
Home Alone: Autonomous Extension and Correction of Spatial
Representations

Nick Hawes, Marc Hanheide, Jack Hargreaves, Ben Page, Hendrik Zender, Patric Jensfelt

Abstract— In this paper we present an account
of the problems faced by a mobile robot given
an incomplete tour of an unknown environment,
and introduce a collection of techniques which can
generate successful behaviour even in the presence
of such problems. Underlying our approach is the
principle that an autonomous system must be moti-
vated to act to gather new knowledge, and to validate
and correct existing knowledge. This principle is
embodied in Dora, a mobile robot which features
the aforementioned techniques: shared representa-
tions, non-monotonic reasoning, and goal generation
and management. To demonstrate how well this
collection of techniques work in real-world situations
we present a comprehensive analysis of the Dora
system’s performance over multiple tours in an in-
door environment. In this analysis Dora successfully
completed 18 of 21 attempted runs, with all but
3 of these successes requiring one or more of the
integrated techniques to recover from problems.

I. INTRODUCTION

Fig. 1: Dora in the kitchen;
a room of the flat the exper-
iments were conducted in.

Service robots working
in human environments
will require a lot of knowl-
edge about their surround-
ings in order for them
to discharge their duties
successfully (e.g. maps,
names for rooms etc.). In
existing work this knowl-
edge is assumed to be pro-
vided to the system during
a tour in which a human
guides the robot through
the environment indicating important physical fea-
tures and also providing associated descriptions.
For a human, a tour is a rather natural way to con-
vey information to a robot. However, this process is
fraught with problems from a robot’s point of view.

Nick Hawes, Marc Hanheide, Jack Hargreaves, and Ben Page
are with the School of Computer Science at University of Birm-
ingham; email: n.a.hawes@cs.bham.ac.uk. Hendrik Zender
is with the German Research Center for Artificial Intelligence
(DFKI), Saarbrücken. Patric Jensfelt is with the Royal Institute
of Technology (KTH), Stockholm. The research leading to these
results has received funding from the European Community’s
Seventh Framework Programme [FP7/2007-2013] under grant
agreement No. 215181, CogX.

These problems include those familiar to roboti-
cists (sensor noise, incorrect results generated by
components) and those which are based more on
a typical user’s lack of knowledge about a robot’s
requirements. In this paper we present an analysis
of how an intelligent mobile robot can be designed
to overcome some of the problems that it will
face following a home tour by a naı̈ve user. From
this analysis we developed a system with a range
of behaviour and reasoning capabilities, including
functionality related to the explicit representation
of gaps in its knowledge and the ability to reason
about how to act to fill these gaps. Our analysis
focuses on how these abilities allow the system
to recover from common errors that occur during
tours through an environment for the first time. It
is supported by evidence gathered from multiple
runs of the robot in a real flat.

Our system features two main advances beyond
previous work: a drive to validate and refine
spatial knowledge (to detect and correct gaps and
errors); and non-monotonic reasoning about spa-
tial knowledge (necessary to support the revision of
the robot’s representations). These are presented in
Section III. Sections IV and V present quantitative
and qualitative analyses of our system over 18
successfully extended tours. Before this, Section II
presents some background and existing approaches
to dealing with typical tour-related problems.

II. BACKGROUND & RELATED WORK

A tour as a mechanism for providing a robot
with information is a common meme in au-
tonomous and interactive robotics (e.g. [1], [2]).
Whilst previous work has identified problems that
occur during tours due to the guide’s incorrect
expectations about a robot’s abilities [3], to date
no work has provided an account of the problems
that occur from a robot’s point of view, and what
mechanisms can cope with them. When referring
to “problems” we don’t mean the ability for a robot
to solve a particular fixed problem. Instead we refer
to cases where either the robot or the human have
(in some sense) functioned incorrectly.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/9553744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


From the robot’s point of view we can dis-
tinguish two general types of problems: those
caused by the robot not functioning correctly in
a designer-anticipated context (e.g. the failure of a
perceptual routine resulting in an object or feature
going unobserved), and those caused by the robot’s
environment changing to become out of sync with
the robot’s current representation of it (e.g. a
human closing a door which was open during
the tour). Given the limited knowledge of current
robots (including our own), these different types of
problems are actually indistinguishable at a system
level. Both result in the robot having a represen-
tation of the environment which does not reflect
the true state of the world. Thus we propose that
both problem types can be addressed by ensuring
that robots feature a motivating drive to ensure that
their representations are as complete and as cor-
rect as possible. Given that a tour only provides a
robot with part of the knowledge it needs, any ser-
vice robot in this situation must therefore be able
to autonomously explore its environment (after the
tour) in order to fill any knowledge gaps (following
the principle of discovery [4]). And given that the
aforementioned problems can occur both during
the tour and during autonomous exploration, it is
also important that a robot never assumes that its
knowledge is ever entirely complete or correct. In-
stead the aforementioned drive should give rise to
behaviours which attempt to validate and refine its
knowledge as appropriate, in addition to extending
it. This behaviour is an essential part of any system
that must simultaneously learn about, and perform
tasks in, the real world. Such systems do not have
the luxury of separate training and test phases, and
instead must learn online whilst acting.

It could be argued that all the problems we ex-
pect a robot to encounter are actually the result of
a badly designed or engineered system, or a poorly
trained user. However, given the current state-of-
the-art it is unrealistic to expect that complex
intelligent robots deployed into human-populated
environments will not encounter these problems,
or similar ones. The wide range of contexts these
systems must cope with, and the behaviours they
must be capable of generating, mean that it may
prove just too difficult to fully debug a whole sys-
tem before it is deployed in its target environment.
Thus a robot must be equipped with systems that
mitigate the effects of run-time problems. It is also
unrealistic to expect any non-expert user to be able
to reliably provide a current robot system with all
of the information it actually needs during a tour.
For example, localisation and navigation systems

typically require detailed maps of an environment
in order to function correctly, and it is clear that a
busy user may only show a robot some subset of
the environment before moving on to another task.

Existing work typically relies on one of two
different approaches to coping with problems at
run-time: autonomy or interaction. Autonomous
approaches to coping with localisation errors typi-
cally leverage the probabilistic machinery they are
implemented with. For example, most existing sys-
tems are capable of characterising their mapping
and localisation uncertainty, some are capable of
explicitly acting to reduce this uncertainty [5], and
others can explicitly represent possibilities for ex-
tending their metric spatial knowledge beyond the
frontiers of their maps [6]. Interactive approaches
require that the robot asks the human to provide
input if it encounters a problem. For example,
systems have been developed which ask a human
whether it has just passed a door [2], and which use
uncertain categorisations as the basis for dialogue
about room categories [1] and object features [7].

In this paper we focus on the autonomous reso-
lution of some prototypical instances of perceptual
problems: the possible failure of a door detector
to identify doors in the robot’s environment, and
problems in a spatial model resulting in either
failure to identify unvisited areas of space or failure
to move the robot correctly.

III. SYSTEM ARCHITECTURE

We have developed an architecture for an intel-
ligent mobile robot which embodies the principles
described in the previous section. This architecture
is deployed as part of Dora, a robot developed
in the CogX project1 (see Fig. 1). Dora has been
designed to be able to autonomously explore an
unknown environment and patrol a known one.
It is also able to autonomously determine the
functional category of rooms (to support future
human-robot interaction and service tasks). Dora
explicitly represents gaps in its spatial model (i.e.
its map and its knowledge of room categories) and
is able to take action to fill these. When displaying
nominal behaviour, this model is in alignment
with its environment; it contains representations of
all visited rooms and their categories. In case of
misalignment resulting from problems, Dora has
mechanisms for updating these representations.

The Dora architecture is an instantiation of the
CoSy Architecture Schema, and is implemented
using the associated software toolkit, CAST [8].

1http://cogx.eu



This schema is based on a shared working mem-
ory model and is designed to support flexible,
parallel, information sharing in heterogenous, yet
integrated, systems. This support is an essential
requirement for robots such as Dora which must
share a lot of explicit knowledge between its sub-
systems and where this knowledge must be both
used and refined concurrently.

In the following subsections we present two of
the subsystems which allow Dora to act to make its
representation as complete and correct as possible
when faced with the complexity and dynamics of
the real world: its multi-layered spatial model and
its goal management framework. These subsystems
are jointly revising representations and mutually
notify each other about the modifications they
make through the CAST framework. For a more
detailed account of the rest of the Dora architec-
ture, see previous work, e.g. [9], [10].

A. Reasoning with changing spatial knowledge

As a mobile robot, Dora requires a map-based
spatial representation for localisation and naviga-
tion. We take the multi-layer hybrid approach to
map representation described in [10]. Particularly
relevant for this paper are the map’s place and
conceptual layers. Fig. 2 shows visualisations of
maps generated by Dora. The colouring of the
place nodes represents the information about the
containment of places within rooms as provided
by the conceptual layer.

The place layer is responsible for discretising
the continuous representation of space generated
by the layers below it (using a metric SLAM
approach) into a graph-based representation of free
space. The nodes in the graph are called places,
and they are created at 1m intervals along the
robot’s trajectory. Graph-edges indicate immediate
adjacency of places and the possibility of moving
between them. Gateways play an important role
for clustering places into larger coherent areas.
In buildings, doorways are typical gateways. A
door detection component inspects laser scans to
find width changes that look like doorways and
triggers the place layer to mark the corresponding
place as a gateway place. The place layer can also
generate placeholders. A placeholder represents an
unexplored direction that the robot might move
in, thus explicitly representing the possibility of
creating additional places beyond the limits of the
current place graph. The place layer is connected
to a navigation module that can move the robot to
places and placeholders.

It is important that autonomous robots which are
supposed to operate in domestic environments have
a notion of spatial units that are also meaningful
for humans. In our system, the conceptual layer (an
extended and improved variant of the conceptual
map described in [11]), is responsible for linking
the other layers of the spatial model (including
the place layer) to concepts which humans can
relate to. The conceptual layer represents map
knowledge in an OWL-DL ontology consisting
of a taxonomy of spatial concepts (TBox), and
how they can be characterised in terms of human-
compatible categories, as well as the knowledge
about individuals in the domain (ABox). It also
makes use of a combined rule and OWL-DL
reasoner based on the Jena Framework to perform
different reasoning tasks on the ontology. The tax-
onomy defines spatial regions called areas as the
basic units corresponding to a human-compatible
segmentation of space. We distinguish between
two basic kinds of areas. Rooms are spatial areas
whose primary purpose is defined by the kinds
of actions they afford (e.g., WordNet defines a
kitchen as “a room equipped for preparing meals”).
Here, we make the simplified assumption that the
presence of certain objects (e.g. kettle, toothpaste)
determines the respective subcategory of a room
(e.g. kitchen, bathroom). Passages (e.g. corridors)
are areas whose primary purpose is to link rooms
and provide access to other areas.

A prerequisite for reasoning about room cate-
gories is to have a notion of rooms. Based on
the information about the connectivity of places
and whether they constitute gateways or not, the
conceptual layer forms areas (rooms or corridors)
by clustering places that are transitively intercon-
nected without passing a doorway. Since both door
and object detection can malfunction, room for-
mation and categorisation must be non-monotonic
processes in order to support the potential for
knowledge revision. Room formation and mainte-
nance is handled by a general purpose rule engine,
while the OWL-DL reasoner is used to infer which
categories can be applied to known rooms. Both
are able to make non-monotonic inferences in the
ABox: whenever a previously true condition turns
false, the conclusions drawn from it are retracted.
This means that the conceptual layer is capable of
correcting both the assignment of places to rooms
and the assignment of categories to rooms when
additional (counter-)evidence becomes available.

In order to perform room categorisation, Dora
must populate the conceptual layer’s ABox with
knowledge about objects in the environment. To



do this Dora has an active visual search behaviour.
This moves Dora around the current room run-
ning an object detector using a set of pre-trained
models. Our visual search implementation is a
derivation of the randomised art gallery algorithm
which only looks at points in the room which are
likely to contain objects [12]. These points are
currently linked to obstacles in Dora’s metric map.

B. Behaviour generation

Dora’s behaviour is generated and coordinated
by a continual planning and execution system
which is controlled by a goal generation and man-
agement framework. This framework is responsi-
ble for generating new goals (i.e. descriptions of
desired future states) for Dora from the outputs
of sensors and other processing, selecting which
goals should be followed, triggering the planner
to create a plan to achieve the selected goals,
then managing the execution of subsequent plans.
Dora has goal generators which aim to satisfy its
overall drive to have accurate knowledge about
its environment (as discussed in Section II) by
creating individual goals to explore each generated
placeholder (yielding a more complete place layer)
and to categorise each generated room (yielding a
more complete conceptual layer). In addition to
this, Dora also generates a goal to patrol each
previously generated place (and consequently each
area too). This allows it to revisit known space,
thus validating previously generated knowledge. If
a goal is no longer valid (if it has been achieved
or it is not longer appropriate) the goal generator
which created it removes it from the framework.

Dora’s goal management framework is respon-
sible for selecting which of the generated goals
should be forwarded to planning and execution. A
goal which has been thus selected is referred to as
activated. Before activation it must pass through
two additional stages. After generation, goals are
first unsurfaced. They must then pass through a
bank of filters to become surfaced before they
can be considered for activation. The management
processes move goals between these stages based
on a variety of conditions. In Dora, goals are
surfaced based on their type (all the goal types
described above are automatically surfaced) and
only unsurfaced if the system fails to achieve them
more than a set number of times (currently 10).

Goals are activated based on a combination
of features. The current implementation ranks all
goals based on the number of previous attempts
to achieve them, then by priority, then by a
calculation of information gain versus estimated

cost. Only the top ranked goal is then selected
for activation. In Dora the information gain for
exploring a placeholder is related to the amount
of free space it covers, the information gain for
categorising a room is related to the number of
places it contains, and for a patrolling a place
it is related to the last time the place was vis-
ited. Cost estimates are based on the distance
Dora would have to travel to achieve the goal.
These values are associated with a goal by its
generator. The generator is also responsible for
maintaining these values as state changes occur
(e.g. the robot moves), and also for removing
goals that are no longer justified by the robot’s
knowledge (e.g. when a placeholder is visited or a
room is categorised). A goal is assigned a priority
when it is generated. Currently these priorities are
inherited from priorities manually assigned to their
generators. Our current scheme assigns explore and
categorise goals the same priority, with patrol goals
having a lower priority. This reflects the need to
generate knowledge before it can be validated or
revised. The effects of this decision are seen in
the case studies discussed below. Ranking goals
first by the number of previous attempts to achieve
them allows goals to be postponed when Dora fails
to achieve them (as they are effectively relegated
to the end of the ranked activation list). This is
designed to prevent the system from repeatedly
trying and failing to achieve one goal when others
still exist. Currently Dora detects some failures by
waiting for the execution system to timeout. The
effects of this design are also discussed below.

The use of a continual planner is essential for
a robot in a dynamic environment. Changes in
the environment and sensor noise mean that plans
often need to be revised on-the-fly as they either
become impossible or more information becomes
available, allowing other plans to become possi-
ble. The continual planner we use is specifically
designed to detect such changes during plan exe-
cution, and replan as appropriate [13]. This allows
Dora to cope with open world problems (e.g. not
knowing how many rooms exist in advance) in a
deliberative way.

IV. EXPERIMENTS

To evaluate how the Dora system copes with the
problems that occur in realistic settings we took the
robot out of the lab and into a flat in Birmingham,
UK2. Here we ran Dora multiple times and gath-
ered data about its performance3. Dora (displayed

2Mason Hall, http://j.mp/9tLEUx
3Video available at http://cogx.eu/results/dora



(a) The door to the lower-right room has not been detected.

(b) Door detection triggers a revision of the representation.

(c) All rooms are now found.

Fig. 2: Snapshots from the evolution of the spatial representation during
one run of Dora. Placeholder are depicted as small unfilled green circles,
places are solid disks. This representation is entirely created from scratch
each run as part of the tour and the autonomous exploration.

in Fig. 1) is based on a MobileRobots P3DX
platform equipped with a Hokuyo laser scanner
and a pan-tilt unit holding two Flea2 cameras.
The software system runs on a single dual-core
laptop. This section describes the methodology we
followed when running the system and presents
some descriptive statistics generated from this ex-
periment.

A. Procedure

The environment we operated Dora in was com-
posed of a kitchen, a corridor, and two bedrooms.
Dora was initially given a short tour, then required
to build a complete map of this environment and
categorise all the rooms except the corridor. Each
bedroom contained 3 or 4 objects that Dora could
recognise and use for room categorisation. The
kitchen, being larger, contained 6 objects. The
objects were placed in relatively normal positions
where they were visible to the robot. Fig. 2(c)
shows a map of the environment as acquired by
Dora. The room to the left is the kitchen, which is

TABLE I: Descriptive statistics from all 18 successful runs. Standard
deviation indicated by ±.

Type (re-)activ. duration dur. per run
categorize room 4.1 (1.1) 216 ± 117s 901s (63%)
explore place 16.6 (0.94) 22.5±15.6s 375s (27%)
patrol places 4.4 (0.0) 9.3 ± 6.0s 41.4s (3%)

connected by the corridor to the bedrooms. Dora
was always started at the right end of the corridor,
then given a tour along the corridor, into the first
bedroom (lower right in Fig. 2(c)), and then into
the kitchen (ignoring the other bedroom), and no
room was assigned a category. After the tour, the
filter bank in the goal management framework was
reconfigured to let goals surface, switching Dora
to autonomous behaviour.

We conducted a systemic analysis of all the
runs, adopting the SInA methodology originally
developed for human-robot interaction [14]. To
support this, Dora was instrumented with logging
mechanisms to record a range of state changes.
The acquired logs were used to generate annota-
tions to support qualitative analysis using visual
tools [15], and quantitative analysis via descriptive
statistics [16]. In the following we take a closer
look at the actual behaviour represented by the
creation and activation of goals in the system.

B. Descriptive statistics

Dora met our criteria for success (i.e. explored
and categorised all rooms) in 18 out of 21 at-
tempted runs (85.7%). In the remaining three
runs Dora failed to explore the bedroom which
was omitted during the tour. This was because
no placeholder was generated in it at any point
during these runs. On average, Dora took 26.25±
8.64 (std. dev.) minutes to accomplish the full task
in the 18 successful runs; of which the system
spent 11.45 seconds planning for goals selected
by the goal management scheme. An average of
23.52±8.93 minutes was dedicated to autonomous
behaviour, the remainder to the tour. The average
total distance Dora travelled was 104 metres.

Tab. I presents some per-run statistics on ac-
tive goals (those that are planned for and exe-
cuted by the robot, thus generating behaviour).
The “(re-)activation” column shows the average
number of activations of goals of each type. In
all runs, there were 3 rooms to categorise. The
average number of goal activations for room cat-
egorisation was greater than three due to goal
postponements. This also explains why we observe
1.1 re-activations in the case of categorise-room
goals. The action execution timeout was set to
6 minutes (360 seconds) which was occasionally



not long enough for a categorisation process to
complete successfully.

Tab. I also shows that 63% of the autonomous
part of each run was spent categorising rooms, i.e.,
looking for objects. The exploration of new places
accounted for 27% and only 3% were dedicated
to patrolling previously-visited places. This is ex-
plained by the setup of the experiment: a run was
deemed be finished when all rooms were explored
and categorised. Patrol goals were assigned a lower
priority than exploration and categorisation, so
they were only activated in five runs when there
were no other surfaced goals, but not all rooms had
already been found and categorised. The remaining
time in each run was taken by Dora deciding
what to do next (activity planning accounted for
roughly 14% of the remaining time) and general
communication overhead between components.

V. CASE STUDIES

The following sections present a detailed anal-
ysis of the different types of system runs we
observed during our experimentation. We start with
the case in which no problems occur and follow
this with cases that cover a number of problems
that occurred during the experiments.

Case A: Ideal case

In the ideal case Dora successfully detects all
doors when first passing through them, puts place-
holders in the bedroom which was not entered
during the tour (thus allowing it to autonomously
explore it), and achieves all goals on the first
attempt. It should be noted that the ideal case
requires the majority of Dora’s capabilities, in-
cluding autonomous extension and handling of
incomplete knowledge. It doesn’t require any non-
monotonic reasoning or active validation of ac-
quired knowledge because the knowledge is correct
when initially obtained.

Fig. 3 shows the progress of a run of Dora.
The run illustrated in the figure is not an ideal
one in total, it is included to serve all the case
studies. However, if we look only at the first 10
minutes (600 seconds) it presents the prototypical
behaviour of Dora. In this behaviour placeholders,
uncategorised rooms, and existing places give rise
to goals to explore, categorise, or patrol them,
respectively. In the ideal case patrol goals never
get activated, as the experiment is finished once
all placeholders have been explored or discarded
and all rooms have been categorised. Patrol goals
are assigned a lower priority, so they are only
pursued if no other goals exist. In the figure we

can see the two phases of the experiment. During
the tour, all the goals were unsurfaced (represented
as green bars). But it can be seen that during the
tour (unsurfaced) goals were created whenever a
placeholder was assigned to an area of open space
that had not yet been visited, or when a new (and
thus uncategorised) room entity was created due
to the detection of a door. During the tour, Dora
frequently created placeholders directly in front of
itself which were immediately visited as part of the
tour and therefore removed immediately. Explore
goals 3, 9, 12-16, 21, and 23 were such cases.
Also, categorisation goals for the first bedroom
and the kitchen (corresponding to goals “Cat-
egorizeRoom 1” and “CategorizeRoom 2”) were
generated during the tour because all doors were
correctly detected. Fig. 2(b) illustrates the spatial
representation of an equivalent case, where the two
rooms were detected.

After roughly 130 seconds of touring the au-
tonomous behaviour was activated. The goal man-
agement framework took control, choosing which
goal to pursue next by trading predicted informa-
tion gain for costs. Goals were activated and then
corresponding plans executed. Dora’s behaviour
caused new goals to be created. In Fig. 3, “Ex-
plore 25” was the first goal to be created while
the robot was pursuing another goal. Shortly after
creation it was activated and the associated plan
executed. In this case, the exploration goal was
removed during plan execution because the spatial
layer concluded that the placeholder was too close
to an already existing place, so the creation of a
new place was not possible (“activated and merged
with an existing place”).

The “active” line in Fig. 3 highlights the class
of the currently activated goal. It shows that Dora
started by exploring 4 placeholders before deciding
to categorise room 2 (the kitchen). This decision
was justified by the cost and gain associated with
that plan at that point: Dora was in room 2 already
(low cost) and it has a large area (high gain).

In the ideal case similar behaviour is demon-
strated throughout the run, with Dora switching
between successful exploration and categorisation
until the task is complete. However, due to the
nature of the real world and robot perception, this
is not guaranteed. Hence, we now look at cases
which deviate from the ideal behaviour.

Case B: Missed placeholder

The first problem case we look at is one in
which Dora does not immediately discover the
open space associated with the bedroom ignored



Fig. 3: A visualisation of the progress of a single Dora run. The x-axis shows the time from the start of the run. The y-axis lists all the goals
generated in the run. The line titled “active” shows the type of the currently activated goal (in yellow, cyan, and magenta). The other lines show
the life-time of each goal, colour-coded according to the respective status (unsurfaced, surfaced or active). Individual patrol goals are omitted for
brevity. The vertical line at second 130 marks the end of the tour when the robot starts autonomous exploration.

during the tour. This occurs when no placeholder
is generated inside the room and consequently no
associated goal to explore is created either. Without
the drive to continuously update and validate its
representations, Dora would not be able to recover
from this problem by revising and extending its
knowledge.

This particular problem occurred in 5 of the
18 successful runs. One instance is depicted in
Fig. 3. We can see that by 1300s only two rooms
had been discovered and there are neither explore
nor categorise goals left to pursue. At this point,
Dora believes she has explored and categorised
everything. She still has the drive to validate her
representation so she starts patrolling, motivated by
the lower priority patrol goals. Though these goals
are not individually visualised we can see a series
of (pink) patrol goal activations in the “active”
line. During this period Dora patrolled from place
to place, eventually reaching the place in front of
the bedroom door. This time, the open space was
detected and a placeholder generated, triggering
the creation of the “Explore 28” goal. Because
explore goals are assigned a higher priority than
patrol goals, Dora immediately stopped patrolling
and started exploring into that open space. While
exploring, the robot detected the door and con-
cluded that this is a new, yet unknown, room.
A corresponding categorisation goal (“Categorize-
Room 3”) was created and subsequently activated.
After finding two objects, Dora concluded that
this room was in fact a bedroom. It can be noted
that during the active visual search in that room
the robot also detected more open space (cf. the
“Explore 31” goal). So, the system is capable
of handling side effects of actions. To end this

case, Dora then also explored this last placeholder,
finally accomplishing the overall task successfully.

Case C: Undetected door

Dora is designed to detect doors when passing
through them. Detection is performed by inspect-
ing the laser scan for changes in width which
might indicate the narrower passage of a door
frame. This process is not completely reliable due
to sensor noise and changes in robot orientation
when moving. This means occasionally (on 1 from
the 18 successful runs) Dora does not detect a
door when one is present in the environment.
Fig. 2(a) visualises how this occurred during our
experiments: the door between the corridor and the
first bedroom (lower right) was not detected during
the tour, so the bedroom was initially considered
to be an extension of the corridor. Later, when
Dora was exploring a placeholder close to the
door, she finally detected it (see Fig. 2(b)). This
caused the conceptual layer to revise its represen-
tation, producing two rooms from the previously
existing one (and yielding the correct map shown
in Fig. 2(c)). This case underlines the necessity
for non-monotonic reasoning and dynamic goal
generation. It was only after revising its represen-
tation in the light of new information that Dora
could determine that although it had already visited
the newly distinguished room, it still lacked a
categorisation result for it.

Case D: Timeouts and re-activations

A problem that occurs for the Dora system once
the initial tour is over is that a planned action occa-
sionally results in actual robot behaviour that both
fails to generate the intended effects, and fails to



terminate. For example, a navigation command to
move the robot to a place or placeholder may rarely
encounter a problem which gets Dora stuck some-
where, and occasionally the active visual search
will fail to find any objects at all. This problem
is due to the planning actions being an opaque
abstraction over the implementing techniques. This
abstraction prevents components performing de-
tailed reasoning about the conditions in which the
actions can safely be executed, and the full range
of their possible effects. In other words the world
model Dora uses for reasoning does not capture
the full range of (uncertain) knowledge it should.
We address this problem by taking the, admittedly
simplistic, approach of defining timeouts for the
achievement of each type of goal (as mentioned
in Sec. III-B). For instance, we set the timeout
for achieving room categorisation goals to 360
seconds. The aim of this approach is to allow
Dora to postpone goals that can’t be achieved
due to problems caused by the aforementioned
incomplete world model. In our experiments, there
was more than one such occasions per run in
average, with only 5 runs featuring no such case.

An example of this behaviour is apparent in
Fig. 3. The goal “CategorizeRoom 1” was active
from 650s–1010s, but Dora failed to categorise the
room. Instead of indefinitely pursuing that single
goal, Dora postponed it and instead continued
exploring, re-activating the still surfaced categori-
sation goal later on. The “Explore 10” goal from
the same run shows a similar life cycle.

VI. CONCLUSION

We started this paper by describing our general
view of the problems faced by a robot when
placed in an unknown environment. From this
view we derived a principle that such a robot
should be driven to ensure that its knowledge of
its environment is complete and correct. This led
us to conclude that robots must be motivated to
extend, validate and refine their knowledge in order
to provide a representation to support action. We
then described Dora, an intelligent mobile robot
which instantiates these principles using shared
representations, non-monotonic reasoning, and a
goal generation and management framework, with
a particular focus on spatial knowledge. To support
our claims we presented a comprehensive analysis
of Dora’s performance when given incomplete
tours of environment by a human, and then left to
act autonomously. The contents of Dora’s architec-
ture allowed it to successfully complete 18 out of
21 of these runs, even in the presence of errors and

unreliable perception. Only 3 of the 18 successes
were ideal cases, with the remaining 15 requiring
either goal management or non-monotonic reason-
ing to recover from one or more problems.

The analysis of the data produced by our ex-
periments has yielded further insights into the
limitations and constraints of our approach. In
future work we will use these insights to support
the introduction of non-monotonic processing into
other Dora subsystems. We will also work towards
closing the loop with humans (both during and
after the tour) in order to exploit them as an
additional source of knowledge.

REFERENCES

[1] J. Peltason, F. H. K. Siepmann, T. P. Spexard, B. Wrede, M. Han-
heide, and E. A. Topp, “Mixed-initiative in human augmented
mapping,” in Proc. Int. Conf. on Robotics and Automation, May
2009, pp. 2146–2153.

[2] G.-J. Kruijff, H. Zender, P. Jensfelt, and H. I. Christensen,
“Clarification dialogues in human-augmented mapping,” in Proc.
Conf. on Human-Robot Interaction, March 2006, pp. 282–288.

[3] K. Fischer and M. Lohse, “Shaping naive users’ models of robots’
situation awareness,” in Proc. Int. Symp. on Robot and Human
Interactive Communication, August 2007, pp. 534–539.

[4] D. Maio and S. Rizzi, “Clustering by discovery on maps,” Pattern
Recognition Letters, vol. 13, no. 2, pp. 89–94, 1992.

[5] F. Amigoni and V. Caglioti, “An information-based exploration
strategy for environment mapping with mobile robots,” Robotics
and Autonomous Systems, vol. 58, no. 5, pp. 684–699, 2010.

[6] B. Yamauchi, “Frontier-based exploration using multiple robots,”
in Proc. Int. Conf. on Autonomous Agents, May 1998, pp. 47–53.

[7] N. Hawes, J. Wyatt, M. Sridharan, M. Kopicki, S. Hongeng,
I. Calvert, A. Sloman, G.-J. Kruijff, H. Jacobsson, M. Brenner,
D. Skočaj, A. Vrečko, N. Majer, and M. Zillich, “The PlayMate
system,” in Cognitive Systems. Springer, 2010, pp. 367–393.

[8] N. Hawes and J. Wyatt, “Engineering intelligent information-
processing systems with CAST,” Advanced Engineering Informat-
ics, vol. 24, no. 1, pp. 27–39, January 2010.

[9] M. Hanheide, N. Hawes, J. Wyatt, M. Göbelbecker, M. Brenner,
K. Sjöö, A. Aydemir, P. Jensfelt, H. Zender, and G.-J. Kruijff, “A
framework for goal generation and management,” in Proc. AAAI
Workshop on Goal-Directed Autonomy, July 2010.

[10] J. Wyatt, A. Aydemir, M. Brenner, M. Hanheide, N. Hawes,
P. Jensfelt, M. Kristan, G.-J. Kruijff, P. Lison, A. Pronobis,
K. Sjöö, D. Skočaj, A. Vrečko, H. Zender, and M. Zillich, “Self-
understanding and self-extension: A systems and representational
approach,” IEEE Transactions on Autonomous Mental Develop-
ment, vol. 2, no. 4, pp. 282–303, December 2010.

[11] H. Zender, P. Jensfelt, O. M. Mozos, G.-J. Kruijff, and W. Burgard,
“Conceptual spatial representations for indoor mobile robots,”
Robotics and Autonomous Systems, vol. 56, no. 6, June 2008.

[12] A. Aydemir, K. Sjöö, and P. Jensfelt, “Object search on a mobile
robot using relational spatial information,” in Proc. Int. Conf. on
Intelligent Autonomous Systems, August 2010, pp. 111–120.

[13] M. Brenner and B. Nebel, “Continual planning and acting in dy-
namic multiagent environments,” Journal of Autonomous Agents
and Multiagent Systems, vol. 19, no. 3, pp. 297–331, 2009.

[14] M. Lohse, M. Hanheide, K. Rohlfing, and G. Sagerer, “Systemic
interaction analysis (SInA) in HRI,” in Proc. Int. Conf. on Human-
Robot Interaction, March 2009, pp. 93–100.

[15] P. Wittenburg, H. Brugman, A. Russel, A. Klassmann, and
H. Sloetjes, “Elan: a professional framework for multimodality
research,” in Proc. Language Resources and Evaluation Confer-
ence (LREC), May 2006.

[16] M. Hanheide, M. Lohse, and A. Dierker, “SALEM - Statistical
AnaLysis of Elan files in Matlab,” in Proc. LREC Workshop
on Multimodal Corpora: Advances in Capturing, Coding and
Analyzing Multimodality, May 2010.


