17,595 research outputs found

    Maintaining Representations of the Environment of a Mobile Robot

    Get PDF
    A description is given of current ideas related to the problem of building and updating three-dimensional representations of the environment of a mobile robot that uses passive vision as its main sensory modality. The authors attempt to represent both geometry and uncertainty. The authors motivate their approach by defining the problems they are trying to solve and then give some simple didactic examples. They then present a tool they think is extremely well adapted to solving most of these problems: the extended Kalman filter (EKF). The authors discuss the notions of minimal geometric representations for three-dimensional lines, planes, and rigid motions. They show how the EKF and the representations can be combined to provide solutions for some of the problems. A number of experimental results on real data are give

    Maintaining representations of the environment of a mobile robot

    Full text link

    Spatio-temporal exploration strategies for long-term autonomy of mobile robots

    Get PDF
    We present a study of spatio-temporal environment representations and exploration strategies for long-term deployment of mobile robots in real-world, dynamic environments. We propose a new concept for life-long mobile robot spatio-temporal exploration that aims at building, updating and maintaining the environment model during the long-term deployment. The addition of the temporal dimension to the explored space makes the exploration task a never-ending data-gathering process, which we address by application of information-theoretic exploration techniques to world representations that model the uncertainty of environment states as probabilistic functions of time. We evaluate the performance of different exploration strategies and temporal models on real-world data gathered over the course of several months. The combination of dynamic environment representations with information-gain exploration principles allows to create and maintain up-to-date models of continuously changing environments, enabling efficient and self-improving long-term operation of mobile robots

    Formation control of nonholonomic mobile robots using implicit polynomials and elliptic Fourier descriptors

    Get PDF
    This paper presents a novel method for the formation control of a group of nonholonomic mobile robots using implicit and parametric descriptions of the desired formation shape. The formation control strategy employs implicit polynomial (IP) representations to generate potential fields for achieving the desired formation and the elliptical Fourier descriptors (EFD) to maintain the formation once achieved. Coordination of the robots is modeled by linear springs between each robot and its two nearest neighbors. Advantages of this new method are increased flexibility in the formation shape, scalability to different swarm sizes and easy implementation. The shape formation control is first developed for point particle robots and then extended to nonholonomic mobile robots. Several simulations with robot groups of different sizes are presented to validate our proposed approach

    Home alone: autonomous extension and correction of spatial representations

    Get PDF
    In this paper we present an account of the problems faced by a mobile robot given an incomplete tour of an unknown environment, and introduce a collection of techniques which can generate successful behaviour even in the presence of such problems. Underlying our approach is the principle that an autonomous system must be motivated to act to gather new knowledge, and to validate and correct existing knowledge. This principle is embodied in Dora, a mobile robot which features the aforementioned techniques: shared representations, non-monotonic reasoning, and goal generation and management. To demonstrate how well this collection of techniques work in real-world situations we present a comprehensive analysis of the Dora system’s performance over multiple tours in an indoor environment. In this analysis Dora successfully completed 18 of 21 attempted runs, with all but 3 of these successes requiring one or more of the integrated techniques to recover from problems

    A Model of the Ventral Visual System Based on Temporal Stability and Local Memory

    Get PDF
    The cerebral cortex is a remarkably homogeneous structure suggesting a rather generic computational machinery. Indeed, under a variety of conditions, functions attributed to specialized areas can be supported by other regions. However, a host of studies have laid out an ever more detailed map of functional cortical areas. This leaves us with the puzzle of whether different cortical areas are intrinsically specialized, or whether they differ mostly by their position in the processing hierarchy and their inputs but apply the same computational principles. Here we show that the computational principle of optimal stability of sensory representations combined with local memory gives rise to a hierarchy of processing stages resembling the ventral visual pathway when it is exposed to continuous natural stimuli. Early processing stages show receptive fields similar to those observed in the primary visual cortex. Subsequent stages are selective for increasingly complex configurations of local features, as observed in higher visual areas. The last stage of the model displays place fields as observed in entorhinal cortex and hippocampus. The results suggest that functionally heterogeneous cortical areas can be generated by only a few computational principles and highlight the importance of the variability of the input signals in forming functional specialization

    Conceptual spatial representations for indoor mobile robots

    Get PDF
    We present an approach for creating conceptual representations of human-made indoor environments using mobile robots. The concepts refer to spatial and functional properties of typical indoor environments. Following findings in cognitive psychology, our model is composed of layers representing maps at different levels of abstraction. The complete system is integrated in a mobile robot endowed with laser and vision sensors for place and object recognition. The system also incorporates a linguistic framework that actively supports the map acquisition process, and which is used for situated dialogue. Finally, we discuss the capabilities of the integrated system

    Planning Hybrid Driving-Stepping Locomotion on Multiple Levels of Abstraction

    Full text link
    Navigating in search and rescue environments is challenging, since a variety of terrains has to be considered. Hybrid driving-stepping locomotion, as provided by our robot Momaro, is a promising approach. Similar to other locomotion methods, it incorporates many degrees of freedom---offering high flexibility but making planning computationally expensive for larger environments. We propose a navigation planning method, which unifies different levels of representation in a single planner. In the vicinity of the robot, it provides plans with a fine resolution and a high robot state dimensionality. With increasing distance from the robot, plans become coarser and the robot state dimensionality decreases. We compensate this loss of information by enriching coarser representations with additional semantics. Experiments show that the proposed planner provides plans for large, challenging scenarios in feasible time.Comment: In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, May 201
    corecore