
Replicating Web Applications On-Demand

Swaminathan Sivasubramanian Guillaume Pierre Maarten van Steen
Dept. of Computer Science, Vrije Universiteit, Amsterdam

{swami,gpierre,steen}@cs.vu.nl

Abstract

Many Web-based commercial services deliver their con-
tent using Web applications that generate pages dynami-
cally based on user profiles, request parameters etc. The
workload of these applications are often characterized by
a large number of unique requests and a significant frac-
tion of data updates. Hosting these applications drives the
need for systems that replicates both the application code
and its underlying data. We propose the design of such a
system that is based on on-demand replication, where data
units are replicated only to servers that access them often.
This reduces the consistency overhead as updates are sent
to a reduced number of servers. The proposed system al-
lows complete replication transparency to the application,
thereby allowing developers to build applications unaware
of the underlying data replication. We show that the pro-
posed techniques can reduce the client response time by a
factor of5 in comparison to existing techniques for a real-
world e-commerce application used in the TPC-W bench-
mark. Furthermore, we evaluate our strategies for a wide
range of workloads and show that on-demand replication
performs better than centralized and fully replicated sys-
tems by reducing the average latency of read/write data ac-
cesses as well as the amount of bandwidth utilized to main-
tain data consistency.

1. Introduction

The Web is the leading platform for hosting commercial
services, such as book shops and music stores, in the Inter-
net. The Web sites hosting such services often do not deliver
static Web pages, but are made of applications that gener-
ate pages based on request parameters, individual user pro-
files, etc. Dynamic document generation for a request usu-
ally requires, in turn, to issue read or write accesses to a
database.

Hosting such applications in a centralized server (or clus-
ter of servers) may result in poor response time for Web
clients due to the wide-area network latency introduced
for each request. An obvious solution, known as fragment
caching, is to cache the pages generated by the applications

at servers located close to the clients [1, 11]. However, this
solution relies on the assumptions that the temporal local-
ity of requests is high and the requests that lead to data up-
dates are infrequent. Unfortunately, this assumption is of-
ten not valid for applications that receive a large number
of unique requests or a significant number of requests that
lead to data updates. Such applications can be distributed
only through replication, where the application code is ex-
ecuted at the replica servers. This avoids the wide-area net-
work latency for each request and ensures quicker response
time to clients.

Replicating a Web application requires replicating both
the application code (e.g., EJBs, CGI scripts, PHPs) and the
data that the code acts upon (databases or files). This can re-
duce the latency of requests, as the requests can be answered
by the application hosted by the server located close to the
clients. Replicating applications is relatively easy provided
that the code does not modify the data [14]. However, most
applications do modify their underlying data. In this case,
it becomes necessary to manage data consistency across all
replicas.

Propagating every data update to all servers can lead to
a significant overhead in terms of update traffic if the ap-
plication generates many data updates. Such overhead can
be reduced by adopting weak consistency models, but this
requires significant expertise from the application develop-
ers. In our system, we made the opposite choice and focus
on scalable solutions that guarantee full replication trans-
parency for Web applications while maintaining strong con-
sistency.

In this paper, we propose to not replicate all applica-
tion data at all servers. Instead, data are segmented into data
units and each data unit is replicated only to the servers that
access it frequently. We call this approachon-demand repli-
cation. This approach can reduce the synchronization over-
head as consistency updates for a given data unit must be
sent to a reduced number of servers. Furthermore, we pro-
pose to combine our technique with fragment caching. As
we later show in our performance studies, this combination
can perform well for a wide range of application workloads.

We believe that on-demand application replication is
useful for general e-commerce applications, as it allows

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15454338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the system to exploit the location-specific interests in re-
quest patterns. For instance, a worldwide e-commerce ap-
plication does not need to replicate its customer database
to all its replicas. North American customer records can be
stored primarily in servers in North America and need not
be replicated to Asian servers. Though storage is not an is-
sue with sharp decline in storage costs, the synchronization
costs would then be reduced when a customer record is up-
dated. As we show later in our performance evaluations, on-
demand data replication can reduce the update traffic by1
to 2 orders of magnitude in comparison with other existing
techniques. In addition, for the TPC-W e-commerce bench-
mark [16], on-demand replication can reduce the client la-
tency by a factor of5 in comparison with other existing
techniques.

The contributions of this paper are as follows: (i) we
propose an architecture for a system that performs on-
demand replication of Web applications; (ii) we show that
such on-demand replication can provide significant perfor-
mance gains using a real world e-commerce application and
its workload provided by the TPC-W benchmark; and (iii)
we evaluate the potential performance gains of on-demand
replication for a wide range of workloads, characterized by
different update ratios and data access patterns.

The rest of the paper is organized as follows: Sec-
tion 2 presents our application and system model. Sec-
tion 3 presents the detailed design of the data driver,
the central component of our on-demand data replica-
tion architecture. Section 4 discusses our replication
and caching techniques. Section 5 evaluates the perfor-
mance gains due to on-demand replication for the TPC-W
based e-commerce application. Section 6 evaluates the per-
formance gains due to on-demand replication for a wide
range of application workloads. Section 7 discusses the re-
lated work and Section 8 concludes the paper.

2. System Model

2.1. Application Model

An important issue when replicating an application is
to decide to which extent the application code should be
aware of replication. Replication can yield the best perfor-
mance if it is completely tuned to the specific application
and its access patterns. However, this requires significant ef-
fort and expertise from an application developer, for which
reason optimal performance of the application is often not
reached. Furthermore, changes in access pattern may war-
rant changes in replication strategies. This makes the pro-
cess of developing an optimal replication strategy for the
application next to impossible.

We made the opposite design choice by having a com-
pletely replication-transparentapplication model. In our
system, the application developer need not worry about

Client

Requests/Responses
Data

Access Driver
Data

Server

Read/
Write

Application

Code
Database

Figure 1. Application Model

replication issues but only sticks to functional issues. The
system will automatically derive a replication strategy, and
possibly adapt it under changing access patterns.

To keep replication transparent to the application devel-
opers, we decided that our system should provide sequential
consistency [12]. This consistency model enables the de-
veloper to write applications as if the underlying data were
concurrently accessed from a centralized location, thereby
ignoring distribution issues.

Our application model is shown in Figure 1. As seen in
the figure, an application is made of code and data. The code
is written using standard technologies such as Active Server
Pages (ASPs), CGI scripts or EJBs deployed in an applica-
tion server. The code receives HTTP requests from its Web
clients and issues read/write accesses to the relevant data in
a database to generate a response.

Access to the data is realized by a data driver, which acts
as the interface between the code and data.1 The data driver
preserves distribution transparency of the data as it hides the
fact that data are partially replicated. It has a simple JDBC-
like interface and is responsible for finding the data required
by the code, either locally or from a remote server, and for
maintaining data consistency.

We assume that the data are split inton data units,D1,
D2,· · ·,Dn, where a data unit is the smallest granule of
replication. Each unit is assumed to have a unique identi-
fier, which is used by the data driver to track it. Examples
of data units are database tables, or even records. The sys-
tem replicates each data unit according to its specific pat-
tern.

Choosing the right data granularity for replication has
important performance implications. If the granularity is
too coarse, we may lose the benefits of partial replication.
On the other hand, if it is too fine, the overhead for han-
dling replicas may be high. In our system, we employ an
approach where the data units are initially defined at a very
fine grain. Data units having similar access patterns are au-
tomatically grouped by the system into a single cluster. The
system subsequently handles replication at the cluster level,

1 The data driver we describe is different from conventional JDBC
drivers as this driver is not just an interface driver but also respon-
sible for functional aspects such as replication and location of data.

thereby making the problem of tracking a cluster tractable
without losing the benefits of partial replication.

In [8], the authors study a similar problem of clustering
Web pages to reduce the overhead in handling replicas for
each Web page. The authors propose spatial clustering al-
gorithms to group Web pages into clusters. Subsequently,
the system replicates pages at the cluster level, thereby re-
ducing the cost of replica placement. The authors also pro-
pose incremental clustering algorithms to handle changing
access patterns and creation of new Web pages. The authors
show that these clustering algorithms perform well for real-
world Web traces. We plan to use similar spatial clustering
algorithms for clustering data units. However, data cluster-
ing is not the focus of this paper hence, throughout this pa-
per, we assume the data units are already clustered.

2.2. System Architecture

The architecture of our proposed system is presented in
Figure 2. A given application is hosted overm edge servers
spread across the Internet. Each client is assumed to be redi-
rected to its closest edge server using standard technolo-
gies, such as DNS-based redirection [1, 9]. Communication
between edge servers usually goes through wide-area net-
works incurring wide-area latency.

When a client issue an HTTP request to the Web server,
the server first checks if the response to the corresponding
request is present in the cache. If found, the response is re-
turned immediately from the cache. Otherwise, the request
is passed over to the application code residing in the appli-
cation server. The application code usually issues a number
of read/write accesses to its data through the data driver.
The application data are partially replicated, so the local
database hosts only a subset of all data clusters. The data
driver is responsible for finding the relevant data either lo-
cally or from a remote edge server if the requested data are
not present locally. Additionally, when handling write data
accesses, the driver is also responsible for ensuring consis-
tency with other replicas of the updated data unit.

As noted earlier, we want to maintain sequential consis-
tency. We adopted a simple master-slave consistency proto-
col: each data cluster has a master server responsible for se-
rializing concurrent updates emerging from different repli-
cas. Read data accesses are forwarded to the closest server
that contains a replica. Write accesses are always forwarded
to the master of the data cluster, which immediately pushes
the update to all its replicas. Issuing all write operations to
a given cluster at a single location effectively serializes up-
dates, which generates sequential consistency.

To perform on-demand replication, the system must clus-
ter data units, decide on the placement of replicas for each
cluster and choose its master according to its access pat-
tern. To this end, each application is assigned oneOrigin
server, which is responsible for making all application-wide

decisions such as clustering data units and placing clusters
on edge servers. The origin server performs clustering and
placement periodically to handle changes in data access pat-
terns and the creation of new data units.

3. Data Driver

The data driver is the central component of our system.
It is in charge of clustering data units, replicating them, lo-
cating the data units required by the application code and
maintaining consistency among replicated data.

The driver maintains two tables. First, thecluster-
membershiptable stores the identifiers of data units con-
tained in each cluster.2 Second, thecluster-propertytable
contains the following information for each data clus-
ter: the origin server of the cluster, a reference to the
cluster in the local database (if available), the identi-
fier of its master replica and the list of servers that host
a copy of this cluster. These two tables are fully repli-
cated at all edge servers.

The driver locates a data unit by first identifying the
cluster to which the data unit belongs using thecluster-
membershiptable. Once the appropriate cluster is identi-
fied, the driver uses thecluster-propertytable to find de-
tails about the location of the cluster and its master.

The data driver receives two kinds of data access queries.
We refer to the queries based on primary keys of a table as
simple queries. Example of a simple query can be “Find
customer record whose userid is ‘Bob’.” Queries based on
non-primary keys (e.g., secondary key based access) are re-
ferred to ascomplex queries. Example of a complex query
can be “Find all customer records whose location is ‘Ams-
terdam”’.

As noted earlier, we assume that each data unit has
a unique identifier. For fine-grained data units, such as
database records, we use the primary key as the record’s
unique identifier. This allows the data driver to map simple
queries onto required data units, which makes the process-
ing of locating data unit(s) relatively straightforward.

For answering complex queries, the driver must not only
check its local database but also the entire database located
across multiple servers, as it does not have the complete in-
formation on which data units match the query (e.g., there
can be data units on other servers whose location field value
is “Amsterdam”). To do this, the driver need not contact all
servers but only a subset of servers that in total have the
complete database table. We call this subset amin-set. The
driver then requests the data drivers in this set of servers to
execute the query, merges their responses and returns the re-
sult to the application code.

2 A naive representation of this table can lead to a scalability bottleneck.
To avoid this, we intend to use Bloom filters [3].

Data replication/

Interactions

Web

Web

Interactions

 consistency updates

Cache
Fragment

(A detailed look)

Server

Database
Data

Driver

Web

Edge Server

Write

Read/

Web Application Server

Appln.

ServerServer

Web

Interactions
Edge Server

Edge Server

Edge Server

Wide-Area Network

Figure 2. System Architecture - Edge servers serving clients close to them and interactions among
edge servers goes through Wide-area network. A detailed look of the design of an Edge Server.

Note that there can be more than onemin-setand se-
lecting the right one is important for having a low re-
sponse time. Since queries can be addressed to themin-
set in parallel, the response time for answering a complex
query is limited by the maximum round-trip time to any
server in themin-set. The problem of finding amin-set
for a given database table is to determine a set of servers
that (i) together have the entire database table and (ii) of-
fer the smallest round-trip time from the requesting server.
To explain this, let us consider the scenario where the sys-
tem has3 servers{R1,R2,R3} and4 data clusters in total.
Let us assume thatR1 contains cluster{C1,C2}, R2 con-
tains{C3,C4} andR3 contains{C1,C3}. If serverR1 gets
a complex query, then themin-setfor R1 will be {R1,R2},
if R2 has smaller round-trip time toR1 thanR3. Determin-
ing a goodmin-setfor a server is relatively simple. Fur-
ther, it needs to be re-computed only when there is a change
in the cluster-propertytable, i.e., when an edge server is
added/removed from list of servers holding the replica of a
cluster.

Note that, although querying amin-setincurs wide-area
communication, the proposed system does not perform any
worse than existing systems while answering these com-
plex queries. For instance, in fragment caching systems, an-
swering both simple and complex queries involves wide-
area traffic. To obtain an idea of the percentage of trans-
actions that involve simple and complex queries in a real-
world application, we examined the TPC-W benchmark ap-
plication and its different workload mixes [16]. Depending
on the workload mixes, at least60% of the transactions are
based on simple queries, while the rest use complex queries.
This means that wide-area communication overhead occurs
in at most40% of the cases. As we show later, this over-
head can be reduced by fragment caching.

4. Replication and Caching Policies

Replicating an application requires that we replicate its
code and data. For the sake of simplicity, in this paper we as-
sume that the code is fully replicated at all replica servers.
In our system, each data cluster is replicated independently.
In this section, we discuss algorithms concerning the selec-
tion of the “best” replication strategy for a data cluster. Fur-
ther, we discuss fragment caching techniques which are use-
ful for application with mostly read-only data accesses and
propose a hybrid strategy that is made of a combination of
on-demand data replication and fragment caching.

4.1. Data Replication

A replication strategy describes three aspects:replica
placement, consistency mechanism, and, in our case,master
selection. Replica placement decisions concerns the number
and location of replicas. Consistency mechanism dictates
the protocol used to enforce data consistency among repli-
cas. Master selection involves choosing a master replica that
is responsible for handling concurrent updates for a data
cluster. As we made the choice of a master-slave consis-
tency protocol, the selection of the “best” replication strat-
egy involves deciding only on replica placement and master
selection.

To select the “best” replication strategy for a data cluster,
the data driver needs to know what the definition of “best”
performance is. One can measure the performance of the
system with a number of metrics such as the average read
latency, the average write latency, the amount of update traf-
fic, etc. But optimizing the system performance for one of
these metrics alone would often result in degrading the oth-
ers. For example, a system can be optimized for minimiz-
ing read latency by replicating the data to all replica servers.
However, this can lead to huge update traffic if the number
of updates is high.

In general, there is a clear tradeoff between the perfor-
mance gain due to replication and the performance loss due
to consistency enforcement. In our system, we propose to
represent the overall system performance into a single ab-
stract figure using acost function. An example of a cost
function that measures performance of a replication strat-
egys during a time periodt is:

cost(s, t) = α ∗ r(s, t) + β ∗ w(s, t) + γ ∗ b(s, t)
wherer is the average read latency,w is the average write
latency,b is the amount of bandwidth used for consistency
enforcement, andα, β and γ are weights associated to
each metric. Weights must be set by the system adminis-
trator based on system constraints and application require-
ments. A larger weight implies that its associated metric has
more influence in selecting the “best” strategy. Finding the
“best” system configuration now boils down to evaluating
the value of the cost function for every candidate strategy.
By definition, the best configuration is the one with the low-
est cost.

Ideally, the system should treat the master selection and
replica placement as a single problem and select the com-
bination of master-slave and replica placement configura-
tion that yields the minimum cost. However, such a solution
would require an exhaustive evaluation of2m ∗m configu-
rations for each data cluster, ifm is the number of replica
servers. This makes this solution computationally infeasi-
ble. In our system, we employ the use of heuristics to per-
form replica placement and master selection. For each prob-
lem, we propose a number of possible heuristics. This re-
duces the problem of choosing replication strategy to eval-
uating which combination of heuristics performs the best in
any given situation.

4.1.1. Replica Placement HeuristicsIn our system, the
origin server periodically collects the access patterns of
each data cluster from all edge servers. Subsequently, it
places a replica of a data cluster in a server if it generates
at leastx% of data access requests. This creates a family of
heuristicsPx.

Obviously, the value ofx affects the performance of the
system. A high value ofx will lead to creating no replica at
all besides the origin server. On the other hand, a low value
of x will lead to a fully replicated configuration. It is impor-
tant to choose the right value ofx based on the access pat-
terns of the data cluster.

Expecting the system administrator to determine the
right value ofx is not reasonable, as the number of param-
eters that affect the system performance is high. Instead, in
our system, administrators are just expected to define their
preferred performance tradeoffs by choosing the weight pa-
rameters of the cost function. The origin server will auto-
matically adjust the replication configuration to the one that
gives the lowest cost.

4.1.2. Master Selection HeuristicsMaster selection is
essential to optimize the write latency and the amount of
bandwidth utilized to maintain consistency among replicas.
In our system, we consider two heuristics for master se-
lection. Themost-writerheuristic selects the master as the
replica server that generates the highest number of write ac-
cesses. This strategy allows the highest fraction of update
accesses to be handled locally. However, if all servers issue
similar numbers of update accesses, this strategy may give
poor write latency because a large fraction of update access
requests will be redirected to the master, which is not nec-
essarily topologically close to the other writers.

This problem is avoided by theclosest-writerheuristic,
which selects the server that offers the least average write la-
tency as the master. Letni be the number of write access re-
quests received by replica serverRi and lij be the latency
between replica serveri andj (we assume that latency mea-
surements between servers are symmetric, i.e.,lij=lji). The
average write latency for a data cluster whose master isk
is given by:wk = (

∑m
i=1 ni ∗ lik)/(

∑m
i=1 ni). Theclosest-

writer heuristic selects the server with lowest average write
latency as the master.

4.2. Fragment Caching

Data replication is required when an application’s work-
load is characterized by a large number of unique requests
and/or significant number of writes. However, if the sys-
tem exhibits some temporal locality among requests, then
caching techniques are shown to be useful [4].

One of the most widely used techniques for caching re-
sults of Web applications is fragment caching [7]. The idea
behind this technique is to cache the responses for popu-
lar requests in the Web server. This avoids the overhead in
regenerating the response for the popular requests. This is
suitable for requests that do not modify application data and
are not unique (e.g., request for local weather).

In fragment caching, the data driver instructs the applica-
tion server to cache a query response, if the write-to-read re-
quest ratio to the underlying data units that were accessed is
below a threshold,Cachemax. To ensure the consistency of
responses, if a fragment response is cached, the data driver
maintains adependency graphof the fragment responses
with a particular data unit. An example of this graph is the
dependency between a data unit that contains the stock price
of a company and the fragment response that lists the stock
price. Later, if the data unit corresponding to the stock price
is updated, then the relevant fragment is invalidated, thus
preventing the Web server from delivering any stale frag-
ment. Similar consistency mechanisms have been shown to
be scalable for Web pages [5, 7].

4.3. Hybrid strategy

Many applications are characterized by a work-
load where a sizeable fraction of requests are cacheable,
while the rest are unique and contain significant number of
writes. For example, in the TPC-W benchmark, which rep-
resents an online bookstore application,5-10% of the
requests are for the new-products page which lists the lat-
est books. Since updates to the new-products page oc-
cur rarely (0.11% of requests), the fragment responses to
this page can be cached. Further, at least50% of the bench-
mark’s requests are unique (e.g., pages related to customer
profile) with a considerable fraction of them leading to data
updates (e.g., those for updating shopping carts or for or-
dering books). Such scenarios warrant data replication to
ensure fast response time with minimum consistency over-
head.

In our system, we propose to use fragment caching and
on-demand data replication simultaneously, where the frag-
ment cache is located in the Web server and the on-demand
data replication is performed by the data driver. We call this
hybrid technique as ODRC (On-demand replication with
caching). This strategy can reduce the wide-area commu-
nication overhead involved in generating pages with com-
plex queries by caching these pages, provided the updates
to the underlying data occur less frequently.

5. TPC-W Benchmark: A Test Case

To study the impact of on-demand replication on
real-world applications, we evaluated the performance
of our system using a well-known e-commerce transac-
tional benchmark,TPC-W. In this section, we present an
overview of TPC-W, describe our simulation setup and dis-
cuss our results.

5.1. Overview

TPC-W benchmark is an industry standard transactional
benchmark that models an on-line bookstore, where the cus-
tomers search, shop and order books [16]. It is aimed to rep-
resent a typical e-business Web site.

The TPC-W application stores its data in7 tables: Book,
Customer, Address, Order, Cart, Orderline and Cartline. It
handles14 kinds of customer requests (also known as Web
Interactions): Home page, New Products page, Best Sellers,
Product Detail, Search Request, Search Results, Shopping
Cart, Customer Registration, Buy Request, Buy Confirm,
Order Inquiry, Order Display, Admin Request, and Admin
Confirm. Among these interactions, the first six are brows-
ing interactions, which lead to read-only data accesses. The
rest are ordering-related interactions and mostly lead to data
updates. A typical user shopping pattern, referred to as a
user session, comprises of number of these Web interac-

tions. The transition probabilities for switching between dif-
ferent Web interactions in a user session is dictated by the
the benchmark’s workload mix.

The benchmark defines three workload mixes: browsing,
shopping, and ordering. The browsing mix consists of95%
browsing interactions and5% ordering interactions. The or-
dering mix consists of50% ordering interactions and50%
browsing interactions. The shopping mix consists of80%
browsing interactions and20% ordering interactions.

The performance of the TPC-W benchmark is measured
primarily by two metrics: (i) WIPS (number of Web Interac-
tions Per Second), which measures system throughput, and
(ii) WIRT (Web Interaction Response Time), which mea-
sures system efficiency. In our experiments, we are more
interested in the efficiency of the system (i.e., WIRT) than
its throughput (WIPS). This is because the system through-
put can be increased by deploying more hardware resources,
for instance by deploying a server farm instead of a sin-
gle server. We believe that this does not necessarily result
in better WIRT, as the inevitable overhead in Web applica-
tion replication is not the server’s throughput performance
but the network latency incurred for each transaction.

5.2. Simulation setup

Building a fair experiment to simulate an Internet-wide
system hosting a Web application involves two important
challenges: simulating a wide-area network with realistic
network delays between the edge servers placed worldwide;
and simulating the diversity of interest among clients in
each particular piece of data.

To simulate a set of servers to host our application,
we selected100 hosts that visited our department Web
site, such that they were spread across6 continents and
66 countries, and could represent our edge servers. We
estimated the latencies between each pair of hosts using
SCOLE [17]. SCOLE associates hosts with co-ordinates
in an N -dimensional space by measuring their latency to
a fixed number of known landmarks. The latency between
two positioned hosts is calculated as the Euclidian distance
of their co-ordinates in this space. This method of latency
estimation is shown to be fairly accurate while requiring rel-
atively few measurements. Latencies between our servers
range from 23 ms to 2700 ms. It must be noted that the po-
tential inaccuracies of latency estimations are not a prob-
lem for our experiments, as we are only interested in a re-
alistic set of latencies rather than precise latency measure-
ments between the actual servers.

Simulating the diversity of client interests for a particular
data cluster is harder to solve. This is an important factor as
the diversity of client interests influences the performance
of on-demand replication. For example, if a data unit is of
interest to only a small subset of servers, then on-demand
replication can give huge performance gains in terms of
read/write latency and update traffic. On the other hand,

if the data unit is of equal interest to clients of all replica
servers, then the performance gains due to on-demand repli-
cation will not be lower. However, it is important for us to
study the performance of on-demand replication in the full
spectrum of cases.

Unfortunately, TPC-W does not specify any standard
pattern regarding the diversity of client interest. In our ex-
periments, we modelled the diversity of client interests us-
ing statistical distributions. Since, to our knowledge, there
is no earlier study that has modelled the geographical influ-
ence of client requests to a database, we based our simula-
tions on a Zipf distribution for generating diversity in client
interest for a particular data cluster. We take the exponenta
in the Zipf distribution as an input parameter for our exper-
iments.3

We clustered the books into100 non overlappingbook-
clusters. The geographical preference of a server to a book-
cluster is modelled as follows. For a book-clusterj, serveri
is assigned a rank,rij = i−j, if i ≥ j, and100−i−j, other-
wise. Using these rank values, the frequency of occurrence
of request from serveri for a book-clusterj, is generated:
fij = C · r−a

ij . Then, these frequency values are normal-
ized so that we can derive a series of load valuesLij whose
sum is 1 (i.e.,Lij =

∑m
i=1 fij/m, wherem is the number

of edge servers). Subsequently, a client request for a book
clusterj is assigned to a serveri with the probabilityLij .
Within a book-cluster, books are selected with equal proba-
bility, as this does not affect the Zipf distribution of servers
to the book-clusters.

To study the system using diverse access patterns, we
varied the parametera. A trace generated with a low value
of a implies that each server is equally likely to access a
book-cluster i.e., the distribution of client interests is flat.
In contrast, a high value ofa generates a trace where each
book-cluster is of interest only to a small number of servers
(those with the lowest rank values) i.e., the distribution of
client interest is more skewed. In our simulations, we var-
ied a between 0 and 3. We did not vary interest parameters
for other database tables as they are usually not accessed
by requests from multiple users (e.g., customer records ta-
ble, shopping cart table).

While evaluating the WIRT, we just took into account the
wide-area network latency incurred by a request. This is be-
cause we assume that the latency between client to its local
edge server and the request processing overhead in an edge
server are negligible compared to the latency incurred in
communicating with servers that must be reached through a
wide-area communication.

In our experiments, we study the performance of four
different system configurations: (i) Centralized, (ii) Frag-
ment Caching (FC), (iii) On-Demand Replication (ODR)

3 A Zipf distribution states that the frequency of occurrence of a partic-
ular value i is given byfi = C · r−a

i whereri is the rank ofi’s oc-
currence.

and (iv) ODR with Caching (ODRC). The first system, Cen-
tralized, has the application server and database server at
the origin server and hence each request incurs wide-area
network traffic. To be fair on the centralized solution, we
chose the best possible replica server as the origin server,
i.e., the server with the minimum average latency to other
servers is chosen as the origin server. The second system,
FC, has edge servers around the world and uses the frag-
ment cache technique with the thresholdCachemax fixed
at 1% (see Section 4.2). Edge server caches are assumed to
have infinite storage capacity4. The third system, ODR, sim-
ulates our proposed approach of on-demand data replica-
tion with closest-writer master selection andP5 placement
heuristic. The ODRC system uses the hybrid technique de-
scribed in Section 4.3 with closest-writer master selection
andP5 placement heuristic.

We studied the WIRT of these4 systems for107 user
sessions, divided equally among the100 edge servers. Each
user session consists of at most10 Web interactions and all
interactions are handled by the same server. The time be-
tween the interactions in a session was varied between2
to 8 seconds. The simulations were warmed up and the re-
sults of the first105 sessions were discarded. The simula-
tions were run repeatedly to gain a confidence interval of
95%.

5.3. Results

Figure 3 shows, for each workload mix, the WIRT of
all systems for different values ofa. As seen in the figure,
ODRC performs the best for all workload mixes while Cen-
tralized performs the worst.

For the ordering mix, which has the highest fraction of
ordering interactions, ODR and ODRC outperform FC and
centralized systems by a factor of5. This clearly illustrates
the advantage of on-demand data replication, as it enables
the system to perform local updates without incurring wide-
area traffic. Note that the gain in WIRT by ODRC in com-
parison to ODR is low. This is because this workload mix
has a very small fraction of popular cacheable requests and
hence the gain due to caching is not significant.

For the browsing mix, which consists of95% browsing
and5% shopping interactions, the caching systems perform
best. Among the caching systems, ODRC performs better
as it performs not only caching of responses but also data
replication, though the gain in WIRT in comparison to FC
is only by a margin of50%. This is due to the fact that re-
quests are mostly read-only and caching suffices for such
scenarios. Among the rest, FC outperforms its ODR coun-
terpart, as ODR does not capture the temporal locality of
requests (exhibited for high values ofa). ODR also incurs

4 It must be noted that an infinite cache size is not a realistic assump-
tion. However, this was done to compare our proposed system with the
best possible caching configuration.

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.5 1 1.5 2 2.5 3

W
IR

T
 (

m
s)

a

Centralized

ODR

FC

ODRC

(a) Ordering Mix

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.5 1 1.5 2 2.5 3

W
IR

T
 (

m
s)

a

ODR
FC

ODRC

Centralized

(b) Browsing Mix

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.5 1 1.5 2 2.5 3

W
IR

T
 (

m
s)

a

Centralized

FC

ODR
ODRC

(c) Shopping Mix

Figure 3. Effect of a on WIRT for different TPC-W workload mixes

wide-area network traffic to generate responses to interac-
tions involving complex queries, such as Best Sellers and
New Products interactions (which constitutes22% of the
workload). This overhead is avoided by ODRC as it caches
the responses to these interactions.

For the shopping mix, which constitutes80% browsing
and20% ordering interactions, ODRC outperforms all its
counterparts by at least200%. Among the rest, the gain in
WIRT by ODR in comparison to FC is not very high. This
is because the gain of performing local updates in ODR
is compensated by the penalty incurred for computing the
complex query for interactions, such as Best sellers and
New Products, each time. While the FC avoids the latter
problem by caching the responses, it incurs wide-area la-
tency for all update requests. ODRC enjoys the benefits of
these two systems, as ODR and FC optimize different sub-
sets of requests, thereby leading to a significant improve-
ment in WIRT.

It can be seen from the figures that the Zipf variablea
does not have a major influence on the WIRT. This is due
to the fact that the requests to individual book records con-
stitute at most20% for browsing mixes and even less for
other workloads. For higher values ofa, caching systems
perform well as it implies high temporal locality among re-
quests. Even then, the gain in WIRT is low because book
detail interactions constitutes only at most20% of the aver-
age WIRT.
6. Performance Evaluation of Replication

Strategies

6.1. Simulation Setup

In the previous section, we studied the performance gains
obtained due to on-demand replication techniques for a well
known e-commerce application by varying the access pat-
tern for the book records. However, that study was quite re-
strictive as the update ratio to the book records is at most
0.11%, with requests to these records constituting no more
than30% of the total workload.

In this section, we examine the performance of our tech-
niques for a wide range of workloads with full spectrum
of write ratios and geographical interest distributions. To
this end, we simulated a data driver which receives read
and write access requests to its data units. In this section,
we limit our study to replication strategies only as frag-
ment caching does not influence the performance of the data
driver.

We selected the origin server and100 edge servers as
in the previous experiment. Similar to the previous experi-
ment, we varied the interest pattern of clients using Zipf dis-
tributions. We measured the system performance using the
following metrics: (i) Average Read latency (ARL): the
average latency incurred by read requests for a data clus-
ter, (ii) Average Write latency (AWL): the average latency
incurred by write requests for a data cluster and (iii)Num-
ber of consistency messages (NCM):the number of update
messages sent among replica servers to keep the data con-
sistent (excluding the client-to-replica traffic). NCM serves
as an indicator of the amount of bandwidth utilized by the
system just for maintaining data consistency.

6.2. Influence ofa on performance

In our first set of experiments, we study the effect of
client interest pattern on system performance. We fixed the
write ratio at0.5. Each simulation consists of1, 000, 000
requests. We study the performance of the following strate-
gies: (i) centralized solution, (ii) fully replicated solution
with origin server as the master (Full), (iii)P5 − closest
(ODR technique withP5 placement andclosest − writer
master selection heuristic), (iv)P10 − closest, (v) P15 −
closest and (vi)P5 − most. Due to the lack of space, we
present only some of our simulation results. For a detailed
performance evaluation, please refer to [15].

Figure 4 presents the effect of varying the value ofa on
the system performance. As can be seen, on-demand repli-
cation produces a significant gain in terms of read/write la-
tencies (by a factor of4) and reduced update traffic (by two

R
ea

d
 l

a
te

n
cy

 500

 450

 400

 350

 300

 250

 200

 150

 100

 50

 0
 0 0.5 1 1.5 2 2.5 3

SkewedFlat

Centralized

P15−closest

P10−closest

P5−most
P5−closest

Full

a

(a) Effect ofa on the Average Read La-
tency

W
ri

te
 l

a
te

n
cy

 500

 450

 400

 350

 300

 250

 200

 150

 100

 50
 0 0.5

 Flat

 1 1.5 2 2.5 3

Skewed

P10−closest

P5−most

P5−closest

P15−closest

FullCentralized

a

(b) Effect of a on the Average Write
Latency

N
o
.
o
f

m
es

sa
g
es

 (
lo

g
 s

ca
le

)

 1e+08

 1e+07

 1e+06

 100000
 0 0.5 1 1.5 2 2.5 3

Flat Skewed

P10−most

P5−most

Full

P15−closest

P5−closest

Centralized

a

(c) Effect ofa on the Number of Con-
sistency Messages

Figure 4. Effect of distribution skew on system performance

0.750.5 1.0

W
r
it

e
 r

a
ti

o

1.0

0.8

0.6

0.4

0.2

0.0

a

3.02.752.50 0.25 2.252.01.751.51.25

P15-closest

P10-closest

P5-closest

Full

Centralized

Figure 5. Best Replication Policy for Different
Access Patterns

orders of magnitude) compared to fully replicated or cen-
tralized systems. The more the client diversity increases, the
better our system performs. However, even in the case of
a flat distribution of interests (low values ofa), on-demand
replication policies give low write latencies and reduced up-
date traffic.

It must be noted that gaining two orders of magnitude
in network traffic is of immense significance, as the In-
ternet is often affected by network congestion. A reduced
number of consistency messages also will lead to improved
write latency of the system and less cost, as content delivery
systems are usually charged by Internet Service Providers
(ISPs) and data centers based on the amount of traffic they
generate.

6.3. Best Performing Strategy

We now address the question: which policy performs
best for a given access pattern? In the following experi-
ment, we vary botha and the ratio of write requests. For
each access pattern, we evaluated the value of the cost func-
tion for each replication strategy and selected the best one
as the one with the lowest cost. We normalized the weights
of the cost function such that each parameter has roughly
equal significance:α=1/rmax; β=1/wmax; andγ=1/bmax,
wherermax, wmax andbmax are maximum values of aver-

age read latency, write latency, and number of consistency
messages, respectively. Figure 5 shows which policy per-
forms best for each request pattern.

As seen in the figure, depending on the access pattern,
different policies perform best. For example, an applica-
tion with no updates (write-ratio=0) performs best with full
replication, as all requests will then be served locally. Sim-
ilarly, if there is a flat distribution of clients and only write
requests (a = 0 and write-ratio=1), the centralized solu-
tion performs the best as it has a replica only at the origin
server thereby giving the best average write latency without
any update traffic overhead (note that the origin server was
selected as the server that gives the least average latency).
For all other values, on-demand replication performs best.
Policies with higher threshold perform best when the re-
quest distribution is flat, as in such cases placing less repli-
cas yields reduced update traffic. On the other hand, when
a small number of servers generate most of the requests (be
it reads, writes, or a combination thereof) it is preferable to
place more replicas, and each close to where the requests
come from.

This result also suggests that replication policies should
be selected on a per-data cluster basis according to their ac-
cess patterns. We propose that our system periodically eval-
uates the cost of different policies for each data cluster. The
system can then dynamically adapt its policies on a per-
cluster basis to provide optimal performance.

7. Related Work

A number of systems have been developed to handle
Web application replication [1, 2, 6, 14]. These systems
replicate the code at the replica servers, but either do not
replicate the application data or cache them at the replica
servers. This limits the system performance as all write ac-
cesses need to be forwarded to a single remote location irre-
spective of their update patterns. In contrast, we propose to
select the master replica for each data unit based on its in-

dividual update pattern, which potentially results in a low
write latencies.

In [10], the authors propose an application-specific edge
service architecture, where the application itself is supposed
to take care of its own replication. In such a system, access
to the shared data is abstracted by object interfaces. This
system aims to achieve scalability by using weaker consis-
tency models tailored to the application. However, this re-
quires the application developer to be aware of the applica-
tion’s consistency and distribution semantics. This is in con-
flict with our primary design constraint of keeping the pro-
cess of application development simple.

Our work has strong ties to partitioning in dis-
tributed databases [13], a distinction being that in dis-
tributed databases, fragments are usually not created
based on runtime analysis of access patterns. Using tradi-
tional distributed database technologies, partitioning must
be done by a clever administrator who has a deep knowl-
edge of the application semantics and its access patterns.
However, in our system we propose to do this automati-
cally and dynamically based on the access patterns of the
application data. However, further research is needed to
substantiate our claim of scalability for real Web applica-
tions.

8. Conclusions and Future Work

In this paper, we propose a system for hosting Web ap-
plications that performs on-demand data replication. We
adopt a simple application model for the system, which
we expect will ease the process of application develop-
ment. The novelty of our approach is that it employs par-
tial replication where the data are replicated only to servers
that access them often. This allows the system to exploit
location-specific interests in request patterns. Furthermore,
we also propose a scheme to combine existing caching tech-
niques with on-demand data replication. We showed that
our techniques can reduce the client response time by a fac-
tor of 5 in comparison to existing techniques for a real-
world e-commerce application, such as the TPC-W book-
store. Furthermore, we evaluated our strategies for a wide
range of workloads. We showed that on-demand replication
performs better than centralized and fully replicated sys-
tems by reducing the average latency of read/write data ac-
cess as well as the amount of bandwidth utilized to main-
tain data consistency. Moreover, we showed that the best
replication strategy depends on the data cluster’s access pat-
tern and proposed a scheme where our system will automat-
ically select the best replication strategy for a given situation
through run-time evaluation of a cost function. We are cur-
rently working on the implementation of a data driver that
operates on top of the MySQL database.

References

[1] AKAMAI INC. Edge Computing Infrastructure.

[2] AWADALLAH , A., AND ROSENBLUM, M. The vMatrix: A
network of virtual machine monitors for dynamic content dis-
tribution. In Proc. of the Seventh International Workshop on
Web Content Caching and Distribution(Aug. 2002).

[3] BLOOM, B. H. Space/time tradeoffs in hash coding with al-
lowable errors. Communications of the ACM 13, 7 (1970),
422–426.

[4] BRESLAU, L., CAO, P., FAN , L., PHILLIPS, G., AND

SHENKER, S. On the implications of zipf’s law for web
caching. InProceedings of 3rd International WWW Caching
Workshop(1998).

[5] CAO, P.,AND L IU , C. Maintaining strong cache consistency
in the world wide web.IEEE Transactions on Computers 47,
4 (1998), 445–457.

[6] CAO, P., ZHANG, J.,AND BEACH, K. Active cache: Caching
dynamic contents on the Web. InProc. of the Middleware
Conference(Sept. 1998), pp. 373–388.

[7] CHALLENGER, J., DANTZIG , P., AND WITTING , K. A
fragment-based approach for efficiently creating dynamic web
content.To appear in the ACM Transactions on Internet Tech-
nology(2004).

[8] CHEN, Y., QIU , L., CHEN, W., NGUYEN, L., AND KATZ ,
R. H. Clustering web content for efficient replication. InPro-
ceedings of 10th IEEE International Conference on Network
Protocols (ICNP’02)(2002).

[9] FEI, Z., BHATTACHARJEE, S., ZEGURA, E. W., AND AM-
MAR , M. H. A novel server selection technique for improv-
ing the response time of a replicated service. InINFOCOM
(2) (1998), pp. 783–791.

[10] GAO, L., DAHLIN , M., NAYATE , A., ZHENG, J., AND

IYENGAR, A. Application specific data replication for edge
services. InProc. of the Twelfth International World-Wide
Web Conference(2003), pp. 449–460.

[11] LABRINIDIS , A., AND ROUSSOPOULOS, N. Webview ma-
terialization. InProceedings of the 2000 ACM SIGMOD in-
ternational conference on Management of data(2000), ACM
Press, pp. 367–378.

[12] LAMPORT, L. How to Make a Multiprocessor Computer
That Correctly Executes Multiprocess Programs.IEEE Trans-
actions on Computers 28(9), Sep. 1979, pp. 690-691.

[13] OZSU, P., AND VALDURIEZ , P. Principles of distributed
database systems, 2nd edition, Prentice Hall, 1999.

[14] RABINOVICH , M., X IAO , Z., AND AGARWAL , A. Com-
puting on the edge: A platform for replicating internet ap-
plications. InProc. of the Eighth International Workshop
on Web Content Caching and Distribution(Hawthorne, NY,
USA, Sept. 2003).

[15] SIVASUBRAMANIAN , S., PIERRE, G., AND VAN STEEN,
M. A system for on-demand Web application replication,
Dec. 2004.http://www.globule.org/ .

[16] SMITH , W. TPC-W: Benchmarking an e-commerce solu-
tion. http://www.tpc.org/tpcw/tpcwex.asp.

[17] SZYMANIAK , M., PIERRE, G., AND VAN STEEN, M. Scal-
able cooperative latency estimation. Accepted for publication
in ICPADS, Dec. 2004.http://www.globule.org/ .

