10 research outputs found

    Median based calculus for lattice polynomials and monotone Boolean functions

    Get PDF
    International audienceIn this document, we consider a median-based calculus for efficiently representing polynomial functions over distributive lattices. We extend an equational specification of median forms from the domain of Boolean functions to the domain of lattice polynomials. We show that it is sound and complete, and we illustrate its usefulness when simplifying median formulas algebraically. Furthermore, we propose a definition of median normal forms (MNF), that are thought of as minimal median formulas with respect to a structural ordering of expressions. We also investigate related complexity issues and show that the problem of deciding whether a formula is in MNF is in ÎŁ^P_2. Moreover, we explore polynomial approximations of solutions to this problem through a sound term rewriting system extracted from the proposed equational specification

    Majority logic synthesis

    Get PDF
    International audienceThe majority function ⟨xyz⟩ evaluates to true, if at least two of its Boolean inputs evaluate to true. The majority function has frequently been studied as a central primitive in logic synthesis applications for many decades. Knuth refers to the majority function in the last volume of his seminal The Art of Computer Programming as "probably the most important ternary operation in the entire universe. " Majority logic sythesis has recently regained signficant interest in the design automation community due to nanoemerging technologies which operate based on the majority function. In addition , majority logic synthesis has successfully been employed in CMOS-based applications such as standard cell or FPGA mapping. This tutorial gives a broad introduction into the field of majority logic synthesis. It will review fundamental results and describe recent contributions from theory, practice, and applications

    Mapping Monotone Boolean Functions into Majority

    Get PDF
    We consider the problem of decomposing monotone Boolean functions into majority-of-three operations, with a particular focus on decomposing the majority-n function. When targeting monotone Boolean functions, Shannon's expansion can be expressed by a single majority-of-three operation. We exploit this property to transform binary decision diagrams (BDDs) for monotone functions into majority-inverter graphs (MIGs), using a simple one-to-one mapping. This process highlights desirable properties for further majority graph optimization, e.g., symmetries between the inputs of primitive operations, which are not apparent from BDDs. Although our construction yields a quadratic upper bound on the number of majority-3 operations required to realize majority-n, for small n the concrete values are much smaller compared to those obtained from previous constructions which have linear and quasi-linear asymptotic upper bounds. Further, we demonstrate that minimum size MIGs, for the monotone functions majority-5 and majority-7, can be obtained applying a small number of algebraic transformations to the BDD

    On the complexity of minimizing median normal forms of monotone Boolean functions and lattice polynomials

    Get PDF
    International audienceIn this document, we consider a median-based calculus to represent monotone Boolean functions efficiently. We study an equa-tional specification of median forms and extend it from the domain of monotone Boolean functions to the domain of polynomial functions over distributive lattices. This specification is sound and complete. We illustrate its usefulness when simplifying median formulas algebraically. Furthermore, we propose a definition of median normal forms (MNF), that are thought of as minimal median formulas with respect to a structural ordering of expressions. We investigate related complexity issues and show that the problem of deciding whether a formula is in MNF, that is the problem of minimizing the median form of a monotone Boolean function, is in ÎŁ P 2. Moreover, we show that it still holds for arbitrary Boolean functions, not necessarily monotone

    On The Design Of Low-Complexity High-Speed Arithmetic Circuits In Quantum-Dot Cellular Automata Nanotechnology

    Get PDF
    For the last four decades, the implementation of very large-scale integrated systems has largely based on complementary metal-oxide semiconductor (CMOS) technology. However, this technology has reached its physical limitations. Emerging nanoscale technologies such as quantum-dot cellular automata (QCA), single electron tunneling (SET), and tunneling phase logic (TPL) are major candidate for possible replacements of CMOS. These nanotechnologies use majority and/or minority logic and inverters as circuit primitives. In this dissertation, a comprehensive methodology for majority/minority logic networks synthesis is developed. This method is capable of processing any arbitrary multi-output Boolean function to nd its equivalent optimal majority logic network targeting to optimize either the number of gates or levels. The proposed method results in different primary equivalent majority expression networks. However, the most optimized network will be generated as a nal solution. The obtained results for 15 MCNC benchmark circuits show that when the number of majority gates is the rst optimization priority, there is an average reduction of 45.3% in the number of gates and 15.1% in the number of levels. They also show that when the rst priority is the number of levels, an average reduction of 23.5% in the number of levels and 43.1% in the number of gates is possible, compared to the majority AND/OR mapping method. These results are better compared to those obtained from the best existing methods. In this dissertation, our approach is to exploit QCA technology because of its capability to implement high-density, very high-speed switching and tremendously lowpower integrated systems and is more amenable to digital circuits design. In particular, we have developed algorithms for the QCA designs of various single- and multi-operation arithmetic arrays. Even though, majority/minority logic are the basic units in promising nanotechnologies, an XOR function can be constructed in QCA as a single device. The basic cells of the proposed arrays are developed based on the fundamental logic devices in QCA and a single-layer structure of the three-input XOR function. This process leads to QCA arithmetic circuits with better results in view of dierent aspects such as cell count, area, and latency, compared to their best counterparts. The proposed arrays can be formed in a pipeline manner to perform the arithmetic operations for any number of bits which could be quite valuable while considering the future design of large-scale QCA circuits

    Embedding Logic and Non-volatile Devices in CMOS Digital Circuits for Improving Energy Efficiency

    Get PDF
    abstract: Static CMOS logic has remained the dominant design style of digital systems for more than four decades due to its robustness and near zero standby current. Static CMOS logic circuits consist of a network of combinational logic cells and clocked sequential elements, such as latches and flip-flops that are used for sequencing computations over time. The majority of the digital design techniques to reduce power, area, and leakage over the past four decades have focused almost entirely on optimizing the combinational logic. This work explores alternate architectures for the flip-flops for improving the overall circuit performance, power and area. It consists of three main sections. First, is the design of a multi-input configurable flip-flop structure with embedded logic. A conventional D-type flip-flop may be viewed as realizing an identity function, in which the output is simply the value of the input sampled at the clock edge. In contrast, the proposed multi-input flip-flop, named PNAND, can be configured to realize one of a family of Boolean functions called threshold functions. In essence, the PNAND is a circuit implementation of the well-known binary perceptron. Unlike other reconfigurable circuits, a PNAND can be configured by simply changing the assignment of signals to its inputs. Using a standard cell library of such gates, a technology mapping algorithm can be applied to transform a given netlist into one with an optimal mixture of conventional logic gates and threshold gates. This approach was used to fabricate a 32-bit Wallace Tree multiplier and a 32-bit booth multiplier in 65nm LP technology. Simulation and chip measurements show more than 30% improvement in dynamic power and more than 20% reduction in core area. The functional yield of the PNAND reduces with geometry and voltage scaling. The second part of this research investigates the use of two mechanisms to improve the robustness of the PNAND circuit architecture. One is the use of forward and reverse body biases to change the device threshold and the other is the use of RRAM devices for low voltage operation. The third part of this research focused on the design of flip-flops with non-volatile storage. Spin-transfer torque magnetic tunnel junctions (STT-MTJ) are integrated with both conventional D-flipflop and the PNAND circuits to implement non-volatile logic (NVL). These non-volatile storage enhanced flip-flops are able to save the state of system locally when a power interruption occurs. However, manufacturing variations in the STT-MTJs and in the CMOS transistors significantly reduce the yield, leading to an overly pessimistic design and consequently, higher energy consumption. A detailed analysis of the design trade-offs in the driver circuitry for performing backup and restore, and a novel method to design the energy optimal driver for a given yield is presented. Efficient designs of two nonvolatile flip-flop (NVFF) circuits are presented, in which the backup time is determined on a per-chip basis, resulting in minimizing the energy wastage and satisfying the yield constraint. To achieve a yield of 98%, the conventional approach would have to expend nearly 5X more energy than the minimum required, whereas the proposed tunable approach expends only 26% more energy than the minimum. A non-volatile threshold gate architecture NV-TLFF are designed with the same backup and restore circuitry in 65nm technology. The embedded logic in NV-TLFF compensates performance overhead of NVL. This leads to the possibility of zero-overhead non-volatile datapath circuits. An 8-bit multiply-and- accumulate (MAC) unit is designed to demonstrate the performance benefits of the proposed architecture. Based on the results of HSPICE simulations, the MAC circuit with the proposed NV-TLFF cells is shown to consume at least 20% less power and area as compared to the circuit designed with conventional DFFs, without sacrificing any performance.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Emerging Design Methodology And Its Implementation Through Rns And Qca

    Get PDF
    Digital logic technology has been changing dramatically from integrated circuits, to a Very Large Scale Integrated circuits (VLSI) and to a nanotechnology logic circuits. Research focused on increasing the speed and reducing the size of the circuit design. Residue Number System (RNS) architecture has ability to support high speed concurrent arithmetic applications. To reduce the size, Quantum-Dot Cellular Automata (QCA) has become one of the new nanotechnology research field and has received a lot of attention within the engineering community due to its small size and ultralow power. In the last decade, residue number system has received increased attention due to its ability to support high speed concurrent arithmetic applications such as Fast Fourier Transform (FFT), image processing and digital filters utilizing the efficiencies of RNS arithmetic in addition and multiplication. In spite of its effectiveness, RNS has remained more an academic challenge and has very little impact in practical applications due to the complexity involved in the conversion process, magnitude comparison, overflow detection, sign detection, parity detection, scaling and division. The advancements in very large scale integration technology and demand for parallelism computation have enabled researchers to consider RNS as an alternative approach to high speed concurrent arithmetic. Novel parallel - prefix structure binary to residue number system conversion method and RNS novel scaling method are presented in this thesis. Quantum-dot cellular automata has become one of the new nanotechnology research field and has received a lot of attention within engineering community due to its extremely small feature size and ultralow power consumption compared to COMS technology. Novel methodology for generating QCA Boolean circuits from multi-output Boolean circuits is presented. Our methodology takes as its input a Boolean circuit, generates simplified XOR-AND equivalent circuit and output an equivalent majority gate circuits. During the past decade, quantum-dot cellular automata showed the ability to implement both combinational and sequential logic devices. Unlike conventional Boolean AND-OR-NOT based circuits, the fundamental logical device in QCA Boolean networks is majority gate. With combining these QCA gates with NOT gates any combinational or sequential logical device can be constructed from QCA cells. We present an implementation of generalized pipeline cellular array using quantum-dot cellular automata cells. The proposed QCA pipeline array can perform all basic operations such as multiplication, division, squaring and square rooting. The different mode of operations are controlled by a single control line

    Challenges and solutions for large-scale integration of emerging technologies

    Get PDF
    Title from PDF of title page viewed June 15, 2021Dissertation advisor: Mostafizur RahmanVitaIncludes bibliographical references (pages 67-88)Thesis (Ph.D.)--School of Computing and Engineering and Department of Physics and Astronomy. University of Missouri--Kansas City, 2021The semiconductor revolution so far has been primarily driven by the ability to shrink devices and interconnects proportionally (Moore's law) while achieving incremental benefits. In sub-10nm nodes, device scaling reaches its fundamental limits, and the interconnect bottleneck is dominating power and performance. As the traditional way of CMOS scaling comes to an end, it is essential to find an alternative to continue this progress. However, an alternative technology for general-purpose computing remains elusive; currently pursued research directions face adoption challenges in all aspects from materials, devices to architecture, thermal management, integration, and manufacturing. Crosstalk Computing, a novel emerging computing technique, addresses some of the challenges and proposes a new paradigm for circuit design, scaling, and security. However, like other emerging technologies, Crosstalk Computing also faces challenges like designing large-scale circuits using existing CAD tools, scalability, evaluation and benchmarking of large-scale designs, experimentation through commercial foundry processes to compete/co-exist with CMOS for digital logic implementations. This dissertation addresses these issues by providing a methodology for circuit synthesis customizing the existing EDA tool flow, evaluating and benchmarking against state-of-the-art CMOS for large-scale circuits designed at 7nm from MCNC benchmark suits. This research also presents a study on Crosstalk technology's scalability aspects and shows how the circuits' properties evolve from 180nm to 7nm technology nodes. Some significant results are for primitive Crosstalk gate, designed in 180nm, 65nm, 32nm, and 7nm technology nodes, the average reduction in power is 42.5%, and an average improvement in performance is 34.5% comparing to CMOS for all mentioned nodes. For benchmarking large-scale circuits designed at 7nm, there are 48%, 57%, and 10% improvements against CMOS designs in terms of density, power, and performance, respectively. An experimental demonstration of a proof-of-concept prototype chip for Crosstalk Computing at TSMC 65nm technology is also presented in this dissertation, showing the Crosstalk gates can be realized using the existing manufacturing process. Additionally, the dissertation also provides a fine-grained thermal management approach for emerging technologies like transistor-level 3-D integration (Monolithic 3-D, Skybridge, SN3D), which holds the most promise beyond 2-D CMOS technology. However, such 3-D architectures within small form factors increase hotspots and demand careful consideration of thermal management at all integration levels. This research proposes a new direction for fine-grained thermal management approach for transistor-level 3-D integrated circuits through the insertion of architected heat extraction features that can be part of circuit design, and an integrated methodology for thermal evaluation of 3-D circuits combining different simulation outcomes at advanced nodes, which can be integrated to traditional CAD flow. The results show that the proposed heat extraction features effectively reduce the temperature from a heated location. Thus, the dissertation provides a new perspective to overcome the challenges faced by emerging technologies where the device, circuit, connectivity, heat management, and manufacturing are addressed in an integrated manner.Introduction and motivation -- Cross talk computing overview -- Logic simplification approach for Crosstalk circuit design -- Crostalk computing scalability study: from 180 nm to 7 nm -- Designing large*scale circuits in Crosstalk at 7 nm -- Comparison and benchmarking -- Experimental demonstration of Crosstalk computing -- Thermal management challenges and mitigation techniques for transistor-level- 3D integratio

    New Data Structures and Algorithms for Logic Synthesis and Verification

    Get PDF
    The strong interaction between Electronic Design Automation (EDA) tools and Complementary Metal-Oxide Semiconductor (CMOS) technology contributed substantially to the advancement of modern digital electronics. The continuous downscaling of CMOS Field Effect Transistor (FET) dimensions enabled the semiconductor industry to fabricate digital systems with higher circuit density at reduced costs. To keep pace with technology, EDA tools are challenged to handle both digital designs with growing functionality and device models of increasing complexity. Nevertheless, whereas the downscaling of CMOS technology is requiring more complex physical design models, the logic abstraction of a transistor as a switch has not changed even with the introduction of 3D FinFET technology. As a consequence, modern EDA tools are fine tuned for CMOS technology and the underlying design methodologies are based on CMOS logic primitives, i.e., negative unate logic functions. While it is clear that CMOS logic primitives will be the ultimate building blocks for digital systems in the next ten years, no evidence is provided that CMOS logic primitives are also the optimal basis for EDA software. In EDA, the efficiency of methods and tools is measured by different metrics such as (i) the result quality, for example the performance of a digital circuit, (ii) the runtime and (iii) the memory footprint on the host computer. With the aim to optimize these metrics, the accordance to a specific logic model is no longer important. Indeed, the key to the success of an EDA technique is the expressive power of the logic primitives handling and solving the problem, which determines the capability to reach better metrics. In this thesis, we investigate new logic primitives for electronic design automation tools. We improve the efficiency of logic representation, manipulation and optimization tasks by taking advantage of majority and biconditional logic primitives. We develop synthesis tools exploiting the majority and biconditional expressiveness. Our tools show strong results as compared to state-of-the-art academic and commercial synthesis tools. Indeed, we produce the best results for several public benchmarks. On top of the enhanced synthesis power, our methods are the natural and native logic abstraction for circuit design in emerging nanotechnologies, where majority and biconditional logic are the primitive gates for physical implementation. We accelerate formal methods by (i) studying properties of logic circuits and (ii) developing new frameworks for logic reasoning engines. We prove non-trivial dualities for the property checking problem in logic circuits. Our findings enable sensible speed-ups in solving circuit satisfiability. We develop an alternative Boolean satisfiability framework based on majority functions. We prove that the general problem is still intractable but we show practical restrictions that can be solved efficiently. Finally, we focus on reversible logic where we propose a new equivalence checking approach. We exploit the invertibility of computation and the functionality of reversible gates in the formulation of the problem. This enables one order of magnitude speed up, as compared to the state-of-the-art solution. We argue that new approaches to solve EDA problems are necessary, as we have reached a point of technology where keeping pace with design goals is tougher than ever
    corecore