37 research outputs found

    Cache policies for cloud-based systems: To keep or not to keep

    Full text link
    In this paper, we study cache policies for cloud-based caching. Cloud-based caching uses cloud storage services such as Amazon S3 as a cache for data items that would have been recomputed otherwise. Cloud-based caching departs from classical caching: cloud resources are potentially infinite and only paid when used, while classical caching relies on a fixed storage capacity and its main monetary cost comes from the initial investment. To deal with this new context, we design and evaluate a new caching policy that minimizes the overall cost of a cloud-based system. The policy takes into account the frequency of consumption of an item and the cloud cost model. We show that this policy is easier to operate, that it scales with the demand and that it outperforms classical policies managing a fixed capacity.Comment: Proceedings of IEEE International Conference on Cloud Computing 2014 (CLOUD 14

    Basis Token Consistency: A Practical Mechanism for Strong Web Cache Consistency

    Full text link
    With web caching and cache-related services like CDNs and edge services playing an increasingly significant role in the modern internet, the problem of the weak consistency and coherence provisions in current web protocols is becoming increasingly significant and drawing the attention of the standards community [LCD01]. Toward this end, we present definitions of consistency and coherence for web-like environments, that is, distributed client-server information systems where the semantics of interactions with resource are more general than the read/write operations found in memory hierarchies and distributed file systems. We then present a brief review of proposed mechanisms which strengthen the consistency of caches in the web, focusing upon their conceptual contributions and their weaknesses in real-world practice. These insights motivate a new mechanism, which we call "Basis Token Consistency" or BTC; when implemented at the server, this mechanism allows any client (independent of the presence and conformity of any intermediaries) to maintain a self-consistent view of the server's state. This is accomplished by annotating responses with additional per-resource application information which allows client caches to recognize the obsolescence of currently cached entities and identify responses from other caches which are already stale in light of what has already been seen. The mechanism requires no deviation from the existing client-server communication model, and does not require servers to maintain any additional per-client state. We discuss how our mechanism could be integrated into a fragment-assembling Content Management System (CMS), and present a simulation-driven performance comparison between the BTC algorithm and the use of the Time-To-Live (TTL) heuristic.National Science Foundation (ANI-9986397, ANI-0095988

    A Scalable Middleware Solution for Advanced Wide Area Web Services

    Get PDF
    To alleviate scalability problems in the Web, many researchers concentrate on how to incorporate advanced caching and replication techniques. Many solutions incorporate object-based techniques. In particular, Web resources are considered as distributed objects offering a well-defined interface. We argue that most proposals ignore two important aspects. First, there is little discussion on what kind of coherence should be provided. Proposing specific caching or replication solutions makes sense only if we know what coherence model they should implement. Second, most proposals treat all Web resources alike. Such a one-size-fits-all approach will never work in a wide-area system. We propose a solution in which Web resources are encapsulated in physically distributed shared objects. Each object should encapsulate not only state and operations, but also the policy by which its state is distributed, cached, replicated, migrated, etc

    Replicating Web Applications On-Demand

    Get PDF
    Many Web-based commercial services deliver their content using Web applications that generate pages dynamically based on user profiles, request parameters etc. The workload of these applications are often characterized by a large number of unique requests and a significant fraction of data updates. Hosting these applications drives the need for systems that replicates both the application code and its underlying data. We propose the design of such a system that is based on on-demand replication, where data units are replicated only to servers that access them often. This reduces the consistency overhead as updates are sent to a reduced number of servers. The proposed system allows complete replication transparency to the application, thereby allowing developers to build applications unaware of the underlying data replication. We show that the proposed techniques can reduce the client response time by a factor of 5 in comparison to existing techniques for a realworld e-commerce application used in the TPC-W benchmark. Furthermore, we evaluate our strategies for a wide range of workloads and show that on-demand replication performs better than centralized and fully replicated systems by reducing the average latency of read/write data accesses as well as the amount of bandwidth utilized to maintain data consistency. 1

    Maintaining Mutual Consistency for Cached Web Objects

    Get PDF
    Existing web proxy caches employ cache consistency mechanisms to ensure that locally cached data is consistent with that at the server. In this paper, we argue that techniques for maintaining consistency of individual objects are not sufficient—a proxy should employ additional mechanisms to ensure that related web objects are mutually consistent with one another. We formally define the notion of mutual consistency and the semantics provided by a mutual consistency mechanism to end-users. We then present techniques for maintaining mutual consistency in the temporal and value domains. A novel aspect of our techniques is that they can adapt to the variations in the rate of change of the source data, resulting in judicious use of proxy and network resources. We evaluate our approaches using real-world web traces and show that (i) careful tuning can result in substantial savings in the network overhead incurred without any substantial loss in fidelity of the consistency guarantees, and (ii) the incremental cost of providing mutual consistency guarantees over mechanisms to provide individual consistency guarantees is small
    corecore