
University of Massachusetts Amherst
ScholarWorks@UMass Amherst
Computer Science Department Faculty Publication
Series Computer Science

2001

Maintaining Mutual Consistency for Cached Web
Objects
Bhuvan Urgaonkar
University of Massachusetts - Amherst

Anoop George Ninan
University of Massachusetts - Amherst

Mohammad Salimullah Raunak
University of Massachusetts - Amherst

Prashant Shenoy
University of Massachusetts - Amherst

Krithi Ramamritham
University of Massachusetts - Amherst

Follow this and additional works at: https://scholarworks.umass.edu/cs_faculty_pubs

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UMass Amherst. It has been accepted for inclusion
in Computer Science Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information,
please contact scholarworks@library.umass.edu.

Recommended Citation
Urgaonkar, Bhuvan; Ninan, Anoop George; Raunak, Mohammad Salimullah; Shenoy, Prashant; and Ramamritham, Krithi,
"Maintaining Mutual Consistency for Cached Web Objects" (2001). Computer Science Department Faculty Publication Series. 56.
Retrieved from https://scholarworks.umass.edu/cs_faculty_pubs/56

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/13600558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs/56?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

Maintaining Mutual Consistency for Cached Web Objects�
Bhuvan Urgaonkar, Anoop George Ninan, Mohammad SalimullahRaunak

Prashant Shenoy and Krithi Ramamrithamy
Department of Computer Science, University of Massachusetts, Amherst, MA 01003fbhuvan,agn,raunak,shenoy,krithig@cs.umass.edu

http://lass.cs.umass.edu/projects/broadway, http://www.cse.iitb.ernet.in/ cfiir

Abstract

Existing web proxy caches employ cache consistency
mechanisms to ensure that locally cached data is consis-
tent with that at the server. In this paper, we argue that
techniques for maintaining consistency of individual objects
are not sufficient—a proxy should employ additional mech-
anisms to ensure that related web objects are mutually con-
sistent with one another. We formally define the notion of
mutual consistency and the semantics provided by a mutual
consistency mechanism to end-users. We then present tech-
niques for maintaining mutual consistency in the temporal
and value domains. A novel aspect of our techniques is that
they can adapt to the variations in the rate of change of the
source data, resulting in judicious use of proxy and network
resources. We evaluate our approaches using real-world
web traces and show that (i) careful tuning can result in sub-
stantial savings in the network overhead incurred without
any substantial loss in fidelity of the consistency guarantees,
and (ii) the incremental cost of providing mutual consistency
guarantees over mechanisms to provide individual consis-
tency guarantees is small.

1. Introduction

Web proxy caching is a popular technique for reducing
the latency of web requests. By caching frequently accessed
objects and serving requests for these objects from the lo-
cal cache, a web proxy can reduce user response times by
up to 50% [3, 6, 7] . However, to fully exploit this ben-
efit, the proxy must ensure that cached data are consistent
with that on servers. Several techniques such astime-to-
live (TTL) values [7] andclient polling [5] have been de-
veloped to maintain consistency of cached web objects. In
this paper, we contend that maintaining consistency of indi-
vidual objects at a proxy is not sufficient—the proxy must�This research was supported in part by a NSF Career award CCR-
9984030, NSF grants CDA-9502639, EIA-0080119, IRI-9619588, IBM,
Intel, EMC, Sprint, and the University of Massachusetts.yAlso affiliated with the Dept. of Computer Science and Engg.,Indian
Institute of Technology, Powai, Bombay.

additionally ensure thatcached objects are mutually consis-
tent with one another. The need for mutual consistency is
motivated by the observation that many cached objects are
related to one another and the proxy should present a logi-
cally consistent view of such objects to end-users. Consider
the following examples that illustrate the need for mutual
consistency. (1) Most newspaper web sites carry breaking
news stories that consist of text (HTML) objects accompa-
nied by embedded images and audio/video news clips. Since
such stories are updated frequently (as additional informa-
tion becomes available), a proxy should ensure that cached
versions of such stories and the accompanying embedded
objects are consistent with each other. (2) Proxies that dis-
seminate sports information such as up-to-the-minute scores
also need to ensure that cached objects are consistent with
each other. For instance, a proxy should ensure that scores
of individual players and the overall score are mutually con-
sistent. Similarly, a proxy that disseminates financial news
should ensure that various stock prices as well as other finan-
cial information such as stock market indices are consistent
with one another.

In this paper, we present adaptive techniques for main-
taining mutual consistency among a group of objects. The
contributions of our work are three-fold: (i) we identify the
need for mutual consistency among web objects, (ii) we for-
mally define the semantics for mutual consistency, and (iii)
we propose solutions to provide such consistency guaran-
tees. We argue that mutual consistency semantics are not
intended to replace existing cache consistency semantics;
rather they augment consistency semantics for individual ob-
jects provided by web proxies. Since a mutual consistency
mechanism builds upon that for individual consistency, we
first propose an adaptive technique for maintaining consis-
tency of individual objects. A novel aspect of our technique
is that it deduces the rate at which an object is changing at
the server and polls the server at approximately the same
frequency (thereby reducing the number of polls required to
maintain consistency guarantees). Next, we show how to
augment this technique with a mechanism to maintain con-
sistency among a group of objects. Our approach can bound
the amount by which related objects are out-of-sync with

one another and thereby provide mutual consistency guar-
antees. Our technique provides tunable parameters that al-
low network overhead (i.e., number of polls) to be traded off
with the fidelity of consistency guarantees.

We demonstrate the efficacy of our approaches through
trace-driven simulations. Our simulations are based on real-
world traces of time-varying news and financial data and
show that: (i) careful tuning can result in substantial savings
in the number of polls incurred without any substantial loss
in fidelity of the consistency guarantees, and (ii) the incre-
mental cost of providing mutual consistency guarantees over
mechanisms to provide individual consistency guarantees is
small (even the most stringent mutual consistency require-
ments result in less than a 20% increase in the number of
polls).

The rest of this paper is structured as follows. Section 2
formally defines the notions of individual and mutual con-
sistency semantics used in this paper. Section 3 presents in-
dividual and mutual consistency techniques for the temporal
domain, while Section 4 presents these techniques for the
value domain. Design considerations that arise when imple-
menting our techniques are discussed in Section 5. Section 6
presents our experimental results. Finally, Section 7 presents
concluding remarks.

2. Individual and Mutual Consistency:
Definitions and Approaches

Consider a proxy cache that services requests for web ob-
jects. The proxy services cache hits using locally cached
data, while cache misses are serviced by fetching the re-
quested object from the server. Typically, the proxy employs
a cache consistency mechanism to ensure that users do not
receive stale data from the cache. To formally define con-
sistency semantics provided by such a mechanism, letSat
andP at denote the version of the objecta at the server and
proxy, respectively, at timet. The version number is set to
zero when the object is created at the server and is incre-
mented on each subsequent update. The version number at
the proxy is simply that of the corresponding version at the
server. We implicitly require all cache consistency mecha-
nisms to ensure thatP at monotonically increases over time.

In such a scenario, a cached object is said to bestrongly
consistentwith that at the server if the version at the proxy
is always up-to-date with the server [1, 5]. That is,8t; Sat = P at (1)

Strong consistency requires thateveryupdate to the object
be propagated to the proxy. This is not only expensive but
also wasteful if the proxy is not interested in every single up-
date. The advantage though is that strong consistency does
not require any additional mechanisms for mutual consis-
tency.

Since many web applications are tolerant to occasional
violations of consistency guarantees, we can relax the notion

of strong consistency as follows. A cached object is said
to be�-consistentif it is never out-of-sync by more than� with the copy at the server. Unlike strong consistency,�-consistency allows an object to be out of date with the
copy at the server, so long as the cached object is within
a bounded distance (i.e.,�) of the server at all times. An
important implication of�-consistency is that it does not
require every update to be propagated to the proxy—only
those updates that are essential for maintaining the bound� need to be propagated. �-consistency can be enforced in
the time domain or the value domain. In the time domain, it
requires that the copy at the proxy be within� time units of
the server version at all times. That is,8t; 9�; 0 � � < �; such that Sat�� = P at (2)

We refer to these semantics as�t-consistency. To define�-
consistency in the value domain, letSat andP at denote the
valueof the objecta at timet. Then�v-consistency requires
that the difference in the values between the proxy and the
server versions be bound by�. That is,8t; j Sat � P at j< � (3)

Whereas�v-consistency is meaningful only when the
cached object has a value (e.g., stock prices, sports scores,
weather information),�t-consistency can be applied to any
web object. A number of techniques can be used to enforce�-consistency at a proxy.1 �t-consistency, for instance, can
be simply implemented by polling the server every� time
units and refreshing the object if it has changed in the in-
terim. A more efficient mechanism requires the proxy to
predict future changes based on past history and poll the
server accordingly [8]. For�v-consistency, a proxy must
refresh the cached object every time its value at the server
changes by�. To do so, the proxy needs to track both the
frequency of changes of an object as well as the magnitude
of each change in order to predict the next time the object
will change by� [8]. Regardless of the exact approach, all
proxy-based mechanisms need to adapt to dynamic changes
to the data, since most time-varying web data changes in a
random fashion.

Having defined consistency semantics for individual ob-
jects, let us now examine consistency semantics for multiple
objects. For simplicity, we focus only on two objects but
all our definitions can be generalized ton objects. To for-
mally define mutual consistency (M -consistency), consider
two objectsa andb that are related to each other. Cached
versions of objectsa andb at time t, i.e., P at andP bt , are
defined to be mutually consistent in the time domain (Mt-
consistent) if the following condition holds

if P at = Sat1and P bt = Sbt2 thenjt1 � t2j � Æ (4)
1In this paper, we consider only proxy-based approaches. Server-based

approaches for enforcing�-consistency are also possible. In such ap-
proaches, the server pushes relevant changes to the proxy (e.g., only those
updates that are necessary to maintain the�-bound are pushed). The study
of such server-based approaches is beyond the scope of this paper.

whereÆ is the tolerance on the consistency guarantees. In-
tuitively, the above condition requires that the two related
objects should have originated at the server at times that
were not too far apart. ForÆ = 0, it requires that the
objects should havesimultaneouslyexisted on the server
at some point in the past. Note that mutual consistency
only requires that objects be consistent with one another and
does not specify any bounds on individual objects and their
server versions (i.e., although mutually consistent, the ob-
jects themselves might be outdated with their server ver-
sions). Consequently,Mt-consistency must be combined
with �t-consistency to additionally ensure the consistency
of each individual object. This clean separation betweenM -consistency and�-consistency allows us to combine any
mechanism developed for the former with those for the lat-
ter. It also allows us to easily augment weak consistency
mechanisms employed by existing proxies with those for
mutual consistency.

Mutual consistency in the value domain (Mv-
consistency) is defined as follows. Cached versions of
objectsa and b are said to be mutually consistent in the
value domain if some function of their values at the proxy
and the server is bound byÆ. That is,8t; jf(Sat ; Sbt)� f(P at ; P bt)j < Æ (5)

wheref is a function that depends on the nature of consis-
tency semantics being provided. For instance, if the user
is interested in comparing two stock prices (to see if one
outperforms the other by more thanÆ), thenf is defined to
be thedifferencein the object values. Like in the tempo-
ral domain, the above definition provides a separation be-
tween�v-consistency andMv-consistency—the former en-
sures that the cached value of an object is consistent with the
server version, while the latter ensures that some functionof
the object values at the proxy and the server are consistent.
Table 1 summarizes the taxonomy of consistency semantics
discussed in this section.

3. Consistency in the Temporal Domain

In this section, we present adaptive techniques for main-
taining consistency in the temporal domain based on the def-
initions in Section 2.

3.1. Maintaining Consistency of Individual Objects

Consider a proxy that caches frequently changing web
objects. Assume that the proxy provides�t-consistency
guarantees on cached objects. The proxy can ensure that
a cached object is never outdated by more than� with
its server version by simply polling the server every�
time units (usingif-modified-sinceHTTP requests).
Whereas this approach is optimal in the number of polls
when the object changes at a rate faster than�, it is waste-
ful if the object changes less frequently—in such a scenario,

an optimal approach is one that polls exactly once after each
change. Consequently, an intelligent proxy can reduce the
number of polls by tailoring its polling frequency so that
it polls at approximately the same frequency as the rate of
change. Moreover, since the rate of change can itself vary
over time as hot objects become cold and vice versa, the
proxy should be able to adapt its polling frequency in re-
sponse to these variations.

We have developed an adaptive technique to achieve
these goals. Our technique uses past observations to deter-
mine the next time at which the proxy should poll the server
so as to maintain�t-consistency. Let us refer to the time
between two successive polls as thetime to refresh (TTR)
value. 2 Our technique begins by polling the server using a
TTR value of�. It then uses alinear increase multiplica-
tive decrease (LIMD)algorithm to adapt the TTR value (and
thereby, the polling frequency) to the rate of change of the
object. This approach gradually increases the TTR value as
long as there are no violations and on detection of a vio-
lation, the TTR value is reduced by a multiplicative factor.
Thus it probes the server for the rate at which the object is
changing and sets the TTR value accordingly. Techniques
based on LIMD have been used in many systems to adapt to
changing system conditions. An example is the congestion
control algorithm employed by TCP [9]. Due to the adap-
tive nature of LIMD, the approach can easily handle objects
whose rate of change itself varies over time.

The precise LIMD algorithm is as follows. For each ob-
ject, the algorithm takes as input two parameters:TTRmin
and TTRmax, which represent lower and upper bounds
on the TTR values. These bounds ensure that the TTR
computed by the LIMD algorithm is neither too large nor
too small—values that fall outside these bounds are set toTTR = max(TTRmin;min(TTRmax; TTR)). TypicallyTTRmin is specified to be�, since this is the minimum
interval between polls necessary to maintain consistency
guarantees. The algorithm begins by initializingTTR =TTRmin = �. After each poll, the algorithm computes the
next TTR value based on the following four cases.

Case 1: The object did not change since the last poll.
Since the object did not change between successive polls,
the TTR is increased by a linear factor.TTR = TTR � (1 + l) (6)

wherel is a linear factor and0 < l < 1. Consequently, the
TTR of a static object increases gradually toTTRmax.

Case 2:The object was modified since the last poll and
the consistency guarantees were violated.Consistency guar-
antees are violated if the difference between the time of last
modification and that of the current poll is larger than� (see

2Note that theTime To Refresh (TTR)value is different from theTime to
Live (TTL)value associated with each HTTP request. The former is com-
puted by a proxy to determine the next time it should poll the server based
on the consistency requirements; the latter is provided by aweb server as
an estimate of the next time the data will be modified.

Table 1. Taxonomy of Cache Consistency Semantics
Semantics Domain Type Example�t temporal individual Objecta is always within 5 time units of its server copyMt temporal mutual Objectsa andb are never out-of-sync by more than 5 time units�v value individual Value of objecta is within 2.5 of its server copyMv value mutual Difference in values ofa andb is within 2.5 of the difference at the server

Interval > Delta

Time

 poll
(previous)

 poll
(current)

X
update

X

Interval > Delta

Time

 poll
(previous)

 poll
(current)

XX
updates

 First update
since last poll

Latest
Update

Interval < Delta

(a) (b)

Figure 1. Possible scenarios that result in violation of con sistency guarantees.

Figure 1(a)). Violations can occur even when the most re-
cent update is within� time units from the poll instant. This
is because an object can be modified multiple times between
successive polls and thefirst update since the last poll could
have occurred more than� time units from the current poll
instant (see Figure 1(b)). In either case, the TTR is reduced
by a multiplicative factor.TTR = TTR �m (7)

wherem is a multiplicative factor and0 < m < 1. Suc-
cessive violations cause an exponential decrease in the TTR
value until it reachesTTRmin.

HTTP responses do not provide any information about
updates that occurredprior to the most recent change. This
makes detection of violations in the second category more
difficult. There are two ways to address this problem. First,
we can modify HTTP to explicitly provide a history of the
most recent changes. Second, the proxy can try to deduce
whether a violation occurred. Doing so requires maintain-
ing statistics about past violations so as to infer the proba-
bility of a violation. These methods are further discussed in
Section 5.

Case 3: The object was modified but no violation oc-
curred. This indicates that the proxy is polling at approx-
imately the correct frequency. The algorithm can then fine-
tune the TTR value so as to converge to the “correct” TTR.TTR = TTR � (1 + �) (8)

where� is a small positive number,� � 0. By choosing an
appropriate value of�, the algorithm can increase the TTR
slightly or keep it unchanged.

Case 4:The object was modified after a long period of no
modifications.This case is handled separately from the pre-
vious three cases. If the proxy detects an update after a long

period of no modifications, it resets the TTR toTTRmin.
Since the TTR value is likely to have increased toTTRmax
in the interim, doing so enables the proxy to handle a sce-
nario where a cold object suddenly becomes popular. If
the update was a sporadic event and the object continues
to be cold, then the TTR will again gradually increase toTTRmax.

Our approach has the following salient features. (i) The
technique provides several tunable parameters, namelyl,m,
and� that can be used to control its behavior. In particular,
the approach can be made optimistic by employing a large
linear growth factor to aggressively increase the TTR value
in the absence of updates, and thereby reduce the number
of polls. Alternatively, the approach can be made conserva-
tive by employing a large multiplicative factor to “back off”
quickly in the event of a violation. (ii) An interesting feature
of our approach is that it uses information from only the two
most recent polls to compute the TTR value. No other infor-
mation from the past (such as a detailed history of updates
or violations) is necessary to compute the TTR. This reduces
the amount of state that must be maintained at a proxy and
simplifies the proxy design. A further benefit of maintain-
ing minimal state information is that is improves resilience
to failures—recovering from a proxy failure simply involves
reseting theTTRs of all objects toTTRmin.

3.2. Maintaining Consistency Across Objects

Next we present a technique to maintain mutual con-
sistency that augments the�-consistency technique pre-
sented in the previous section. When the LIMD algorithm
presented in the previous section, polls the server everyTTRmin = � time units for each object, two different ob-
jects could be out of phase by�=2 on the average. The
phase lag can be larger when the LIMD algorithm polls each

object at a rate slower than once every�. Maintaining mu-
tual consistency requires that polls for related objects should
be synchronized (“in-phase”) with each other to the extent
possible. One approach for doing so is to simply poll each
object more frequently—frequent polls reduce the time dif-
ference between polls for any two objects and increase the
degree of mutual consistency. Another approach is to trig-
ger polls for all related objects every time the proxy polls
one of those objects based on the LIMD algorithm; such
synchronized polling can ensure that related objects are al-
ways consistent with one another. The disadvantage of these
approaches is that they can significantly increase the number
of polls needed to provide consistency guarantees.

Our mutual consistency technique is architected on the
observation that polls for related objects need to be synchro-
nized only when one of the objects is updated. In the ab-
sence of updates, no mutual consistency guarantees are vio-
lated (even if the objects are polled out of phase with one an-
other). Consequently, rather than polling more frequentlyor
synchronizing all polls, the proxy simply employs the LIMD
algorithm to maintaining consistency of individual objects.
Upon detecting an update (as indicated by the last-modified
time field of the HTTP response), the proxy triggers polls
for all other related objects. In particular, an additionalpoll
is triggered for an objectonly if its next/previous poll instant
is more thanÆ time units away; no poll is required if the
next/previous poll occurs withinÆ time units, since this is
within the user specified tolerance (see Equation (4)).

This approach works well when all objects within a group
of related objects change at approximately the same rate.
In the scenario where different objects change at different
rates, it has the effect of polling all objects at the rate of the
fastest changing object. While this approach provides a fi-
delity of 100% for mutual consistency, it increases the num-
ber of polls required to provide mutual consistency guaran-
tees. If the user can tolerate an occasional violation of mu-
tual consistency guarantees (in addition to occasional viola-
tions of�-consistency guarantees), then a heuristic would
be to trigger polls for only those objects that change at a
rate faster than the object that was modified. By not polling
slower changing objects, this heuristic depends on the LIMD
algorithm to detect updates to less frequently modified ob-
jects. Observe that the heuristic can result in a violation of
consistency guarantees when a less frequently changing ob-
ject is indeed updated in conjunction with a more frequently
changing object and the polls to the two objects are more
thanÆ apart. Section 6 quantifies the impact of this heuristic
on the fidelity of mutual consistency guarantees.

4. Consistency in the Value Domain

In this section, we present techniques for maintaining
consistency guarantees in the value domain. Like temporal
domain consistency, we first describe techniques for main-
taining�v-consistency and then show how to augment these

techniques for maintaining mutual consistency in the value
domain.

4.1. Maintaining Consistency of Individual Objects

Recently, we proposed a technique for maintaining�-
consistency in the value domain [8]. Our technique, referred
to asadaptive TTR computation, ensures that the difference
in the value of an object at the server and a proxy is bound
by�. That is,8t; jSat � P at j < �. Our technique provides
these guarantees by polling the server every time the value
of the object changes by�. This is achieved by computing
the rate at which the object value changed in the recent past
and extrapolating from this rate to determine how long it
would take for the value to change by�. Thus, the TTR is
estimated as TTR = �=r (9)

wherer denotes the rate of change of the object value and

is computed asr = jPaurrent�Paprev jturrent�tprev ; turr and tprev de-
note the times of the two most recent polls andP at denotes
the object values obtained from those polls. Figure 2 illus-
trates this process. The TTR estimate in Equation (9) can
be improved by accounting for changes that occurred prior
to the immediate past; this is achieved using an exponen-
tial smoothing function to refine the TTR value. That is,TTR = w � TTR + (1 � w) � TTRprev, wherew deter-
mines the weight accorded to the current and past TTR esti-
mates. This TTR value is then constrained using static upper
and lower bounds and weighed against the smallest observed
value of TTR thus far. Thus,TTR = max(TTRmin;min(TTRmax; � � TTR+(1� �)TTRobserved�min)) (10)

where� is a tunable parameter,0 � � � 1.
Like the LIMD algorithm presented in Section 3.1, this

TTR computation technique can adapt to the dynamics of
time-varying data (by virtue of computing a new rate of
change of value after each poll). Moreover, the technique
uses the parametersw and� to control the sensitivity of the
algorithm to the dynamics of time-varying data.

Observe that since a tracked object can change in any ran-
dom fashion at the server, the efficacy of the above technique
hinges on past changes being an accurate indicator of the fu-
ture. Consequently, greater the temporal locality exhibited
by the data, the greater is the effectiveness of the technique.
Data that exhibits less locality can be handled by biasing the
algorithm towards more conservative TTR values (by pick-
ing a small value of� in Equation (10)) and thereby increas-
ing the frequency of polls.

Experiments reported in [8] have demonstrated the ef-
ficacy of our adaptive TTR technique in providing consis-
tency guarantees for time-varying financial data (e.g., stock
prices). In what follows, we show how to augment this tech-
nique to maintain consistency across objects.

Time

Value

t prev t current

P
current
a

Pprev
a slope = r =

P
current
a Pprev

a

t prevt current

−

−

Actual change in
 object value

Polls

Figure 2. Estimating the rate of change of the
object value.

4.2. Maintaining Consistency Across Objects

Recall from Section 2 that a mutual consistency mecha-
nism must strive to keep the difference in the values of func-
tion f at the proxy and the server within some toleranceÆ.
That is,jf(Sat ; Sbt)� f(P at ; P bt)j < Æ, wheref is a function
that depends on the values of the two objects. A proxy can
achieve this objective by (i) recording recent values off , (ii)
determining the rate of change of the functionf and (iii) us-
ing this rate to compute the next time instant at which the
functionf will change byÆ. Polling the server before this
time instant will ensure that the difference inf at the proxy
and the server is bound byÆ.

Since the above procedure is similar to that for�v-
consistency, we can employ a variant of the adaptive TTR
technique described in the previous section to compute poll
instants. Thus, given two objectsa andb and the toleranceÆ, the proxy: (i) polls the corresponding servers for the latest
values ofa andb, (ii) computes the rate at which the functionf is changing asr = jf(P aurr; P burr)� f(P aprev ; P bprev)jturr � tprev (11)

and (iii) estimates the TTR value asTTR = Ær � (12)

where is a feedback factor that is varied depending on the
accuracy of the TTR estimate,0 < � 1. Initially, = 1; is decreased when consistency guarantees are violated, re-
sulting in more conservative TTR estimates and more fre-
quent polls; is increased gradually in the absence of viola-
tions, causing less frequent polls. Like in the adaptive TTR
technique, the TTR estimate in Equation (12) is then refined
using Equation (10).

Since we make no assumptions about the nature of the
function f , this approach works well only iff is a linear
function or if the time difference between successive polls

is small enough to approximatef as a linear function. If
neither assumption holds, then a different mechanism is re-
quired to estimate the rate of change of the the functionf .

The efficacy of the TTR estimates can be improved by
exploiting the nature of functionf . For instance, iff is
defined to be the difference in the objects valuesa and b,
then theMv-consistency condition in Equation (5) reduces
to j(Sat �Sbt)� (P at �P bt)j < Æ, which in turn simplifies toj(Sat � P at) + (P bt � Sbt)j < Æ. Consequently, a proxy can
partition the toleranceÆ into two partsÆa andÆb, such thatÆa+Æb = Æ and ensure consistency of each individual object
using the adaptive TTR approach3 (i.e., ensurejP at �Sat j <Æa andjP bt � Sbt j < Æb individually).

ParametersÆa andÆb can be adjusted periodically based
on the dynamics of the objects—a smaller tolerance can be
apportioned to the object that is changing at a faster rate,
i.e., if ra andrb denote the rates of change of objectsa andb, thenÆa = � rbra + rb� � Æ and Æb = � rara + rb� � Æ
Thus, whenf is the difference function, the mutual consis-
tency reduces to maintaining consistency for each individ-
ual object, subject to the condition that the summation of
individual tolerances is no greater than the total toleranceÆ.
In cases where the nature off does not permit any further
simplification, then the more general technique described in
Equations (11) and (12) must be employed to provide con-
sistency guarantees.

5. Design Considerations

In this section, we discuss design considerations that arise
when implementing the cache consistency mechanisms de-
scribed in this paper. All of our cache consistency mecha-
nisms are based on HTTP. We assume that web users send
HTTP requests to their local proxy. Cache hits are ser-
viced using locally cached data, while cache misses cause
the proxy to fetch the requested object from the server via
HTTP. All of our cache consistency mechanisms compute
TTR values for each cached object. The proxy must refresh
each object when its TTR expires—this is achieved using an
if-modified-since HTTP request, which allows the proxy to
query the server if the object is still fresh. Such requests
include the time of the previous refresh so as to enable the
server to determine if the object has been updated in the in-
terim. In what follows, we discuss some issues that arise
when implementing such an approach.

3It follows from elementary algebra that maintaining individual consis-
tency in this manner implies mutual consistency. Sincejx+yj � jxj+ jyj,
we havej(Sat �Pat)+(P bt �Sbt)j � jPat �Sat j+jP bt �Sbt j < Æa+Æb = Æ.

5.1. Proposed Extensions to HTTP/1.1

The HTTP/1.1 protocol allows a server to provide the
time of last modification in response to each HTTP request
[4]. We propose an extension to this protocol to provide
a modification history of arbitrary length, using the user-
defined header features of HTTP, which helps in estimating
TTR values more accurately. In addition, our cache con-
sistency mechanisms require a tolerance� to be specified
for each cached object and a toleranceÆ for each group of
related objects. These could be specified using extensions
to cache control directives of HTTP/1.1. Details of these
proposals may be found in the technical report of this paper
[13].

5.2. Determining Groups of Related Objects

Our mutual consistency techniques implicitly assume that
relationships among cached objects are known to the proxy.
In practice, sets of related objects can be specified by the
user or be automatically deduced using syntactic or seman-
tic relationships between objects. Whereas syntactic rela-
tionships can be deduced by parsing html documents for
embedded links and objects, domain-specific knowledge is
required for determining semantic relationships. In either
case, these relationships can then be stored using data struc-
tures such asdependency graphs[12]. Note that dependency
graphs by themselves are not sufficient for maintaining mu-
tual consistency. They need to be used in conjunction with
our mutual consistency algorithms to provide consistency
guarantees at low costs.

6. Experimental Evaluation

In this section, we demonstrate the efficacy of our cache
consistency mechanisms through an experimental evalua-
tion. In what follows, we first present our experimental
methodology and then our experimental results.

6.1. Experimental Methodology

6.1.1 Simulation Environment

We implemented an event-based simulator to evaluate the
efficacy of various cache consistency mechanisms discussed
in this paper. The simulator simulates a proxy cache that
receives requests from several clients. Cache hits are ser-
viced using locally cached data, whereas a cache miss is
simulated by fetching the object from the server. Our ex-
periments assume that the proxy employs an infinitely large
cache to store objects and that the network latency in polling
and fetching objects from the server is fixed (this is because
we are primarily interested in efficacy of cache consistency
mechanisms rather than network dynamics). We assume that
tolerances on individual and mutual consistency (i.e.,� andÆ) are specified by the user and known to the proxy.

6.1.2 Workload Characteristics

We evaluated the efficacy of our techniques using real-world
traces. In the temporal domain, we collected several traces
from newspaper web sites using a program that fetched these
pages from the server once every minute and determined if
the object was updated since the previous poll (by parsing
the time-stamp embedded in the html page). The program
was run continuously for multiple days on several frequently
updated web pages and the characteristics of the resulting
traces are summarized in Table 2. To stress our algorithms,
we chose web pages that were updated at frequencies rang-
ing from once every five minutes (i.e., the breaking-news
sections of these web sites, which are typically updated once
every few minutes) to only once in a half hour.

Since value-domain consistency requires web objects that
have a value, we chose stock prices to evaluate our tech-
niques. We gathered traces of several stock prices from an
online quote server (quote.yahoo.com) using our trace-
collection program. We then chose two particular stock
traces for our experiments—one characterized by frequent
changes (Yahoo) and the other characterized by infrequent
changes in value (AT&T). Table 3 summarizes their charac-
teristics.

6.1.3 Metrics

Our cache consistency mechanisms are evaluated using the
following metrics: (i) number of polls incurred and (ii) fi-
delity of the cached data.Fidelity is defined to be the degree
to which a cache consistency mechanism can provide con-
sistency guarantees to users. Fidelity can be measured either
based on the number of occasions where consistency guar-
antees are violated:f = 1� Number of violations

Number of Polls
(13)

or based on the time for which consistency guarantees were
violated: f = 1� Total out-sync time

Total trace duration
(14)

In general, larger the number of polls, smaller are the
chances of violating consistency guarantees. The goal of an
effective cache consistency mechanism should be to achieve
a fidelity close to 1.0 while incurring as few polls as possi-
ble.

6.2. Experimental Results

6.2.1 Individual Consistency in the Temporal Domain

We evaluated the LIMD algorithm described in Section 3.1
using our trace workloads. To do so, we configured the algo-
rithm with the following parameters: (i) the linear increase
parameter,l, was chosen to be 0.2, (ii) the multiplicative

Table 2. Characteristics of Trace Workloads for Temporal Do main Consistency
Trace Time Period Num. Updates Avg. Update Frequency

CNN Financial News Briefs Aug 7 13:04 - Aug 914:34 113 every 26 min
NY Times Breaking News (AP) Aug 7 14:07 - Aug 9 11:25 233 every 11.6 min

NY Times Breaking News (Reuters) Aug 7 14:12 - Aug 9 11:25 133 every 20.3 min
Guardian Breaking News Aug 6 13:40 - Aug 9 15:32 902 every 4.9 min

Table 3. Characteristics of Trace Workloads for Value Domai n Consistency
Stock Name Time Period Num. of Updates Min Value Max Value

AT&T May 22 13:50-16:50 653 $35.8 $36.5
Yahoo Mar 30 13:30-16:30 2204 $160.2 $171.2

decrease parameter,m, was set to the ratio of� and the ob-
served out-sync time , and (iii) the parameter�was chosen to
be 0.02. The lower and upper bounds on the refresh interval
were set toTTRmin = � andTTRmax = 60 minutes.

We varied� from 1 to 60 minutes and computed the
number of polls incurred and the fidelity provided by the
LIMD algorithm. In each case, we compared our results to a
baseline approach where the object was periodically polled
every� time units. Note that, by definition, this baseline
approach always provides perfect fidelity.

Figure 3 plots the number of polls and the fidelity for
the CNN/FN trace. Similar results were obtained for other
traces, which we omit due to space constraints; more results
may be found in the technical report version of this paper
[13]. These figures indicate the following salient features:
(1) In the scenario where the consistency requirement� is
smaller than the interval between successive updates, the op-
timal approach is to poll once after each update. The LIMD
algorithm attempts to achieve this and consequently incursa
smaller number of polls than the baseline approach (which
polls once every� time units). However, this reduction in
polls comes at the expense of a reduction in fidelity, since
the algorithm occasionally fails to detect an update. In the
CNN/FN trace, for instance, when� = 1 minute, we see a
reduction by a factor of 6 in the number of polls with only
a 20% loss in fidelity (see Figures 3(a) and (b)). Note that,
the fidelity can be improved by choosing more conservative
values of parametersl andm (which, however, increases the
number of polls). (2) When the object changes more fre-
quently than�, the optimal approach is to poll once every� time units. As shown in Figure 3(a), the LIMD algorithm
does indeed poll at this frequency (evident from its proxim-
ity to the baseline approach). As a result, the fidelity of the
LIMD approach converges to that of the baseline approach
(namely, a fidelity of 1).

These results demonstrate the adaptive nature of the
LIMD algorithm—the algorithm polls less frequently when� is less than the update frequency and behaves like the
baseline approach when� is larger than the update fre-

quency. Note also from Figures 3(b) and (c), that both
measures of fidelity demonstrate a similar behavior. Con-
sequently, in the rest of this paper, we only present results
for fidelity computed using Equation (13).

The adaptive behavior of our LIMD algorithm is further
illustrated in Figure 4. Figure 4(a) plots the average number
of updates per 2 hours for the CNN/FN trace. As shown, the
update frequency of the CNN/FN web page reduces to zero
for a few hours every night. The LIMD algorithm adapts by
increasing the TTR linearly when there are no updates to the
object. In particular, the TTR grows linearly toTTRmax =60 minutes every night when the object stops changing and
reduces in a multiplicative fashion back toTTRmin = � =10 minutes every morning.

6.2.2 Mutual Consistency in the Temporal Domain

Next, we evaluate the efficacy of our mutual consistency
techniques. We compare three different approaches: (i) the
baseline LIMD algorithm that has no additional support for
mutual consistency, (ii) the LIMD algorithm combined with
triggered polls, where an update to an object triggers polls
to all related objects, and (iii) the LIMD algorithm com-
bined with a heuristic that only triggers polls for objects that
change at approximately the same or faster rates.

We consider each pair of objects in Table 2 and simulate
the above three approaches for mutual consistency (in real-
ity, only the two NY Times traces are related; however, we
assume all object pairs are related to enable experimentation
with a larger number of object pairs). For each pair of related
objects, we variedÆ from 1 to 30 minutes and computed the
number of polls incurred and fidelity provided by each of
the three techniques. In each case, the LIMD algorithm was
parameterized by� = 10 minutes (other parameters such
asl andm were identical to that in Section 6.2.1).

Figure 5(a) plots the number of polls incurred by the three
approaches. As expected, both the triggered poll technique
and the heuristic incur more polls than the baseline LIMD
algorithm (due to the additional polls required to maintain

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60

N
um

be
r

of
 p

ol
ls

Delta-consistency constraint (min)

Number of polls, CNN/FN trace

LIMD Approach
Baseline Approach

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

F
id

el
ity

Delta-consistency constraint (min)

Fidelity, CNN/FN trace

LIMD Approach
Baseline Approach

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

F
id

el
ity

, C
N

N
/F

N
 tr

ac
e

Delta-consistency constraint (min)

Fidelity, CNN/FN trace

LIMD Approach
Baseline Approach

(a) Number of polls (b) Fidelity (num. violations) (c) Fidelity (out-sync time)

Figure 3. Efficacy of the LIMD algorithm for the CNN/FN trace.

0

2

4

6

8

10

12

1 pm 9 pm 5 am 1 pm 9 pm 5 am

N
um

be
r

of
 u

pd
at

es
 p

er
 2

 h
ou

rs

Time (hours)

Update frequency, CNN/FN trace

0

10

20

30

40

50

60

70

1 pm 9 pm 5 am 1 pm 9 pm 5 am

T
T

R
 (

ho
ur

s)

Time (hours)

TTR, CNN/FN trace, Delta=10 min

(a) Update Frequency (b) Computed TTR values

Figure 4. Adaptive behavior of the LIMD approach.

0

100

200

300

400

500

600

0 5 10 15 20 25 30

N
um

be
r

of
 p

ol
ls

Mutual consistency constraint (min)

Number of polls, CNN/FN-NYTimes/AP trace, Delta=10 min

LIMD with heuristic
LIMD with triggered polls

Baseline LIMD
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

F
id

el
ity

Mutual consistency constraint (min)

Fidelity, CNN/FN-NYTimes/AP trace, Delta=10 min

LIMD with heuristic
LIMD with triggered polls

Baseline LIMD

Figure 5. Performance of different mutual consistency appr oaches

mutual consistency). Since the heuristic polls selectively
based on the update frequency (polls are triggered for only
those objects that change at a similar or faster rate), it is
more efficient than the triggered poll approach (which polls
all related objects regardless of their update frequency).The
figure also indicates that the incremental cost of maintaining
mutual consistency over maintaining individual consistency
is modest. To illustrate, our heuristic results in less thana
20% increase in the number of polls, when compared to the
baseline LIMD technique; the overhead is smaller for more
tolerant mutual consistency constraints.

Figure 5(b) plots the fidelity offered by the three ap-
proaches. Note that, by definition, the triggered poll tech-
nique has a fidelity of 1 (since triggered polls ensure that all
related objects are withinÆ of one another). Depending on
the value ofÆ, the heuristic approach offers fidelities ranging
from 0.87 to 1; higher fidelities are offered for more toler-
ant values ofÆ. The figure also indicates that our heuristic
is not always successful and can occasionally violate guar-
antees by triggering polls selectively. Clearly, the baseline
LIMD algorithm offers the worst fidelity, since it has no sup-
port for mutual consistency. The technical report version of
this paper [13] contains more results indicating that these
observations hold irrespective of the difference in the rate of
change of objects.

Finally, Figure 6 illustrates the adaptive nature of our
heuristic. The figure shows that an update to one object trig-
gers a poll to the related object only in those time intervals
where the related object changes at approximately the same
or at a faster rate. For instance, at about 3 pm on the first day,
when the two objects are changing at very different rates (see
Figure 6(a)), only the slower object triggers extra polls ofthe
faster object, resulting in fewer polls (see Figure 6(b)).

6.2.3 Mutual Consistency in the Value Domain

We consider two different approaches to demonstrate the ef-
ficacy of our mutual consistency techniques in the value do-
main: (i) the adaptive approach, which modelsf as the value
of a virtual object and ensures that the value at the proxy
is within Æ of the server; and (ii) the partitioned approach
where we splitÆ into Æa andÆb and reduce the problem to
maintaining consistency of individual objects.

We evaluate both techniques using traces of stock prices
listed in Table 3 for values ofÆ ranging from $ 0.25 to $ 5
(mutual consistency requires that the difference in the values
of the two objects at the proxy be withinÆ of their difference
at the sever). Figure 7 plots the number of polls incurred and
the fidelity offered by two approaches. The figure shows that
both approaches incur fewer polls for more tolerant (larger)
values ofÆ; similarly, both approaches offer higher fideli-
ties for more tolerant mutual consistency constraints. Figure
7(b) also shows that by exploiting the nature of the functionf , the partitioned approach can offer higher fidelities than
the adaptive TTR approach. The approach, however, also

incurs a correspondingly larger number of polls to achieve
this higher fidelity (see Figure 7(a)). Finally, the fidelities
offered by the two approaches is visually illustrated in Fig-
ure 8, which plots the values off at the proxy and the server.
As shown, the partitioned approach tracks the server values
more effectively when compared to the adaptive TTR ap-
proach, resulting in higher fidelities.

7. Concluding Remarks

In this paper, we argued that techniques to provide cache
consistency guarantees for individual web objects are not
adequate—a proxy should additionally employ mechanisms
to ensure that related objects are mutually consistent with
one another. We formally defined various consistency se-
mantics for individual objects and groups of objects in the
temporal and value domains. Based on these semantics, we
presented adaptive approaches for providing mutual consis-
tency guarantees in the temporal and value domains. A use-
ful feature of our techniques is that they can be combined
with most existing approaches for consistency of individual
objects. Our approaches adapt to variations in the dynamics
of the source data, resulting in judicious use of proxy and
network resources. We evaluated our techniques using real-
world traces of time-varying web data. Our results showed
that an intelligent proxy could significantly reduce the net-
work overhead in providing mutual consistency guarantees
without significantly affecting the fidelity of these guaran-
tees. We also showed that the incremental cost of providing
mutual consistency guarantees is small (even the most strin-
gent mutual consistency requirements resulted in less than
a 20% increase in the number of polls). As part of future
work, we plan to implement our techniques in the Squid
proxy cache and demonstrate their utility for real applica-
tions.

References

[1] P. Cao and C. Liu. Maintaining Strong Cache Consistency
in the World-Wide Web. InProceedings of the Seventeenth
International Conference on Distributed Computing Systems,
May 1997.

[2] V. Cate. Alex: A Global File System. InProceedings of the
1992 USENIX File System Workshop, pages 1–12, May 1992.

[3] V. Duvvuri, P. Shenoy, and R. Tewari. Adaptive Leases: A
Strong Consistency Mechanism for the World Wide Web. In
Proceedings of the IEEE Infocom’00, Tel Aviv, Israel, March
2000.

[4] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1. Internet-Draft
draft-ietf-http-v11-spec-07, HTTP Working Group, August
1996.

[5] J. Gwertzman and M. Seltzer. World-Wide Web Cache Con-
sistency. InProceedings of the 1996 USENIX Technical Con-
ference, January 1996.

0

0.5

1

1.5

2

2.5

3

3.5

4

9 pm 5 am 1 pm 9 pm 5 am

R
at

io
 o

f u
pd

at
e

fr
eq

ue
nc

ie
s

Time (hours)

TTR ratio, NYTimes/AP-NYTimes/Reuters trace

0

2

4

6

8

10

12

14

9 pm 5 am 1 pm 9 pm 5 am

N
um

be
r

of
 e

xt
ra

 p
ol

ls

Time (hours)

Extra polls, NYTimes/AP-NYTimes/Reuters trace

(a) Variation in the ratio of update frequency (b) Number of polls

Figure 6. Adaptive behavior of our heuristic for mutual cons istency.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 1 2 3 4 5

N
um

be
r

of
 p

ol
ls

Mutual consistency constraint ($)

AT&T and Yahoo traces

Adaptive TTR Approach
Partitioned Approach

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

F
id

el
ity

Mutual cnsistency constraint ($)

AT&T and Yahoo traces

Adaptive TTR Approach
Partitioned Approach

(a) Number of polls incurred (b) Fidelity

Figure 7. Efficacy of our mutual consistency techniques in th e value domain.

130

132

134

136

138

140

142

144

146

148

2500 3000 3500 4000 4500 5000

D
iff

er
en

ce
 in

 s
to

ck
 p

ric
es

 (
$)

Time (sec)

Adaptive TTR, AT&T and Yahoo traces, delta=$0.6

Server
Proxy

130

132

134

136

138

140

142

144

146

148

2500 3000 3500 4000 4500 5000

D
iff

er
en

ce
 in

 s
to

ck
 p

ric
es

 (
$)

Time (sec)

Partitioned Approach, AT&T and Yahoo traces, delta=$0.6

Server
Proxy

(a) Adaptive TTR approach (b) Partitioned approach

Figure 8. Variation in f at the proxy and the server.

[6] B. Krishnamurthy and C. Wills. Proxy Cache Coherency and
Replacement—Towards a More Complete Picture. InPro-
ceedings of the 19th International Conference on Distributed
Computing Systems (ICDCS), June 1999.

[7] J. Mogul. Squeezing More Bits Out of HTTP Caches.IEEE
Network Magazine, 14(3):6–14, May 2000.

[8] R. Srinivasan, C. Liang, and K. Ramamritham. Maintaining
Temporal Coherency of Virtual Warehouses. InProceedings
of the 19th IEEE Real-Time Systems Symposium (RTSS98),
Madrid, Spain, December 1998.

[9] W R. Stevens.TCP/IP Illustrated Volume 1. Addison Wesley,
1994.

[10] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Hierarchical Cache
Consistency in a WAN. InProceedings of the Usenix Sym-
posium on Internet Technologies (USEITS’99), Boulder, CO,
October 1999.

[11] H. Yu, L. Breslau, and S. Shenker. A Scalable Web Cache
Consistency Architecture. InProceedings of the ACM SIG-
COMM’99, Boston, MA, September 1999.

[12] A. Iyengar and J. Challenger. Data Update Propagation:A
Method for Determining How Changes to Underlying Data
Affect Cached Objects on the Web.Technical Report RC
21093(94368), IBM Research Division, Yorktown Heights,
NY, February 1998.

[13] B. Urgaonkar, A.G. Ninan, M.S. Raunak, P. Shenoy and
K. Ramamritham. Maintaining Mutual Consistency for
Cached Web Objects.University of Massachusetts, Amherst,
Technical Report TR 00-47, September 2000.

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2001

	Maintaining Mutual Consistency for Cached Web Objects
	Bhuvan Urgaonkar
	Anoop George Ninan
	Mohammad Salimullah Raunak
	Prashant Shenoy
	Krithi Ramamritham
	Recommended Citation

	tmp.1273160749.pdf.1D_QY

