfies equal
splitting if and only if it is the equal-and-even weight rule �Tee .

Proof. If a weight rule satisfies equal splitting, then it satisfies single splitting too—by
Theorem 4.7, it must be the equal-and-even-scoring rule. The proof of the other direc-
tion proceeds as the first part of the proof of Theorem 4.7. �

4.18. Proposition. For any set of potential alternatives �★ and any superpopula-
tion #★ such that |#★| > 2 and |�★| > 5, no weight rule of type T satisfies arbitrary
splitting, for T ∈ {L,W,W: }.

Proof. Every weight rule of type T that satisfies arbitrary splitting also satisfies single
splitting, so by Theorem 4.16, the only candidate rule is �Lee . Then it remains to show
that �Tee fails arbitrary splitting on at least one counterexample. The counterexample is
similar to the one we presented in the proof of Proposition 4.9, translated from judgment
aggregation to preference aggregation.

Let � = {01, 11, 02, 12, 03, 13} and consider two profiles:

V = ({1101}, {0111}, {0212, 0313})
V′ = ({1101}, {0111, 0212, 0313}, {0111, 0212, 0313})

Let F be the weight function associated with �Tee . Since both 0111 and 1101 weigh
F1 in profile V, they will both belong to the collective outcome (either that outcome
taking the form of a linear order, or denoting single or multiple winners). Note that
F |{0111,0212,0313}| =

F1
3 . So, 0111 weighs 2F1

3 < F1 in V′, while 1101 still weighs F1.
This means that for every preference set in �Tee (V′), only 1101 but not 0111 will belong
to that set. Hence, �Lee (V) ≠ �Lee (V′), which violates the arbitrary splitting axiom. �

Overall, majoritarianism and splitting can never be simultaneously satisfied, by any
weight rule for preference aggregation.

4.19. Corollary. For any infinite set of potential alternatives, any infinite superpop-
ulation #★, and any type T ∈ {L,W,W: }, there is no weight rule �TF that satisfies
weak forward majoritarianism together with some form of splitting.
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Finally, note that during the axiomatic study of weight rules in the setting of judgment
aggregation (in Section 4.1.1), we also examined the property of quality over quantity,
requiring that the collective outcome follow the opinion of the agents with smaller
sets of judgments. To prove that the described property characterises a rule that we
call upward lexicographic, we made use of a finite superpopulation. In the current
section on preference aggregation, all our formal results call for the assumption of an
infinite superpopulation, and it would not be appealing to suddenly alter it. But more
importantly, the axiom of quality over quantity does not fit in our preference aggregation
model that relies on types: it would be unreasonable to demand of a rule that outputs
preferences that are of winner type to directly copy the preference of an agent that can
take any arbitrary form. We thus do not involve this axiom in our analysis of weight
rules for voting and preference aggregation.

Figure 4.3 below summarises the main message of this section, regarding axiomatic
properties for weight rules, abstracting away from all technical details.

Desirable axiom

majoritarianism

splitting

Suitable rule

constant weight

equal-and-even weight

Figure 4.3: High-level correspondence between axioms and weight rules.

4.2 On Quota Rules (Judgment Aggregation)
Turning again to the aggregation of incomplete judgments, in this section we will
examine the class of quota rules that we defined in Section 3.2, from an axiomatic point
of view. We will not only describe the properties that single out quota rules amongst
all judgment aggregation rules, but we will also identify those axioms that characterise
different kinds of rules within the general class of quota rules.

To warm up, let us revisit an axiom that was central in the previous section on
weight rules, namely the splitting axiom, but now in the context of quota rules:

4.20. Example. Consider the two profiles P (left) and P′ (right) depicted below.
The individual judgments of our three agents in profile P are clearly disjoint and

logically consistent, so they could be merged and lead to the profile P′. Suppose we use
the strict majority rule: A quota rule that associates an invariable absolute threshold
of 2 with each one of the propositions ?, @, and ? ∧ @ (that is, each proposition will
be collectively accepted if only if at least two out of the three agents include it in their
individual judgments). In profile P, the rule will only take into account one agent
supporting each proposition, and will not accept it; but in profile P′, the rule will
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? @ ? ∧ @

Ann: �3 � �
Bea: � �3 �
Cal: � � �3
Majority: � � �

? @ ? ∧ @

Ann: �3 �3 �3
Bea: �3 �3 �3
Cal: �3 �3 �3

Majority: �3 �3 �3

see three agents supporting each proposition and the threshold of acceptance will be
reached. Hence, splitting will be violated.

In general, the splitting axiom will be violated by all quota rules, unless we have a
trivial such rule where every proposition is associated either with the threshold 0 or with
the threshold = + 1 (meaning that it will always, or never, be accepted, respectively). M

In this section, we will employ axioms that we have not met in this thesis yet, but that
nonetheless are common in the social choice literature. The characterisation theorems
that we will present are in line with known results that have been proven for agents
who all report complete judgments (Dietrich and List, 2007b). In particular, we also
address the obstacles that may emerge when a given quota rule produces inconsistent
outcomes (recall the discussion we had in the context of Example 3.17, page 34). The
well-known trade-off in judgment aggregation between independent (issue-by-issue)
aggregation and logical consistency evidently manifests itself in quota rules. Dietrich
and List (2010a) have also studied a special quota rule, namely the majority rule, for the
general case of possibly incomplete individual judgments and regarding the problem
of logical inconsistency. Specifically, Dietrich and List have explored what domains
of decision making (i.e., agendas) are suitable for consistent majority aggregation—in
this section, we do not impose any constraints on the domain, but instead study what
quota rules guarantee consistent outcomes given the structure of any existing agenda.

Leaving aside the logical interactions between the issues at stake, there is a large
pool of axiomatic literature involved with referendums, and predominantly with votes
on single binary choices. This stream of work was pioneered by May (1952), who
proved that the majority rule is the only rule simultaneously satisfying the axioms of
anonymity (i.e., treating all agents symmetrically), neutrality (i.e., treating all proposi-
tions symmetrically), and monotonicity (i.e., increasing the support for a proposition is
not harmful for the collective decision on that proposition). For more than one issue,
anonymity and monotonicity are also central in the axiomatisations of quota rules,
while neutrality would force the thresholds of acceptance for the different propositions
to coincide. Note that this first work on the topic byMay hinged on complete individual
opinions, but more recently scholars have relaxed this assumption.

Characteristically, Côrte-Real and Pereira (2004) have analysed systems of referen-
dums used by countries in the EuropeanUnion by employing an axiomaticmethodology.
They were specifically interested in a version of the non-show paradox (that is, a sit-
uation where an agent can improve the collective decision for herself by abstaining),
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which will also play a role later on in this thesis, in Section 5.1 of Chapter 5. Many of
their results can be translated in our model for the special case of a single issue.

Other axiomatic works related to this section have been conducted by Llamazares
(2006) and by Houy (2007). Both authors have examined voting rules on a single binary
choice, defined with respect to the difference in number between those that support the
given choice and those that oppose to it—they call this kind of aggregation methods
majority of difference.4 In our framework, such rules are called marginal quota rules
in order to stay as close as possible to the—established in judgment aggregation—
term quota rules. Considering the special case of judgment aggregation on a single
proposition, the our characetrisation results of this section generalise the characterisa-
tions obtained by Llamazares and Houy. Then, variants of the independence axiom
in judgment aggregation essentially guarantee that in the most general case with sev-
eral interconnected issues, quota rules apply in an issue-by-issue basis. Overall, this
section builds important links between two previously separate domains of research:
first, single-issue voting rules with majority quota, and second, quota rules in judgment
aggregation, for multiple interrelated issues.

For the whole section, we fix an agenda Φ ⊆ Φ★ and a group of agents # ⊆ #★ (of
size =) in order to define the properties of an aggregation rule. More precisely, we
want the relevant properties to hold for all such agendas and groups of agents. Note
also that our results of this section do not depend on specific assumptions about the
superagenda Φ★ and the superpopulation #★, which is why we omit such references
in the statements of our theorems.

4.2.1 Axioms
As already mentioned, anonymity is a classical axiom, initially defined for complete
individual judgments, that can be naturally defined for the incomplete case.

Axiom: Anonymity (A). For all permutations c : # → # and profiles P =

(�1, . . . , �=), it holds that � (P) = � (c(P)), where c(P) = (�c(1) , . . . , �c(=)).

We next explore how other desirable properties of aggregation rules may be defined,
extending their axiomatic counterparts for the complete case by specifically taking into
account the potential incompleteness of the judgments.

We begin with the property of monotonicity, which, broadly speaking, states that
extra support on a given proposition i should never harm the collective acceptance
of that proposition. Two clarifications are in order here. First, what exactly does the
term “extra support” mean? Second, when is the collective acceptance of a proposition
considered “harmed”? Relevant to the first question is the observation that an agents
can accept a proposition i that she was previously rejecting in two scenarios: (8) by

4Such binary voting rules were already mentioned by Fishburn (1973).
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including i in her judgment that was before abstaining on the issue ĩ and (88) by
including i in her judgment that was before containing the proposition ¬i. The
former action could be seen as less radical than the latter. Moreover, an agent can
possibly promote proposition i even more indirectly, by abstaining on ĩ instead of
accepting ¬i. Similarly, and regarding the second question above, a proposition i can
disappear from the collective outcome because ¬i is collectively accepted instead, or
also independently of that (since collective judgment sets are not necessarily consistent,
it may be the case that both i and ¬i are included in the outcome). The following
definition will help us make these ideas concrete:

4.21. Definition. Given two judgment sets � and �′ and a proposition i, the support
of i weakly increases from � to �′ (and weakly decreases from �′ to �), denoted by
� l−i �′, if � ∩ {i} ⊆ �′ ∩ {i}. The relation li is defined as the strict part of l−i. We
write � �i �′ if and only if � l−i �′ and �′ l−i �.

It is implied that �′ l−i � if and only if it is not the case that � li �′.
Numerous versions of the monotonicity property can be defined, depending on the

precise way we interpret the notion of support of a proposition. Here we discuss two
such versions, a strong one and a weak one.5

Axiom: Judgment Monotonicity (M). For all propositions i ∈ Φ and all profiles P =
(�1, . . . , �8, . . . , �=) and P′ = (�1, . . . , �

′
8
, . . . , �=), the following holds:

�8 li �
′
8 implies that � (P) l−i � (P′) and � (P′) l−¬i � (P)

Axiom: Weak Judgment Monotonicity (WM). For all propositions i ∈ Φ and all
profiles P = (�1, . . . , �8, . . . , �=) and P′ = (�1, . . . , �

′
8
, . . . , �=), the following holds:

¬i ∈ �8 and i ∈ �′8 imply that � (P) l−i � (P′)

When the input profiles are complete, judgment monotonicity and weak judgment
monotonicity reduce to the same axiom, viz., the standard monotonicity axiom in
judgment aggregation (Dietrich and List, 2007b).

We continue with independence, an axiom requiring that the positive judgments
on ĩ and only those play a role in the collective decision about i. The importance
of independence becomes evident for agendas with more than one issue, and will
play a determining role in our analysis of quota rules—indeed quota rules are among
the few natural judgment aggregation rules that satisfy independence in the complete
case. With respect to the incomplete case, recall the weight rules that we defined in
Section 3.1.1. Weight rules select a collective judgment by maximising the total weight
contributed by the agents, considering all propositions simultaneously, an idea that
stands in opposition to that of independence.

The basic concept of independence has two implicit parts:

5With a single-issue agenda as a departing point, weak judgment monotonicity corresponds to the
axiom that Houy (2007) calls “weak monotonicity 2”.
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(8) Judgments on ¬i should not affect the collective outcome about i;

(88) Judgments on k̃ ≠ ĩ should not affect the collective outcome about i.

When individual judgments are complete, case (88) is the only interesting one. But if
we allow for incompleteness, this is not true anymore. We thus define, additionally to
the most general independence property, a weaker version.6

Axiom: Independence (I). For all propositions i ∈ Φ and for all profiles P, P′, the
following holds:

# P
i = #

P′
i implies that � (P) �i � (P′)

Axiom:Weak Independence (WI). For all propositions i ∈ Φ and for all profiles P, P′,
the following holds:

# P
i = #

P′
i and # P

¬i = #
P′
¬i imply that � (P) �i � (P′)

Notably, the two variants of monotonicity coincide under independence.

4.22. Proposition. Judgment monotonicity is logically equivalent to weak judgment
monotonicity together with independence.

Proof. From the relevant definitions it follows that judgment monotonicity implies
weak judgmentmonotonicity. Now, wewill also show thatweak judgmentmonotonicity
together with independence implies judgment monotonicity. Consider two profiles:

P = (�1, . . . , �8, . . . , �=) and P′ = (�1, . . . , �
′
8 , . . . , �=)

and suppose that �8 li �′8 . For judgment monotonicity to hold, we need to prove that
� (P) l−i � (P′) and that � (P′) l−¬i � (P). We will show the former (and the latter can
be shown symmetrically).

If ¬i ∈ �8 and i ∈ �′8 , we are done by weak judgment monotonicity.
If i,¬i ∉ �8 and i ∈ �′8 , we create a new profile based on P by only changing the

judgment of agent 8 as follows:

P′′ = (�1, . . . , {¬i}, . . . , �=)

By independence � (P) �i � (P′′), and by weak judgment monotonicity � (P′′) l−i
� (P′). Thus, we have that � (P) l−i � (P′). �

Next, the axiom of judgment cancellation is particularly relevant when modelling in-
complete individual judgments, and suggests that adding to a profile the same number
of agents supporting a proposition i and its negation ¬i should not change the collec-
tive outcome on that proposition. Llamazares (2006) also defines cancellation within

6Weak independence has previously been defined byGärdenfors (2006) and Dietrich and List (2008).



76 Chapter 4. Axiomatic Properties

binary voting with one issue. However, the setting of this section is more engaged,
since the multiplicity of issues brings to light original interactions between the axioms
of cancellation and independence.7

Axiom: JudgmentCancellation (C). For all propositions i ∈ Φ and for all profiles P =
(�1, . . . , �8, . . . , � 9 , . . . , �=) and P′ = (�1, . . . , �

′
8
, . . . , �′

9
, . . . , �=),

i,¬i ∉ �8 ∪ � 9 and i ∈ �′8 ,¬i ∈ �′9 imply that � (P) �i � (P′)

Both judgment monotonicity and judgment cancellation bear a flavour of weak inde-
pendence: They stress that we can restrict attention to a relevant proposition i and
inspect two profiles where some of the submitted judgments on different proposi-
tions k may change. This is a debatable feature of these definitions. Nonetheless,
we insist on using them in order to facilitate the comparison of this work with two
central results of the judgment aggregation literature where monotonicity is defined
in an analogous manner: the axiomatisation result of quota rules for complete inputs
(Dietrich and List, 2007b), and the characterisation of all rules immune to manip-
ulation (Dietrich and List, 2007c). Besides keeping the connections with previous
work, note that the definitions we use do not have substantial technical impact on the
results of this section, since all quota rules are already weakly independent.

Finally, quota rules in general do not satisfy another popular axiom in judgment aggre-
gation, namely neutrality (Terzopoulou and Endriss, 2020). Neutrality demands that
all propositions be treated equally by an aggregation rule, while this is not the case for
quota rules that assign different thresholds to different propositions. Similarly, quota
rules violate unbiasedness (sometimes called acceptance-rejection neutrality), which
imposes the equal treatment between a proposition and its negation (Botan et al., 2016).

4.2.2 Characterisation Results
Given the axioms presented in Section 4.2.1, we characterise all different quota rules
for incomplete individual judgments. Our proofs are inspired by the proof of Dietrich
and List (2007b) for the characterisation of quota rules in the complete framework,
which uses the axioms of anonymity, monotonicity, and independence.

4.23. Theorem. An aggregation rule for incomplete judgments is an invariable abso-
lute q. rule if and only if it satisfies anonymity, judg. monotonicity, and independence.

Proof. This proof directly follows the proof of Theorem 1 byDietrich and List (2007b),
for quota rules in the complete setting. �

7For details consult Table 4.1, showing that independence and judgment cancellation are not simul-
taneously satisfied by any of the quota rules considered here.
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4.24. Theorem. An aggregation rule � for incomplete judgments is an invariable
marginal quota rule if and only if it satisfies anonymity, judgment monotonicity, weak
independence, and judgment cancellation.

Proof. To check that invariable marginal quota rules satisfy all the axioms of
anonymity, weak independence, judgment monotonicity, and judgment cancellation
is easy. For the other direction, consider an arbitrary aggregation rule � satisfying all
the axioms of the hypothesis, and an arbitrary proposition i ∈ Φ. If i never belongs to
the collective outcome, no matter what the input profile is, then we can take <i = =+1.
Otherwise, there exists a profile P such that i ∈ � (P). So, we can consider a specific
such profile P ∈ argminP:i∈� (P) =

P
i − =P¬i and define the number <i as follows:

<i = min
P |i∈� (P)

=Pi − =P¬i

From anonymity and weak independence, it follows that i will belong to the collective
outcome for every profile where propositions i and ¬i have the same number of sup-
porters as in P. Then, judgmentmonotonicity implies that iwill belong to the collective
outcome also for every profile in which the support of i increases or the support of ¬i
decreases with respect to the relevant support in P. Moreover, the axiom of judgment
cancellation suggests that by increasing (or decreasing) the support of i and ¬i to
the same degree, i will still belong to the collective outcome. Formally, we have that
i ∈ � (P′) for all profiles P′ with =P′i − =P

′

¬i > =
P
i − =P¬i = <i. Finally, by definition of

<i, we have that i ∉ � (P′) for all profiles P′′ with =P
′′

i − =P
′′

¬i < =
P
i − =P¬i = <i. So, �

coincides on iwith the invariablemarginal quota rule associatingwith thresholds<i. �

4.25. Theorem. An aggregation rule for incomplete judgments is a variable quota rule
if and only if it satisfies anonymity, weak judg. monotonicity, and weak independence.

Proof. We will prove the statement for variable absolute quota rules. To check that
variable absolute quota rules satisfy all the axioms of anonymity, weak independence,
and weak judgment monotonicity is easy. For the other direction, we will consider
an arbitrary rule � and we will repeat the following argument for all numbers : ∈
{0, . . . , =}: If i never belongs to the collective outcome for profiles P with =P

ĩ
= : ,

then we can take <:
i = : + 1. Otherwise, there exists a profile P where exactly : agents

report an opinion on i such that i ∈ � (P). We consider a specific such profile P with
the smallest number of supporters of i and define the number <:

i as follows:

<:
i = min

P |i∈� (P)
=P
ĩ
=:

=Pi

From anonymity and weak independence, we have that i will belong to the collective
outcome for every profile where proposition i has the same number of supporters as
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in P and the number of agents reporting a judgment on the issue ĩ remains the same.
Then, weak judgment monotonicity implies that iwill belong to the collective outcome
also for every profile in which the support for i increases while still the number of
agents reporting a judgment on the issue ĩ remains the same. Formally, i ∈ � (P′) for
all profiles P′ with =P

′

i > =
P
i = <

:
i and =P

ĩ
= : . Finally, by definition of <i, we have

that i ∉ � (P′) for all profiles P′ with =P
′

i < <:
i and =P

ĩ
= : . Hence, � coincides on

i with the variable absolute quota rule associating with i (in profiles with : agents
reporting a judgment on ĩ) the threshold <:

i. �

Freixas and Zwicker (2009) have obtained an analogous result to Theorem 4.23, using
anonymity and monotonicity to characterise a class of quota rules that always return
a yes/no answer in single-issue voting. Theorems 4.24 and 4.25 generalise the results
of Llamazares (2006) and Houy (2007), respectively, which—restricted to the case of
single-issue voting—make use of the same axioms as the ones appearing in the above
results, except for independence.8 Essentially, the original aspect of our characterisa-
tions lies in the use of the independence axiom (or versions thereof), which is vacuous
in the scope of an agenda with a single issue but prominent in judgment aggregation.
Table 4.1 demonstrates succinctly which axioms are satisfied by what rules.

Quota rules
Axioms A M WM I WI C

invariable absolute 3 3 3 3 3 7

invariable marginal 3 3 3 7 3 3

variable 3 7 3 7 3 7

Table 4.1: Axioms satisfied by quota rules. The coloured cells in each row illustrate
the axioms that characterise the relevant class of rules.

In the characterisation of invariable absolute quota rules we can replacemonotonicity
with weakmonotonicity, since these two versions of judgment monotonicity coincide
under independence. On the contrary, weak judgment monotonicity (together with
anonymity, weak independence, and judgment cancellation) is not enough to char-
acterise invariable marginal quota rules. Importantly, weak independence cannot
replace independence in the characterisation of invariable absolute quota rules.

Let us now see why certain axioms are not satisfied within specific classes of quota
rules (as presented in Table 4.1), via a number of examples.

8Specifically, Llamazares and Houy add a Pareto condition in order to characterise each particular
quota rule within the larger classes. Also, Houy incorporates an additional monotonicity axiom that
characterises the rules based on quorums among all variable quota rules.
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4.26. Example. Consider an invariable absolute threshold 0i = =−1 and take a profile
where exactly = − 1 agents accept i and one agent accepts ¬i. Then, i will belong to
the outcome. But it is clear that if the support of both i and ¬i decreases, then i will
not be in the collective outcome. Thus, judgment cancellation is not always satisfied
by invariable absolute quota rules. M

4.27. Example. Consider an invariable marginal threshold <i = 2 and take a profile
with two agents accepting i and no agents accepting ¬i. In this profile, i will belong
to the collective outcome. But if the support of ¬i increases while that of i remains the
same, then the relevant margin gets smaller and i will not be in the outcome anymore.
Because judgments on ¬i affect proposition i, independence is not always satisfied by
invariable marginal quota rules. M

Since the class of variable quota rules includes all the invariable ones, it already follows
from the previous examples that judgment cancellation and independence cannot be
satisfied by all variable quota rules. In addition, judgment monotonicity can be violated
by a variable quota rule as discussed in Example 4.28.

4.28. Example. If 02
i = 1 (that is, when two agents report a judgment on ĩ, one

acceptance of i suffices to have it collectively accepted) and 03
i = 3 (which means that

a unanimity is required for i to be collectively accepted when three agents express a
judgment on ĩ), then in a profile P where =Pi = 1 and =P

ĩ
= 2, proposition i will be in

the outcome. But if the support of i increases by just one agent and we have a new
profile P′ with =P

′

ĩ
= 3, then proposition i will not be in the outcome. In such a case,

additional support can be damaging to the acceptance of a proposition. M

4.2.3 Axioms within Classes of Rules
When we say that an axiom is violated within a particular class of quota rules, what
we really mean is that there is some rule in this class that provides a counterexample.
Next, we answer a more fine-grained question:

Under what assumptions on the relevant thresholds is an axiom satisfied
within a class of rules that generally violate that axiom?

Proposition 4.29 states that no invariable absolute quota rule can satisfy judgment can-
cellation, unless it is trivial. Put differently, judgment cancellation is the property that
differentiates between invariable marginal and invariable absolute quota rules. Anal-
ogously (but on the other direction), independence differentiates between invariable
absolute and invariable marginal quota rules.

4.29. Proposition. An invariable absolute (marginal) quota rule satisfies judgment
cancellation (independence) if and only if it is trivial.
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Proof. Every trivial quota rule satisfies judgment cancellation. Consider a non-trivial
invariable absolute quota rule �0 that induces thresholds 0i. We know that there exists
some i ∈ Φ such that 1 6 0i 6 = − 1. Take the profiles P and P′ as follows:

P : i . . . ii︸   ︷︷   ︸
0i

¬i – . . . –︸︷︷︸
= − 0i − 1

and P′ : i . . . i︸ ︷︷ ︸
0i − 1

– – – . . . –︸︷︷︸
= − 0i − 1

Proposition i is accepted in P and rejected in P′, violating judgment cancellation.
Analogously, only trivial (invariable marginal) quota rules satisfy independence. �

Although the conditions that we will state in Lemma 4.31 are very technical, they help
us better understand not only the formal properties of the different quota rules, but also
the relations between these rules. Specifically, from (0) and (1) we can deduce that
a variable absolute quota rule that satisfies independence will also satisfy judgment
monotonicity, and will thus be an invariable absolute quota rule, by Theorem 4.23. So,
we obtain Proposition 4.30.9

4.30. Proposition. A variable absolute (ormarginal) quota rule satisfies independence
if and only if it is an invariable absolute (or marginal) quota rule.

4.31. Lemma. A variable absolute quota rule �va associated with thresholds with
thresholds 0:i satisfies

(0) judgment monotonicity if and only if for all i ∈ Φ and : ∈ {0, . . . , =},

(1) 0:+1i 6 0:i + 1 when 0:i 6 : 6 = − 1 and
(2) 0:i 6 0

:+1
i when 0:+1i 6 :;

(1) independence if and only if for all i ∈ Φ and :, ℓ ∈ {0, . . . , =} with : < ℓ,

(1) 0ℓi = 0
:
i when 0:i 6 : 6 = − 1 and

(2) : < 0ℓi when 0:i > : + 1 or 0:i = =;

(2) judgment cancellation if and only if for all i ∈ Φ and :, ℓ ∈ {0, . . . , = − 1},

(1) 0:+2i = 0:i + 2 when 0:i 6 : 6 = − 2 and
(2) : + 2 < 0:+2i when 0:i > : + 1 or 0:i > = − 1.

Proof. The conditions follow from a careful analysis of the axioms.

9It is not generally true that independence implies monotonicity—yet, it is true for quota rules.
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(0) The variable absolute quota rule �va with thresholds 0:i is judgment monotonic
if and only if, whenever we add extra support to a proposition i in a profile with :
reported judgments on ĩ, (8) the new threshold on i is reached in case the old threshold
on i was reached and (88) the new threshold on ¬i is not reached if the old threshold
on ¬i was not reached. To “add extra support" includes two cases here: First, the case
where an agent accepts i instead of ¬i, and second, the case where an agent accepts i
instead of abstaining on ĩ.

For the first case, where the number of reported judgments on ĩ remains the same,
conditions (8) and (88) are trivially satisfied.

For the second case, it is easy to see the following: If 0:+1i 6 0:i + 1 whenever
0:i 6 : 6 =−1, then condition (8) will be satisfied, and if 0:i 6 0:+1i whenever 0:+1i 6 :
(specifically for proposition ¬i), then condition (88) will be satisfied.

On the other hand, if there exists k ∈ Φ such that 0:+1
k

> 0:
k
+1 for 0:

k
6 : 6 =−1,

we can construct a profile P where : agents report a judgment on k̃ and 0:
k
of them

accept k (meaning that k will be collectively accepted on P), and a different profile P′

where : + 1 agents report a judgment on k̃ and 0:
k
+ 1 of them accept k (meaning

that k will be collectively rejected on P′), violating condition (8). Similarly, if there
exists k ∈ Φ such that 0:

k
> 0:+1

k
for 0:+1

k
6 : , we can construct a profile P where

: agents report a judgment on k̃ and 0:+1
k

of them accept k (meaning that k will be
collectively rejected on P), and a different profile P′where :+1 agents report a judgment
on k̃ and still 0:+1

k
of them accept k (that is, proposition ¬k obtained extra support),

meaning that k will be collectively accepted on P′ and violating condition (88).

(1) For the “if” direction: Consider two arbitrary profiles P and P′ such that =Pi = =P
′

i

and suppose that they have a different number of agents reporting a judgment on ĩ
(otherwise independence holds trivially for the variable absolute quota rule �0:i ). Take
=P
ĩ
= : and =P

′

ĩ
= ℓ, with : < ℓ (the case where ℓ > : is symmetric). We will show

that the axiom of independence is satisfied with respect to P and P′.
If 0:i 6 : 6 = − 1, then 0ℓi = 0:i (by condition (1)). This means that i will be

treated the same in the profiles P and P′ and independence will be satisfied.
If 0:i > : + 1 or 0:i = =, then by condition (2) we have that : < 0ℓi. In this case,

whenever i is collectively accepted in P, independence is vacuoulsy satisfied (because
0:i > : + 1 directly implies the rejection of i, while when 0:i = = and i is accepted,
there is no extra support to be added on ¬i in order to obtain the profile P′). Now,
whenever i is collectively rejected in P, it will hold that : < 0:i, so 0:i > : + 1. Then,
=P
′

i = =Pi 6 : < 0ℓi, therefore i will be rejected in the profile P′ as well, and thus
independence is satisfied.

For the “only if” direction: We will work on the contrapositive. We will show that
if condition (1) or condition (2) does not hold, then we can have two profiles P and P′

on which the axiom of independence is violated.
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If condition (1) does not hold, then there are i ∈ Φ and :, ℓ ∈ {0, . . . , =}, : < ℓ,
with 0:i 6 : 6 = − 1 such that 0ℓi ≠ 0:i. If 0ℓi < 0:i, consider the following profiles: P,
where 0ℓi agents accept i and : − 0ℓi agents accept ¬i (thus =P

ĩ
= :) and P′, where 0ℓi

agents (the same as in P) accept i and ℓ − 0ℓi agents accept ¬i (thus =P
′

ĩ
= ℓ). Then,

i will be rejected in P but accepted in P′, violating independence. If 0:i < 0ℓi, the
construction is symmetric.

If condition (2) does not hold, then there are i ∈ Φ and :, ℓ ∈ {0, . . . , =}, : < ℓ,
with 0:i > : + 1 or 0:i = = such that 0ℓi 6 : . We construct a profile P with exactly :
agents judging the issue ĩ, and all of them accepting i. Since : < 0:i, the proposition i
will be rejected in P. Then, we construct another profile P′with exactly ℓ agents judging
the issue ĩ, and exactly : of them (the same as in P) accepting i. Since : > 0ℓi,
proposition i will be accepted in P′. Thus, independence is violated.

(2) The proof is analogous to that of part (1). �

Figure 4.5 graphically presents the observations of this section.

trivial invariable
absolute

invariable
marginal

variable
marginal/absolute

+I

+I +C

+C+M

Figure 4.5: Quota rules for incomplete judgments and their properties.

4.3 On Positional Scoring Rules (Voting)
In the voting framework, we have thus far axiomatically examined only specific rules
in the class of weight rules, in Section 4.1.2. This section solves an analogous exercise,
but for the class of all positional scoring rules that we defined in Chapter 3, Section 3.3.
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Smith (1973) and Young (1975) initiated the axiomatic analysis of scoring rules
given complete preferences. Two decades later, Myerson (1995) generalised the previ-
ous results to profiles of votes that could take any form over the set of alternatives, and
it is this latter work that we draw upon here.

The characterisation results that we provide require an infinite superpopulation.
This is a crucial assumption that enables us to construct profiles of arbitrary sizes,
and, informally speaking, stir the outcome towards specific winning alternatives
under given scoring functions. For the remainder of this section, we will thus omit
referring to the size of the superpopulation, but the reader should keep in mind that
a countably infinite one is presupposed. On the other hand, no assumption about the
set of all potential alternatives is needed.

4.3.1 Characterising All Positional Scoring Rules
The following are obvious translations of axioms from the complete (Smith, 1973;
Young, 1975) to the incomplete voting framework. The counterparts of anonymity and
neutrality in judgment aggregation have also been discussed in Section 4.2.1.

Our definitions and results are demonstrated for the most general case of preferences
' ∈ D(�), which are acyclic and not necessarily transitive (also, not necessarily
strict). But one could also consider strict or transitive preferences, as well as top-
truncated preferences, without significant technical consequences.

Axiom: Anonymity. For all permutations c : # → # and profiles X = ('1, . . . , '=),
it holds that � (c(X)) = � (X), where c(X) = ('c(1) , . . . , 'c(=)).

Axiom: Neutrality. For all permutations f : � → � and profiles X = ('1, . . . , '=),
it holds that � (f(X)) = f(� (X)), where f(� (X)) = {f(0) | 0 ∈ � (X)} and
f(X) = (f('1), . . . , f('=)).

Axiom: Reinforcement. For all profiles X and X′, if � (X) ∩ � (X′) ≠ ∅, then
� (X, X′) = � (X) ∩ � (X′).

Axiom: Continuity. For all profiles X and X′, there exists a positive integer  such
that, for every integer : that is greater than  , it holds that � (X, . . . , X︸     ︷︷     ︸

:

, X′) ⊆ � (X).

Anonymity requires that the outcome of the aggregation should not depend on the
names of the agents but only on the preferences they contribute; neutrality says that
all alternatives should be treated symmetrically; reinforcement prescribes that if two
groups unite and vote together, then the alternatives that win should be the alternatives
that would win for both elections if each group were to vote separately (unless there are
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no such alternatives); finally, continuity states that a sufficiently large number of agents
should be able to change the outcome in accordance with their preference.

Of these axioms, anonymity, reinforcement, and continuity hold for scoring rules,
and only those (Myerson, 1995). This leaves neutrality, which is to be connected to
positional scoring functions. However, non-positional and positional scoring functions
may be equivalent.10 Because of this, non-positional scoring functions may define
neutral scoring rules. Let us define a positional scoring rule as one that can be
represented by some positional scoring function. Lemma 4.32 helps bridge the gap
between positional scoring rules and positional scoring functions, and leads into the
axiomatisation (Theorem 4.33).

4.32. Lemma. A scoring function B is equivalent to some positional scoring function if
for all alternatives G, H ∈ � and preferences ' ∈ D(�), two conditions hold:

1. B' (G) − B' (H) = B' 〈GH〉 (H) − B' 〈GH〉 (G)

2. B' (I) − B' (H) = B' 〈GH〉 (I) − B' 〈GH〉 (G), for all I ≠ G, H

Proof. By the fact that all permutations over � can be expressed as successive
permutations only involving two alternatives, (1) and (2) together imply that, for an
arbitrary permutation function f, preference ', and alternatives 0 and 1,

B' (0) − B' (1) = B'f (0f) − B'f (1f) (4.1)

Consider |�| applications of Equation (4.1) to an arbitrary 0 ∈ �:∑
G∈�

B' (0) − B' (G) =
∑
G∈�

B'f (0f) − B'f (Gf)

This can be rewritten as follows:

|�| · B' (0) −
∑
G∈�

B' (G) = |�| · B'f (0f) −
∑
G∈�

B'f (Gf)

So, given a scoring function B′ that satisfies (1) and (2), in order to show that B′
'
(0) =

B′
'f
(0f) it suffices to show the following:∑

G∈�
B′' (G) =

∑
G∈�

B′'f (Gf) (4.2)

Suppose that (1) and (2) hold for B. We want to find an equivalent positional scoring
function B′. If B is positional, we are done because it is equivalent to itself. If
not, there are some '∗, some permutation function f, and some alternative G such

10For example, take 0, 1 ∈ �: For 0'1 let B' (0) = 1, B' (1) = 0; for 1'′0, let B'′ (0) = 2, B'′ (1) = 1;
set all other scores to 0.
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that B'∗ (G) ≠ B'∗f (Gf). Fix an alternative 0 ∈ �. Define B′ as follows: First set
B′
'∗ (G) = B'∗ (G). Next, for each distinct permutation '∗d of '∗, define the following:

B′'∗d (H) = B'∗d (H) + B'∗ (0) − B'∗d (0d) for all H ∈ � (4.3)

After going through the permutations of '∗, there may still be some other '†, l and H
such that B'† (H) ≠ B

'
†
l
(Hl), in which case the process needs to be repeated for '†.

As there are only finitely many preferences and the process will not consider the same
preference twice, eventually there will be no more such cases. For all remaining
preferences ' set B′

'
= B'. Note that B′ is equivalent to B and that (1) and (2) still hold.

We have above defined B′. Now take arbitrary G ∈ �, preference ', and permutation
function f. We want to show that B′

'
(G) = B′

'f
(Gf). If the score B was changed for

no permutation of ', then B' (G) = B'f (Gf) and indeed B′
'
(G) = B′

'f
(Gf) as required.

Otherwise, there are some '∗ for which B'∗ = B′'∗ , and permutation functions d, l such
that '∗d = ' and '∗l = 'f. We can suppose that these are those permutation functions
that were used in the construction of B′—if either is instead the identity permutation,
the required equality trivially holds. Regardless, Equation (4.2) holds:

∑
G∈�

B′' (G) =
∑
G∈�

B′'∗d (Gd)
because alternatives
appear exactly once

=
∑
G∈�

B'∗d (Gd) + B'∗ (0) − B'∗d (0d) by Equation (4.3)

=
∑
G∈�

B'∗ (G) by Equation (4.1)

=
∑
G∈�

B′'∗ (G) by definition of B′

The equality concerning '∗ and '∗l = 'f is obtained in an identical manner. �

Before proceeding to the main characterisation of positional scoring rules by means of
anonymity, neutrality, reinforcement, and continuity, it is worthwhile towonderwhether
there are other nicely defined rules for incomplete preferences that violate some of these
axioms.11 For instance, consider a majority-based rule that selects as winners those
alternatives that are deemed superior to the largest number of other alternatives by a
strict majority of agents, which may be regarded as a generalisation of the Copeland
rule (Zwicker, 2016). Suppose we have the following profile with three agents:

11Recall that the weight rules of winner type that we have seen in Section 3.1.2 belong to the class of
positional scoring rules, and will thus satisfy our axioms.
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0

1

3

2 4

2

0

1

3 4

1

2

0

3 4

In the above profile, the winning set is {0, 1, 2}, since for each of these alternatives
there exist two agents that rank it higher than exactly three other alternatives.

The reinforcement axiom is violated by this rule: Add to the given profile the single-
agent profile consisting of the complete preference 0 B 1 B 2 B 3 B 4, where our rule
would output alternative 0 as the unique winner. Although reinforcement demands that
0 is the only winner in the combined profile too, 0 and 1 are both considered superior
to three other alternatives by a strict majority of agents and thus must both win.

4.33. Theorem. A voting rule for incomplete preferences is a positional scoring rule if
and only if it satisfies anonymity, neutrality, reinforcement, and continuity.

Proof. Every positional scoring rule obviously satisfies all the axioms of the statement,
so the “only if” holds. For the “if”: a voting rule over incomplete preferences that
satisfies anonymity, neutrality, reinforcement, and continuity has to be a scoring rule �B
for some scoring function B by Myerson (1995). If B is trivial, then �B is positional. For
non-trivial B, we show that (1) and (2) of Lemma 4.32 hold, and thus that the scoring
rule �B is positional.

For (1), fix arbitrary alternatives 0, 1 ∈ � and preference '. We will construct a
profile where both 0 and 1 are winning, and such that if (1) did not hold they could not
have the same score. For our construction we require a profile where 0 and 1 have the
same summed score which is arbitrarily larger than the score of any other alternative.
To do this, we first need to show the following:

there exists a profile X such that 2 6 |�B (X) | < |�| (4.4)

Since B is not trivial, there is some '′ such that for nonempty - ( �, it holds that
B'′ (G) = B'′ (H) > B'′ (I) for all G, H ∈ - , I ∈ �\- . If |- | > 1 for some such set - ,
we have the required profile of (4.4). So suppose that - = {G} for all relevant - . Pick
H such that B'′ (H) > B'′ (I) for all I ≠ G. It is true by neutrality that H gets the unique
highest score on '′〈GH〉 and that in the profile ('

′, '′〈GH〉), G and H must be joint winners
with the same summed score. So in this case we also have the required profile of (4.4).

Now, (4.4) provides a profile X where some distinct G and H are winning and some
I is not winning. LetΩ be the set of all permutations where G and H are fixed points. In
the profile (l(X), l(X〈GH〉))l∈Ω the alternatives G and H are the unique winners. To see
this, take some alternative I ≠ G, H, and note that, by neutrality, for each profile l(X),
alternative G gets score at least as high as the score of I, and for some such profile G gets
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strictly higher score than I; the same applies for l(X〈GH〉), so I does not win; finally
by neutrality G cannot win without H winning. Permute 0 with G and 1 with H. Enough
copies of this profile create an arbitrarily large gap between the score of 0 and 1 and the
scores of other alternatives (and permuting 0 and 1 does not change this new profile).

Let C be the maximal difference between the score of two alternatives in ' and
between the score of two alternatives in '〈01〉. Formally, we define C as follows:

C = max
(
max
G,H∈�

B' (G) − B' (H), max
G,H∈�

B' 〈01〉 (G) − B' 〈01〉 (H)
)

There is a profile X′ where 0 and 1 get (the same) summed score at least 2C + 1 greater
than all the other alternatives and X′〈01〉 = X′. Let us add ' and '〈01〉 to X′. By
construction, no alternative other than 0 and 1 can have the maximal summed score.
By neutrality, both 0 and 1 must be winning. But if (1) did not hold, only one of them
would be winning. Thus part (1) of Lemma 4.32 holds.

The general procedure for part (2) of Lemma 4.32 is similar; though we must
also start with arbitrary 2 ∈ � \ {0, 1}. As before, there is a profile X such that
�B (X) = {0, 1} and X〈01〉 = X. We define X′ = (X〈02〉, X〈12〉), satisfying the following:

�B (X′) = {2} and X′〈01〉 = X′

Note further that 0 and 1 receive the same score under X′. Next define X′′ =
(X, X〈02〉, X〈12〉), for which the following holds:

�B (X′′) = {0, 1, 2} and X′′〈01〉 = X′′

Suppose that (2) does not hold. Suppose in particular that the following is the case:12

B' (2) − B' (1) > B' 〈01〉 (2) − B' 〈01〉 (0)

Roughly speaking, 2 performs “better” against 1 under ' than 2 performs against 0
under '〈01〉. For an integer : , write :.' for : copies of ' and :.X for : copies of X.
We can choose suitable integers 9 , : , ℓ, and < such that we ensure the following:

• �B ( 9 .', :.X, ;.X′, <.X′′) = 2

• the score of 0 is greater than the score of 2 in ( 9 .'〈01〉, : .X, ;.X′, <.X′′)

But we have that ( 9 .', :.X, ;.X′, <.X′′)〈01〉 = ( 9 .'〈01〉, : .X, ;.X′, <.X′′), which stands
in contradiction with neutrality. �

12The case of the inverse strict inequality is symmetric.
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4.3.2 Characterising Generalisations of the Borda Rule

Having singled out positional scoring rules amongst all aggregation rules for incomplete
preferences, we are prepared to move on to a subclass of special interest, viz. the Borda
class for top-truncated preferences (recall Section 3.3.2).

Our analysis will proceed in steps, each of which will concern a smaller class
of rules than the previous one: First, we are going to add some new axioms to the
characterisation of all positional scoring rules for top-truncated preferences, and obtain
all positional scoring rules in the Borda class. Then, by considering a few further
axioms, we will be able to restrict attention to our specific generalisations of the Borda
rule within the Borda class.

Our axioms will provide a principled way of understanding not only the differences,
but also the similarities of the suggested generalisations of the Borda rule. The ax-
iomatic characterisation of the Borda class is based on the original characterisation of
the Borda rule for domains of linear orders by Young (1974). In his characterisation,
Young used the following four axioms: neutrality, reinforcement, faithfulness, and can-
cellation (which we will formally define later on), with the last being the most critical
one for the identification of the Borda rule. Analogously, essential for the characterisa-
tion of the Borda class will be our axiom of top-cancellation. Top-cancellation extends
Young’s cancellation axiom to top-truncated orders, by requiring that the voting rule
should not distinguish between alternatives that are strictly ranked by all agents and tie
in pairwise comparisons.

On the other hand, each specific rule within the Borda class satisfies distinctive
properties, which are brought to the surface when expressed formally as axioms. For
instance, we will show that by enforcing Young’s original cancellation axiom within
the Borda class, we can specify the averaged Borda rule. This result is also in line
with the work of Cullinan et al. (2014), who have characterised this specific version
of the Borda rule for domains of partial orders, relying on the four classical axioms of
Young. The optimistic and the pessimistic Borda rules will be obtained by imposing
two axioms that are reminiscent of monotonicity.

Although our work is tightly connected to the characterisation of the Borda rule
by Young (1974), other characterisations of the Borda rule in the same formal setting
have also been produced by Farkas and Nitzan (1979) and by Saari (1990). The former
have used the axiom of Pareto stability based on a notion of relative unanimity, while
the latter has employed weaker versions of Young’s axioms and has incorporated the
axiom of anonymity as well.

We also note that aggregation processes based on the Borda scores, together with
their corresponding axiomatic properties, have received much attention in several set-
tings beyond voting as well. Nitzan and Rubinstein (1981) have characterised the Borda
rule as a social welfare function (i.e., a function that outputs social rankings instead of
winning alternatives). Duddy et al. (2016) and Brandl and Peters (2019) have focused
on aggregation mechanisms that produce collective dichotomous preferences and are
inspired by Borda’s form of scoring.
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Characterising the Borda Class

We will provide two distinct characterisations of the Borda class of rules for top-
truncated preferences. Recall that the Borda class only includes positional scoring
rules for which it is the case that, if 0 is strongly preferred to 1 (i.e., 0�1), then the
score of 0 is larger than the score of 1 in % (i.e., B%(0) > B%(1)). This is formally
imposed by a monotonicity property, intuitively prescribing that moving an alternative
to a “higher” position in a preference is beneficial to that alternative.

Axiom: Monotonicity. Consider any preference %8 within any profile % and two
alternatives 0, 1 such that 0�81. If 1 ∈ � (%), then � (%−8,%〈01〉8

) = {1}.

4.34. Example. Take a profile of three agents as follows, and suppose that the winning
alternatives under some rule � are 0, 1 and 2:

Ann

0

1 2

Bea

1

0 2

Cal

2

0 1

Then, consider a new profile where Ann swaps the position of 0 and 1:

Ann

1

0 2

Bea

1

0 2

Cal

2

0 1

Monotonicity dictates that now 1 should be the only winner. M

In Section 4.2.1, we defined two monotonicity axioms for judgment aggregation.
The essence of those axioms is akin to the monotonicity property we just introduced
for voting. However, an important difference exists: In voting, it makes sense to
demand that an increase on an alternative’s support breaks a tie in favour of that
alternative over all other alternatives (as implied by the axiom above); in judgment
aggregation, propositions are not in competition with each other, so such a tie-
breaking requirement is unreasonable.

Lemma 4.35 makes the link between monotonicity of a positional scoring rule �B and
the scoring function B defining that rule precise. Note also that this statement (here
only described for the two top-truncated domains) holds for wider preference domains
as well, like any kind of preorders.
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4.35. Lemma. Apositional scoring rule�B for top-truncated preferences satisfiesmono-
tonicity if and only if 0�1 implies that B%(0) > B%(1).

Proof. To see that monotonicity is satisfied by any positional scoring rule for which
the required condition on the scores holds, note that by flipping the positions of 0 and 1
in %, the score of 1 increases, the score of 0 decreases, and all other scores remain the
same (by definition of the positional scoring rule). Thus, if 1 was among the winners
before the flipping, then afterwards it will be the unique winner with the highest score.

For the other direction, given a preference % and alternatives 0, 1 with 0�1, we can
construct a profile % where 0 and 1 are amongst the winners under the rule �B, with
arbitrarily large score:

Consider a preference %∗ and two positions in %∗ such that the score of an alterna-
tive in the first position is at least as large as the score of an alternative in the second
position, which is at least as large as the score of the alternatives in all other positions.
Then, consider a preference %′ where 0 takes the first position in %∗ while 1 takes
the second position in %∗, and a preference %′′ where 1 takes the first position in %∗
while 0 takes the second position in %∗. With sufficiently many (and equally many)
copies of these preferences, we ensure that we have a profile %∗ where 0 and 1 win
with arbitrarily large score. Define the profile %= (%∗,%,%〈01〉) and call 8 the agent
that submits the preference % in %. Then, for alternative 1 to be the unique winner in
the profile (%−8,%〈01〉), the required condition on the scores must be satisfied. �

Our first characterisation of the Borda class is in line with the characterisation of the
Borda rule by Young (1974), who—informally speaking—identified the Borda rule
as the unique scoring rule that satisfies a cancellation property.13 Here, we examine
an axiom that is similar in flavour to Young’s cancellation, but applies specifically to
domains of top-truncated preferences. Top-cancellation concerns preference profiles %
with TOP(%) ≠ ∅. In such profiles, if the agents’ preferences between the top alterna-
tives “cancel” each other, then no alternative can be considered better than the others
in the top set, and hence all alternatives in that set should be treated the same by the
voting rule. For domains of linear orders (that are special domains of top-truncated
preferences), top-cancellation reduces to the standard cancellation axiom of Young.

Axiom: Top-cancellation. Consider any profile % with TOP(%) ≠ ∅. Suppose that
for all alternatives G, H ∈ TOP(%) with G ≠ H, the following holds:

|{8 ∈ # | G�8H}| = |{8 ∈ # | H�8G}|

Then, it must be the case that TOP(%) ⊆ � (%) or TOP(%) ∩ � (%) = ∅.

13In voting with complete preferences, cancellation demands that whenever for any two alternatives 0
and 1 the same number of agents rank 0 above 1 and 1 above 0, then all alternatives should be tied
winners. The idea is that the power of 0 over 1 “cancels” the power of 1 over 0. Recall that we
have also defined an axiom named cancellation in the framework of judgment aggregation, but the two
homonymous axioms are not formally related.



4.3. On Positional Scoring Rules (Voting) 91

Note that top-cancellation allows for the case where no top alternative of a profile
belongs to the winning set (i.e., where TOP(%) ∩ � (%) = ∅). Indeed, top-cancellation
is a weak axiom, only ensuring that all top alternatives will be treated symmetrically
when appropriate conditions hold—that these alternatives should also be among the
winners is a separate intuitive requirement, which we will later take care of with the
axiom of monotonicity.

4.36. Theorem. A voting rule for top-truncated preferences is in the Borda class if and
only if it satisfies anonymity, neutrality, reinforcement, continuity, monotonicity, and
top-cancellation.

Proof. That all rules in the Borda class satisfy these properties is easy to see. For
the other direction, we know that a voting rule � that satisfies anonymity, neutrality,
reinforcement, and continuity must be a positional scoring rule by Theorem 4.33. Let
us call this rule �B. Moreover, �B, satisfying neutrality, reinforcement, monotonicity,
and top-cancellation, when restricted to profiles of preferences that are linear orders,
must reduce to the Borda rule (Young, 1974).14

Now, consider an arbitrary top-truncated preference % (that is not a linear order),
and a linear order ! that extends %′ (i.e., %′⊂ !), where %′ is the same as % besides
having its top alternatives placed in the reverse order. Figure 4.6 presents an illustration,
where TOP(%) = {01, . . . , 0<−: } and BOT(%) = {0<−:+1, . . . , 0<}.

01

02

...

0:

0:+1 · · · 0<∼ ∼

B1

B2

...

B:

B:+1 B:+1

0:

0:−1

...

01

0:+1

...

0<

< − 1

< − 2

...

< − :

< − : − 1

...

0

Figure 4.6: A top-truncated preference % (left) and a linearisation ! of it with the order
of its top alternatives reversed (right).

14Young’s axiomatisation of the Borda rule relies on a faithfulness axiom, demanding that in any
single-agent profile the winning alternative is the one on the top of that agent’s preference. Straightfor-
wardly, all monotonic positional scoring rules satisfy this property.
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Next, construct the profile %= (%, !). Observe that TOP(%) = TOP(%) = TOP(!).
From monotonicity and Lemma 4.35, we get �B (%) ⊆ TOP(%), while top-cancellation
entails that TOP(%) ⊆ � (%) or TOP(%) ∩ � (%) = ∅. Thus, �B (%) = TOP(%).

We know that the scores of the alternatives in ! will be Borda-like. Moreover, the
scores of all alternatives in TOP(%) have to be the same. So, we have the following:

B1 + < − : = B2 + < − : + 1 = . . . = B:−1 + < − 2 = B: + < − 1
⇒ B%(01) = B%(02) + 1 = B%(03) + 2 = . . . = B%(0: ) + : − 1

We conclude that �B is in the Borda class. �

Theorem 4.36—together with the characterisation of positional scoring rules presented
in Theorem 4.33—implies the following corollary.

4.37. Corollary. A positional scoring rule for top-truncated preferences is in the
Borda class if and only if it satisfies monotonicity and top-cancellation.

An immediate question that arises is whether the axioms appearing in Theorem 4.36
are all necessary for the characterisation result, i.e., whether they are independent. We
know from the characterisation of positional scoring rules that anonymity, neutrality,
reinforcement, and continuity are independent, and it is easy to see that monotonicity
does not break this fact. Adding top-cancellation also preserves independence between
these axioms. Proposition 4.38 states exactly this, and a proof for the most interesting
case (i.e., that top-cancellation, together with the rest of our relevant axioms, does not
imply anonymity) is provided. Note that this is a rather unexpected result, since—as
we will see later too—in the original proof of Young (1974) the analogous cancellation
axiom (in combination with the other axioms) ends up implying anonymity.

4.38. Proposition. The axioms of anonymity, neutrality, reinforcement, continuity,
monotonicity, and top-cancellation are logically independent on domains of top-
truncated preferences.

Proof. Let us show the most interesting case, i.e., that there exists a voting rule on top-
truncated preferences that satisfies neutrality, reinforcement, continuity, monotonicity,
and top-cancellation, but violates anonymity (analogous counterexamples can be easily
found for all other combinations of our axioms as well).

Consider the voting rule � on top-truncated preferences that works just like the
optimistic Borda rule, but with a small exception: when agent 1 reports a preference %∗
that identifies some alternative 0 ∈ � (whichever that 0 is) as the unique top one (that
is, a preference %∗= {(0, G) | G ∈ � \ {0}}), then agent 1 gets assigned double the
weight of the other agents (i.e., the scores associated with her preference are twice the
standard scores of the optimistic Borda rule). Obviously, this rule is not anonymous.

Neutrality is satisfied by � because the definition of the rule does not distinguish
between names of alternatives. Monotonicity is also satisfied, because it is always
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better for an alternative to appear in a higher position in a preference. Continuity
holds too, since by adding a sufficiently large number of copies of the same profile %′
to a given profile %, we can arbitrarily increase the Borda scores of the alternatives
that win in %′, and thus obtain the result prescribed by the axiom. To see that top-
cancellation is satisfied, note that for any profile % with TOP(%) ≠ ∅, if the preference
%∗ defined above (for some given alternative 0) appears in %, it must be the case that
TOP(%) = {0}, and thus � (%) = {0} (which means that top-cancellation is vacuously
satisfied). Otherwise, � functions as the standard optimistic Borda rule, and hence
top-cancellation holds. Finally, � satisfies reinforcement: for all profiles % and %′ and
for any alternative 0 ∈ �, we have that the score that 0 receives by the rule � in the
joint profile (%,%′) will always be the sum of the scores that 0 receives in% and in%′. �

Our second characterisation of theBorda class relies on a result of Fishburn andGehrlein
(1976) for domains of linear orders (based on a proof sketch bySmith, 1973), namely that
the Borda rule is the only positional scoring rule for which a Condorcet loser (CL) never
wins (we call this property CL-consistency). We remind the reader that the Condorcet
loser of a preference profile is an alternative that loses in pairwise comparisons to
all other alternatives, where “losing” means that a majority of agents considers that
alternative inferior to the one it is compared to. We extend this fundamental principle
to profiles of top-truncated preferences by stipulating no alternative that is a Condorcet
loser relative to the top part of a profile should ever be amongst the winners.15

4.39. Example. Consider a profile of three agents, where the top alternatives are 0, 1,
and 2, and Ann and Cal rank alternative 1 below every other alternative:

Ann

0

2

1

3 4

Bea

1

2

0

3 4

Cal

2

0

1

3 4

Top-CL-consistency implies that alternative 1 cannot be among the winners. M

Axiom: Top-CL-consistency. Consider any profile % with TOP(%) ≠ ∅, and suppose
that the following holds for some 1 ∈ TOP(%) and for all G ∈ TOP(%) \ {1}:

|{8 ∈ # | G�81}| > |{8 ∈ # | 1�8G}|

Then, it must be the case that 1 ∉ � (%).
15Our axiom does not require that alternatives in the bottom part of a profile must be barred from

winning as well (but this of course would be enforced by imposing monotonicity).
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4.40. Theorem. A voting rule for top-truncated preferences is in the Borda class if and
only if it satisfies anonymity, neutrality, reinforcement, continuity, monotonicity, and
top-CL-consistency.

Proof. The proof is analogous to that of Smith (1973). �

Theorem 4.40, together with the characterisation of positional scoring rules, implies
the following corollary.

4.41. Corollary. A positional scoring rule for top-truncated preferences is in the
Borda class if and only if it satisfies monotonicity and top-CL-consistency.

At this point we also need to examine whether the axioms of Theorem 4.40 are indepen-
dent. For example, can we find a positional scoring rule for top-truncated preferences
that satisfies top-CL-consistency but is not monotonic? Proposition 4.42 answers this
question in the affirmative.

4.42. Proposition. The axioms of anonymity, neutrality, reinforcement, continuity,
monotonicity, and top-CL-consistency are logically independent on domains of top-
truncated preferences.

Proof. We will show that there exists a positional scoring rule (a rule satisfying
anonymity, neutrality, reinforcement, and continuity) for top-truncated preferences that
satisfies top-CL-consistency but violates monotonicity. Showing independence for the
remaining sets of axioms can be done in an analogous manner.

Consider the positional scoring rule for which, for an any given top-truncated prefer-
ence%, the Borda-like scores are assigned to the alternatives in TOP(%), and score<+1
is assigned to the alternatives in BOT(%). Clearly, this rule is not monotonic, but top-
CL-consistency holds: no Condorcet loser within the top alternatives of a profile can
ever win (either because an alternative that Pareto dominates it wins, or because some
bottom alternative wins instead). �

Top-CL-consistency ensures that the scores of the top alternatives in an agent’s top-
truncated preference will be distributed in a linear manner, as required for rules in the
Borda class. Note that classical CL-consistency—although applicable to domains of
top-truncated preferences as well—is not appropriate for our purposes. In particular,
not all rules in the Borda class satisfy CL-consistency. For example, consider the
pessimistic Borda rule, and a profile with nine agents and four alternatives such that:
four agents rank alternative 0 on top and every other alternative directly below, and
the remaining five agents have preferences as follows: 1�12�13�10, 1�22�23�20,
2�33�31�30, 3�41�42�40, 3�52�51�50. Alternative 0 is the Condorcet loser of
this profile, but it will be the winner according to the pessimistic Borda rule (it will
receive 12 points, while all other alternatives will only get 10 points).
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To sum up, the axioms of top-cancellation and of top-CL-consistency (together with
monotonicity) are the ones that distinguish rules in the Borda class from all other
positional scoring rules. Interestingly, these two axioms only bite for profiles of top-
truncated preferences with a non-empty set of top alternatives. On the one hand, such
profiles are rare in general. On the other hand, every preference can appear in some
profile of that form. The key idea behind our proofs is that the rules with which we
work are positional scoring rules. So, the score assigned to an alternative 0 in a given
preference % will be fixed, and can be deduced by applying the relevant axioms in
profiles with a non-empty set of top alternatives that % is part of.

Characterising Specific Rules in the Borda Class

After characterising the Borda class of rules via a number of normative axiomatic prop-
erties, in the remainder of this section we will identify those properties that charaterise
each one of our specific rules of interest, within the Borda class.

We observe that the pessimistic Borda rule is the only rule in the Borda class for
which the scores of the bottom alternatives in the top-truncated preferences do not
depend on how many of these alternatives there are. Loosely speaking, this translates
into the following slogan:

The number of other alternatives with which some alternative 0 shares the
bottom position does not affect 0’s performance.

The axiom of bot-indifference formally captures this idea.

Axiom: Bot-indifference. Consider two profiles % and %′= (%−8,%′8) for some agent 8
such that %′

8
is obtained from %8 by having one of the bottom alternatives of %8, say

alternative 0, moved to the last position of the ranked alternatives in the top part. If
0 ∉ � (%′), then for any 1 ∈ BOT(%8) \ {0} the following holds:

1 ∈ � (%) if and only if 1 ∈ � (%′)

Thus, bymoving 0 we create two profiles where the number of alternatives with which 1
shares a bottom position changes; we stipulate that this should not affect whether or not
1 is amongst the winners (at least not in case 0 is not winning in the second profile, the
one where it intuitively is put in a better position).

4.43. Example. Consider a profile where Ann places alternatives 0 and 1 at the bottom
of her preference, as follows:
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Ann

4

2

3

0 1

Bea

1

2

0

3 4

Cal

2

0

1

3 4

Then, suppose that Ann moves alternative 0 to the lowermost position of her ranked
alternatives above, leaving 1 to the bottom:

Ann

4

2

3

0

1

Bea

1

2

0

3 4

Cal

2

0

1

3 4

If 0 is not winning in the new profile, bot-indifference implies that alternative 1 is a
winner in the former profile if and only if it is a winner in the latter one. M

As suggested earlier, bot-indifference characterises the pessimistic Borda rule.

4.44. Theorem. The only voting rule for top-truncated preferences that simultaneously
satisfies anonymity, neutrality, reinforcement, continuity, monotonicity, top-cancella-
tion (or top-CL-consistency), and bot-indifference is the pessimistic Borda rule.

Proof. We can easily verify that the pessimistic Borda rule satisfies all relevant axioms.
For the other direction, suppose that we have a rule �B, with corresponding scoring
function B, in the Borda class (satisfying anonymity, neutrality, reinforcement, continu-
ity, monotonicity, top-cancellation and top-CL-consistency) for which bot-indifference
holds. Take two arbitrary preferences % and %′ such that %′ is obtained from % by
having one of the bottom alternatives of %, namely alternative 0, moved to the last
position of the ranked alternatives above. We will show that B%(1) = B%′ (1) for any
alternative 1 ∈ BOT(%) \ {0}. Note that in the special case where %′ is a linear order,
we know that 1 is the lowest alternative in %′, and B%′ (1) = 0. Thus, the bottom
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alternatives of all preferences % will be assigned score 0, meaning that �B must be the
pessimistic Borda rule.

Take the alternatives 1 ∈ BOT(%) \ {0} and 2 ∈ TOP(%) and construct a profile %∗
where 1 and 2 are the only winners. That is:

� (%∗) = {1, 2}

The profile %∗ can be constructed by taking equally many copies of two preferences,
one with 1 followed by 2 making up the top part and one with 2 followed by 1 making
up the top part (and the remaining alternatives making up the bottom part in both cases).
By using sufficiently many copies, we can take the difference in score between 1 and 2
and the next-best alternative to be arbitrarily large.

Then consider the following profiles, where � (%) = {1, 2} and � (%′) ⊆ {1, 2}:

%= (%∗,%,%〈12〉) and %′= (%∗,%′,%〈12〉)

So, 0 ∉ � (%′), and %′= (%−8,%′8), with %8=% and %′8=%′. Hence, we have the following:

B%(1) = B%(2) = B%′ (2)

But 1 ∈ � (%) implies that 1 ∈ � (%′) by bot-indifference.
It must then be the case that B%′ (1) > B%′ (2) = B%(1). So, B%−8 (1) + B%′ (1) >

B%−8 (1) + B%(1). We conclude that B%′ (1) > B%(1). Proving the inverse inequality in a
symmetric manner, we have that B%′ (1) = B%(1). �

We obtain an immediate corollary:

4.45. Corollary. The only voting rule for top-truncated preferences in the Borda class
that satisfies bot-indifference is the pessimistic Borda rule.

We next define a new axiomatic property, building on the basic idea that if the domi-
nance relationships between different winning alternatives remain unaltered, then no tie
between these alternatives can be broken. In words, dom-power suggests that a winning
alternative 0 can only break a tie between itself and a different winning alternative 1
by having its support against 1 strictly increased.

Note that the optimistic Borda rule is the only rule in the Borda class for which,
in any top-truncated preference, the score of the last ranked alternative on top remains
the same if that alternative “moves” to the bottom instead. The axiom ensuring this is
precisely dom-power.

Axiom: Dom-power. Consider any two profiles % and %′= (%−8,%′8) such that the
preference%′

8
is obtained from the preference%8 by having one of the bottom alternatives

of %8 moved to the last position of the ranked alternatives in the top part. Then, for any
0 ∈ TOP(%8), the following holds:

0 ∈ � (%) if and only if 0 ∈ � (%′)
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4.46. Example. In Example 4.43 that we presented previously, we have two profiles
where Ann has moved alternative 0 to the last position of the ranked alternatives in the
top part of her preference. In that example, any alternative in the top part of Ann’s
preference (like alternative 4, 2, or 3) will be a winner in the former profile if and only
if it is a winner in the latter one. M

4.47. Theorem. The only voting rule for top-truncated preferences that simultaneously
satisfies anonymity, neutrality, reinforcement, continuity, monotonicity, top-cancella-
tion (or top-CL-consistency), and dom-power is the optimistic Borda rule.

Proof. We can easily verify that the optimistic Borda rule satisfies all relevant axioms.
For the other direction, suppose that we have a rule �B in the Borda class, induced
by a suitable scoring function B (and satisfying anonymity, neutrality, reinforcement,
continuity, monotonicity, top-cancellation and top-CL-consistency) for which dom-
power holds. Take two arbitrary preferences % and %′ such that %′ is obtained from %
by having one of the bottom alternatives of %, namely alternative 1, moved to the last
position amongst the ranked alternatives above. We will show that B%(1) = B%′ (1);
thus, � must be the optimistic Borda rule.

Take an alternative 0 ∈ TOP(%) and a profile %∗, where the following holds:

� (%∗) = {0, 1}

The profile %∗ can be easily constructed by taking equally many copies of two prefer-
ences, one with 0 followed by 1 making up the top part and one with 1 followed by
0 making up the top part (and the remaining alternatives making up the bottom part
in both cases). By using sufficiently many copies, we can take the difference in score
between 0 and 1 and the next-best alternative to be arbitrarily large.

Then consider the following profiles, where � (%) = {0, 1}, � (%′) ⊆ {0, 1}, %8=%,
%′
8
=%′, and %′= (%−8,%′8):

%= (%∗,%,%〈01〉) and %′= (%∗,%′,%〈01〉)

So, the following holds:
B%(1) = B%(0) = B%′ (0)

Also, since 0 ∈ � (%), dom-power implies that 0 ∈ � (%′), meaning that the score of 0
in the profile %′ must be at least as high as the score of 1. We hence have the following:

B%(1) = B%′ (0) > B%′ (1)

But we know that B%(1) = B%−8 (1) + B%(1) and B%′ (1) = B%−8 (1) + B%′ (1), with which
we can deduce that B%(1) > B%′ (1). The case with the inverse inequality can be proven
symmetrically, and we conclude that B%(1) = B%′ (1). �
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4.48. Corollary. The only voting rule for top-truncated preferences in the Borda class
that satisfies dom-power is the optimistic Borda rule.

After realising that both the axioms of bot-indifference and of dom-power take the form
of monotonicity-like properties, we easily see that they are independent of all other
axioms in the characterisation of the Borda class.

We continuewith the averagedBorda rule, whichwe are going to link to the property
of full-cancellation. This axiom, in the spirit of top-cancellation, prescribes the equal
status of all alternatives as far as the outcome of the aggregation process is concerned,
and applies in cases where for all pairs of alternatives 0, 1 the same number of agents
prefers 0 to 1 and 1 to 0.

Axiom: Full-cancellation. Consider a profile %= (%1, . . . ,%=), where the following
holds for all G, H ∈ �:

|{8 ∈ # | G�8H}| = |{8 ∈ # | H�8G}|

Then, it is the case that � (%) = �.

Note that full-cancellation reduces to the standard cancellation axiom for the special case
of profiles of linear orders, and is in general logically independent of top-cancellation.
Interestingly, when combined with other axioms that appear in the characterisation of
the Borda class, full-cancellation becomes very strong:

4.49. Lemma. Neutrality, reinforcement, monotonicity, and full-cancellation together
imply anonymity, continuity, top-cancellation, and top-CL-consistency.

Proof. First, it is easy to see that monotonicity (together with neutrality) implies that in
every single-agent profile, that agent’s top alternative is going to be the unique winner,
which is the property of faithfulness. Then, in a similar manner to the one that Hansson
and Sahlquist (1976) have used to prove that neutrality, reinforcement, faithfulness
and (full-)cancellation characterise the Borda rule on domains of linear orders, we can
show that these axioms directly characterise the rule represented by the symmetric
Borda scores on top-truncated preferences, and therefore imply the rule in the Borda
class satisfying anonymity, continuity, top-cancellation, and top-CL-consistency. �

Using Lemma 4.49, we obtain a proof for the characterisation of the averaged Borda rule
on top-truncated preferences (in Theorem 4.50) that explicitly hinges on the effect of
full-cancellation within the Borda class. Although Theorem 4.50 could also be proven
without any reference to the Borda class,16 our proof sheds light on the particular way in
which the averaged Borda rule differs from the optimistic and pessimistic Borda rules,
by taking advantage of structurally analogous proof techniques.

16The fact that the characterisation of the rule represented by the symmetric Borda scores (i.e., the
averaged Borda rule on top-truncated preferences) works for other domains of preorders, and for linear
orders, is also informally mentioned by Young (1974) and by Hansson and Sahlquist (1976).
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4.50. Theorem. The only voting rule for top-truncated preferences that satisfies neu-
trality, reinforcement, monotonicity, and full-cancellation is the averaged Borda rule.

Proof. After recalling that the averaged Borda rule corresponds to the symmetric way
of defining domination scores (Proposition 3.34, in Section 3.3.2), it is not hard to see
that this rule satisfies full-cancellation (and the other axioms of the statement).

For the other direction, take a rule that satisfies all the required axioms. By
Lemma4.49, we know that this rule also satisfies anonymity, continuity, top-cancellation,
and top-CL-consistency, and hence is in the Borda class. Take such a rule �B. Consider
an arbitrary top-truncated preference % with |TOP(%) | = : , with 1 6 : 6 < − 2
(otherwise the proof is trivial). Let % be the profile that consists of : copies of that
preference %, and let %′ be the profile that consists of : copies of the preference that
reverses the order of the alternatives in the set TOP(%) and keeps the bottom alterna-
tives in % unaltered. Then, we construct two profiles R and R′ of linear orders such
that TOP(R) = TOP(R′) = BOT(%). Profile R consists of : preferences, all having the
alternatives on top ranked in the same order (any arbitrary one); Profile R′ also consists
of : preferences, with the alternatives on top ranked in the same order, reversed from
the one of R. Moreover, in both R and R′, every alternative on the bottom takes up each
of the : positions exactly once. Figure 4.7 provides an example of this construction.
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Figure 4.7: The construction of the profiles appearing in the proof of Theorem 4.50,
for < = 5 and : = 2.

Then, consider the following profile %′′, where full-cancellation applies:

%′′= (%,%′, R, R′)
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Suppose that TOP(%) = {01, . . . , 0: } ⊆ � and BOT(%) = {0:+1, . . . , 0<} ⊆ �. By
construction, we have the following conditions on the scores hold:

B%′′ (01) = . . . = B%′′ (0: ) = (< − 1 + < − :): + : (: − 1)
2

2

B%′′ (0:+1) = . . . = B%′′ (0<) = 2:B:+1 + (< − 1 + :):
But by full-cancellation we must have that �B (%′′) = �, so all alternatives must have
the same score. This means that the following holds:

(< − 1 + < − :) + (: − 1) = 2B: + (< − 1 + :) ⇔ B:+1 =
< − : − 1

2

We conclude that �B is the averaged Borda rule. �

Theorem 4.50 and Lemma 4.49 imply the following corollary:

4.51. Corollary. The only voting rule for top-truncated preferences in the Borda class
that satisfies full-cancellation is the averaged Borda rule.

Figure 4.8 wraps up this section, with a graphical summary of our results.

optimistic
•

pessimistic
•

averaged
•

+ bot-indifference + dom-power

+ full-cancellation

+ monotonicity
+ top-cancellation

(+ top-CL-consistency)

+ anonymity
+ neutrality
+ reinforcement
+ continuitypositional scoring rules

the Borda class

Figure 4.8: Positional scoring rules for incomplete preferences and their axioms (where
the Borda class is defined for top-truncated preferences). The axioms next to an arrow
indicate the properties required to obtain a class of rules, or a rule, within a larger class.





Chapter 5
Strategic Manipulation

The previous chapters of this thesis cover a wide range of topics on the aggregation
of incomplete opinions, but all rely on a vital assumption: that every agent involved
in a process of collective decision making reports sincere preferences or judgments.
It is not hard to imagine that there are numerous situations where this is not the case.
People driven by their personal interests make decisions together all the time, and
artificial agents with individualised incentives may also engage in decision making
within groups. Such intelligent agents are often expected to act in accordance with
their desires rather than to be honest for the sake of virtue itself. Hence, new questions
emerge, into which we will delve in this chapter:

Are there settings where the best response of all agents is to be honest,
no matter what opinions the other members of their group hold? Which
aggregation rules fall victim to the strategicmisrepresentation of the agents’
individual opinions in the presence of incompleteness, and what kind of
protection can we offer to prevent such behaviour?

Throughout this analysis, we will assume that all agents have full information about
the aggregation rule in place and the opinions of their peers, as well as unlimited
computational power to calculate the possible collective outcomes.

We set out to study strategic agents both in the framework of judgment aggregation
(Section 5.1) and in the framework of voting (Section 5.2 and Section 5.3), keeping
in mind contexts where incomplete opinions are central. To get a taste of the key
challenges this chapter will bring out, let us revisit the weight rules in the framework
of judgment aggregation that were introduced in Section 3.1.1.

5.1. Example. Consider the review phase of a conference involving three independent
papers: ?1, ?2, and ?3. The sincere profile of judgments provided by our three reviewers
is depicted in Table 5.1. The conference chair, being particularly convinced by the
splitting axiom that characterises the equal-and-even weight rule (see page 29 for the
definition of the rule and page 62 for the characterisation theorem), has decided to

103
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?1 ?2 ?3

Ann: �3 �3 �3
Bea: �7 �3 �3
Cal: �7 �3 �3

�ee: �7 �3 �3

Table 5.1: The sincere profile of judgments.

make use of that way of assigning weights to the submitted judgments of the reviewers.
Since all sincere judgments are complete, the equal-and-even weight rule (as well as
any other weight rule) will reduce to the standard majority rule, and will reject paper 1.

This outcome disagrees with Ann’s judgment, who thinks that paper 1 should be
accepted. Knowing the aggregation procedure that is implemented, Ann canmanipulate
the outcome by dishonestly abstaining on ?2 and ?3 (Table 5.2).

?1 ?2 ?3

Ann: �3 � �
Bea: �7 �3 �3
Cal: �7 �3 �3

�ee: �3 �3 �3

Table 5.2: The insincere profile of judgments.

Now, the support of Ann towards ?1 will get weight 1, while the stance of Bea and Cal
against ?1 will weigh 1

3 +
1
3 in total. Overall, Ann will manage to have paper 1 accepted

without taking any risk regarding the other two papers. M

Refraining from excessive formalities, we have seen that weight rules are very sensitive
to the agents’ strategic behaviour. In the remainder of this chapter, we will also inspect
all other aggregation rules for incomplete preferences that have appeared in this thesis,
with respect to their susceptibility to manipulation.

In order tometiculously encodewhat it means for an agent to find a collective decision
more preferable than a different one, we should clarify whether we are working with
aggregation rules that are resolute (i.e., that always produce a single outcome) or not.
If we are, as will be the case in Section 5.1 on judgment aggregation, then we simply
have to define agents’ preferences over single outcomes; if we are not, as will be the
case within our voting framework, then we have to define preferences over sets of
outcomes. The preferences of the agents regarding the collective decision should not
be confused with their preferences over the specific alternatives under consideration.
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5.1 Judgment Aggregation
The problem of manipulation was initially studied within judgment aggregation with
complete inputs by Dietrich and List (2007c), and has been receiving increasing at-
tention recently (Baumeister et al., 2013; Terzopoulou and Endriss, 2019c; Botan and
Endriss, 2020). In this section, we offer a broader account, considering agents who
have the freedom to report incomplete judgments, and may thus lie both by hiding their
sincere judgment or by inventing a new dishonest judgment, as well as by flipping their
judgment (e.g., from positive to negative) on an issue. Note that under the assumption
of complete judgments, an agent can only lie by flipping her judgment on an issue.

In the context of single-issue voting with approval and participation quota, Mani-
quet and Morelli (2015) have been concerned with strategic agents that may insincerely
abstain in order to obtain a more desirable outcome for themselves, and have remarked
that those rules that satisfy the property of monotonicity prevent such behaviour. Al-
though this observation will also be important for our work, Maniquet and Morelli have
made further assumptions about the probabilistic information of the agents concerning
the number of their peers that abstain, on which their results heavily rely. On the
contrary, we follow a more basic—qualitative rather than quantitative—path and study
cases where agents will never have the opportunity to benefit by being insincere, no
matter how the rest of the group behaves.

In fact, it has been observed experimentally that in referendums imposing partici-
pation quorums, agents that expect to be in the minority often abstain (Aguiar-Conraria
and Magalhães, 2010). This also relates to the well-known no-show paradox of vot-
ing theory (Fishburn and Brams, 1983), stressing that there are situations where agents
may achieve a preferable outcome by not participating in the collective decision making
process. Consider the following example.

5.2. Example. In continuation of Example 3.17, suppose that Isabelle (agent 8), the
president of the college, does not want to offer fresh fruit on campus. Suppose also
that there exists a quorum of 21% that needs to be reached in order for the collective
decision to have an effect: at least 21 out of the 100 members of the board must express
some judgment on the fruit issue, and at least half of the reported judgments must be
supportive, for the board to decide to offer the fruit. If 20 people wish to have the fruit
and these are all the board members that actually have an opinion on the issue, then
Isabelle has two options: to express her judgment and end up having to offer the fruit,
or to insincerely abstain and achieve her preferred outcome. M

Suppose more generally that agent 8 is sincerely in favour of some proposition i ∈ Φ.
Then, depending on the context, agent 8 may try to force i into the collective outcome,
exclude ¬i from the collective outcome, or both.

5.3. Example. Imagine a local referendum within a municipality where, in case both
i and ¬i end up in the outcome, the mayor will make the final decision either by
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accepting i or by accepting ¬i, according to his own judgment. If agent 8 is optimistic
and believes that the mayor will agree with her, then she will settle for having i in the
outcome and giving the mayor the option to choose it; if 8 is pessimistic and believes
that the mayor—given the option—will explicitly disagree with her, then she will try to
exclude ¬i from the outcome. M

Below, we formalise the notion of manipulation in judgment aggregation with possibly
incomplete inputs. We take into consideration all possible types of manipulation that
may occur according to our discussion. Specifically, we make two main assumptions:

(8) An agent with a sincere positive judgment on ĩ will not seek the opportunity to
manipulate against i or favourably to ¬i.1

(88) Anagentwho sincerely does not hold an opinion on ĩwill not seek the opportunity
to manipulate regarding ĩ.2

Definition 5.4 concerns resolute aggregation rules, which return a single judgment
set as the collective decision. For an example of such rules, the reader may keep in
mind the quota rules that we presented in Section 3.2—in contrast, the weight rules
of Section 3.1.1 are irresolute, possibly returning multiple judgment sets, and thus our
definition does not directly apply to them.

5.4. Definition. An agent 8 with sincere judgment �8 is said to have an opportunity
to manipulate the aggregation rule � on proposition i if i ∈ �8 and there exist a
profile P = (P−8, �8) and an insincere judgment �′8 such that the following holds:

� (P−8, �8) li � (P−8, �′8 ) or � (P−8, �′8 ) l¬i � (P−8, �8)

An agent favouring imay possibly add both i and¬i to the outcome. We consider such
cases as opportunities for manipulation too. The aggregation rule � is manipulable if
there exists an agent 8 with sincere judgment �8 that has an opportunity to manipulate �
on some proposition i ∈ Φ. Otherwise � is immune to manipulation.

The notion of manipulation in judgment aggregation adopted in this section—in
line with the original one by Dietrich and List (2007c)—does not involve any definition
of individual preferences: A manipulation act by an agent may be triggered because of
several behavioural reasons. Examples 5.2 and 5.3 show concrete contexts where the
opportunities of agents to manipulate translate into incentives to manipulate.3

1This assumption may be violated in case an agent has a reason to want her sincere judgment
collectively refuted. For this section, we exclude such special circumstances and assume that the sincere
opinions of the agents about the issues at stake—in case they exist—overrule other possible motives.

2This assumption may also be violated for agents that sincerely have no opinion on ĩ but may still
try to steer the collective outcome towards a positive or a negative decision on ĩ. When accounting for
this kind of manipulation, monotonicity ceases to be a sufficient property for a quota rule’s immunity to
manipulation. We discuss this in more detail towards the end of this section.

3Much of the recent work on strategic behaviour in judgment aggregation with complete inputs relies
on preferences, like those defined based on the Hamming distance. The original characterisation result
of Dietrich and List (2007c) does not hold for such classes of preferences, which are more restrictive.
See Baumeister et al. (2017) for a survey on the topic.



5.1. Judgment Aggregation 107

Intuitively, the manipulation illustrated in Example 5.2 was possible due to a failure
of monotonicity: Additional support on proposition i was able to turn the collective
outcome against i. Next, we prove more generally that monotonicity together with
weak independence are sufficient conditions for any aggregation rule to be immune to
manipulation (Lemma 5.5). This means in particular that all monotonic quota rules for
incomplete judgments are immune to manipulation.

5.5. Lemma. Any aggregation rule for incomplete judgments that is judgment mono-
tonic and weakly independent will be immune to manipulation.

Proof. Aiming for a contradiction, consider an aggregation rule � under which some
agent 8 has an opportunity to manipulate on a proposition i with i ∈ �8. If � is
weakly independent, 8 cannot unilaterally change the outcome on i by keeping her
judgment on ĩ the same. So, assume that 8 reports an insincere judgment �′

8
with

�8 ≠i �
′
8
instead. This means that �′

8
li �8. If � is judgment monotonic, it will hold that

� (P−8, �′8 ) l−i � (P−8, �8) and � (P−8, �8) l−¬i � (P−8, �′8 ). It follows from Definition 5.4
that 8 will not have an opportunity to manipulate on i, which is a contradiction. �

We further show that judgment monotonicity is a necessary condition to be satisfied
by any non-manipulable aggregation rule for incomplete judgments (see Lemma 5.6).
So, we can identify exactly those quota rules for incomplete inputs that offer a barrier
to manipulation (see Proposition 5.7).

5.6. Lemma. Any aggregation rule for incomplete inputs that is immune tomanipulation
will satisfy judgment monotonicity.

Proof. Consider an aggregation rule � that violates judgment monotonicity: There
exist a proposition i ∈ Φ and two profiles P = (P−8, �8), P′ = (P−8, �′8 ) such that �′8 li �8
and either � (P−8, �8) li � (P−8, �′8 ) or � (P−8, �′8 ) l−¬i � (P−8, �8). Clearly, an agent 8
with sincere judgment �8 will have an opportunity to manipulate � on proposition i. �

Proposition 5.7 follows from the fact that the only quota rules satisfying judgment
monotonicity are the invariable ones (consult Table 4.1 in Section 4.2.1).

5.7. Proposition. A quota rule for incomplete judgments is immune to manipulation
if and only if it satisfies judgment monotonicity, that is, if and only if it is an invariable
(absolute or marginal) quota rule.

The violation of weak independence (as opposed to that of judgment monotonicity)
does not directly imply themanipulability of an aggregation rule. To see this, suppose
that an agent sincerely abstaining on ĩ unilaterally alters her judgment regarding a
different issue k̃, causing a change in the collective outcome on ĩ. Although this
is a violation of weak independence, the relevant definitions do not prescribe that
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it constitutes an opportunity for manipulation on i. If, nonetheless, we modify
our definitions to incorporate the possible opportunities that agents who abstain on
an issue may find to manipulate, then monotonicity will not anymore provide a
safety net against the manipulability of a rule: Given a monotonic rule, an agent
may strategically add a proposition i in her judgment set in order to promote i’s
acceptance in the outcome (or, arguablymore plausibly, in order to harm the collective
acceptance of ¬i), even if the agent should sincerely abstain on ĩ. This contrasts
with the well-known result of Dietrich and List (2007c), who characterised all non-
manipulable aggregation rules for the special case of complete inputs in terms of the
two axioms of independence and monotonicity.

We close this section by providing a characterisation of all non-manipulable aggrega-
tion rules for incomplete judgments, which is aligned with the aforementioned result
by Dietrich and List. To that end, we define an even weaker independence axiom that
gives the freedom to agents that abstain on ĩ to still influence, indirectly, the collective
decision on ĩ. More precisely, very weak independence captures the idea that the col-
lective outcome on a proposition i should only depend on the judgments regarding ĩ
of the agents that have an opinion directly on ĩ or possibly on the judgments regarding
different issues k̃ of the agents that abstain on ĩ.

Axiom: Very Weak Independence. For all propositions i ∈ Φ and profiles P =
(�1, . . . , �=), P′ = (�′1, . . . , �

′
=), whenever # P

i = #
P′
i , # P

¬i = #
P′
¬i, and �8 = �′8 for all

8 ∉ # P
ĩ
, it holds that � (P) =i � (P′).

5.8. Theorem. An aggregation rule for incomplete judgments is immune to manipula-
tion if and only if it satisfies judgment monotonicity and very weak independence.

Proof. The “if” is proven analogously to Lemma 5.5. For the “only if”, we know
from Lemma 5.6 that any non-monotonic aggregation rule for incomplete inputs will be
susceptible tomanipulation. It remains to show that any aggregation rule for incomplete
inputs that is not very weakly independent will be susceptible to manipulation.

Consider a rule � that violates very weak independence: There exist proposition
i ∈ Φ and profiles P, P′ such that # P

i = #
P′
i , # P

¬i = #
P′
¬i, and �8 = �′8 for all 8 ∉ #

P
ĩ
, but

� (P) ≠i � (P′). Suppose that � (P) li � (P′) (� (P′) li � (P) is treated analogously).
We first define the profile P1 = P = (�1, . . . , �=). Then, for 9 ∈ {2, . . . , = + 1}, we

define the following profiles:

P j = (�′1, . . . , �
′
9−1, � 9 , . . . , �=)

Since � (P) li � (P′), we can identify an agent 8 who is the first one that increases the
support of i in the outcome by changing her judgment. Formally, the following holds:

8 ∈ argmin
9∈{1,...,=}

P j li P j+1
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In the two profiles P i and P i+1 exactly the same agents support i, exactly the same
agents support ¬i, and the agents that abstain on ĩ report exactly the same judgments.
Then, P i ≠ P i+1 implies that that �8 ≠ �′

8
, which means that agent 8 does not abstain

on ĩ. Now if i ∈ �8, agent 8 has an opportunity to manipulate by reporting �′
8
instead

of �8; if ¬i ∈ �8 (which also means that ¬i ∈ �′
8
), she has an opportunity to manipulate

when sincerely holding the judgment �′
8
by reporting �8 instead. �

Having concluded our study within judgment aggregation, we will proceed with voting.

5.2 Voting: The One-Shot Case
Imagine that you take part in a voting process. The other members in your group
have already submitted their preferences, and you actually have access to them (for
example because you are the chair of a board, or because you know your friends—and
their opinions—very well). After you also report your preference, a specific positional
scoring rule is going to be applied to aggregate all given preferences, and some (possibly
tied) alternative(s) will be selected as the winner(s). This will be an one-shot procedure,
meaning that no preference will be subject to change after its submission. You are free
to report an incomplete preference over the alternatives in question. Naturally, you may
then consider what are the outcomes that you can induce by reporting different kinds
of preferences: your sincere preference, a preference that is very different from your
sincere one, or a preference that is just a slight modification of your sincere one. Your
action will depend on the change you will be able to cause to the collective decision, as
well as on the social and practical expectations regarding your behaviour (for example,
in some circles not communicating a piece of information is not considered a real lie).

It is the fact that we allow for incomplete preferences that encourages novel types of
manipulation. Besides omitting pairwise preferences, you may also invent preferences
that you do not really hold, thereby adding pairwise preferences; you may also say you
prefer one alternative to another when in fact the reverse is true, thereby flipping your
preference on some pair of alternatives. For each of these types, and their combinations,
we will provide necessary and sufficient conditions for positional scoring rules to make
the relevant type of manipulation unprofitable.

Positional scoring rules are exactly those voting rules that satisfy the axioms of
anonymity, neutrality, continuity, and reinforcement (recall Section 4.3.1). So, in all
the results of this section, the reader could replace the term “positional scoring rule”
with “any rule that satisfies the four relevant axioms”.

We formalise three types of lying:

• asserting something that you believe to be false;

• refraining from asserting something that you believe to be true;
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• asserting something where in reality you have no opinion.

See Example 5.9 for an illustration.

5.9. Example. Suppose that your sincere preference is as follows:

0 1 2

Further suppose that the domination scoring rule of Section 3.3 is used: We count how
often an alternative is preferred over other alternatives, and select the alternatives with
the highest count. Then, it may be profitable to omit pairwise preferences where 1 is
preferred, submitting the following insincere preference:

0 1 2

Because this decreases the count of 1, the new preference is a better one to submit in
order to make 0 win (and since your sincere preference ranks 0 above 1, we assume
that you prefer that 0 wins rather than 1).4 M

The manipulation move of Example 5.9 would not be admissible if the agents were
required to submit complete preferences.

In certain situations one may be more worried about one type of manipulation
than another. For instance, in crowdsourcing settings, part of the mechanism designer’s
problem is not only to get the agents to tell the truth, but also to incentivise them to fully
complete the task. Lying by omission may deprive the system of important data. On the
other hand, in social situations, lying by omission intuitively seems more acceptable
than outright misrepresentation. So, some manipulation moves may be considered
tolerable. But this may also lead to an inverse conclusion for a mechanism designer:
If concealing a fragment of their truth feels more acceptable to agents in a particular
scenario than creating a brand new lie or completely twisting their preferences, it may
be thought as more important to protect against the more likely type of lie.

The literature on manipulation in voting was pioneered by Gibbard (1973) and
Satterthwaite (1975) who independently proved that, given some fairly weak conditions,
no voting rule is immune to strategic manipulation. The conditions include requiring
that the agents report complete preferences, as well as that the voting rule is resolute
(i.e., always outputs a single winner).

Later work has relaxed the single-winner condition, which leads to the question of
how to extend preferences over alternatives to preferences over sets of alternatives (still
for complete preferences). Early contributions concerning this issue were made by

4In general, preferring alternative 0 over alternative 1 and preferring that 0 wins rather than that 1
wins should be distinguished. For example, you may deem a beach better than all other beaches in a
competition without wanting it to win the award, because you think it will then be overrun by tourists.
Here, we only consider situations where the two kinds of preferences can be deemed the same.
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Gärdenfors (1976) and Kelly (1977), followed more recently by Ching and Zhou (2002)
and Sato (2008). Specifically, two widely studied preference extensions are those of
optimistic and of pessimistic voters. The former prefer a set of alternatives - over a
set of alternatives . if and only if their favourite alternative in - is better than their
favourite alternative in . ; the latter prefer - over . if and only if their worst alternative
in - is better than their worst alternative in . . We know by Duggan and Schwartz
(2000) that any reasonable5 voting rule is immune to manipulation by both optimistic
and pessimistic voters if and only if it is weakly dictatorial (where a weak dictatorship
for complete preference profiles is an irresolute voting rule in which there exists a
certain agent that always has her unique top alternative in the collective outcome).

Pini et al. (2008) provided another version of Duggan and Schwartz’s result, consid-
ering agents with incomplete preferences (that can be misrepresented in every possible
way), and showing that it is still impossible to avoid weak dictators (where a weak
dictator for incomplete preference profiles is an agent who always has some of her top
alternatives in the outcome). Building on this stream of research, this section focuses
on specific types of manipulation of practical interest and brings out some good news.
Note that if we allow the agents to lie in any way they want, then only trivial positional
scoring rules constitute weak dictatorships amongst all positional scoring rules—by re-
stricting attention to concrete the manipulation types, we will find that some non-trivial
positional scoring rules become immune to manipulation as well.

All our results are independent of the specific preference domain (i.e., transitive or
not), as long as we work with strict preferences. For ease of exposition, here we will
work with strict and transitive preferences B ∈ P(�)C . Moreover, we will assume an
infinite superpopulation throughout the section, and no additional assumption will
be made regarding the set of all potential alternatives.

5.2.1 Definitions
The notion of a desirable manipulation move is fairly obvious when there are only
singleton outputs. Then, one can directly see from an agent’s preference if she will
prefer a different singleton output obtained through manipulation.

A preference B8 indicates which single alternatives are preferred to other single
alternatives by agent 8. As a starting point, we assume the following:

if 0 B8 1, then agent 8 will prefer {0} over {1}

This sets a minimal condition on an agent’s preference. But positional scoring rules
generally output non-singleton sets of alternatives. Hence, we need to determine when
agent 8 wants to manipulate from an arbitrary set - to an arbitrary set . , for -,. ⊆ �.

5Where “reasonable” means that it gives the opportunity to every alternative to be elected as the
winner under some preference profile (i.e., it satisfies nonimposition).
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There is a broad literature concerning elaborate extensions of preferences from
singletons to preferences over sets of objects (Barberà et al. (2004) provide a survey).
Typically, extensions aim to describe the induced preferences of agents over sets of ob-
jects, given various assumptions about the agent’s psychology (e.g., being risk-adverse
or risk-loving) and about how the alternative sets will actually be consumed (e.g., a
random alternative must be used or all alternatives must be used). Our intended in-
terpretation of extensions is directly connected to the notion of manipulation. More
specifically, a preference extension in our model does not need to represent the prefer-
ences of some particular agent, but rather the possible preferences that someone might
conceivably have. The idea is that if some alternative in a new collective outcome is
preferred to some alternative in the old outcome, then an agent may desire to manipulate
from the old to the new. In fact, we will cover even more cases, allowing one or other
of the alternatives to be contained in both sets. Definition 5.10 introduces our notion
of preference extension via two requirements.

5.10. Definition. Given a preference B, a binary relation B★ over sets of alternatives
is called a★-extension of B if and only if the following two conditions hold:

(8) G B H implies that {G} B★ {H}, for all G, H ∈ �

(88) -B★. implies that there exist G ∈ - and H ∈ . such that GBH and {G, H} * -∩. ,
for all -,. ⊆ �

Note that the largest binary relation that can be called an extension according to
Definition 5.10 may not be acyclic; it may even contain symmetries.6 This underlines
the fact that a preference extension in our terminology is not intended to be a particular
representation of preferences over sets of objects. We do not intend to mean that
for a given agent the set - is preferred to . and that . is preferred to - , but rather
that it is conceivable that - is preferred to . or that . is preferred to - . Preventing
all manipulation moves induced by any kind of preference extension would constitute
a strong positive result. Moreover, most known definitions of concrete preference
extensions in the literature, like the optimistic and the pessimistic ones previously
sketched, constitute extensions in the line of Definition 5.10.

5.11. Example. Suppose that we have sincere preferences as follows.
Ann

0 1

2 3

Bea

0 1

2 3

Cal

0 1

2 3

For the domination-scoring rule, alternatives 0 and 2 have total score 2, while alterna-
tive 3 has score 0 and alternative 1 is the winner with total score 3. But Ann can make

6So, it is possible that both - B★ . and . B★ - .
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{0, 2} be the collective outcome instead: by omitting the pairwise comparison (1, 2)
and adding (0, 3), the score of 0 will increase to 3 and the score of 1 will decrease to 2.
According to the largest possible preference extension★, this constitutes a manipulation
move that may be desirable by an agent in Ann’s position with preference B, since it
holds that {0, 2} B★ {1}. Note that it is also the case that {1} B★ {0, 2}. M

We have described when an outcome is more desirable for a manipulator; we still need
to determine who the manipulators are, and how they can achieve this outcome.

Classic studies of manipulation consider a single agent acting alone. However,
many modern applications of preference aggregation require a broader definition of
manipulative acts. An Internet user can now easily create and handle several identities
(all sharing the same sincere preference).7 Ourmodel allows for an—arbitrarily large—
group of agents with identical preferences to manipulate.8

5.12. Definition. Consider a voting rule �, an extension★, a subset of agents #′ ⊆ #
with the preference B, and the following profile:

B = (B1, . . . ,B=) = (B, . . . ,B︸    ︷︷    ︸
ℓ

,B−# ′) ∈ P(�)=

Without loss of generality, suppose that #′ = {1, . . . , ℓ}. A ★-manipulation of � by
#′ is possible if there exists a new profile (B′1, . . . ,B

′
ℓ
) such that the following folds:

� (B′1, . . . ,B
′
ℓ,B−# ′) B

★ � (B)

The rule � is manipulable if a manipulation is possible by some subgroup #′ ⊆ # , for
some #; � is immune to manipulation otherwise.

Definition 5.12 tells us who can manipulate. It does not tell us in what manner. We
sum up the three types of misrepresentation that are relevant for incomplete preferences
with reference to a typical commitment of sworn testimony:

One tells the truth, the whole truth, and nothing but the truth.

This is decomposed into three parts, prohibiting three different types of manipulation.9
Consider a ★-manipulation of � by #′ (Definition 5.12). Such a manipulation is by:

• flipping if B8\B′8 = {(G, H) | (H, G) ∈ B′8\B8} for all 8 ∈ #′;

7The idea of group-manipulation is also related to the notion of false-name manipulation (Yokoo
et al., 2001) and to the so-called Sybil attacks (Douceur, 2002).

8Besides its practical significance, allowing for group-manipulation gives stronger sufficient condi-
tions for preventing manipulation. In the other direction, this assumption does not weaken much our
necessity resluts, since we only use at most two agents for the proofs, and the second agent may be
considered as a somewhat technical requirement in order to break ties.

9We assume that all manipulators share the same manipulation type. This is justified in scenarios
where behind all the identities of the manipulators there is one single agent,
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• omission if B8 ⊇ B′8 for all 8 ∈ #′;

• addition if B8 ⊆ B′8 for all 8 ∈ #′.

We can also naturally define manipulation by combinations of the above types. For
instance, a manipulation is by a combination of addition and omission if the agents add
somepairwise preferences and possibly omit someothers. We say that twopreferencesB
and B′ conform to a certain (combination of) manipulation type(s) if B and B′ satisfy
the corresponding relations.

To further illuminate manipulation moves of different types, let us recall the rules
in the Borda class of Section 3.3.2, for top-truncated preferences.

5.13. Example. Consider a profile of sincere preferences as follows (where transitive
arrows are not depicted), and suppose that we employ the optimistic Borda rule.

Ann

0

1

2 3

3

2

1 1

Bea

3

2

1 0

3

2

1 1

Then, the winning set is {0, 3}. But Ann prefers alternative 0 over 3, so she could
manipulate in order to have the singleton {0} as the outcome:

Ann

0

1

2

3

3

2

1

0

Bea

3

2

1 0

3

2

1 1

The depicted manipulation move of Ann incorporates the addition of a pairwise pref-
erence from alternative 2 to alternative 3. M

The manipulation move of Example 5.13 would not work if the pessimistic Borda rule
was applied instead. However, both the optimistic and the pessimistic Borda rules are
manipulable by omission, as Example 5.14 shows.
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5.14. Example. Consider a profile of sincere preferences as follows (where transitive
arrows are not depicted), and suppose that we employ the pessimistic Borda rule.

Ann

0

1

2 3

3

2

0 0

Bea

1

0

2 3

3

2

0 0

Then, the winning set is {0, 1}. But Ann prefers alternative 0 over 1, so she could
manipulate in order to have the singleton {0} as the outcome:

Ann

0

1 2 3

3

0 0 0

Bea

1

0

2 3

3

2

0 0

Ann incorporated omission of pairwise preferences from alternative 1 to alternatives 2
and 3. The same move would be effective under the optimistic Borda rule too. M

5.2.2 Conditions for Immunity to Manipulation
Certain positional scoring rules can be immune to manipulation for all possible pref-
erence extensions (Theorem 5.16). This follows from our sufficient conditions (which,
as we will see, are not always easy to satisfy). In the other direction, we present neces-
sary conditions for a rule to be immune to manipulation for at least one (the smallest)
extension, thus establishing vital boundaries for non-manipulability (Theorem 5.17).
Lemma 5.15 is critical for these results.

5.15. Lemma. If a positional scoring function B is not trivial, then for all positive
numbers C > 0 and all alternatives G and H, there exists a profile B such that for all
I ≠ G, H the following holds:∑

8∈#
BB8 (G) =

∑
8∈#

BB8 (H) > C +
∑
8∈#

BB8 (I)
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Proof. Take two arbitrary alternatives G, H ∈ �. For a non-trivial scoring func-
tion B there is a preference B for which we can order the alternatives using indices
9 ∈ {1, . . . , |�|} such that B(0 9 ) > B(0 9+1) and B(01) > B(0 |�|). Consider a permuta-
tion of this preference where G is placed in the position of 01, H is placed in the position
of 02, some I ≠ G, H is placed in the position of 03, etc. Now iteratively create new
preferences which swap the positions of G and H and cycle through the positions of the
other alternatives: After 2|�| − 4 iterations this results in a collection of preferences
for which G is in the position of 01 exactly |�| − 2 times and in the position of 02
exactly |�| − 2 times; where H is in those positions exactly as often as G; and where,
for each 9 = {3, . . . , |�|}, every other alternative is in the position 0 9 exactly twice.
Obviously G and H have the same summed score for these preferences. Similarly, all
other alternatives have the same summed scores as each other. The inequalities over
the scores of ordered alternatives imply that the summed score of G, and that of H, is
some value X > 0 larger than the summed score of any other alternative. The required
profile is created by taking 1 + dC/Xe copies of the 2|�| − 4 preferences. �

Given preferences B and B′ and alternatives G, H ∈ �, let us define the following
inequality, stating that the difference between the scores of G and H in B′ is not strictly
larger than the relevant difference in B:

BB(G) − BB(H) > BB′ (G) − BB′ (H) (5.1)

Thanks to Theorem 5.16 below, we will be able to make conclusions such as the
following: A positional scoring rule is immune to manipulation by omission if it
guarantees that inequality (5.1) holds for every two alternatives that are ranked by B
and for every preference B′ that is obtained trough B by omission.

5.16. Theorem. If inequality (5.1) holds for all preferences B,B′ and all alternatives
G, H ∈ � such that G B H and B,B′ conform to a specific (combination of) type(s), then
the rule �B, induced by the positional scoring function B, is immune to ★-manipulation
by the given type(s), for all extensions ★.

Proof. Aiming for a contradiction, suppose that the condition of the statement holds,
but �B is ★-manipulable by the given type(s). This means that there exist -,. ⊆ �

such that the following holds:

- = � (B−# ′,B′1, . . . ,B
′
: ) B

★ � (B−# ′,B, . . . ,B) = .

for some subset #′ = {1, . . . , :} ⊆ # of a group # and insincere preferences B′
9
such

thatB andB′
9
conform to the given type(s) for all 9 ∈ {1, . . . , :}. Then, by the definition

of preference extensions, there are G ∈ -, H ∈ . such that G B H and {G, H} * - ∩ . .
We focus on the case where G ∉ . , since the case where H ∉ - is analogous. Because
H ∈ . , by the definition of the scoring rule we have that the following is the case:∑

8∈# ′
BB(G) +

∑
8∈#\# ′

BB8 (G) <
∑
8∈# ′

BB(H) +
∑

8∈#\# ′
BB8 (H)
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Then, G ∈ - implies the following:∑
8∈# ′

BB′
8
(G) +

∑
8∈#\# ′

BB8 (G) >
∑
8∈# ′

BB′
8
(H) +

∑
8∈#\# ′

BB8 (H)

We arrive to a final inequality:∑
8∈# ′
(BB8 (G) − BB8 (H)) <

∑
8∈# ′
(BB′

8
(G) − BB′

8
(H))

Thus, we have contradicted our hypothesis. �

Since avoiding manipulation by a group of agents is harder than avoiding manipulation
by a single agent, we know that the condition of Theorem 5.16 is sufficient to avoid
manipulation by just a single agent as well.

We continue with our necessary conditions. Theorem 5.17 enables us to make
conclusions such as the following: A positional scoring rule that is immune to manipu-
lation by omission must guarantee that inequality (5.1) holds for every two alternatives
that are ranked by B and for every preference B′ that is obtained trough B by omission.

5.17. Theorem. For all extensions ★, if the rule �B, induced by the positional scoring
function B, is immune to ★-manipulation by a specific (combination of) type(s), then
inequality (5.1) holds for all B,B′ ∈ P(�) and G, H ∈ � such that B and B′ conform to
the given type(s) and G B H.

Proof. We prove the contrapositive. Suppose that there exist preferences B,B′ and
alternatives G, H as in the statement that satisfy BB(G) − BB(H) < BB′ (G) − BB′ (H). This
implies that the scoring function is not trivial.

Consider the following profile with four agents:

B′ = (B,B,B〈GH〉,B′〈GH〉)

From the inequality and because B is positional, H must have a higher score than G in
the profile B′. However, if the first two agents change their preference to B′, then G has
a higher score than H. We can write this profile as B′′ = (B′,B′,B〈GH〉,B′〈GH〉).

Let the following to equalities hold:

C = max
I∈�

∑
8∈#

BB8 (I) −
∑
8∈#

BB8 (H)

C′ = max
I∈�

∑
8∈#

BB′
8
(I) −

∑
8∈#

BB′
8
(G)

We use Lemma 5.15 to create a profile B′′′ in which the scores of G and H are equal and
greater than the score of any other alternative by at least max(C, C′).

The profile from which the manipulation happens is (B′,B′′′), where H is winning;
the profile to which the manipulation happens is (B′′,B′′′), where G is winning. �

Theorems 5.16 and 5.17 imply a characterisation result.
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5.18. Corollary. For all extensions ★, the rule �B, induced by the positional scoring
function B, is immune to ★-manipulation by a specific (combination of) type(s) if and
only if inequality (5.1) holds for all B,B′ ∈ P(�) and all G, H ∈ � such that B and B′
conform to the given type and G B H.

Our characterisation result facilitates the detection of whether a particular positional
scoring rule is immune to manipulation, focusing on pairs of preferences instead of full
preference profiles. Nonetheless, we do not know whether it will be computationally
easy to check that the required condition is satisfied by a positional scoring rule.

5.2.3 Manipulation by Specific Types
We have so far formulated general conditions for immunity to manipulation. We can
now proceed to examine specific cases regarding our types of interest.

We will initially study whether it is possible for a non-trivial positional scoring rule
to prevent combined types of manipulation. The answer we obtain is largely negative,
but is also contingent to each particular manipulation type. Then, we will continue
with analysing each single manipulation type in its own right.

Combined Types

Our first remark concerns the combined type of addition and flipping, and is promising.
The stepwise scoring rule (defined in Section 3.3.1, page 45) satisfies the condition
of Theorem 5.16, instantiated for preferences B and B′ that conform to flipping: Take
two such preferences B and B′ and two alternatives 0 and 1 such that 0 B 1. If 1 B′ 0,
then the difference between the stepwise scores of 0 and 1 cannot increase—it will
either remain the same, or decrease. If 0 B′ 1, then the relevant difference will remain
exactly the same. Analogous reasoning applies for addition, and straightforwardly for
the combination of addition and flipping, leading to Proposition 5.19.

5.19. Proposition. There exists a non-trivial positional scoring rule that is immune to
★-manipulation by the combination of addition and flipping, for all extensions ★.

However, we obtain an impossibility result regarding immunity to manipulation by the
combination of omission and flipping. Theorem 5.23 below is implied by Lemma 5.21
and Lemma 5.22. Lemma 5.20 is needed for the proof of the latter (and follows from
Theorem 5.17 instantiated for omission, together with the fact that all positional scoring
functions assign the same score to all alternatives in the totally empty preference).

5.20. Lemma. For all extensions ★, if the rule �B, induced by the positional scoring
function B, is immune to ★-manipulation by omission, then BB(G) > BB(H) for all
preferences B and alternatives G, H with G B H.
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5.21. Lemma. For all extensions★, if the rule �B, induced by the non-trivial positional
scoring function B, is immune to ★-manipulation by omission, then for all complete
preferences B there exist G, H ∈ � such that BB(G) ≠ BB(H).

Proof. Consider a positional scoring function B and a rule �B immune to ★-manip-
ulation by omission. In every empty preference, all alternatives get the same score
by B (condition (∗)). Suppose that all alternatives in every complete preference also get
the same score (condition (∗∗)). We will show that all alternatives must have the same
score in every preference B, and thus B must be trivial.

Take an arbitrary preference B and alternatives G, H with G B H. Theorem 5.17
instantiated for omission and applied on (∗) and (∗∗) implies that BB(G) = BB(H). Thus,
all connected alternatives will have the same score (condition(∗ ∗ ∗)).

But all alternatives G, H that are not connected must also be assigned with the same
score: We can create two new preferences by connecting G and H by (8) an arrow from G

to H and (88) an arrow from H to G (each of these two arrows can be added without
creating a cycle, since G and H were not connected in the first place). Theorem 5.17
instantiated for omission and applied on (8), (88) and (∗ ∗ ∗) implies that the relevant
scores must be the same, and the proof is concluded. �

5.22. Lemma. For all extensions ★, if the rule �B, induced by the positional scoring
function B, is immune to ★-manipulation by the combination of omission and flipping,
then for all complete preferences B and alternatives G, H, it holds that BB(G) = BB(H).

Proof. Consider an arbitrary complete preference B for which it holds that BB(G) >
BB(H) whenever G B H (this must be the case by Lemma 5.20, if the rule �B is immune
to manipulation by omission).

For some ordering of the alternatives {01 . . . , 0<} = �, and without drawing the
transitive arrows for simplicity, the preference B will look as follows, where the scores
assigned to the alternatives are mentioned below them (for W ∈ R):

01 02 03 . . . 0<

W W − X1 W − X1 − X2 . . . W −∑<−1
8=1 X8

We know that X8 > 0, and will show that X8 = 0, for all 1 6 8 6 < − 1.
Consider flipping the preference between 01 and 02 as follows:

02 01 03 . . . 0<

W W − X1 W − X1 − X2 . . . W −∑<−1
8=1 X8

Because the difference in scores between 02 and 03 cannot increase (by Theorem 5.17
instantiated for flipping), we must have that X1 = 0.

Now flip the preference between 01 and 03:
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02 03 01 . . . 0<

W W W − X2 . . . W −∑<−1
8=2 X8

In order for the difference in scores between 02 and 01 to not increase (again by
Theorem 5.17), it must hold that X2 = 0.

We repeat this process, “moving” 01 towards the bottom of the preference in steps,
and obtaining X8 = 0 for all 1 6 8 6 <. �

5.23. Theorem. For all extensions★, only the trivial positional scoring rule is immune
to ★-manipulation by the combination of omission and flipping.
Next, we directly prove an impossibility result regarding immunity to manipulation by
the combination of addition and omission.

5.24. Theorem. For all extensions★, only the trivial positional scoring rule is immune
to ★-manipulation by the combination of addition and omission.
Proof. Consider a rule �B, induced by a positional scoring function B, that is immune
to ★-manipulation both by addition and by omission. We will prove that for any
preference B, BB(G) = BB(H) for all G, H ∈ �. If B is empty, we are done. So suppose
there is a pair (0, 1) ∈ B. For each such pair (G, H) in B, define the (singleton)
preference BGH = {(G, H)}. Theorem 5.17 for omission and for addition implies that for
all (G, H) in B, the following holds:

BB(G) − BB(H) = BBGH (G) − BBGH (H) (5.2)

Since the scoring rules we consider are positional, by Equation (5.2) the following holds
for all (G, H), (G′, H′) in B:

BB(G) − BB(H) = BB(G′) − BB(H′) (5.3)

Consider two alternatives 0 and 1 such that 0 B 1 and define the preference B′ =
{(0, 1), (1, 2), (0, 2)} for some 2 ∈ � \ {0, 1}. Again by Theorem 5.17 for addition
and omission, BB01 (0) − BB01 (1) = BB′ (0) − BB′ (1). By Equation (5.3) applied to the
pairs (0, 1), (1, 2), and (0, 2), it follows that BB′ (0) = BB′ (1) = BB′ (2).

We thus know that BB(G) = BB(H) whenever G and H are connected. Suppose
now that G and H belong to two different connected components of B. Then, the
preferences B′ = B ∪ {(G, H)} and B′′ = B ∪ {(H, G)} will be acyclic and thus
well-defined. By the same reasoning as above, we know that BB′ (G) = BB′ (H) and
BB′′ (G) = BB′′ (H). Since B ⊂ B′ and B ⊂ B′′, it follows by Theorem 5.17 for omission
that BB(G) − BB(H) 6 BB′ (G) − BB′ (H) = 0 and that BB(H) − BB(G) 6 BB′′ (H) − BB′′ (G) = 0.
So, BB(G) = BB(H) and we have concluded the proof. �

Theorems 5.23 and 5.24 are strong, in the sense that their proofs do not require that
specific manipulation moves employ both omission and flipping (or addition and omis-
sion) at the same time—they only require that an aggregation rule be immune to all
manipulation moves that employ some single type from the relevant ones.
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Single Types

After having investigated manipulation by combined types and obtained two impos-
sibility results, we now wonder whether specific types of manipulation (by addition,
omission, or flipping) can at least be prevented by positional scoring rules. We discover
very positive facts: For every single manipulation type, there exists some positional
scoring rule immune to manipulation.

First, recall that the stepwise scoring rule prevents manipulation by both addition
and flipping (Proposition 5.19). So, we immediately know the following:

5.25. Proposition. There exists a non-trivial positional scoring rule that is immune to
★-manipulation by addition, for all extensions ★.

5.26. Proposition. There exists a non-trivial positional scoring rule that is immune to
★-manipulation by flipping, for all extensions ★.

Note though that the stepwise scoring rule must be manipulable by omission, otherwise
the impossibilities for the combined types would fail. See Example 5.27.

5.27. Example. Consider the stepwise scoring function, and the following preference:

0

1

2

3

Omitting the arrow from 1 to 3 increases the difference in score between 0 and 1. M

We also find that 1-veto scoring satisfies the condition of Theorem 5.16, instantiated
for preferences that conform to addition. Indeed, if 0 B 1 for some alternatives 0, 1,
then the veto score of 0 must be 1, the 1-veto score of 1 must be 0, and the two scores
will remain the same under every addition of pairwise preferences to B. But 1-veto is
manipulable by omission and by flipping (Example 5.28).

5.28. Example. Consider the preference below.

a b c

Then, we can increase the difference between the 1-veto scores of 0 and 1 either by
omitting or by flipping the arrow from 1 to 2. M

Next, Proposition 5.29 holds because the cumulative scoring rule satisfies the condition
of Theorem 5.16, instantiated for preferences B and B′ that conform to omission: If 0
is preferred to 1 with respect to preference B, then by removing pairwise preferences
from B the cumulative score of 0 will be reduced at least as much as that of 1.
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5.29. Proposition. There exists a non-trivial positional scoring rule that is immune to
★-manipulation by omission, for all extensions ★.

But omission is the only manipulation type to which the cumulative scoring rule is
immune. Example 5.30 illustrates this.

5.30. Example. In the left preference below, we can increase the difference between
the cumulative scores of 0 and 1 by adding arrows from 0 to 2 and from 0 to 3.

0 1 2 3 0 1 2

In the right preference, we can flip the arrow connecting 0 and 1 to increase the
difference between 1 and 2. M

Figure 5.1 graphically depicts our observations. The existence of rules that are immune
to manipulation by flipping and not by addition remains a conjecture.

Omission
Addition

Flipping

•

trivial

• veto

• stepwise•cumulative

•domination

Figure 5.1: Some positional scoring rules, categorised with respect to their immunity
to manipulation by the different types of omission, addition, and flipping.

To sum up, in the social choice literature scoring rules are thought of as largely
manipulable. Here, we validate this idea. Positional scoring rules are very much
“all or nothing”: Either they prevent a huge amount of manipulation moves (for all
possible preference extensions) or they are clearly manipulable (again, for all preference
extensions, and using just two identical agents). It is an open question whether our
impossibilities can be circumvented outside the family of positional scoring rules, and
how those rules that are immune to manipulation can be characterised axiomatically.

5.3 Voting: The Iterative Case
Iterative voting features in settings where a collective decision is spread over multiple
rounds (Meir, 2017). A common example is the Doodle tool, allowing its users to
modify their reported preferences over time in light of new information they have
possibly acquired. The analysis of iterative voting within computational social choice
was initiated a decade ago by Meir et al. (2010) and has been a hot topic since then;
researchers have been especially concerned with those iterative processes that are based
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on scoring rules, such as plurality and antiplurality (Reyhani andWilson, 2012; Brânzei
et al., 2013; Lev and Rosenschein, 2016; Obraztsova et al., 2015a; Meir et al., 2017).10
Importantly, the literature to date in the area has been relying directly on the restrictive
assumption that all agents hold complete preferences.

It thus seems essential to consider voting models accommodating iteration and
incomplete preferences at the same time, and this is the topic of this section.11

We study agents that are strategic, meaning that after observing the submissions
of their peers, they modify their own preferences—one-by-one—in order to obtain a
better outcome. In line with previous literature (Lev and Rosenschein, 2016;Meir et al.,
2017), our agents aremyopic: they only attempt an improved outcome in the immediate
next round, without thinking further ahead. The main question we are interested in
concerns the problem of convergence, and is summarised as follows:

Do iterative voting processes with incomplete preferences reach stable
states, where no agent has an incentive (or is able) to change her preference?

Convergence properties are crucial for the design and effective use of collective decision
making tools: In their absence, it may be impossible to reach a final decision.

We recall two ways of generalising the :-approval rules for standard voting with in-
complete preferences (including the plurality and antiplurality rules) fromSection 3.3.1,
namely the :-approval family and the :-veto family. For the purposes of this section,
we will ensure a unique winning alternative in every round of the iterative process. In
order to do so, we pair the voting rules with a lexicographic tie-breaking rule that, given
an outcome ( ⊆ �, selects the alternative 0 when 0 ∈ (, the alternative 1 when 1 ∈ (
and 0 ∉ (, and so on. This pairing will always be implied in this section.

Aside from analysing the general convergence qualities of rules and comparing our
results to existing ones from the literature, we also investigate the impact of specific
types of preference change on convergence. We find that no rule is guaranteed to always
converge. This finding contrasts with seminal convergence results byMeir et al. (2010),
Lev and Rosenschein (2012), and Reyhani and Wilson (2012) regarding plurality and
antiplurality under linear preferences. Yet, all rules can attain a convergence assurance
under certain restrictions, which we characterise. Whenever convergence is achieved,
we evaluate the maximum number of rounds required for a stable state to emerge.

In the classical framework of iterative voting with linear orders, various other re-
strictions have been imposed to facilitate convergence results, typically concerning
behavioural characteristics of the agents like truth-biasedness, farsightedness, lazi-
ness, and incomplete information (Reijngoud and Endriss, 2012; Grandi et al., 2013;
Obraztsova et al., 2013; Meir et al., 2014; Rabinovich et al., 2015; Endriss et al., 2016).

10Exceptions exist; for instance, Endriss et al. (2016) and Koolyk et al. (2017) have also studied
voting rules that are not based on scoring functions.

11Dery et al. (2019) have also explored iterative voting under incompleteness. However, their work
assumes that it is not the actual preferences of the agents, but rather themechanism designer’s information
about these preferences, that is incomplete.
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These restrictions differ in nature from the ones we consider, as they cannot be easily put
in place by an external mechanism designer. Obraztsova et al. (2015b) have provided
a general account on how severe such restrictions actually need to be.

To illustrate the open questions that iterative voting with incomplete preferences
brings to the surface, let us see an example.

5.31. Example. Consider Ann and Bea, who hold the sincere preferences 0B 1B 2B 3
and 3 B 1 B 2 B 0, respectively. Suppose that we employ the 2-approval rule, and the
agents are only allowed to report complete preferences. In the initial sincere profile,
alternative 1 is the winner. However, Ann prefers alternative 0 over 1, which she can
make the winner by changing her preference to 0B 2B 1B 3 with her first manipulation
move. Then, Bea can make alternative 2 win with another manipulation move (the
second one), since she prefers 2 over 0. Ann subsequently has an incentive to return
to her sincere preference in order to make 0 win (that she prefers over 2), which will
be followed by the manipulation move of Bea, also returning to her sincere preference
to make 1 win. This process (depicted in Figure 5.2) would lead to a cycle, with
manipulation moves possibly being repeated ad infinitum.

Ann:

Bea:

0 1 2 3

3 1 2 0

0 2 1 3

3 2 1 0

1st

2nd

3rd

4th

Figure 5.2: A cycle when only complete preferences are allowed.

Suppose that Ann and Bea are granted the freedom to report incomplete preferences,
while they still hold the same (complete) preferences as above. In the initial sincere
profile, alternative 1 is winning under the 2-approval rule. Then, Ann can make her
most preferred alternative 0 win be placing 1 in a lower position, which she does in the
first manipulation round. Now, Bea needs to increase the score of alternative 2 (that
she prefers over 0), by placing it below at most one other alternative. She has two
ways for doing that: either by flipping her pairwise preference between 1 and 2, or by
simply omitting that preference. Suppose that she chooses the latter option. Ann can
subsequently report her sincere preference to make alternative 1 the winner (that she
prefers over 2). In the end, Bea does not have the possibility to improve the outcome
for herself after Ann’s last move, so the process will reach a stable state (Figure 5.3).

How agents change their preferences is thus crucial for convergence. M

Let us now set the stage for our formal results, by establishing the appropriate definitions.
To start, a process of iterative voting based on a voting rule � takes place in rounds.
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Alice:

Bob:

0 1 2 3

3 1 2 0

0 2 1 3

3
1
2

0

1st

2nd

3rd

Figure 5.3: Convergence when incomplete preferences are allowed.

Given a scoring function B and two alternatives G, H ∈ �, we write BC (G) <ℓ BC (H) when
either (8) the score of G is strictly smaller than the score of H in round C, or (88) the
score of G is the same as the score of H in round C, but the lexicographic tie-breaking
rule ranks H above G. For simplicity, we then say that the score of G is smaller than the
score of H, without referring to the tie-breaking rule.

The winner in every round is determined through �. We assume the following:

� In the very beginning (round 1), all agents are sincere. (assumption 1)

Assumption (1) is reasonable, since agents that have no information about the prefer-
ences of their peers have no incentive to submit an insincere preference (Reijngoud and
Endriss, 2012). In each subsequent round, an agent may change her reported preference
only if this will induce a better outcome for herself. Concretely, denoting by BC−8 the
profile of the rest of the group in round C, agent 8 with sincere preference B8 may change
her reported preference BC ∈ P(�) to BC+1 ∈ P(�) only if the following holds:

� (BC−8,BC+1) B8 � (BC−8,BC)

We also make the following assumption:

� When more than one agent can profit by changing their reported preference, the
agent that does so first will be the one that has her move registered. We impose
no further restriction on who this agent might be. (assumption 2)

Sincewe generally allow for incomplete preferences, an agent 8maymodify her reported
preference BC

8
∈ P(�) to a new one BC+1

8
∈ P(�) in three fundamental ways, or any

combination thereof, as defined in Section 5.2: by omission, addition, or flipping.
The iterative process based on a voting rule � converges in profile B when no agent

has an incentive (or is able) to further change her preference in B. The profile B is
then called a stable state.12 We also say that the rule � is guaranteed convergence if
it always reaches a stable state, starting from any sincere profile, for every number of
agents = from an infinite superpopulation, and of alternatives < from an infinite set of

12Stable states do not always constitute Nash equilibria in the classical game-theoretical sense, since
agents may still want to unilaterally deviate from them, without being allowed to do so.
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potential alternatives. Assumption (2) implies that whenwe say that an iterative process
is guaranteed to reach a stable state, this will include all possible orders in which the
agents might act. Straightforwardly, for voting rules that are immune to manipulation
in an one-shot procedure (recall Section 5.2), convergence is achieved in 0 rounds.

We study agents choosing to report preferences that constitute best responses: If
agent 8, who sincerely prefers 0 to 1, can make either 0 or 1 the winner by reporting a
new preference, then she will choose to make her preferred alternative 0 win.13 After
an agent has identified a best response, we additionally assume the following:

� The agent will not alter her reported preference more than necessary to achieve
her desirable outcome. (assumption 3)

We say that the agents’ moves are minimally diverging. Assumption (3), based on the
idea that changing one’s preference is costly, is necessary (yet not always sufficient) for
our convergence results. Specifically, flipping one’s preference on a pair of alternatives
will be taken to cost more than just removing or just adding the relevant pairwise
comparison. This can be externally imposed in application contexts. For example, in
an online poll the designer can force the participants to delete an already submitted
ranking between two alternatives before they are able to report a different ranking
regarding the same alternatives.14 Formally, for two preferences B,B′ and a pair of
alternatives (G, H) ∈ �2, we define �GH (B,B′) to be the cost of moving between the
two preferences with respect to the given pair (and we say that the two preferences
fully agree on (G, H) if they both rank G above (or below) H, or if they both deem G

incomparable to H; and they directly disagree on (G, H) if one of them ranks G above H,
while the other one ranks H above G):

�GH (B,B′) =


0 if B,B′ fully agree on (G, H)
1 if B,B′ fully disagree on (G, H)
1/2 otherwise

The total cost of moving from B to B′ is defined as follows:

� (B,B′) =
∑
(G,H)∈�2

�GH (B,B′)

If agent 8 with preference BC
8
in round C can make a preferable alternative G win by

reporting either preference B or preference B′, and if it also holds that � (BC
8
,B) <

� (BC
8
,B′), then agent 8 will report preference B.

Lastly, consider agent 8 with sincere preference B8, who modifies her reported
preference in round C in order to change the winner from FC to FC+1. We catergorise
the possible moves of the agent into two types, that are not necessarily disjoint:

13Best responses do not need to be unique; e.g., two incomparable alternatives may simultaneously
constitute best responses. In case of multiple best responses, the agents randomly select one of them.

14Agents may also find flipping more costly because lying in that fashion intuitively is more extreme.
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• Type 1: BC+1(FC) <ℓ BC (FC). That is, agent 8 decreases the score of FC to make
some other alternative the winner;

• Type 2: BC (FC+1) <ℓ BC+1(FC+1). That is, agent 8 increases the score of FC+1 to
make it the winner.

This section is based on possibly incomplete preferences that are strict and transitive.
Transitivity in particular is an essential assumption that we take on board here. If
we drop it, then several of our convergence results will cease to hold. To understand
why this might be important, consider for instance an agent who submits the pref-
erence {01, 12, 02}. If the agent needs to omit the pairwise comparison 02 from
her preference, then she will have to omit some other pair as well in order to keep
transitivity in place (thus increasing the cost of her action).

In the proofs of Propositions 5.32–5.52 that will be presented later on, given a profileB,
we will capture the scores of the< alternatives in � (in alphabetical order) with a vector
in R<, depicting the winning score in boldface.

5.3.1 The Approval Family
This section explores convergence for the approval family.

1-approval

We know that the plurality rule—the counterpart of 1-approval for linear orders—is
guaranteed to converge when the agents are only allowed to report complete preferences
(Meir et al., 2010). This result does not survive in richer settings of incompleteness. In
fact, there exists a counterexample for convergence of the iterative 1-approval process,
where the agents only alter a single pairwise comparison in their sincere preferences.

5.32. Proposition. If omission and addition are allowed, then the iterative 1-approval
process is not guaranteed to converge (independently of whether flipping is allowed).

Proof. Consider a sincere preference profile as follows:

Agent 1 : 2 B 3 B 0 B 1 Agent 5 : 3 B 2 B 1 B 0
Agent 2 : 1 B 3 B 2 B 0 Agent 6 : 3 B 1 B 2 B 0
Agent 3 : 0 B 3 B 1 B 2 Agent 7 : 2 B 1 B 3 B 0
Agent 4 : 1 B 2 B 3 B 0 Agent 8 : 0 B 1 B 2 B 3

The first seven agents will form a cycle; every time one of them makes a move, she will
be altering the position of the alternative ranked second in her sincere preference.



128 Chapter 5. Strategic Manipulation

(2, 2, 2, 2) (2, 2, 2, 3) (2, 2, 3, 3) (2, 2, 3, 4)

(2, 2, 3, 3)(2, 3, 3, 3)(2, 3, 4, 3)(2, 3, 3, 3)

(2, 3, 3, 4) (2, 4, 3, 4) (2, 3, 3, 4) (2, 3, 3, 3)

(2, 2, 3, 3)(2, 2, 2, 3)

13↑ 42↑ 23↑
13↓

61↑52↑42↓

33↑
71↑ 61↓ 23↓

71↓52↓

33↓

For example, consider agent 1 with sincere preference 2 B 3 B 0 B 1: We write “13↑”
when agent 1 moves alternative 3 on top by omission to make 3 win instead of 0, and
“13↓” when she removes alternative 3 from the top by addition and submits her sincere
preference to make 2 win, as illustrated below:

2 3 0 1

2

3

0 1
13↑

13↓

In the sincere preference of agent 1, alternative 2 gets 1 point and all other alternatives
get 0 points; in the manipulated preference, alternatives 2 and 3 get 1 point each and
all other alternatives still get 0 points. �

We can, though, obtain convergence if we restrict the ways the agents are allowed to
change their preferences. Our proofs (and certain proofs in later parts of this paper
too) are akin to those of Reyhani and Wilson (2012) for the plurality and antiplurality
rules under linear preferences, showing that the set of potentially winning alternatives
decreases along a path of best responses. Some of the ideas we develop—for example
the fact that after a flippingmove the non-winning alternative loses its chance to become
a winner in the future—also featured in the original work of Meir et al. (2010).

Some of our results in this section will be stated for (< − 1)-veto in parallel with 1-
approval (and will be called upon later on, in the veto section), whenever the reasoning
for the two rules is analogous.

Proposition 5.34 will rely on the assumptions of transitivity and of minimal diver-
gence, while this will not be the case for Proposition 5.35.

Both in Proposition 5.34 and in Proposition 5.35, we prove that the agents will
only perform moves of type 2, and convergence is a logical consequence of this
(in the former case, because omission moves can be done finitely many times; in
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the latter case, because making a new alternative the winner can be done finitely
many times). But the underlying reasons for our proofs’ validity are very different
(linked to either the absence of the ability or the absence of the interest to make the
relevant manipulation moves, respectively). On the one hand, when addition is not
allowed, the agents would only want to perform a move of type 1 by flipping, but all
relevant moves would violate transitivity and would thus not be admissible. On the
other hand, when omission is not allowed, the agents’ incentives will always concern
moves of type 2, and their desired actions will only employ flipping.

We will often use Lemma 5.33, which is a consequence of the definitions of our rules.

5.33. Lemma. The first manipulationmove of every agent under the iterative 1-approval
process or the iterative (< − 1)-veto process will be of type 2.

5.34. Proposition. If addition is not allowed, 1-approval is guaranteed to converge.

Proof. We will show by induction that if addition is not allowed, then an arbitrary
agent 8 with sincere preference B8 will also never employ flipping. She will be changing
her submitted preference only by omission, making a new alternative the winner each
time. Since this can happen for at most finitely many rounds, convergence follows.

Our induction basis is established by Lemma 5.33 (a move of type 2 will be done by
omission, due to the minimal divergence assumption). Suppose now that the statement
holds for the : th time agent 8 changes her preference. We will show that it also holds
for the (: + 1)th time she changes her preference. Say this happens in round C.

Case 1: Agent 8’s move in round C is of type 2 (and not of type 1). Then, omission
will be employed as for round 1, and a new alternative will be placed on top.

Case 2: Agent 8’s move in round C is of type 1, preventing an alternative H from
winning instead of a superior alternative G. Since addition is not allowed, the only way
that H can have its score decreased is when H is a top alternative in BC

8
and agent 8 flips

some pairwise preference HBC
8
I to IBC+1

8
H. Note that G B8 H and HB8 I (because up until

round C the agent has only omitted pairwise preferences), and GB8 I by transitivity. Since
in round C alternative I is on top for agent 8, GBC

8
I holds because the induction hypothesis

tells us that only pairwise comparisons that aim at making a specific alternative on their
dominated side the winner have been omitted. Hence, G BC+1

8
I also holds because the

agents perform minimal changes on their submitted preferences. But then, G BC+1
8
I and

I BC+1
8

H imply that G BC+1
8

H must be the case, by transitivity. This is impossible, since
H is a top alternative in round C and addition is not allowed. �

5.35. Proposition. If omission is not allowed, then the iterative 1-approval process
and the iterative (m-1)-veto process are guaranteed to converge.

Proof. We will prove the following claim: Every time an agent changes her preference,
she promotes a winning alternative that is different from those she has promoted before.
Because the set of alternatives � is finite, convergence follows.
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Suppose that agent 8 is the first to change her reported (sincere) preference B8 in
round 1. By Lemma 5.33, her move will be of type 2, aiming at increasing the score of
some alternative H. For the 1-approval rule, this move will be done by flipping: Agent 8
will obtain a new pairwise preference with H B2

8
G, where G was a top alternative in B8

that was not winning. For the (< − 1)-veto rule, the move may also be done by flipping
(which will concern alternatives G and H as described for 1-approval), or it may be done
by addition (which means that H was a top alternative in B8). We show the following:

(8) Every alternative that agent 8 sincerely places above H has no chance of winning
in later rounds unless the score of the winner decreases.

We also know that the following holds:

(88) If no better alternative can win, agent 8 will have no incentive to use a type-1
move to withdraw H from the winning position.

Condition (i) is clearly true for alternative G (if such G exists), which loses one point
after 8’s move; it is also true for every non-top alternative I such that I B8 H (if such I
exists), since I could not become a winner in round 2 (we know that because agent 8
submitted a best response), and the score of I remained the same after 8’s move. Lastly,
suppose that there exists a top alternative A such that A B8 H and not H B2

8
A. As omission

is not allowed, it should also hold that A B2
8
H, which is impossible since our rules must

assign H score 1 in round 2.
Now, as is the case for agent 8, every agent’s first move will be of type 2. So the

winning score will keep increasing until someone—say agent 9—modifies her reported
preference for the second time. Suppose that agent 9 made alternative D win with her
first move. Because of (ii), agent 9 will also employ flipping for her second move that
will be of type 2, making a new alternative @ ≠ D win.

Continuing with this reasoning, we see that each agent who performs a second move
will promote another alternative than the one she promoted in her first move; the same
will be true for everyone who performs a third move, and so on. �

5.36. Corollary. The iterative 1-approval process is guaranteed to converge if and
only if omission is not allowed or addition is not allowed.

The proofs of Proposition 5.34 and Proposition 5.35 show that when omission (but not
addition) is allowed or when addition and flipping (but not omission) are allowed, a
stable state will be reached by the iterative 1-approval process after at most =< rounds:
Every time an agent changes her preferences, she moves a new alternative on top to
make it win. When only addition is allowed, every sincere profile is a stable state.



5.3. Voting: The Iterative Case 131

k-approval, for 1 < k < m − 1

By adjusting the non-convergence example for the 1-approval process under omission
and addition, we construct one for :-approval, where 1 < : < < − 1.

5.37. Proposition. If omission and addition are allowed, then the iterative :-approval
process is not guaranteed to converge (independently of whether flipping is allowed).

Proof. Fix some : ∈ {2, . . . , < − 2}, and consider alternatives 41, . . . , 4:−1. In the
profile provided in the proof of Proposition 5.32, place all new alternatives immediately
after the top alternative of each agent. For example, for : = 3 the preference of agent 1
becomes 2 B 41 B 42 B 3 B 0 B 1. If needed, add some more agents to guarantee that
the new alternatives have lower score than all other alternatives in the profile. �

Moreover, if we forbid omission, we find a non-convergence example for the iterative
:-approval process where flipping is employed in literature (specifically, in the proof
of Theorem 4, Part 1 of Lev and Rosenschein, 2016). Proposition 5.38 is thus true.

5.38. Proposition. If flipping but not omission is allowed, then the iterative :-approval
process is not guaranteed to converge (independently of whether addition is allowed).

The conditions under which convergence of :-approval is guaranteed aremore elaborate
than those related to 1-approval. Particularly, in Proposition 5.39 we need to precisely
describe the combinations of all allowed types ofmoves, as opposed to simply excluding
addition (Proposition 5.34) or omission (Proposition 5.35).

5.39. Proposition. If omission and flipping are allowed, but addition is not, then the
iterative :-approval process is guaranteed to converge, for all 1 < : < < − 1.

Proof. Suppose that a cycle exists, aiming for a contradiction. The agents that
participate in it will not employ omission, since such moves cannot be repeated when
addition is not allowed. Then, all moves in the cycle will employ flipping. Moreover,
all moves in the cycle will be of type 1: Indeed, flipping in some round C of the cycle
will decrease the score of some alternative 0 in order to make another alternative win.
If 0 ≠ FC , then the new winner could simply be obtained by omission (because of
minimally diverging moves). So 0 = FC , which is the definition of type 1.

Thus, in every round of the cycle the score of the winning alternative strictly
decreases, and some alternative has its score increased by one point. Moreover, there
must exist at least one alternative H that has its score increased an infinite number of
times (since the cycle includes infinitely many steps, but the alternatives are finitely
many). Then, alternative H must also have its score decreased an infinite number of
times (otherwise it would be impossible for the score of the winner to always decrease).
More specifically, every round C of the cycle where H has its score decreased must be
followed by some round C′ > C where H has its score increased.
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Consider such rounds C and C′, where H does not have its score altered in rounds
between C and C′. For all G ∈ � \ {H}, the following two conditions hold:

BC+1(G) 6ℓ BC+1(FC+1) <ℓ BC (FC)

BC (FC) = BC (H) = BC+1(H) + 1

Alternative H may have its score increased in round C′ only if it is not a winner in C′.
Then, we have the following:

BC ′ (G) 6ℓ BC ′ (FC ′) 6 BC (FC+1) <ℓ BC (FC) = BC ′ (H) + 1

Also, it holds that BC ′+1(G) 6ℓ BC ′ (G), for all G ∈ � \ {H}. This means that if H has
its score increased in round C′ (that is, BC ′+1(H) = BC ′ (H) + 1), H will be the winner in
round C′ + 1; but the agent can achieve this simply by increasing the score of H by one
point, without changing the score of other alternatives. Given minimally diverging
moves, this should happen by omission, which implies a contradiction. �

Keeping in mind that if only omission or only addition is allowed, then convergence
follows straightforwardly, we can state Corollary 5.40.

5.40. Corollary. The iterative :-approval process is guaranteed to converge, for all
1 < : < < − 1, if and only if omission and addition are not allowed simultaneously,
and flipping is allowed only when omission is allowed as well.

Interestingly, under the assumption of minimally diverging moves, allowing more
freedom to the agents—that is, omission on top of flipping—favours convergence.

When flipping and omission (but not addition) are allowed, iterative :-approval will
reach a stable state after at most =2<2 rounds: Every agent performs omission at most
< times, each of which with the purpose of increasing the score of a new alternative;
between every two of these =< steps, at most =< flipping rounds materialise, where
the score of the winner decreases and the score of some non-winner increases.

When only omission or addition is allowed, convergence occurs after at most
=< rounds: Every agent’s move consists of changing the score of a new alternative.

(m − 1)-approval

Probably not surprisingly, we also find a counterexample for convergence also concern-
ing the (< − 1)-approval process.

5.41. Proposition. If flipping but not omission is allowed (< − 1)-approval is not
guaranteed to converge (independently of whether addition is allowed as well).
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Proof. Consider a sincere preference profile as follows:

Agent 1 : 2 B 0 B 1 B 3 B 4 Agent 5 : 1 B 3 B 0 B 2 B 4
Agent 2 : 3 B 2 B 1 B 0 B 4 Agent 6 : 1 B 2 B 3 B 0 B 4
Agent 3 : 0 B 3 B 1 B 2 B 4 Agent 7 : 0 B 2 B 3 B 4 B 1
Agent 4 : 1 B 0 B 2 B 3 B 4

The first six agents are going to participate in a cycle, starting from the upper left corner
below; every time one of them makes a move, she will be altering the position of the
alternative ranked second in her sincere preference.

(7, 6, 7, 7, 1) (6, 6, 7, 7, 2)

(6, 6, 6, 7, 3) (6, 6, 6, 6, 4)

(5, 6, 6, 6, 5) (5, 6, 6, 7, 4)

(5, 6, 6, 6, 5)

(5, 6, 7, 6, 4)(5, 6, 6, 6, 5)(6, 6, 6, 6, 4)(6, 6, 6, 7, 3)

(6, 6, 7, 7, 2)

10↓
22↓

33↓
40↓

33↑
53↓

22↑
62↓10↑53↑

62↑

40↑

For example, consider agent 1 with sincere preference 2 B 0 B 1 B 3 B 4. The first time
that agent 1 performs a manipulation act, we write “10↓” when she moves alternative 0
at the bottom by flipping and submits the (minimally diverging) preference 2 B 1 B
3 B 4 B 0 to prevent 0 be the winner instead of 2. Then, we write “10↑” when she
removes alternative 0 from the bottom to make 0 win instead of 1, submitting the
preference 2 B 1 B 3 B 0 B 4. Finally, when agent 1 needs to decrease the score of 0
again (for which we also write “10↓”), she will submit the preference 2B1B3B4B0. In
the cycle, she will keep alternating between the two insincere preferences (see below).

2 0 1 3 4 2 1 3 4 0

2 1 3 0 4

10↓

10↑10↓

For all preferences of agent 1, all alternatives get 1 point each except for the bottom
alternative that gets 0 points. �

The non-convergence result for (<−1)-approval when only flipping is allowed (even
when the agents all hold linear orders) contrasts with the fact that the antiplurality
rule in standard voting always converges (Lev and Rosenschein, 2016). This happens
because in the latter framework it is assumed that when an agent changes her reported
preference, she always ranks the current winner in the lowermost position, while this
is not the case under our minimal divergence assumption.
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It is not difficult to convince ourselves that when all three types of omission, addition,
and flipping are allowed, the counterexample in the proof of Proposition 5.41 continues
to constitute a non-convergence case (where, for example, agent 1 will first employ
flipping and then will alternate between increasing the score of 0 by omitting the pair
(4, 0) and decreasing the score of 0 by addition).

Once more, we see that when addition is not permitted, then allowing for omission
on top of flipping is key to convergence (Proposition 5.43).

5.42. Proposition. If omission and flipping are allowed, but addition is not, then the
iterative (< − 1)-approval process is guaranteed to converge.

Proof. The proof is identical to that of Proposition 5.39, regarding :-approval. �

When flipping and omission are allowed, but addition is not, then convergence will be
achieved after at most =2<2 rounds, as we argued is the case for :-approval.

Furthermore, it is easy to see that when omission and addition are both allowed
but flipping is not, convergence will be reached in at most = rounds: Every agent may
only add a pairwise preference once, to reduce the score of an alternative by placing
it at the bottom of a linear order (and when only omission or only addition is allowed,
convergence will be reached after at most 0 and = rounds, respectively).

5.43. Proposition. If omission and addition are allowed, but flipping is not, then the
iterative (< − 1)-approval process is guaranteed to converge.

Combining our observations, we now know what the conditions characterising conver-
gence for the (< − 1)-approval rule are.

5.44. Corollary. The iterative (< − 1)-approval process is guaranteed to converge if
and only if flipping is not allowed, unless omission but not addition is allowed as well.

5.3.2 The Veto Family
This section examines convergence for the veto family.

1-veto

For the 1-veto rule, we find a similar (in terms of the score-changes involved) coun-
terexample as for (< − 1)-approval. However, different types of manipulation moves
play a role now (specifically, omission and addition instead of flipping).

5.45. Proposition. If omission and addition are allowed, then the iterative 1-veto
process is not guaranteed to converge (independently of whether flipping is allowed).
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Proof. Consider a sincere preference profile as follows:

Agent 1 : 2 B 0 B 1 B 3 Agent 6 : 1 B 2 B 3 B 0
Agent 2 : 3 B 2 B 1 B 0 Agent 7 : 0 B 2 B 3 B 1
Agent 3 : 0 B 3 B 1 B 2 Agent 8 : 0 B 2 B 3 B 1
Agent 4 : 1 B 0 B 2 B 3 Agent 9 : 0 B 2 B 3 B 1
Agent 5 : 1 B 3 B 0 B 2

The first six agents are going to participate in a cycle, starting at the upper left corner
below; every time one of them makes a move, she alters the position of the alternative
ranked second in her sincere preference.

(7, 6, 7, 7) (6, 6, 7, 7)

(6, 6, 6, 7) (6, 6, 6, 6)

(5, 6, 6, 6) (5, 6, 6, 7)

(5, 6, 6, 6)

(5, 6, 7, 6)(5, 6, 6, 6)(6, 6, 6, 6)(6, 6, 6, 7)

(6, 6, 7, 7)

10↓
22↓

33↓
40↓

33↑
53↓

22↑
62↓10↑53↑

62↑

40↑

For example, consider agent 1 with the sincere preference 2 B 0 B 1 B 3. The first time
that agent 1 performs a manipulation act, we write “10↓” when she moves alternative 0
to the bottom by omission and submits the new preference {(2, 0), (2, 1), (1, 3), (2, 3)},
to make 2 win instead of 0. Then, we write “10↑” when she removes 0 from the bottom
by adding the pair (0, 3), to make 0 win instead of 1. When she needs to decrease the
score of 0 again, agent 1 will just omit the pair (0, 3) from her preference. In the cycle,
she will alternate between the two insincere preferences. See below for an illustration.

2 0 1 3 2

0

1

3

2

0

1

3

10↓

10↓ 10↑

In all preferences above, alternative 3 gets 0 points and alternatives 2 and 1 get 1 point
each. What changes is that alternative 0 alternates between getting 1 and 0 points. �

When flipping but not omission is allowed, a similar counterexample to that in the
proof of Proposition 5.45 can be constructed, in which only flipping is employed. That
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counterexample makes use of an additional alternative that will be moved back and
forth from every agent’s last position in the linear preference and will collect very low
total score by all agents. Hence, we can provide Proposition 5.46.

5.46. Proposition. If flipping but not omission is allowed, then the iterative 1-veto
process is not guaranteed to converge (independently of whether addition is allowed).

Again, we will study whether convergence can be guaranteed under further restrictions
on the agents’ moves.

5.47. Proposition. If flipping and omission (but not addition) are allowed, then the
iterative 1-veto process is guaranteed to convergence.

Proof. Under the conditions of the statement, all moves will be of type 1 and will only
use omission (the details simulate the proof of Proposition 5.34). �

Knowing that if only omission or only addition is allowed, then convergence will always
be achieved, we obtain Corollary 5.48.

5.48. Corollary. The iterative 1-veto process is guaranteed to converge if and only
if omission and addition are not allowed simultaneously, and flipping is allowed only
when omission is allowed as well.

Convergence for 1-veto can be reached in at most =< roundswhen flipping and omission
(but not addition) are allowed or when only omission is allowed: Each agent will change
her preference at most < times, to prevent a new alternative from being the winner.
When only addition is allowed, all sincere profiles constitute stable states.

k-veto, for 1 < k < m − 1

The analysis for :-veto draws inspiration from both our work regarding 1-veto and that
regarding :-approval. First, all counterexamples for 1-veto can be reconstructed with
some additional dummy alternatives, so that the relevant : comes into play.

5.49. Proposition. If omission and addition are allowed simultaneously (indepen-
dently of whether flipping is allowed), or if flipping is allowed without omission (in-
dependently of whether addition is allowed), then the iterative :-veto process is not
guaranteed to converge.

Concerning the positive results, if only omission or only addition is allowed, then
convergence easily follows in at most <= steps. Moreover, we again find that allowing
omission together with flipping is advantageous to convergence. The relevant proof
is close to the proof of Proposition 5.39 regarding :-approval, although several of the
technical tricks employed in the two cases are different—importantly, both proofs make
explicit use of the minimal divergence assumption.
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5.50. Proposition. If flipping and omission (but not addition) are allowed, then the
iterative :-veto process is guaranteed to converge.

Proof. Suppose that a cycle exists, aiming for a contradiction. The agents that
participate in it will not employ omission, since such moves cannot be repeated when
addition is not allowed. Then, all moves in the cycle will employ flipping. Moreover, all
moves in the cycle will be of type 2: Indeed, flipping in some round C of the cycle will
increase the score of some alternative 0 and decrease the score of some alternative 1, in
order to make 0 the winner. If 0 ≠ FC+1, then the new winner could simply be obtained
via decreasing the score of 1 by omission (because of minimally diverging moves). So
0 = FC+1, which is the definition of type 2.

Thus, in every round of the cycle the score of the winning alternative strictly
increases, and some alternative has its score decreased by one point. Moreover, in
order for the score of the winner to always increase, there must exist at least one
alternative H that has its score increased infinitely many times by a single agent 8 (since
the cycle includes infinitely many steps, but the alternatives and the agents are finitely
many). Then, every round C of the cycle where agent 8 decreases the score of H must
be followed by some round C′ > C where agent 8 increases the score of H (in order to be
possible for 8 to decrease and increase the score of H again).

Since alternative H has its score decreased in round C and the score of the winner
strictly increases in the rounds following C, we know that H cannot become a winner
after round C, including round C′ + 1. Therefore, agent 8 would have no incentive to
increase the score of H in round C′, and we reached a contradiction. �

We know that in every sequence of flipping steps, all moves will be of type 2, constantly
making new alternatives win. Such a sequence can take at most<= steps. Furthermore,
an agent 8 may make use of omission in some round C in order to decrease the score of
an alternative H and make a different alternative win. Suppose that there exists some
alternative G such that GBC

8
H (if such an alternative does not exist, then it will apparently

not be possible to change the score of H by flipping in the future). Note that for a decrease
in the score of H to be realisable, there must also exist some suitable alternative I such
that H BC

8
I (and thus G BC

8
I by transitivity). After the agent’s omission move that will

be minimally diverging, it will still be the case that G BC+1
8

H and G BC+1
8

I, but not that
H BC+1

8
I. Since we assumed that addition is not allowed, it will not be possible for the

agent to flip the pairwise preference between G and H to change the score of H in the
future. Hence, the score of every alternative can be changed via omission at most =
times. In total, when flipping and omission are allowed, convergence of the iterative
:-veto process will be reached in at most 2<= steps.

5.51. Corollary. The iterative :-veto process is guaranteed to converge, for all 1 <
: < < − 1, if and only if omission and addition are not allowed simultaneously, and
flipping is allowed only when omission is allowed as well.
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(m − 1)-veto

For (< − 1)-veto, we identify a counterexample that in terms of scores is similar to the
one for 1-approval, but in which the agents employ all three types of addition, omission,
and flipping (as opposed to 1-approval, where only omission and addition were used).

5.52. Proposition. When addition, omission, and flipping are all allowed, then the
iterative (< − 1)-veto process is not guaranteed to converge.

Proof. Consider a sincere preference profile as follows (where (2B3B0), 1 abbreviates
{(2, 3), (2, 0), (3, 0)}):

Agent 1 : (2 B 3 B 0), 1 Agent 5 : (3 B 2 B 1), 0
Agent 2 : (1 B 3 B 2), 0 Agent 6 : (3 B 1 B 2), 0
Agent 3 : (0 B 3 B 1), 2 Agent 7 : (2 B 1 B 3), 0
Agent 4 : (1 B 2 B 3), 0 Agent 8 : (0 B 1 B 2), 3

The first seven agents are going to participate in a cycle; every time one of themmakes a
move, she alters the position of the alternative ranked second in her sincere preference.

(0, 0, 0, 0) (0, 0, 0, 1) (0, 0, 1, 1) (0, 0, 1, 2)

(0, 0, 1, 1)(0, 1, 1, 1)(0, 1, 2, 1)(0, 1, 1, 1)

(0, 1, 1, 2) (0, 2, 1, 2) (0, 1, 1, 2) (0, 1, 1, 1)

(0, 0, 1, 1)(0, 0, 0, 1)

13↑ 42↑ 23↑
13↓

61↑52↑42↓

33↑
71↑ 61↓ 23↓

71↓52↓

33↓

For example, consider agent 1 with sincere preference (2 B 3 B 0), 1. In the first
manipulation act of agent 1, we write “13↑” when she moves alternative 3 on the
top by flipping and addition and submits the preference {(3, 2), (2, 0), (3, 0), (3, 1)}
to make 3 win instead of 0. We write “13↓” when she removes alternative 3 from
the top by omission and submits the preference {(3, 2), (2, 0), (3, 0)} to make 2 win.
When agent 1 needs to increase the score of 3 again, she will simply add back the
pairwise preference (3, 1). In the cycle, agent 1 will alternate between the two insincere
preferences, as depicted below.
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2
3

0 1 2
3

0 1

2
3

0 1

13↑

13↑ 13↓

When agent 1 places alternative 3 on top, then 3 gets score 1 and all other alternatives
get score 0; in the other preferences of agent 1, all alternatives get score 0. �

Strikingly, the iterative (< − 1)-veto process is not guaranteed convergence only if
omission, addition, and flipping are all allowed.

5.53. Proposition. If flipping is not allowed, (< − 1)-veto is guaranteed to converge.

Proof. An agent changes her preference at most once, by addition, increasing the score
of one alternative she finds inferior to no other alternative. Convergence follows. �

5.54. Proposition. If addition is not allowed, (< − 1)-veto is guaranteed to converge.

Proof. Only agents who sincerely hold a linear preference order (which they report in
the first round) can make a move, incorporating flipping—a convergence proof can be
obtained analogously to the proof of Proposition 5.35. �

5.55. Proposition. If omission is not allowed, (< − 1)-veto is guaranteed to converge.

Proof. Convergence is implied by Proposition 5.35. �

5.56. Corollary. The iterative (< − 1)-veto process is guaranteed to converge if and
only if omission, addition, and flipping are not simultaneously allowed.

If only omission is allowed, convergence is immediate (holds after 0 rounds) for (<−1)-
veto, and if addition but no flipping is allowed, convergence requires at most = rounds.
Finally, if flipping is allowed (possibly together with addition or omission), the proof
of Proposition 5.35 shows that we will have convergence after at most <= rounds.

Figure 5.4 provides a graphical summary of our findings. Evidently, our work raises
plenty of follow-up questions: Will convergence results be affected if we consider arbi-
trary initial profiles (instead of only sincere ones), or random (instead of lexicographic)
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Omission Addition

Flipping

all all

all
1-approval
(< − 1)-veto

1-approval
(< − 1)-veto

(< − 1)-approval
(< − 1)-veto

Figure 5.4: Convergence of approval and veto rules. For addition (omission) only, all
rules converge. For omission and addition, (< − 1)-approval/veto converges because
flipping is needed for an agent to want to make a move twice. For flipping and omission,
convergence is guaranteed for all rules besides (< − 1)-approval because omission can
do the same job as flipping, but is preferable due to being cheaper, while it cannot be
repeated. For flipping and addition, “plurality-like” rules converge because the score
of the winning alternative will constantly increase, reducing the set of future winners.
Notably, (< − 1)-veto converges under any condition where other rules converge too.

tie-breaking rules? Are there other sensible restrictions that we can impose to guar-
antee convergence? How hard (computationally) is it to calculate minimally diverging
moves? What about the quality of the obtained stable states in social terms?15 Finally,
what other rules for incomplete preferences would be of interest in an iterative setting,
and what if the agents can also make simultaneous updates?16

Questions explored in this section, in the context of voting, can also be asked within
judgment aggregation (for a start regarding the complete case, see Terzopoulou and
Endriss, 2018). The concepts of omission, addition, and flipping make much sense
there too, and iterationmight give rise to intriguing observations for various aggregation
processes. However, the approval and the veto families do not have direct counterparts
in judgment aggregation, so we do not foresee specific results in that territory.

15Related issues were addressed by Brânzei et al. (2013) in standard voting with complete preferences.
16Laslier (2009) studied simultaneous moves in approval voting.
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5.3.3 Simulations
An important limitation of our theoretical results of Sections 5.3.1 and 5.3.2 is that they
only speak about guarantees for convergence; said differently, the speak about about
convergence that is achieved starting from all possible profiles. Analogous guarantees
are reflected by results on the strategyproofness of aggregation rules, requiring that
agents never have an incentive to misrepresent their preferences. When guarantees
cannot be given, we do not yet provide any information about how often convergence
is achieved. Furthermore, when a stable state is reached, we only know the maximum
number of rounds needed to arrive to it—in practice, convergence can be much faster.

In this section, we complement our previous analytical results with observations
that we have attained through computer simulations in Python. As we will see, con-
vergence is essentially always achieved by the voting rules of our interest, even if we
allow all possible types of manipulation (still, bearing in mind the minimal divergence
assumption). This means that all stable states constitute Nash equilibria, where no agent
can unilaterally benefit from changing her reported preference. For both the approval
family and the veto family (particularly for : ∈ {1, < − 1}), we explore:

• the frequency of non-manipulable sincere profiles;

• the frequency of manipulable profiles where at the end of the iterative process,
when convergence is achieved, the winner is the same as that beforemanipulation;

• the number of rounds needed for a stable profile to be reached;

• the quality of the winner, in social terms, in sincere vs. in equilibrium profiles.

The first item above is independent of iterative voting. A number of previousworks have
asked the same question for voting with complete preferences, but the corresponding
problem under incomplete preferences is significantly underexplored.

For profiles that consist of linear orders, Kelly (1993) conducted an experimen-
tal analysis for resolute voting rules satisfying various axiomatic properties (such as
anonymity, neutrality, and a version of monotonicity) and found that the Borda rule’s
performance is amongst the very best ones (although the rule has been commonly
criticised in terms of its susceptibility to manipulation). Kelly’s experiments relied on
profiles drawn uniformly at random, with at most five alternatives and three agents.

Nitzan (1985) also studied the Borda rule, as well as the plurality rule, for profiles
of linear orders with = 6 90. For both these rules, Nitzan showed that the probability
of them being vulnerable to individual strategic manipulation is always greater than
0.165, 0.284, and 0.379 for three, four, and five alternatives, respectively.

In an iterative setting, Grandi et al. (2013) considered positional scoring rules
for profiles of linear orders too, and conducted simulations showing that iterative
manipulation under certain restrictive types of moves (that are easy to compute from
the agents’ perspective) in general yields a positive increase in the Condorcet efficiency
of the rules (i.e., in the proportion of profiles where an alternative that wins a majority
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competition over all other alternatives is elected). A positive increase was also observed
with respect to the group’s social welfare, assuming that an agent 8’s cardinal utility
given an alternative 0 is the Borda score that 0 gets in 8’s sincere preference. Grandi et al.
generated profiles using the impartial culture (IC) assumption (implying a uniformly
random distribution) and versions of the urnmodel. Similar observations were obtained
by Reijngoud and Endriss (2012).

Meir et al. (2014) proposed the local-dominance theory of voting equilibria, sug-
gesting a type of restrictions for the agents’ manipulation moves that constitute a subset
of their best responses. Using = ∈ {10, 20, 50} and < ∈ {3, . . . , 8}, they showed that
the iterative plurality process quickly converges to an equilibrium starting from sincere
profiles, and that the quality of the winner (again based on Borda utilities) generally
improves compared to sincere voting for the IC assumption, but not for the urn model.

The IC assumption, which is employed by ample papers on voting simulations, is
investigated in depth by Nurmi (1992). Broadly speaking, this assumption is useful
when one thinks of the space of all possible profiles and is interested in finding the
probability that a certain profile satisfies a given property—by sampling sufficiently
many profiles, the desired probability is approximated. Moreover, the IC assumption is
known to provide some “worst-case” guarantees for the observations obtained through
simulations; for instance, it maximises the probability of cyclic collective preferences
to occur under the pairwise majority rule (Tsetlin et al., 2003). Yet, people’s votes in
the real world cannot be expected to follow a uniform distribution.

In order to capture a certain kind of correlation between the preferences in a group,
the literature has considered variations of the Polya-Eggenberger urn model—the one
employed by Meir et al. (2014) works as follows: For a given < number of alternatives
and a parameter ℓ, we start with an urn containing all possible preferences that an agent
may hold (for linear orders, there are <! such preferences in total—for partial orders,
there are many more). We select ℓ random preferences from the urn, which will be the
“leading” preferences. We make enough copies of each one of those preferences and
place all of them back in the urn, so that in the end each leading preference constitutes

1
ℓ+1 the urn. Each agent then chooses a random preference from the urn.

For every combination of = ∈ {10, 20, 50} and < ∈ {3, 4, 5}, we generate 200
profiles under the IC assumption and the aforementioned urn model with ℓ = 2.17

17However, five alternatives seem to be one too many for our program to terminate under the 1-veto
rule, so we skip that case (this does not prohibit us from comparing our experimental observations with
our analytical results, since cycles were already observed under the 1-veto rule for four alternatives, in
the proof of Proposition 5.45). Interestingly, this problem does not arise under the 1-approval rule, nor
under the (< − 1)-approval rule, which brings to the surface further, computational differences between
the approval and the veto families. The difficulty linked to the iterative 1-veto process stems from the
fact that the manipulation moves of the agents under that rule will often be very costly, which will make
it harder, and slower, for our program to compute them. This can be seen if we consider an agent 8 that
reports a preference 4 B8 3 B8 2 B8 1 B8 0 in round C, and suppose that all alternatives have the same total
score in that round (so 0 wins, because of the lexicographic tie-breaking rule). Then, agent 8 must reduce
the score of three alternatives, 1, 2, and 3, in order to make her favourite alternative win, which would
induce cost 8 by omission. Under the plurality rule on the other hand, such situations do not emerge.
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We also explicitly generate profiles of linear orders, since in our theoretical results of
Section 5.3 we commonly found that cycles were formed when iteration started from
sincere profiles of complete preferences—exploring such profiles through extensive
simulations will give us a better idea about the role that completeness plays for con-
vergence. Agents with complete preferences will straightforwardly have more possible
incentives for manipulation, caused by the larger number of alternatives they rank.

Non-manipulable Sincere Profiles. A profile is manipulable under an aggregation
rule if some agent has an incentive to change her preference and steer the outcome to-
wards a winner that she prefers. Figure 5.5 depicts our experimental results concerning
the (quite high) frequency of sincere profiles that are not manipulable, for < = 4.

Figure 5.5: Frequency of non-manipulable sincere profiles, incomplete (‘incom’) and
complete (‘com’) ones, for = ∈ {10, 20, 50}.

Note that the difference with respect to the frequency of manipulation between 1-
approval and (< − 1)-veto is insignificant under complete profiles, as the two rules will
initially coincide and differ only in an apparently negligible manner during manipula-
tion. We confirm three natural hypotheses: that manipulable profiles are rarer under
the 2urn distribution than under the IC one,18 as well as that complete sincere profiles
and larger numbers of alternatives are detrimental to manipulability.

18Surprisingly, 2urn-drawn profiles are more manipulable than IC-drawn ones for (< − 1)-approval.
This contrast will further stand out later, when we talk about convergence speed—we will address it then.
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Starting with incomplete profiles, we see an ordering with respect to the frequency
of manipulability under the different rules for both the 2urn and the IC models—from
less frequently manipulable to more frequently manipulable, the rules are: 1-approval,
1-veto, (< − 1)-veto, and (< − 1)-approval. Moreover, the difference between 1-
approval and (<−1)-approval (and similarly between 1-veto and (<−1)-veto) is larger
under incomplete initial profiles than under complete ones—possibly because there is
a higher chance for ties when : = < − 1 under incomplete profiles.

Interestingly, we also observe that the number of non-manipulable profiles increases
with the size of the group, across rules, distributions, and numbers of alternatives: Since
the rules we investigate assign the same score to many alternatives in a given preference
(often to all of them), they can be expected to produce many ties in small groups,
implying that several agents may be able to make their favourite alternatives win.

Winner Invariance. Figure 5.6 illustrates our results regarding winner invariance for
< = 4, but our observations below are not affected by the number of alternatives.

Figure 5.6: Frequency of winner-invariant profiles, incomplete (‘incom’) and complete
(‘com’) ones, amongst all those that are manipulable, for = ∈ {10, 20, 50}.

Whenmanipulation cannot be avoided in a given profile, it would be comforting to know
that allowing the agents to manipulate in rounds has no final impact on the winner. We
explore how often such a scenario arises— where the winner in equilibrium coincides
with the sincere winner—bringing out positive news in various cases.
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Under all rules and distributions, winner invariance is in general achieved more
frequently as the group grows larger and for complete sincere profiles: Since we saw
that large groups encourage non-manipulability while complete profiles damage it, we
cannot deduce any direct connection between winner invariance and manipulability.

For complete initial profiles, around 50% of the iteration processes end up not
changing the winner, and plurality-like rules (i.e., 1-approval and (<−1)-veto) perform
better than antiplurality-like ones (i.e., 1-veto and (< − 1)-approval). For incomplete
initial profiles and smaller groups of agents, we detect that profiles drawn from the IC
model are more frequently winner-invariant than those drawn from the 2urn model.

Speed of Convergence. Probably the most important conclusion of our simulations
is that convergence is always achieved in practice, even if sometimes it takes a while. In
the plots below (all concerning profiles with four alternatives and ten agents), we only
depict up to fiftymanipulation rounds. The number of alternatives does not significantly
affect our observations, while larger groups—reasonably—delay convergence.19

Figures 5.7 and 5.8 highlight the radical, negative effect of completeness on con-
vergence speed; a similar—albeit weaker—effect of the IC assumption follows from
Figures 5.9 and 5.10 (with an exception regarding (<−1)-approval, which we discuss).

Figure 5.7: Speed of convergence (for incomplete, manipulable profiles, 2urn-drawn).

Plurality-like rules (i.e., 1-approval and (<−1)-veto) generally reach convergence faster
than the rest—frequently, they converge after only a few rounds. Indeed, antiplurality-
like rules are more sensitive to manipulation by definition: they enable the agents to
manipulate by decreasing the score of the winning alternative, which means that some

19So in large groups, it is less common to find profiles that are manipulable, but those that are
manipulable take longer to converge.
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Figure 5.8: Speed of convergence (for complete, manipulable profiles, 2urn-drawn).

Figure 5.9: Speed of convergence (for incomplete, manipulable profiles, IC-drawn).

alternatives that have no chance of winning in the initial profile may become potential
winners in future rounds (this phenomenon never emerges under the plurality-like rules,
where the agents always increase the scores of alternatives by manipulating).

In the cases where the initial, sincere profiles of the agents are complete, 1-veto
clearly is the slowest rule. At the same time, (< − 1)-approval often performs quite
well under the same circumstances—in particular, for complete and IC-drawn profiles,
(< − 1)-approval is amongst the fastest rules. Here is a possible interpretation for this:
Agents can manipulate (< − 1)-approval either by increasing the score of an attractive
alternative, or by decreasing the score of an appalling one—they will start with the
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Figure 5.10: Speed of convergence (for complete, manipulable profiles, IC-drawn).

latter type of move in the initial, sincere profile. But only one alternative can have
score 0 under the (<−1)-approval rule for complete profiles. So, a decrease in score of
an alternative 0 will imply the increase in score of another alternative 1 ranked below 0
by the manipulator, who will only decrease the score of 0 if she is not in danger of
making 1 win. In IC profiles, ties between the alternatives are more common than in
2urn profiles (because in the IC model, loosely speaking, alternatives are uniformly
distributed across positions in the agents’ preferences). Therefore, the probability that
1 will win is larger under the IC, disincentivising agents from manipulation.

Quality of Iteration. Is iteration profitable for the agents, in terms of social welfare?
To answer this question we first have to define social welfare, which is not straightfor-
ward for incomplete preferences. For complete preferences, social welfare is routinely
calculated using Borda scores. The idea is that the Borda score that an alternative gets
from an agent’s sincere preference encodes how much the agent is relieved by seeing
that alternative win, or equivalently how much she does not regret seeing it win.

As we know, there is no unique way to extend Borda scores for incomplete pref-
erences. We could examine versions of pessimistic and optimistic social welfare,
corresponding to the relevant Borda generalisations, and implying that the agents are
driven only by regret or only by relief, respectively. To keep things simple, here we will
only exhibit results with respect to the averaged version of the Borda scores, meaning
that our agents’ utility is calculated by subtracting the regret they feel from their relief.
By summing up the utilities of all agents, we obtain the social welfare of the group.
The quality of iteration then is the improvement in social welfare from the winner in
the sincere profile to the winner in the equilibrium profile.
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There are several conclusions that we draw from our experiments regarding quality
of iteration. Firstly, a substantial percentage of all manipulable profiles (amongst those
that change the winning alternative only) do not have any impact on the agents’ social
welfare. This means that the group as a whole is often not affected by the consequences
of iterative manipulation. When an effect on the quality of the winner arises, it takes
both positive and negative values; these values are somewhat symmetric, but tend to
weigh more on the positive side. Figure 5.11 (for IC-drawn, complete profiles with four
alternatives and ten voters) is representative of our results.

Figure 5.11: Improvement in social welfare from the sincere to the equilibrium winner
(for manipulable, complete profiles, IC-drawn).

We have also observed that incomplete sincere profiles imply a wider range of values
for the quality of iteration; the same holds for larger groups of agents and larger sets
of alternatives. We do not include any relevant plot to demonstrate these effects here
because the extreme length of their corresponding ranges makes the plots difficult to
read. We have not detected any particular pattern with respect to the different rules.

To summarise, we can now confidently say that iterative manipulation processes with
incomplete preferences are not so alarming as they may have seemed initially. First,
very often they will not even start. Second, even if they start, they will eventually
stop. Third, when they stop, they will probably do not have any impact on the winning
alternative. Fourth, even if they do have an impact on the winning alternative, this will
likely be a positive one for the group. All these observations agree with the ones made
in the special case where the agents are only allowed to report complete preferences
(recall, for instance, the work of Meir et al., 2014).



Chapter 6
Discovering a Ground Truth

Up to now, we have been studying collective decisions concerning issues that are subjec-
tive in nature, including preferences over hotels and opinions over the menu of college
cafeterias. However, collective decision making often takes place for the purposes of
discovering the objectively true state of a given situation. For example, doctors come
together to identify the exact illness of a patient, and recruitment committees are asked
to express judgments on the suitabilty of candidates for a job. It is well-known that the
accuracy of a group exceeds the accuracy of a single agent, provided that all members
of the group independently make better than random judgments (de Condorcet, 1785).
But the (in)completeness of individual opinions constitutes a vital assumption in such
contexts as well—this is what we explore in this chapter.

Consider agents with opinions about objectively true or false issues, and
with accuracy that correlates with their opinions’ degree of incompleteness.
What is the (probabilistically) optimal way to obtain a collective decision
that discovers the correct answers on the issues at stake?

More specifically, suppose that a group of agents need to collectively determine the an-
swer to a binary question that directly depends on the evaluation of several independent
criteria. A correct yes/no answer—both on the different criteria and on the complex
question—exists, but the agents are a priori unaware of it. Still, the agents can reflect on
the possible answers and obtain a judgment which has a certain probability of being cor-
rect. But, most importantly, different agents may assess different parts of the question
under consideration. We assume that, under time restrictions and cognitive constraints,
the more criteria a given agent tries to assess, the less accurate her judgments are likely
to be. This decrease in accuracy might be due to time pressure (Payne et al., 1988;
Edland and Svenson, 1993; Ariely and Zakay, 2001), multitasking attempts (Adler and
Benbunan-Fich, 2012), or speeded reasoning (Wilhelm and Schulze, 2002). How can
the agents then, as a group, maximise the probability of discovering the correct answer
to the complex question they are facing? Consider the following example, which draws
inspiration from Example 3.1, at the beginning of Chapter 3, page 20.

149
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6.1. Example. An academic hiring committee needs to decide whether Dan should get
the advertised research job. In order to do so, the committee members (Ann, Bea, and
Cal) have to review two of Dan’s papers (?1 and ?2)—Dan will be hired if and only if
both these papers are marked as “excellent” (for the sake of the example, we assume
that the excellency of an academic work as well as the suitability of a candidate for a
job are objective issues). Due to an urgent deadline the committee is given only one
day to judge the quality of Dan’s papers. After the day passes, Ann has spent all her
time on one of the two papers, while Bea and Cal have looked at both, and they express
the following opinions, related to whether the relevant paper is excellent:

?1 ?2

Ann �3 �
Bea �7 �3
Cal �7 �3

Assuming that Ann has a higher probability to be correct than Bea about ?1, but also
taking into account that Cal agrees with Bea, what is the best way to aggregate the given
judgments if the committee wants to be as accurate as possible on Dan’s evaluation? M

Our analysis is situated within the framework of judgment aggregation. Along the lines
of Example 6.1, we will study a special case where the propositions can be separated
into the premises (e.g., excellency of Dan’s papers) and the conclusion (e.g., Dan’s
hiring), where the conclusion is satisfied if and only if all premises are. Given two
independent premises i and k and a group of agents, each of which answers specific
questions regarding the premises, we consider two cases of practical interest:

• Free assignment: Each agent chooses with some probability whether to report
an opinion only on the first premise, only on the second premise, or on both.

• Fixed assignment: Each agent is asked (and required) to report an opinion only
on the first premise, only on the second premise, or on both.

Wewish to get an aggregate judgment on the conclusion that has—in expectation—high
chances to reflect the truth. Assuming that the agents are sincere about the judgments
they obtain after contemplating their appointed premises, we will find in Section 6.1
that the optimal aggregation rule is always a weight rule (as defined in Section 3.1).

But a further problem arises, namely that the agents might behave strategically,
trying to manipulate the collective outcome to satisfy their own preferences. In Sec-
tion 6.2, we will examine the three most natural cases for the preferences of an agent
in our context, i.e., preferences that prioritise outcomes that are close to (8) the truth,
(88) the agent’s reported judgment, or (888) the agent’s sincere judgment. In addition,
we will study how an agent’s incentives to be insincere relate to the information the
agent holds about the judgments reported by her peers.
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Returning to our assumption that the agents will be sincere, we also ask (from a
mechanism-design point of view) in Section 6.3: Which fixed assignment is the most
efficient one, meaning that it achieves the highest probability of producing a correct
collective judgment? Our answer here depends heavily on the number of agents in the
group as well as on exactly how accurate the agents are individually.

Prior work on judgment aggregation aiming at the tracking of the truth, which
can be traced all the way back to the famous Condorcet Jury Theorem (de Condorcet,
1785), has primarily focused on scenarios with two independent premises and one
conclusion, like the one investigated in this section. But such work has solely been
concerned with the case of complete judgments, that is, the special case where all
agents report opinions on all propositions under consideration. Under this assumption,
Bovens and Rabinowicz (2006) and de Clippel and Eliaz (2015) have compared two
famous aggregation rules (for uniform and varying individual accuracies, respectively):
the premise-based rule (according to which the collective judgment on the conclusion
follows from the majority’s judgments on the premises) and the conclusion-based rule
(which simply considers the opinion of the majority on the conclusion), concluding that
most of the time the premise-based rule is superior. Strengthening this result, Hartmann
et al. (2010) and Hartmann and Sprenger (2012) have shown that the premise-based
rule is optimal across wider classes of aggregation rules too. Generalising the model
further, Bozbay et al. (2014) have studied scenarios with any number of premises and
agents with incentives to manipulate the collective outcome, and design rules that
are optimal truth-trackers, but again assuming complete reported judgments. Also
focusing on strategic agents, Ahn and Oliveros (2014) have wondered “should two
issues be decided jointly by a single committee or separately by different committees?”
This question differs essentially from the one addressed in our work, since our model
accounts for the lower accuracy of the agents who judge a greater number of issues.

6.1 The Model and the Optimal Rule

Let i and k be two logically independent premises and 2 = (i ∧ k) the corresponding
conclusion, and assume that all three propositions are associated with a correct answer
(yes/no), where a positive answer on the conclusion is equivalent to a positive answer on
both premises. Each agent 8 in a group # holds a sincere judgment �∗

8
⊆ {i,¬i, k,¬k}

that contains at most one formula from each pair of a premise and its negation. Clearly,
agent 8 cannot judge the conclusion without having judged both premises, but her
judgment on the conclusion would follow directly from her judgment on the two
premises in case she had one. In this setting, we denote by J the set of all admissible
individual judgments. We say that two judgments �, �′ agree on their evaluation of a
proposition if they both contain either the non-negated or the negated version of it.

Here, we are only interested in aggregation rules � that yield consistent collective
judgment sets that are complete (i.e., include an evaluation on the conclusion too,
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besides the two premises). We write �N ⊆ {i,¬i, k,¬k, 2,¬2} for the judgment that
captures the correct evaluation on all three propositions.

We define #i1 (#i2 ) to be the sets of agents who report a judgment on one (two)
premise(s) and say yes on ĩ. We define =i1 = |#

i

1 | and =
i

2 = |#
i

2 | to be the corresponding
cardinalities of these sets. Analogously, we define the sets of agents who say no on ĩ
by replacing the proposition i with ¬i in the aforementioned notation.

We denote by p the probability that agent 8’s sincere judgment �∗
8
is correct on a

premise when 8 judges both premises and by q the relevant probability when 8 only
judges a single premise (assuming that the probability of each agent 8’s judgment being
correct on a premise i is independent (8) of whether i is true or false and (88) of what
8’s judgment on premise k is). We assume that the probabilities p and q are the same for
all agents, but the agents make their judgments independently of each other. We shall
moreover suppose that all agents’ judgments are more accurate than a random guess,
but not perfect, and that agents judging a single premise are strictly more accurate than
those judging both premises, i.e., that 1/2 < p < q < 1. Then, %(P∗) denotes the
probability of the sincere profile P∗ to arise and %(P∗−8 | �∗8 ) the probability that the
judgments of all agents besides 8 form the sincere (partial) profile P∗−8, given that 8 has
the sincere judgment �∗

8
. Formally, for a fixed assignment it holds that:

%(P∗) = %(i true) · %(P∗ | i true) + %(i false) · %(P∗ | i false)

where %(P∗ | i true) = q=
i

1 p=
i

2 (1 − q)=
¬i
1 (1 − p)=

¬i
2 , and similarly for %(P∗ | i false).

The accuracy %(�) of a resolute aggregation rule � is defined as follows:

%(�) =
∑

P∗∈J = s.t.
� (P∗) and �N agree on 2

%(P∗)

Wenext define the (irresolute) aggregation rule � irr
opt: it functions as a weighted-majority

rule on each premise separately, assigning to the agents weights according to the size
of their reported judgments, and subsequently picks that evaluation of the conclusion
that is consistent with the collective evaluation of the premises—this is exactly a weight
rule, as defined in Section 3.1. More specifically, we define the following weights:

F8 =


log q

1−q if |�8 | = 1
log p

1−p if |�8 | = 2
0 if |�8 | = 0

Observe that the base of the logarithm in the definition of F8 above is irrelevant. Then,
for all profiles P we have the following:

� irr
opt(P) = argmax

�∈J (Φ)•

∑
8∈#

F8 · |� ∩ �8 |

�opt is a resolute version of � irr
opt that, if the obtained collective judgments are more than

one, randomly chooses one of them for the collective outcome.
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For a resolute aggregation rule �, the probability %(�) depends on the probabilities
%(� correct on i) and %(� correct on k), which, for simplicity, we call %i and %k ,
respectively. For the remainder of this chapter we will further assume that the prior
probabilities of the two premises being true or false are equal (and independent of each
other). That is, %(i true) = %(k true) = 1/2. Then:

%(�) = 1
4
[ (
%i%k

)
+

(
%i%k + (1 − %i) (1 − %k) + %i (1 − %k)

)
+

(
%i%k + ¬Φ

(1 − %i) (1 − %k) + (1 − %i)%k
)
+

(
%i%k + %i (1 − %k) + (1 − %i)%k

) ]
¬Φ

=
1
2
+
%i%k

2
(6.1)

Given a (fixed or free) assignment, let us denote by Pi
�
(P¬i
�
) and Pk

�
(P¬k
�

) the sets of
all possible profiles of reported judgments that lead to a yes (no) collective answer on
i and k under the rule �, respectively. Then:

%i =
1
2

∑
P∗∈Pi

�

%(P∗ | i true) + 1
2

∑
P∗∈P¬i

�

%(P∗ | i false) (6.2)

Now, for a fixed assignment and a profile P∗, we have the following:

%(P∗ | i true) > %(P∗ | i false) ⇔
q=

i

1 p=
i

2 (1 − q)=
¬i
1 (1 − p)=

¬i
2 > (1 − q)=

i

1 (1 − p)=
i

2 q=
¬i
1 p=

¬i
2 ⇔

=
i

1 log
q

1 − @ + =
i

2 log
p

1 − ? > =
¬i
1 log

q

1 − p + =
¬i
2 log

p

1 − p

(6.3)

Analogously, we consider a free assignment where agent 8 makes a sincere judgment
on ĩ with probability ?ĩ

8
, on k̃ with probability ?k̃

8
, and on both premises with proba-

bility ?ĩ,k̃
8

. Given a sincere profile P∗, the following holds:

%(P∗ | i true) = q=
i

1 p=
i

2 (1 − q)=
¬i
1 (1 − p)=

¬i
2

∏
8∈#i1 ∪#

¬i
1

?
ĩ

8

∏
9∈#i2 ∪#

¬i
2

?
ĩ,k̃

9

Defining %(P∗ | i false) similarly, we have the following as before:

%(P∗ | i true) > %(P∗ | i false) ⇔

=
i

1 log
q

1 − q + =
i

2 log
p

1 − p > =
¬i
1 log

q

1 − q + =
¬i
2 log

p

1 − p
(6.4)

Theorem 6.2 states the main results of this section. Its proof technique is a standard
method in research on maximum likelihood estimators (Dawid and Skene, 1979).
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6.2. Theorem. For any fixed (or free) assignment and sincere judgments, it holds that
�opt ∈ argmax� %(�). For every other aggregation rule �′ ∈ argmax� %(�), �′ only
differs from �opt on the tie-breaking part.

Proof. For a fixed assignment, it follows from Equations (6.2) and (6.3) that %i (and
%k) will be maximal if and only if � assigns to the agents weights as in �opt. Equa-
tion (6.1) implies that max� %(�) 6 1

2 +
max� %i max� %k

2 , so %(�) is maximal if and
only if �opt (or a rule that only differs from �opt on the tie-breaking part) is used. The
proof is analogous for a free assignment, using Equation (6.4). �

Let us illustrate how the optimal aggregation rule works with some simple examples,
building on the story of Example 6.1 and considering specific accuracies ? and @.

6.3. Example. Recall Example 6.1, and suppose that q = 0.8 and p = 0.6. A yes
on proposition ?1 will get weight log 0.8

0.2 ' 0.6, from Ann, while a no on the same
proposition will be assigned weight 2 log 0.6

0.4 ' 0.34, from Bea and Cal. The former
number is larger than the latter, so the collective decision will be in favour of ?1 (and
in favour of ?2, since there is unanimous agreement for it). Dan can get the job. M

6.4. Example. Again in Example 6.1, suppose that q = 0.65 and p = 0.6. A yes on
proposition ?1 will get weight log 0.65

0.35 ' 0.27, from Ann, while a no on the same
proposition will get weight 2 log 0.6

0.4 ' 0.34, from Bea and Cal. The former number is
smaller than the latter, so the collective decision will be against ?1 (but in favour of ?2,
since there is unanimous agreement for it). Dan will not get the job. M

6.2 Strategic Manipulation
In this section we study the incentives of the agents to report insincere judgments
when the most accurate rule �opt is used. We examine in detail both fixed and free
assignments. An agent’s incentives to be insincere will of course depend on the type of
her preferences. We analyse three natural cases regarding these preferences, assuming
that all agents have the same preference type: First, the agents may want the group
to reach a correct judgment—these preferences are called truth-oriented. Second, the
agents may want to report an opinion that is close to the collective judgment, whatever
that judgment is—these preferences are called reputation-oriented. Third, the agents
may want the group’s judgment to agree with their own sincere judgment—these
preferences are called self-oriented.1 Recall that the agents’ opinions in this chapter
are only taken to conern the premises, and not the conclusion. So, our definitions of
the agents’ preferences will not consider the conclusion either.

1For instance, doctors making judgments about their patients may simply care about the correctness
of their collective judgment, participants of an experiment that are paid proportionally to their agreement
with the group can be assumed to aim at being seen to agree with their peers, and people who like having
their opinions confirmed might manipulate the group to agree with their own privately held judgment.
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To make things formal, we employ tools from Bayesian game theory. We wish to
understand when sincerity by all agents is an equilibrium:

Given that agent 8 holds the sincere judgment �∗
8
, and given that the rest of

the agents are going to be sincere no matter what judgments they have, is
sincerity (i.e., reporting �∗

8
) a best response of agent 8?

We examine the interim and the ex-post case. In both cases agent 8 already knows her
own sincere judgment, but in the former case she is ignorant about the judgments of the
rest of the group (only knowing that they have to be probabilistically compatible with
her own judgment), while in the latter case she is in addition fully informed about them
(this can happen, for example, after some communication action has taken place).

Call ) ∈ {“truth”, “reputation”, “self ”} the type of the agents’ preferences. Let us
denote by *)

8

(
(�8, P∗−8), P∗

)
the utility that agent 8 gets by reporting judgment �8, when

the sincere profile of the group is P∗ and all other agents 9 ≠ 8 report their sincere
judgments �∗

9
.2 �*)

8

(
(�8, P∗−8), �∗8

)
stands for the expected utility that agent 8 gets by

reporting judgment �8, when her sincere judgment is �∗
8
and all other agents 9 report

their sincere judgments for any possible such judgments. More precisely:

*truth
8

(
(�8, P∗−8), P∗

)
= |�opt(�8, P∗−8) ∩ �N |

*
reputation
8

(
(�8, P∗−8), P∗

)
= |�opt(�8, P∗−8) ∩ �8 |

*
self
8

(
(�8, P∗−8), P∗

)
= |�opt(�8, P∗−8) ∩ �∗8 |

Also, for any ) ∈ {“truth”, “reputation”, “self ”}, we define the following:

�*)8
(
(�8, P∗−8), �∗8

)
=

∑
P∗−8

*)8
(
(�8, P∗−8), P∗

)
%(P∗−8 | �∗8 )

We proceed with formally defining strategyproofness in our framework, namely the
situation where all agents being sincere forms an equilibrium.

6.5. Definition. Given a preference type ) ∈ {“truth”, “reputation”, “self”} and
a (fixed or free) assignment, we say that sincerity always gives rise to an interim
equilibrium if and only if for all agents 8 ∈ # and sincere judgments �∗

8
∈ J the

following holds, where (8 ⊆ J is the set of all judgments that agent 8 is can potentially
report under the given assignment:

�∗8 ∈ argmax
�8∈(8

�*)8
(
(�8, P∗−8), �∗8

)
2Note that, although we refer to*)

8
as the utility of agent 8, when the definition of*)

8
for a specific

type of preferences ) makes use of the rule �opt (which is paired with a random tie-braking rule in order
to be resolute),*)

8
more precisely corresponds to the expected utility of agent 8, since there is uncertainty

regarding the collective outcome produced by �opt. Nonetheless, we slightly abuse the terminology in
order to be able to distinguish more clearly the situations where the expected utility of agent 8 is linked
to agent 8’s uncertainty about the sincere judgments of her peers.
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Similarly, sincerity always gives rise to an ex-post equilibrium if and only if the condition
of Definition 6.5 holds, where �*)

8
is replaced by*)

8
.

Table 6.1 summarises our results, where “3” stands for strategyproofness and “7”
designates the existence of a counterexample.

Preferences
Assignment Fixed Free

interim ex-post interim ex-post
truth-oriented 3 Thm 6.8 3 Thm 6.8 3 Thm 6.8 3 Thm 6.8
reputation-oriented 3Thm 6.10 7 Prop 6.11 3 Thm 6.12 7 Prop 6.11
self-oriented 3Thm 6.14 3 Thm 6.14 7 Prop 6.15 7 Prop 6.15

Table 6.1: Strategyproofness results in truth-tracking contexts.

Two fundamental lemmas are in order. First, we verify the basic intuition that when
an agent holds more information about the reported judgments of the rest of the group,
then her incentives to manipulate increase.

6.6. Lemma. For any assignment and type of preferences, ex-post strategyproofness
implies interim strategyproofness.

Proof. We show the contrapositive. Suppose interim strategyproofness is violated.
Then, there exists an agent 8 with a sincere judgment �∗

8
such that the following holds:

�∗8 ∉ argmax
�8∈�8

�*)8
(
(�8, P∗−8), �∗8

)
This also means that the following holds:

�∗8 ∉ argmax
�8∈�8

∑
P∗−8

*)8
(
(�8, P∗−8), P∗

)
%(P∗−8 | �∗8 )

Hence, there must exist an insincere judgment �8 and a partial profile of judgments P∗−8
with %(P∗−8 | �∗8 ) > 0 for which the following holds:

*)8
(
(�8, P∗−8), P∗

)
> *)8

(
(�∗8 , P∗−8), P∗

)
But this means that we have a scenario violating ex-post strategyproofness. �

Second, we stress that every counterexample of ex-post strategyproofness under fixed
assignments is a counterexample under free assignments too (since the definition of ex-
post strategyproofness implies that the agents know each other’s reported judgments).3

6.7. Lemma. For any type of preferences, ex-post strategyproofness under free assign-
ments implies ex-post strategyproofness under fixed assignments.

3The other direction does not hold. Importantly, a counterexample may go through under free but
not fixed assignments because the agents have the option to manipulate by abstaining on some premise
they have sincerely thought about.
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Truth-oriented Preferences. When all agents have truth-oriented preferences and
when the rule �opt is used to aggregate their reported judgments, it directly is in
everyone’s best interest to be sincere—given that the rest of the group is sincere as
well—irrespective of whether the assignment materialised is fixed or free and whether
the agents know the judgments of their peers. Intuitively, the agents can trust that the
rule �opt will achieve a collective judgment that is as accurate as possible.

6.8. Theorem. For any fixed (or free) assignment and truth-oriented preferences:

(8) sincerity always gives rise to an interim equilibrium

(88) sincerity always gives rise to an ex-post equilibrium

Proof. By Lemma 6.6, we only need to prove case (88). For an arbitrary sincere
profile P∗ = (�∗

8
, P∗−8), we have that*truth

8

(
(�8, P∗−8), P∗

)
= |�opt(�8, P∗−8) ∩ �N |, where �N

captures the true evaluation of the propositions. Suppose, aiming for a contradiction,
that for some insinsere judgment �8 of agent 8 the following holds:

|�opt(�8, P∗−8) ∩ �N | > |�opt(�∗8 , P∗−8) ∩ �N |

This means that �opt(�8, P∗−8) ≠ �opt(�∗8 , P∗−8). Then, for a suitable aggregation rule
�′ ≠ �opt, we can write �opt(�8, P∗−8) = �′(�∗8 , P∗−8) and derive the following:

|� (�∗8 , P∗−8) ∩ �N | > |�opt(�∗8 , P∗−8) ∩ �N |

This is impossible, because �opt has to maximise aggrement with �N (Theorem 6.2).
Hence, it holds that |�opt(�8, P∗−8) ∩ �N | 6 |�opt(�∗8 , P∗−8) ∩ �N | for all �8, which implies
that*truth

8

(
(�8, P∗−8), P∗

)
6 *truth

8

(
(�∗
8
, P∗−8), P∗

)
for all �8 and concludes the proof. �

Example 6.9 illustrates the idea of strategyproofness under truth-oriented preferences.

6.9. Example. Consider again the setting of Example 6.1, and suppose that Ann, Bea,
and Cal provide the following judgments:

?1 ?2

Ann �3 �3
Bea �7 �3
Cal �7 �3

Ann has a positive opinion on both ?1 and ?2. Suppose she cares about the collective
decision being correct on ?1. What are her options, then, regarding the opinions she
can report, knowing that her personal evaluation on ?1 has a higher probability of being
correct than of being wrong?

Firstly, there is no reason for Ann to submit a negative judgment on ?1, because
�opt will then give more weight to an opinion that is less probably correct than her
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sincere one. She could try to be negative on ?2, but this has no chance of influencing
the outcome on ?1. She can also abstain on ?2 (if she is permitted to do so, in a
free assignment), in order for her judgment on ?1 to get more weight by �opt. If that
action changes the collective outcome on ?1, then it means that a different aggregation
rule could have obtained that new outcome in the original profile (just by counting the
opinions of the agents differently). Since such an aggregation rule is not the optimal
one by definition, the new outcome that Ann achieves cannot be closer to the truth,
meaning that Ann’s preference is not satisfied. M

Reputation-oriented Preferences. When the agents care about the positive reputa-
tion they obtain by agreeing with the collective judgment of the group, their incentives
to behave insincerely heavily depend on whether they already know the judgments of
their peers. Of course: If an agent knows precisely what the collective judgment of
the group will be, she can simply change her reported judgment to fully match that
collective judgment. On the other hand, we will see that if an agent does not know ex-
actly what the sincere judgments of her peers are, it is more attractive for her to remain
sincere (as—knowing that her sincere judgment is more accurate than random—she
can reasonably expect the group to agree with her).

6.10. Theorem. For any fixed assignment and reputation-oriented preferences, sincer-
ity always gives rise to an interim equilibrium.

Proof. Given a fixed assignment, an agent 8, and a sincere judgment �∗
8
, let us call %dis

the probability that agent 8 will disagree with the group on the evaluation of premise i.
Let us assume that agent 8’s judgment �∗

8
concerns both premises i and k (the proof is

analogous when �∗
8
concerns only premise i). Now, let us denote by %6 the probability

that the group is collectively correct on their evaluation of i. Recalling that p > 1/2 is
the probability that agent 8 is correct on her evaluation of i, the following holds:

%dis 6 p(1 − %6) + (1 − p)%6 = p + %6 (1 − 2p)

Since all agents are more accurate than random, we also have that %6 > 1/2, and:

p + %6 (1 − 2p) 6 1/2 if and only if %6 >
p − 1/2
2p − 1

= 1/2

So %dis 6 1/2, which means that it is more probable for the group’s judgment to agree
with �∗

8
on premise i than to disagree with it, and the same holds for premise k. There-

fore, agent 8 has no better option than to report her sincere judgment on her assigned
premises. Formally, �*reputation

8

(
(�8, P∗−8), �∗8

)
is maximised for �8 = �∗8 . �

6.11. Proposition. For reputation-oriented preferences, there exists a fixed (and thus
a free, from Lemma 6.7) assignment where sincerity does not always give rise to an
ex-post equilibrium.
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Proof. Consider a fixed assignment where all agents in the group are asked about both
premises i and k, agent 8 has the sincere judgment �∗

8
= {i, k}, and all other agents 9

have sincere judgments � 9 = {i,¬k}. Agent 8 would increase her utility by reporting
the insincere judgment �8 = {i,¬k}. �

6.12. Theorem. For any free assignment and reputation-oriented preferences, sincerity
always gives rise to an interim equilibrium.

Proof. Consider an arbitrary free assignment and an agent 8 with sincere judgment �∗
8
.

Since the given assignment is uncertain, agent 8 can potentially report any judgment
set she wants. Suppose that her sincere judgment �∗

8
has size |�∗

8
| = : ∈ {1, 2}. First,

following the same argument as that in the proof of Theorem 6.10, we see that agent 8
cannot increase her expected utility by reporting a judgment �8 ≠ �∗8 with |�8 | = : . We
omit the formal details, but the intuition is clear: the group has higher probability to
agree with the sincere evaluation of agent 8 on each premise than to disagree with it.

However, we also need to show that agent 8 cannot increase her expected utility by
reporting a judgment �8 ≠ �∗8 with |�8 | ≠ : . The case where |�8 | > : is straightforward:
if agent 8 has no information about one of the premises, the best she could do is reporting
a random judgment on that premise, but this would not increase her expected utility.
Thus, we need to consider the case where |�8 | < : , and more specifically the only
interesting scenario with |�∗

8
| = 2 and |�8 | = 1. Say, without loss of generality, that

�8 = {i}. Let us call %i06,2 (%
k

06,2) the probability that the group will agree with agent 8
on her evaluation of i (k) given that agent 8 reports her sincere judgment on both
premises, and let us call %i

06,1 the probability that the group will agree with agent 8 on
her evaluation of i given that she reports her a judgment only on premise i. Then:

�*
reputation
8

(
(�∗8 , P∗−8), �∗8

)
= %

i

06,2 + %
k

06,2 and

�*
reputation
8

(
(�8, P∗−8), �∗8

)
= %

i

06,1

Analogously to the proof of Theorem 6.10, it holds that %i
06,2 > 1/2 and %k

06,2 > 1/2, so
%
i

06,2+%
k

06,2 > 1. Thismeans that %i
06,1 6 %

i

06,2+%
k

06,2 (because %
i

06,1 6 1 is a probabil-
ity value), so, it is the case that �*reputation

8

(
(�8, P∗−8), �∗8

)
6 �*reputation

8

(
(�∗
8
, P∗−8), �∗8

)
.

Hence, agent 8 cannot increase her expected utility by reporting �8 instead of �∗8 . �

Example 6.13 serves as a demonstration for reputation-oriented preferences.

6.13. Example. Take the profile we also saw in Example 6.9:

?1 ?2

Ann �3 �3
Bea �7 �3
Cal �7 �3
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Suppose Ann is aware of the judgments of her peers. Then, she will immediately realise
that the collective decision on ?1 will be different than her sincere opinion (because
in a complete profile, �opt behaves as a simple majority rule). If she cares about her
reputation, she can simply report an insincere judgment which would agree with the the
outcome, without any risk. However, in case Ann does not exactly know the judgments
of the other members in her group, such an insincere act would not be a safe one. M

Self-oriented Preferences. Suppose the agents would like the collective outcome
to agree with their own sincere judgment. Now, having a fixed or a free assignment
radically changes their strategic considerations: under fixed assignments the agents can
never increase their utility by lying, while there are free assignments where insincere
behaviour is profitable. The critical difference is that when the agents are free to submit
judgments of variable size, they can increase the weight that the optimal aggregation
rule �opt will assign to their judgment on one of the two premises by avoiding to report
a judgment on the other premise, thus having more opportunities to manipulate the
outcome in favour of their private judgment.

6.14. Theorem. For any fixed assignment and self-oriented preferences:

(8) sincerity always gives rise to an interim equilibrium

(88) sincerity always gives rise to an ex-post equilibrium

Proof. By Lemma 6.6, we only need to show case (88). Given a fixed assignment, an
agent can only report an insincere opinion by flipping her sincere judgment on some of
the premises she is asked about. But if she did so, �opt could only favour a judgment
different from her own, not increasing her utility. Thus, every agent always maximises
her utility by being sincere. �

6.15. Proposition. For self-oriented preferences, there exists a free assignment such
that sincerity does not always give rise to an interim equilibrium (and thus also not to
an ex-post equilibrium, from Lemma 6.6).

Proof. Consider a group of three agents and a free assignment as follows: Agent 1
reports an opinion on both premises i, k with probability 1/2, and only on premise i
or only on premise k with probability 1/4 and 1/4, respectively. Agent 2 reports a
judgment on both premises i, k with probability 1, and agent 3 reports a judgment
only on premise i with probability 1. Suppose that agent 1’s truthful judgment is
�∗1 = {i, k}. For the calculation of agent 1’s expected utility, note that agent 1 is
correct on her evaluation of a proposition premise i with probability p (and the same
for premise k). Knowing what agent 1’s sincere judgment is, we also know the
probability of occurrence of every possible partial profile of judgments (�2, �3). For
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instance the probability that both agents 2 and 3 will report judgments that agree on
premise i with �∗1 is p(pq) + (1 − p) (1 − p) (1 − q).

Suppose additionally that q > p2

p2+(1−p)2 . In such a case, if agent 1 decides to report
her sincere judgment on both premises, she will always be unable to affect the collective
outcome on i according to the rule �opt, and she will obtain an outcome that agrees
with her sincere judgment on k with the following probability:

p(p + 1 − p
2
) + (1 − p) (1 − p + p

2
) = p2 + p + 1 < 1

However, if agent 1 reports the insincere judgment �1 = {k} instead, she will al-
ways obtain a collective outcome on k that is identical to her own sincere judgment,
corresponding to a higher expected utility of value 1. Thus, we can conclude that
�∗1 ∉ argmax�1∈(1

�*self
1

(
(�1, �

∗
2 , �
∗
3), �

∗
1
)
. �

Example 6.16 instantiates strategyproofness with respect to self-oriented preferences.

6.16. Example. Consider again the profile appearing in Examples 6.9 and 6.13. If Ann
has self-oriented preferences, she would like the collective decision on ?1 to agree with
her sincere judgment, which would not be the case if she remains sincere. Also, Ann
could not direct the outcome towards her sincere judgment by reporting an opposite
opinion on ?1, by construction of the rule �opt (that works in amajority-style). However,
Ann can insincerely attract more weight on her judgment by pretending she holds a
smaller number of concrete opinions (and thus �opt would deem her more accurate).
Such a case is discussed in Example 5.1, at the very beginning of Chapter 5. M

6.3 Task Assignments
Having a group with = members, different choices for assigning agents to questions
concerning the premises induce different fixed assignments, which in turn yield the
correct answer on the conclusion with different probability. In this section we are
interested in finding the optimal (viz., the most accurate) such assignment. The basic
trade-off that needs to be resolved in this setting is the following:

Shouldwe assign a large number of questions to the agents in order to collect
more information, but with the implication of lowering their accuracy, or
should we aim at gathering less information with higher accuracy?

6.17. Example. Suppose you have a small group with only two agents: Bea and Cal.
Their accuracy is q = 0.99 when they handle a single task, and p = 0.6 when they
multitask. Your goal is to figure out the correct answer on i ∧ k with as high a
probability as possible. Is it better to ask Bea to evaluate premise i and Cal to evaluate
premise k, or to ask both of them to evaluate i and k at the same time? You may feel
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inclined to pursue the former option, since then each agent will give you an extremely
accurate answer on their assigned premise—this will indeed be the best option. What
would you do if it instead were the case that q = 0.61? You may then prefer to sacrifice
a tiny bit of accuracy in order to get a second opinion on every premise—although this
choice is intuitive, we will soon show that actually it is not the best one. M

Let us denote by =1 6 b =2c the number of agents that will be asked to report a judgment
only on premise i. For symmetry reasons, we assume that the same number of agents
will be asked to report a judgment only on premise k, and the remaining =− 2=1 agents
will be asked to report a judgment on both premises. Given =1, %i,=1 (�opt) is the
probability of the aggregation rule �opt producing a correct evaluation of premise i,
and since we assume that the same number of agents that will judge i will also judge
k, it will be the case that %i,=1 (�opt) = %k,=1 (�opt). As in Section 6.1, the accuracy of

�opt regarding the conclusion is %=1 (�opt) = 1
2 +

%i,=1 (�opt)%k,=1 (�opt)
2 = 1

2 +
%i,=1 (�opt)

2

2 .
Thus, we will maximise %=1 (�opt) if and only if we maximise %i,=1 (�opt):

argmax
06=16b =2 c

%=1 (�opt) = argmax
06=16b =2 c

%i,=1 (�opt)

The optimal assignment depends on the specific number of agents =, but also on the
values p and q of the individual accuracy. For small groups of at most four agents, we
calculate exactly what the optimal assignment is for any p and q; for larger groups, we
provide results for several indicative values of p and q.

6.18. Proposition. For = = 2, argmax=1
%i,=1 (�opt) = 1. Thus, when there are just two

agents, it is optimal to ask each of them to evaluate one of the two premises (=1 = 1)
rather than asking both to evaluate both premises (=1 = 0).

Proof. For = = 2 we have two options: =1 = 0 or =1 = 1. We consider them separately.
It is the case that %i,0(�opt) = p2 + 1

22p(1 − p) = p, while %i,1(�opt) = q > p. Thus,
argmax=1

%i,=1 (�opt) = 1. �

6.19. Proposition. For = = 3, argmax=1
%i,=1 (�opt) = 1 if and only if q > p2(3 − 2p).

Proof. For = = 3 we have two options: =1 = 0 or =1 = 1. We consider them
separately. It is the case that %i,0(�opt) = p3 +

(3
2
)
p2(1 − p) = p2(3 − 2p), while

%i,1(�opt) = q (because the judgment of the agent who reports only on premise i will
always prevail over the judgment of the agent who reports on both premises). Thus,
argmax=1

%i,=1 (�opt) = 1 if and only if q > p2(3 − 2p). �

Thus, if agents who evaluate both premises are correct 60% of the time, then in case
there are three agents, you should ask two of them to focus on a single premise each if
and only if their accuracy for doing so is at least 64.8%.
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6.20. Proposition. For = = 4,

argmax
=1

%i,=1 (�opt) =
{

1 if q < p2

(1−p)2+p2

2 otherwise

Proof. We have three options: =1 = 0, =1 = 1, or =1 = 2.

%i,0(�opt) =p4 +
(
4
3

)
p3(1 − p) + 1

2

(
4
2

)
p2(1 − p)2 = p2(3 − 2p)

%i,1(�opt) =


q(p2 + 2p(1 − p) + (1−p)

2

2 ) + (1 − q) p
2

2 if q = p2

(1−p)2+p2

q if q > p2

(1−p)2+p2

q(p2 + 2p(1 − p)) + (1 − q)p2 if q < p2

(1−p)2+p2

%i,2(�opt) =q2 + 2
1
2
q(1 − q) = q

The claim now follows after some simple algebraic manipulations, by distinguishing
cases regarding the relation of q to p2

(1−p)2+p2 . �

Now, for an arbitrary number of agents = and a number of agents =1 who judge only
premise i (and the same for k), we have the following:

%=1,i (�opt) =
=−2=1∑
:=0

( =1∑
ℓ=0

s.t. ℓ∈,

%(:, ℓ, =, =1, p, q) +
1
2

=1∑
ℓ=0

s.t. ℓ∈)

%(:, ℓ, =, =1, p, q)
)

• : counts how many of the agents that judge both premises are right on i

• ℓ counts how many of the agents that judge only i are right on i

• , = {ℓ | ℓ log q
1−q + : log p

1−p > (=1 − ℓ) log q
1−q + (= − 2=1 − :) log p

1−p }

• ) = {ℓ | ℓ log q
1−q + : log p

1−p = (=1 − ℓ) log q
1−q + (= − 2=1 − :) log p

1−p }

• %(:, ℓ, =, =1, p, q) =
(=−2=1

:

) (=1
ℓ

)
p: (1 − p)=−2=1−:qℓ (1 − q)=1−ℓ

For large groups with = > 5 it is too complex to calculate the optimal assignment
analytically in all cases. We instead look at some representative values of p and q. For
that purpose, we define a parameter U that intuitively captures the agents’ multitasking
ability, as follows: U = p−0.5

q−0.5 . Clearly, 0 < U < 1, and the smaller U is, the worse
multitaskers the agents can be assumed to be.

We consider three types for the agents’ multitasking ability: good, average, and bad,
corresponding to values for U of 0.8, 0.5, and 0.2, respectively. In addition, we consider
four types for the agents’ accuracy on a single question: very high, high, medium, and
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low, corresponding to values for q of 0.9, 0.8, 0.7, and 0.6, respectively. Table 6.2
demonstrates our findings regarding the optimal assignment in terms of the number =1
for these characteristic cases, for groups with at most 15 members.45 In general, we
can observe that the better multitaskers the agents are, the lower the number =1 that
corresponds to the best assignment is. This verifies an elementary intuition suggesting
that if the agents are good at multitasking, then it is profitable to ask many of them
about both premises, while if the agents are bad at multitasking, it is more beneficial to
ask them about a single premise each.

=

@
U

Low Medium High Very high
bad avg. good bad avg. good bad avg. good bad avg. good

5 2 2 2 2 2 2 2 2 2 2 2 2
6 3 3 3 3 3 3 3 3 3 3 3 3
7 3 3 2 3 3 2 3 3 3 3 3 3
8 4 4 3 4 3 3 4 4 3 4 4 3
9 4 4 4 4 4 4 4 4 4 4 4 4
10 5 5 5 5 5 5 5 5 5 5 5 5
11 5 5 4 5 5 4 5 5 5 5 5 5
12 6 6 5 6 5 5 6 6 5 6 6 5
13 6 6 6 6 6 6 6 6 6 6 6 6
14 7 7 7 7 7 7 7 7 7 7 7 7
15 7 7 6 7 7 6 7 7 7 7 7 7

Table 6.2: Optimal assignment in terms of the number of agents who should be asked
about premise i only, for different group size, individual accuracy, multitasking ability.

To conclude our formal analysis of truth-tracking aggregation rules under the presence
of agents that multitask, let us make a few additional comments. For this first study on
the topic, a few simplifying assumptions have been made. First, we have assumed that
all agents have the same accuracy and that there are only two premises. Our analysis
can be naturally extended beyond this case, considering different accuracies and more
than two premises: The optimal aggregation rule would still be a weighted majority
rule, agents with truth-oriented preferences would still always be sincere, while agents
who care about their reputation or their individual opinion would still find reasons to
lie—but careful further work is essential here in order to clarify all relevant details.
Second, we have assumed that the exact values of the agents’ accuracies are known, but
this is often not true in practice. Thus, to complement our theoretical work, our results
could be combined with existing experimental research that measures the accuracy
of individual agents on specific application domains, ranging from human-computer
interaction (Adler andBenbunan-Fich, 2012) to crowdsourcing (Cohensius et al., 2018).

4For any assignment, collective accuracy converges to 1 as the size of the group grows larger. Thus,
our analysis is most interesting for groups that are not very large.

5The calculations were performed using a computer program in R.



Chapter 7
Conclusion

The running theme of this thesis has been incompleteness in collective decisionmaking.
We have delved into two formal frameworks, judgment aggregation and preference
aggregation, and have provided a systematic study of a plethora of challenges that
incomplete opinions bring about. Looking back, we have perhaps discovered more
questions than answers—but one could also claim that this is an inherent characteristic
of any attempt at scientific research. Let us recall the most notable ones amongst the
questions that we didmanage to answer in Section 7.1, before proceeding to a discussion
of open directions for future work in Section 7.2.

7.1 Recollections
After establishing the formal background for our work in Chapter 2, we started our
exploration in Chapter 3, where we inquired about natural generalisations—for the
incomplete case—of aggregation rules that are widely known and respected under the
assumption of complete individual opinions. Regarding the first of them, the Kemeny
rule, we have proposed a way to extend it into a weighted version in which weights
are assigned to the members of a collective decision process according to the degree
of incompleteness that their opinions display. The various possibilities for defining
such weight rules belong to a spectrum: at the one extreme, we have weights that are
constant; at the other extreme, we can find weights that radically change under the
smallest variation in an opinion’s incompleteness (such as weights inducing a rule that
prioritises small opinions in a lexicographic manner).

The next class of rules that we have examined is that of quota rules in judgment
aggregation. We have introduced a taxonomy of their possible generalisations for
incomplete judgments, based on two considerations: (8) whether the number of the
agents that abstain should matter for the collective decision (dividing rules into variable
and invariable ones), and (88) whether we care about the absolute number of agents
that support a given proposition or the margin between the agents that are in favour of
the proposition and those that are against it (dividing rules into absolute and marginal

165
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ones). We have shown that variable absolute and variable marginal quota rules give
rise to exactly the same class, which includes all invariable rules. But no invariable
absolute rule can ever coincide with an invariable marginal rule, unless it is trivial.

In the context of preference aggregation and voting, we have focused on the popular
positional scoring rules and have provided a general definition for this class under
incompleteness. We have specifically presented two ways for extending :-approval
rules, accounting for either the alternatives that a given alternative dominates or the ones
by which it is dominated. We have also studied three rules that generalise the classical
Borda rule in a pessimistic, optimistic, and averaging fashion, by inspecting their formal
links to domination relationships between the alternatives in a given preference.

We continued in Chapter 4, where we searched for normative conditions (viz.,
axioms) that can be imposed on aggregation rules for incomplete individual opinions
in order to guarantee reasonable and compelling collective decisions.

Within the class ofweight rules, different normative concerns, encoded via a number
of axioms, have been found to characterise different rules. For example, adhering to
the opinion of a majority—when that opinion does not cause any problematic cases of
logical inconsistency or of cyclic preferences—is achieved (only) by constant weight
rules; ensuring that agents with compatible opinions will not be able to change the
outcome by asserting their opinions collectively instead of individually enforcesweights
that are inversely proportional to the number of issues addressed by an agent.

The most general type of quota rules for incomplete judgments, i.e., variable quota
rules, have been characterised by three basic axioms—anonymity, a weak variant
of monotonicity, and a weak variant of independence—capturing the fact that quota
rules only rely on the number of the votes (and not on the names of the voters),
welcome additional support for the acceptance of a proposition, and perform issue-by-
issue aggregation. Stronger variants of monotonicity and independence have led us to
invariable absolute quota rules, while adding a cancellation property (that balances out
positive and negative judgments on a given issue) has brought us to the class of invariable
marginal quota rules. We have also hinted at the conditions under which quota rules
yield logically consistent collective judgments, and have found that incompleteness
creates further obstacles in that respect.

Along the lines of existing work, we have offered an axiomatic characterisation of
the class of positional scoring rules in voting using anonymity, neutrality, reinforcement,
and continuity. In addition, we have established that by including monotonicity and a
variant of cancellation (prescribing that every alternative should be regarded a winner
when the group provides equal support for all pairwise rankings), we obtain the Borda
class—containing the pessimistic, the optimistic, and the averaged Borda rule. Each
one of these three rules has been uniquely associated with its own axiom.

In Chapter 5, we turned our attention to strategic agents who may lie about their
sincere opinions in order to achieve a collective outcome that is more attractive to them.
We have proven that the rules that are immune to this kind of behaviour within judgment
aggregation are exactly those that are monotonic and independent (the latter in a very
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weak sense). This means that amongst all quota rules for incomplete judgments, only
invariable absolute ones pass the test.

Although we have not analogously characterised voting rules that are not manipula-
ble, we have identified an exhaustive list of ways by which the agents may misrepresent
their preferences when incompleteness is enabled: namely by omitting, adding, or
flipping some of the pairwise comparisons with which their sincere preference agrees.
If we only try to escape one single type of lying from the aforementioned ones, then
we have proven that we can choose an appropriate positional scoring rule that achieves
our goal—the same holds for the combination of addition and flipping, but fails for any
combination of types that includes omission.

Then, specifically examining rules that generalise :-approval in voting with com-
plete preferences, we have developed a model where the agents engage in iterative
strategic behaviour, changing the collective outcome in rounds. We have shown that
often there is no guarantee of arriving at stable profiles, where no agent has an incentive
to further alter her preference, unless only acts of omission or only acts of addition
are allowed. Complementing our findings that are based on a worst-case analysis, we
have also conducted experiments suggesting that in practice stable states will always
be reached, relatively quickly. Our simulations also indicate that manipulable profiles,
although theoretically unavoidable, are rare.

We wrapped up our quest in Chapter 6, where we took a shift in perspective
and studied agents whose opinions pertain to objective issues, with an existing—yet
unknown—true answer, rather than to subjective ones. A special weight rule has been
demonstrated to constitute the aggregation process that discovers the relevant truth
in a probabilistically optimal manner. We have examined the strategic behaviour of
agents in a group when this rule is applied, and have found that it varies vastly with
respect to the preferences that the agents are assumed to hold. For example, when
these preferences are in unison with the aim of the collective decision process—that is,
locating the ground truth—then no incentives to lie arise. On the contrary, agents have
strong incentives towards insincerity when they are aware of the opinions reported by
their peers and they merely want to agree with them.

Our final question concerned the optimal method for distributing tasks to the agents
in a team: By asking a certain agent to assess multiple issues simultaneously, we will
gather more information, but that agent’s need to multitask will lower her accuracy;
on the other hand, by assigning a single task to each agent, we will collect a smaller
number of more accurate pieces of evidence about the issues at stake. We have resolved
this trade-off between judgment quantity and judgment quality for two, three, and four
agents, and have provided numerical results for larger groups.

7.2 Reflections
By digging deeper into the foundations of incomplete opinions in the context of col-
lective decision making, we have spotted multiple open directions for further research,
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which vary in character: they are technically, behaviourally, or philosophically oriented.
Let us discuss them in this order.

TechnicalOpenQuestions. Inmany parts of this thesiswe have encountered concrete
technical obstacles, which pose limitations to our results (for example, no full charac-
terisations have been found for the class of weight rules, nor for the class of rules that
are immune to strategic behaviour under different kinds of manipulation moves). Since
we have already addressed this kind of open questions within the relevant chapters, we
now wish to have a look at the broader picture.

We should note that all aggregation rules that we have considered in the voting
framework, determining a single winning alternative, constitute some kind of positional
scoring rule—as we saw, this is also the case for the single-winner weight rules, which
reduce to the Borda rule under complete preferences. Our study could be extended to
different kinds of voting rules, such as rules that are defined based on the weighted
majority graph, or approval-based rules. From a technical perspective, it would be
interesting to reveal the effects of incompleteness regarding both the axiomatic and the
manipulability properties of a wider pool of rules.

Moreover, techniques from preference aggregation (more abstractly, from rank ag-
gregation) are applied tomany domains besides voting, including, for example, artificial
intelligence and biology. Although in this thesis we have restricted our attention to tra-
ditional aggregation rules for voting and have conducted purely theoretical work, our
ideas could be transferred to applications. In particular, the axiomatic method is already
employed in artificial intelligence research (e.g., by Pennock et al. (2000) with respect to
collaborative filtering, which is relevant for recommender systems, and by Altman and
Tennenholtz (2005) for PageRank, which is relevant for search engines)—incorporating
our insights on incompleteness could generate intriguing new results.

Finally, note that we have exclusively focused on incomplete opinions when these
stem from the side of the individuals in a group. But collective decisions often are
incomplete as well, for instance because of ties that cannot be broken straightforwardly
or because the group has to choose between a complete and inconsistent or an incomplete
and consistent outcome. Incomplete collective opinions require a different treatment
than individual ones. One possible way to explore this topic is through perpetual
collective decision making, in which issues that have not been resolved by the group
are delegated to a future decision problem.

Behavioural Open Questions. A research area that is developed in parallel to social
choice theory (where this thesis belongs) revolves around the behavioural attitudes of
people in settings of collective decision making. Relevant questions asked by empirical
scientists concern, for example, the way that people vote under the implementation of
different voting systems, or the degree to which voters’ expectations about the outcome
of an election affect their motivation to participate in it. An open, empirical question
connected to our work is related to our investigations on truth-tracking. Specifically,
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even if it is clear that multitasking is part of our everyday life and that it commonly
harms our performance, there is nomuch evidence about how people that manage teams
of multitaskers decide to assign tasks to them. In addition, it would be interesting to
study the final decisions that such managers make after being exposed to the judgments
of their team members: are they consistent with the ones produced by our optimal
aggregation rule? If it is discovered that (normative) theory and practice are largely
diverting, we may want to consider better educating people about collective decision
making (or perhaps, modifying our models towards a more descriptive stance). More
generally, further experiments clarifying the differences between the various ways with
which the agents may express the incompleteness of their opinions (e.g., by abstaining,
by submitting a blank, or an invalid vote) could be very relevant for future work on
collective decision making.

Philosophical Open Questions. As is the case for every endeavour to formally study
phenomena where human beings are involved, the contributions of this thesis are also
contingent on a number of strong assumptions about the human mind. We have built
our models over a notion of incompleteness according to which the agents “may not
be able to compare some of the alternatives in question”. Philosophically speaking,
this is a rather vague description—it does not tell us anything about where exactly
this incompleteness comes from, or how it connects to the agents’ beliefs and goals.
Althoughwe have not crossed the borders into the (complex, yet beautiful) philosophical
terrain, we have tried to be as explicit as possible about the assumptions in our results,
so that a further analysis of them in the future will be possible.

Specifically, incomplete individual opinions are enthralling in decision-theoretical
terms, where one approach is to think of preference as choice: An agent choosing
alternative 0 and not alternative 1 when both options are available means that the agent
prefers 0 over 1. But an agent can always be forced to choose between two options.
What does this then imply about her possibly incomplete preferences? Alternatively,
an agent preferring 0 to 1 may be construed as the agent expecting that 0 will make her
happier than 1 (this is an interpretation of preference as welfare). In such a case, is it
possible for the agent’s preferences to be non-transitive (if 0 makes me happier than 1
and 1 makes me happier than 2, then naturally 0 makes me happier than 2)? Questions
like the above (inspired by Mandler, 2005), together with many more, are profoundly
tackled in philosophical decision research, but further links to formal frameworks of
collective decision making can be envisioned.
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Samenvatting

In onze moderne wereld maken mensen voortdurend beslissingen samen: men neemt
deel aan verkiezingen, het bestuur van een bedrijf, de jury in een rechtszaak, en sociale
activiteiten met vrienden. Het is van essentieel belang om dit soort verfijnd menselijk
gedrag goed te begrijpen, niet alleen om de keuzes die mensen maken direct te ver-
beteren, maar ook om AI- en multiagent-systemen te ontwikkelen die op een efficiënte
en veilige manier samenwerken met collectieve beslissingen. Socialekeuzetheorie is
het deelgebied van de micro-economie die zich bezighoudt met het analyseren van
mechanismen die groepen gebruiken om beslissingen te maken; de thema’s die een
rol spelen in dit onderzoeksgebied overlappen met andere onderzoeksgebieden, zoals
politicologie, rechtspraak, en kunstmatige intelligentie. Het veel jongere onderzoeks-
gebied van computationele socialekeuzetheorie onderzoekt onderwerpen en problemen
uit de socialekeuzetheorie met behulp van krachtige hulpmiddelen uit de informatica.

Veel onderzoek in computationele socialekeuzetheorie is gebaseerd op de nogal
stricte aanname dat mensen een concrete mening kunnen vormen over alle kwesties die
een rol spelen bij een gegeven beslissing (zulke meningen noemen we volledig). In de
afgelopen jaren maken mensen echter steeds vaker beslissingen op het internet, waar de
overvloed aan mogelijke opties ervoor zorgt dat mensen niet alle opties kritisch kunnen
evalueren. Deze dissertatie behandelt collectieve beslissingen waar de individuen
inherent onvolledige meningen kunnen hebben (dat wil zeggen, het is mogelijk dat ze
over een aantal relevante kwesties simpelweg geenmening hebben). Op een reiswebsite
waar gebruikers hotels rangschikken aan de hand van hun ervaringen en voorkeuren,
hebben de meeste gebruikers niet een mening over ieder hotel, bijvoorbeeld.

We hebben aggregatiemechanismen nodig die een onvolledige invoer toestaan en
met zo’n invoer toch redelijke collectieve beslissingen produceren. Deze dissertatie
biedt zulke mechanismen in drie verschillende contexten, waar we belang hebben bij
(i) het bereiken van een consensus tussen de diverse meningen van de groepsleden
over kwesties die subjectief van aard zijn (zoals in het voorbeeld van de reiswebsite),
(ii) het vermijden van scheefgetrokken collectieve beslissingen die veroorzaakt worden
door strategisch gedrag van egoïstische individuen (zoals bij verkiezingen het geval kan
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zijn), en (iii) het ontdekken van de onderliggende waarheid als het gaat om een aantal
objectieve kwesties (zoals bij crowdsourcing-experimenten).

Ten eerste, hoe kunnen we een adequaat compromis bereiken voor een groep indi-
viduen met uiteenlopende meningen? Eén manier om dit te doen, die vaak gebruikt
wordt in de onderzoeksgemeenschap van de socialekeuzetheorie, is door gebruik te
maken van axioma’s: eigenschappen van aggregatiemechanismen die aantrekkelijk
zijn vanwege hun normatieve interpretatie. Zulke axioma’s zijn goed bestudeerd in
het gebruikelijke raamwerk waar volledigheid van meningen wordt aangenomen, maar
roepen talrijke open vragen op zodra onvolledigheid toegestaan wordt. Door onze
aandacht te richten op verschillende axioma’s verkrijgen we verschillende mechanis-
men voor collectieve keuzes—inclusief mechanismen die meningen van verschillende
grootte niet even zwaar meewegen, mechanismen die scores toewijzen aan opties op
basis van hun positie in de inviduele meningen, en mechanismen die gebaseerd zijn
op verschillende acceptatiedrempels. De verschillende axioma’s die we beschouwen
leiden tot verschillende noties van compromis. Afhankelijk van welke men overtuigend
vindt, kan geargumenteerd worden om de bijbehorende mechanismen te gebruiken.

Ten tweede, bij welke mechanismen voor groepsbeslissingen kunnen de leden van
een groep een verkeerde voorstelling geven van hun individuele mening met het doel
om een betere uitkomst te bereiken, vanuit hun egoïstische perspectief? Individuen die
de vrijheid hebben om onvolledige meningen te rapporteren kunnen op drie manieren
liegen: door hun oprechte mening te verzwijgen, door een onoprechte mening te
verzinnen, of door hun oprechte mening om te draaien. Zulke daden vormen een
bedreiging voor ons dagelijkse leven, doordat ze het risico met zich meebrengen op
niet-representatieve, ondemocratische groepsbeslissingen. We laten zien dat het in veel
gevallen mogelijk is om mechanismen te vinden die immuun zijn voor dit soort strate-
gisch gedrag. We tonen echter ook aan dat strategischemanipulatie in sommige gevallen
onvermijdelijk is. Bovendien onderzoeken we, voor het geval waarin individuen hun
mening mogen veranderen in een aantal rondes, of—en hoe snel—relevante iteratieve
beslissingsprocedures gegarandeerd eindigen.

Ten derde, stel dat je het correcte antwoord op een vraag moet vinden (bijvoorbeeld,
of een collega promotie moet krijgen) die afhangt van twee onafhankelijke premissen
(bijvoorbeeld, of de collega goed is in haar werk en of ze een goede teamspeler is).
Vraag je de leden van een groep om elk een van de premissen te evalueren (wat met
relatief hoge nauwkeurigheid gedaan kan worden) of elk beide premissen (wat vanwege
de noodzaak om te multitasken de nauwkeurigheid naar beneden zal halen)? We
bieden een optimaal mechanisme om groepsbeslissingen te maken in scenario’s zoals
dit. We stellen vast hoeveel individuen men moet vragen om hoeveel premissen te
evalueren, en we bieden een uitgebreide analyse van de strategische prikkels die zich
vanuit individueel perspectief kunnen voordoen.

In een notendop samengevat: deze dissertatie bestudeert een aantal veelbelovende
manieren om groepsbeslissingen te maken die toepasbaar zijn in een ruime hoeveelheid
contexten (ingegeven door daadwerkelijke toepassingen) waarin individuele meningen
naar verwachting onvolledig zijn.



Abstract

In the modern world, people make decisions together every day: they participate in
elections, boards of companies, juries of courts, and social activities amongst friends.
Accurately capturing such fine-grained human behaviour is essential, not only for di-
rectly improving the choices made by people, but also for developing AI (multiagent)
systems that work efficiently and safely with collective decisions. Social choice theory,
a sub-area of (micro)economics, is concerned with the analysis of mechanisms that
groups use to make decisions; its far-reaching themes transcend neighbouring disci-
plines, like political science, law, and artificial intelligence. The much younger field of
computational social choice investigates problems traditionally studied in social choice
theory with powerful tools from computer science.

Much research to date in computational social choice has been resting on a rather
stringent hypothesis—namely, that people are able to form concrete opinions about all
issues at stake in a given decision problem (such opinions are called complete). But in
recent years, peoplemake decisions increasingly in online settings, where the abundance
of available options often makes them prohibitively difficult to critically evaluate. This
thesis concerns collective decisions where the agents may hold intrinsically incomplete
opinions (that is, they may lack an opinion about some issues in question). For
example, on a travel website where users rank hotels according to their experience and
preferences, most people will not have an opinion about all offered listings.

We need aggregation mechanisms that allow for incomplete inputs and produce rea-
sonable collective outcomes. This thesis proposes such mechanisms in three contexts,
where we care about (8) reaching a consensus between the diverse opinions of the group
members for issues that are subjective in nature (like in the example about the travel
website); (88) avoiding skewed outcomes caused by the strategic behaviour of selfish
agents (like in election problems); (888) discovering the ground truth with respect to a
number of objective issues (like in crowdsourcing experiments).

First, how can we achieve a sufficiently good compromise for a group of agents
with diverting opinions? One way, typically employed by the social choice community,
suggests the use of axioms, i.e., properties of aggregation mechanisms that are nor-
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matively appealing. Such axioms are well-studied in the standard frameworks where
completeness is assumed, but present numerous open questions when incompleteness
comes into the picture. By restricting attention to different axioms, we obtain distinct
mechanisms for collective choice—including mechanisms that weigh individual opin-
ions relying on their size, mechanisms that assign scores to alternatives with respect to
their position in the individual preferences, as well as mechanisms that are associated
with given acceptance thresholds. The various axioms that we consider lead to different
notions of compromise. Depending on those one finds compelling, one can argue for
the use of the corresponding mechanisms that satisfy them.

Second, under what mechanisms for collective decision making are the members
of a group tempted to misrepresent their individual opinions in view of obtaining a
better outcome for themselves? Agents that have the freedom to report incomplete
opinions may lie in three ways: by hiding their sincere opinion; by inventing a new
insincere opinion; or by reversing their sincere opinion. Such acts pose threats to
our everyday life, bringing out the risk of obtaining non-representative, undemocratic
collective decisions. In many cases, we show that it is possible to find mechanisms that
are immune to this kind of strategic behaviour. However, we also prove impossibility
results stating that strategic manipulation is, sometimes, inescapable. Furthermore,
when agents are allowed to change their opinions in rounds, we examine whether—and
how fast—relevant procedures of iterative decision making are guaranteed to terminate.

Third, suppose you need to determine the correct answer to a question (e.g., whether
a colleague should get promoted) that depends on two independent premises (e.g.,
whether the colleague is excellent at her work and whether she is a good team player).
Will you ask the members of a group to each evaluate just one of those premises (which
can be done with relatively high accuracy) or both (in which case their need to multitask
will lower their accuracy)? In scenarios like this, we present an optimal mechanism for
making collective decisions, we determine how many agents one should ask for how
many of their opinions, and we provide an extensive analysis of strategic incentives that
may arise from the point of view of the group members.

In a nutshell, spanning across ample contexts motivated by real-world applications,
this thesis discusses several promising ways for making collective decisions when
individual opinions are expected to be incomplete.
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