156 research outputs found

    Thermal slip in oblique radiative nano-polymer gel transport with temperature-dependent viscosity : solar collector nanomaterial coating manufacturing simulation

    Get PDF
    Nano-polymeric solar paints and sol-gels have emerged as a major new development in solar cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal efficiency. They also exhibit substantial viscosity variation with temperature which can be exploited in solar collector designs. Modern manufacturing processes for such nano-rheological materials frequently employ stagnation flow dynamics under high temperature which invokes radiative heat transfer. Motivated by elaborating in further detail the nanoscale heat, mass and momentum characteristics, the present article presents a mathematical and computational study of the steady, two-dimensional, non-aligned thermo-fluid boundary layer transport of copper metal-doped water-based nano-polymeric sol gels under radiative heat flux. To simulate real nano-polymer boundary interface dynamics, thermal slip is analysed at the wall. A temperature-dependent viscosity is also considered. The conservation equations for mass, normal and tangential momentum and energy are normalized via appropriate transformations to generate a multi-degree, ordinary differential, non-linear, coupled boundary value problem. Numerical solutions are obtained via the stable, efficient Runge-Kutta-Fehlberg scheme with shooting quadrature in MATLAB symbolic software. Validation of solutions is achieved with a Variational Iterative Method (VIM) utilizing Langrangian multipliers. The impact of key emerging dimensionless parameters i.e. obliqueness parameter, radiation-conduction Rosseland number (Rd), thermal slip parameter (ALPHA), viscosity parameter (m), nanoparticles volume fraction (PHI) on non-dimensional normal and tangential velocity components, temperature, wall shear stress, local heat flux and streamline distributions is visualized graphically. Shear stress and temperature are boosted with increasing radiative effect whereas local heat flux is reduced. Increasing wall thermal slip parameter depletes temperatures

    Laminar Boundary Layer Flow of Sisko Fluid

    Get PDF
    The problem of steady two dimensional laminar boundary layer flow of non-Newtonian fluid is analyzed in the present paper. Sisko fluid model, one of the various fluid models of non- Newtonian fluid, is considered for stress-strain relationship. Similarity and numerical solutions obtained for the defined flow problem

    Numerical study of nano-biofilm stagnation flow from a nonlinear stretching/shrinking surface with variable nanofluid and bioconvection transport properties

    Get PDF
    A mathematical model is developed for stagnation point flow toward a stretching or shrinking sheet of liquid nano-biofilm containing spherical nano-particles and bioconvecting gyrotactic micro-organisms. Variable transport properties of the liquid (viscosity, thermal conductivity, nano-particle species diffusivity) and micro-organisms (species diffusivity) are considered. Buongiorno’s two-component nanoscale model is deployed and spherical nanoparticles in a dilute nanofluid considered. Using a similarity transformation, the nonlinear systems of partial differential equations is converted into nonlinear ordinary differential equations. These resulting equations are solved numerically using a central space finite difference method in the CodeBlocks Fortran platform. Graphical plots for the distribution of reduced skin friction coefficient, reduced Nusselt number, reduced Sherwood number and the reduced local density of the motile microorganisms as well as the velocity, temperature, nanoparticle volume fraction and the density of motile microorganisms are presented for the influence of wall velocity power-law index (m), viscosity parameter (c2), thermal conductivity parameter (c4), nano-particle mass diffusivity (c6), micro-organism species diffusivity (c8), thermophoresis parameter (Nt), Brownian motion parameter (Nb), Lewis number (Le), bioconvection Schmidt number (Sc), bioconvection constant (σ) and bioconvection Péclet number (Pe). Validation of the solutions via comparison related to previous simpler models is included. Further verification of the general model is conducted with the Adomian decomposition method (ADM). Extensive interpretation of the physics is included. Skin friction is elevated with viscosity parameter (c2) whereas it is suppressed with greater Lewis number and thermophoresis parameter. Temperatures are elevated with increasing thermal conductivity parameter (c4) whereas Nusselt numbers are reduced. Nano-particle volume fraction (concentration) is enhanced with increasing nano-particle mass diffusivity parameter (c6) whereas it is markedly reduced with greater Lewis number (Le) and Brownian motion parameter (Nb). With increasing stretching/shrinking velocity power-law exponent (m), skin friction is decreased whereas Nusselt number and Sherwood number are both elevated. Motile microorganism density is boosted strongly with increasing micro-organism diffusivity parameter (c8) and Brownian motion parameter (Nb) but reduced considerably with greater bioconvection Schmidt number (Sc) and bioconvection Péclet number (Pe). The simulations find applications in deposition processes in nano-bio-coating manufacturing processes

    Non-Newtonian Prandtl fluid over stretching permeable surface

    Get PDF
    An analysis is made of the velocity and temperature distribution in the flow of a viscous incompressible fluid caused by the stretching permeable surface which issues in the Prandtl fluid. Parandtl fluid is a pseudoplastic visco-inelastic non-Newtonian fluid. The governing partial differential equations are reduced to ordinary differential equations using deductive group transformation and similarity solution is derived. Numerical solutions to the reduced non-linear similarity equations are then obtained by adopting shooting method using the Nachtsheim-Swigert iteration technique. The results of the numerical solution are then presented graphically in the form of velocity and temperature profiles. The corresponding skin friction coefficient and the Nusselt number are also calculated

    Effect logs of double diffusion on MHD Prandtl nano fluid adjacent to stretching surface by way of numerical approach

    Get PDF
    AbstractThe current communication is carried to contemplate the unique and novel characteristics of nanofluids by constructing formulation of Prandtl fluid model. The fascinating aspects of thermo diffusion effects are also accounted in this communication. Mathematical modelling is performed by employing boundary layer approach. Afterwards, similarity variables are selected to convert dimensional non-linear system into dimensionless expressions. The solution of governing dimensionless problem is executed by shooting method (SM). Graphical evaluation is displayed to depict the intrinsic behavior of embedded parameters on dimensionless velocity, temperature, solutal concentration and nanoparticle concentration profiles. Furthermore, the numerical variation for skin friction coefficient, local Nusselt number, Sherwood number and nano Sherwood number is scrutinized through tables. The assurance of current analysis is affirmed by developing comparison with previous findings available in literature, which sets a benchmark for implementation of computational approach. It is inferred from the computation that concentration profile increases whereas Sherwood number decreases for progressive values of Dufour solutal number

    Computational Fluid Dynamics 2020

    Get PDF
    This book presents a collection of works published in a recent Special Issue (SI) entitled “Computational Fluid Dynamics”. These works address the development and validation of existent numerical solvers for fluid flow problems and their related applications. They present complex nonlinear, non-Newtonian fluid flow problems that are (in some cases) coupled with heat transfer, phase change, nanofluidic, and magnetohydrodynamics (MHD) phenomena. The applications are wide and range from aerodynamic drag and pressure waves to geometrical blade modification on aerodynamics characteristics of high-pressure gas turbines, hydromagnetic flow arising in porous regions, optimal design of isothermal sloshing vessels to evaluation of (hybrid) nanofluid properties, their control using MHD, and their effect on different modes of heat transfer. Recent advances in numerical, theoretical, and experimental methodologies, as well as new physics, new methodological developments, and their limitations are presented within the current book. Among others, in the presented works, special attention is paid to validating and improving the accuracy of the presented methodologies. This book brings together a collection of inter/multidisciplinary works on many engineering applications in a coherent manner

    Exact coherent structures in the transitional regime of shear and centrifugal flows

    Get PDF
    Tesi en modalitat de compendi de pubicacionsTurbulence is one of the major concerns for most technological problems involving fluid motion. Specially in aeronautics, a turbulent boundary layer results in structural stresses, vibrations and higher aircraft drag, leading to a significant increase in fuel consumption. Therefore, trying to comprehend the origin of turbulence by studying its most common transition routes is a crucial first step towards its effective control. Transition to turbulence of an homogeneous flow is frequently mediated by transient visits to highly nonlinear laminar coherent structures that usually are at the threshold between laminarity and turbulence. From a dynamical systems point of view, these structures are invariant sets in the infinite-dimensional Navier-Stokes phase space that here we aim to identify in different canonical flows. With the use of direct numerical simulations together with Newton-Krylov solvers and Arnoldi iteration method for the linear stability analysis, invariant sets such as equilibria, relative equilibria or periodic orbits are accurately computed and tracked along the parameter space to understand the transition mechanisms. From a mathematical perspective, dynamical systems and bifurcation theory provide the suitable framework to understand the hydrodynamic instabilities and transition to turbulence from a deterministic point of view. In addition, the use of spectral methods for the spatial discretisation is particularly convenient due to the exponential convergence of the numerical solutions. In the first work, the onset of transition in two-dimensional Plane Poiseuille flow is analysed. A new family of Tollmien-Schlichting waves, breaking the usual half-shift and reflect symmetry of the classical ones, has been identified and tracked across parameter space. In addition, the role of another classical travelling wave family that did not participate in the localisation mechanisms has been clarified. We continue by analysing the nonlinear mode competition in purely hydrodynamic and also magnetised Taylor-Couette flow. Finite-amplitude mixed-mode solution branches, arising from both purely hydrodynamic and magneto-rotational instabilities, are identified. These nonlinear mode interactions are efficiently computed in suitable skewed computational domains instead of the classical orthogonal ones, allowing for a significant reduction of the required computational resources. Finally, the generalisation of extensional flows between biorthogonally stretching-shrinking parallel plates is analysed. Under the assumption of the self-similar ansatz, three-dimensional steady equilibria of the Navier-Stokes equations are identified and systematically tracked in parameter space, to cover all possible configurations of the acceleration rates and thus unfold all occurring bifurcations. After the explorations, up to seven different families of steady solutions have been identified, some of them related in pairs with symmetries. When increasing wall acceleration rates, the solution branches interact by means of fold and codimension-2 cusp bifurcations, increasing the complexity of the topology of equilibria. Besides the specific interest attached to each one of the three problems we have addressed, these have further served as a proof-of-concept for the applicability and suitability of the methods and tools developed in the course of this thesis, which may assist in tackling a vast range of problems across a huge variety of physics and engineering disciplines.La turbulència és una de les principals preocupacions per a la majoria de problemes tecnològics relacionats amb el moviment de fluids. Especialment en el cas de l'aeronàutica, una capa límit turbulenta produeix tensions estructurals, vibracions i una major força d'arrossegament de l'aeronau que resulten en un increment significatiu del consum de combustible. Per tant, intentar comprendre l'origen de la turbulència, tot estudiant-ne les rutes de transició més habituals, és un primer pas indispensable cap al seu control efectiu. La transició a la turbulència d'un flux homogeni sovint es caracteritza per visites transitòries a estructures coherents, laminars i altament no-lineals, que acostumen a trobar-se al llindar entre la laminaritat i la turbulència. Des del punt de vista dels sistemes dinàmics, aquestes estructures són conjunts invariants en l'espai de fase infinit-dimensional de les equacions de Navier-Stokes, que aquí es pretén identificar en diferents fluxos canònics. Mitjançant la integració temporal de les equacions, resolutors de Newton-Krylov i el mètode iteratiu d'Arnoldi per a l'anàlisi d'estabilitat lineal, els diferents conjunts invariants siguin equilibris, equilibris relatius o òrbites periòdiques són acuradament calculats i continuats al llarg de l'espai de paràmetres per tal d'entendre els mecanismes involucrats en la transició. Des d'una perspectiva matemàtica, els sistemes dinàmics i la teoria de bifurcacions proporcionen el marc adequat per a comprendre les inestabilitats hidrodinàmiques i la transició a la turbulència des d'un punt de vista determinista. A més, l'ús de mètodes espectrals per a la discretització espaial resulta particularment convenient degut a la convergència exponencial de les solucions numèriques. En el primer treball, s'analitza l'inici de la transició del flux bidimensional de Poiseuille pla. En aquest cas, una nova família d'ones de Tollmien-Schlichting, que trenca la clàssica simetria de translació i reflexió, ha estat identificada i continuada al llarg de l'espai de paràmetres. A més, s'ha aclarit el rol d'una vella família d'ones viatgeres que en estudis previs no participava dels mecanismes de localització. A continuació, s'analitza la competició entre modes no lineals en el flux purament hidrodinàmic i també hidromagnètic de Taylor-Couette. Branques de solucions d'amplitud finita, en forma de modes mixtes, han estat identificades sorgint d'inestabilitats purament hidrodinàmiques i magnètiques. Aquestes interaccions de modes no lineals són eficientment calculades mitjançant dominis computacionals inclinats, enlloc dels clàssics ortogonals, permetent una reducció significativa dels recursos computacionals necessaris. Finalment, s'analitza la generalització dels fluxos extensibles entre plaques paral·leles que s'estiren i s'encongeixen biortogonalment. Sota la hipòtesi d'autosimilitud, s'identifiquen fluxos estacionaris tridimensionals de les equacions de Navier-Stokes i s'estenen al llarg de l'espai de paràmetres, tot estudiant totes les possibles configuracions d'acceleració de les plaques i trobant totes les bifurcacions existents. En finalitzar les exploracions s'han identificat un total de set famílies de solucions, algunes d'elles relacionades per simetries. La complexitat de la topologia d'aquests equilibris creix notablement en incrementar l'acceleració de les plaques, quan les diferents branques de solucions interaccionen per mitjà de bifurcacions de node-sella i punts de codimensió-2 en forma de bifurcacions de cúspide. Al marge de l'interès específic de cada un dels tres problemes estudiats, aquests també han servit com a demostració conceptual de l'aplicabilitat i idoneïtat dels mètodes i eines desenvolupats en el transcurs d'aquesta tesi, que poden ajudar a abordar un ampli ventall de problemes en una gran varietat de disciplines de la física i l'enginyeria.Ciència i tecnologia aeroespacial

    Exact coherent structures in the transitional regime of shear and centrifugal flows

    Get PDF
    Tesi en modalitat de compendi de pubicacionsTurbulence is one of the major concerns for most technological problems involving fluid motion. Specially in aeronautics, a turbulent boundary layer results in structural stresses, vibrations and higher aircraft drag, leading to a significant increase in fuel consumption. Therefore, trying to comprehend the origin of turbulence by studying its most common transition routes is a crucial first step towards its effective control. Transition to turbulence of an homogeneous flow is frequently mediated by transient visits to highly nonlinear laminar coherent structures that usually are at the threshold between laminarity and turbulence. From a dynamical systems point of view, these structures are invariant sets in the infinite-dimensional Navier-Stokes phase space that here we aim to identify in different canonical flows. With the use of direct numerical simulations together with Newton-Krylov solvers and Arnoldi iteration method for the linear stability analysis, invariant sets such as equilibria, relative equilibria or periodic orbits are accurately computed and tracked along the parameter space to understand the transition mechanisms. From a mathematical perspective, dynamical systems and bifurcation theory provide the suitable framework to understand the hydrodynamic instabilities and transition to turbulence from a deterministic point of view. In addition, the use of spectral methods for the spatial discretisation is particularly convenient due to the exponential convergence of the numerical solutions. In the first work, the onset of transition in two-dimensional Plane Poiseuille flow is analysed. A new family of Tollmien-Schlichting waves, breaking the usual half-shift and reflect symmetry of the classical ones, has been identified and tracked across parameter space. In addition, the role of another classical travelling wave family that did not participate in the localisation mechanisms has been clarified. We continue by analysing the nonlinear mode competition in purely hydrodynamic and also magnetised Taylor-Couette flow. Finite-amplitude mixed-mode solution branches, arising from both purely hydrodynamic and magneto-rotational instabilities, are identified. These nonlinear mode interactions are efficiently computed in suitable skewed computational domains instead of the classical orthogonal ones, allowing for a significant reduction of the required computational resources. Finally, the generalisation of extensional flows between biorthogonally stretching-shrinking parallel plates is analysed. Under the assumption of the self-similar ansatz, three-dimensional steady equilibria of the Navier-Stokes equations are identified and systematically tracked in parameter space, to cover all possible configurations of the acceleration rates and thus unfold all occurring bifurcations. After the explorations, up to seven different families of steady solutions have been identified, some of them related in pairs with symmetries. When increasing wall acceleration rates, the solution branches interact by means of fold and codimension-2 cusp bifurcations, increasing the complexity of the topology of equilibria. Besides the specific interest attached to each one of the three problems we have addressed, these have further served as a proof-of-concept for the applicability and suitability of the methods and tools developed in the course of this thesis, which may assist in tackling a vast range of problems across a huge variety of physics and engineering disciplines.La turbulència és una de les principals preocupacions per a la majoria de problemes tecnològics relacionats amb el moviment de fluids. Especialment en el cas de l'aeronàutica, una capa límit turbulenta produeix tensions estructurals, vibracions i una major força d'arrossegament de l'aeronau que resulten en un increment significatiu del consum de combustible. Per tant, intentar comprendre l'origen de la turbulència, tot estudiant-ne les rutes de transició més habituals, és un primer pas indispensable cap al seu control efectiu. La transició a la turbulència d'un flux homogeni sovint es caracteritza per visites transitòries a estructures coherents, laminars i altament no-lineals, que acostumen a trobar-se al llindar entre la laminaritat i la turbulència. Des del punt de vista dels sistemes dinàmics, aquestes estructures són conjunts invariants en l'espai de fase infinit-dimensional de les equacions de Navier-Stokes, que aquí es pretén identificar en diferents fluxos canònics. Mitjançant la integració temporal de les equacions, resolutors de Newton-Krylov i el mètode iteratiu d'Arnoldi per a l'anàlisi d'estabilitat lineal, els diferents conjunts invariants siguin equilibris, equilibris relatius o òrbites periòdiques són acuradament calculats i continuats al llarg de l'espai de paràmetres per tal d'entendre els mecanismes involucrats en la transició. Des d'una perspectiva matemàtica, els sistemes dinàmics i la teoria de bifurcacions proporcionen el marc adequat per a comprendre les inestabilitats hidrodinàmiques i la transició a la turbulència des d'un punt de vista determinista. A més, l'ús de mètodes espectrals per a la discretització espaial resulta particularment convenient degut a la convergència exponencial de les solucions numèriques. En el primer treball, s'analitza l'inici de la transició del flux bidimensional de Poiseuille pla. En aquest cas, una nova família d'ones de Tollmien-Schlichting, que trenca la clàssica simetria de translació i reflexió, ha estat identificada i continuada al llarg de l'espai de paràmetres. A més, s'ha aclarit el rol d'una vella família d'ones viatgeres que en estudis previs no participava dels mecanismes de localització. A continuació, s'analitza la competició entre modes no lineals en el flux purament hidrodinàmic i també hidromagnètic de Taylor-Couette. Branques de solucions d'amplitud finita, en forma de modes mixtes, han estat identificades sorgint d'inestabilitats purament hidrodinàmiques i magnètiques. Aquestes interaccions de modes no lineals són eficientment calculades mitjançant dominis computacionals inclinats, enlloc dels clàssics ortogonals, permetent una reducció significativa dels recursos computacionals necessaris. Finalment, s'analitza la generalització dels fluxos extensibles entre plaques paral·leles que s'estiren i s'encongeixen biortogonalment. Sota la hipòtesi d'autosimilitud, s'identifiquen fluxos estacionaris tridimensionals de les equacions de Navier-Stokes i s'estenen al llarg de l'espai de paràmetres, tot estudiant totes les possibles configuracions d'acceleració de les plaques i trobant totes les bifurcacions existents. En finalitzar les exploracions s'han identificat un total de set famílies de solucions, algunes d'elles relacionades per simetries. La complexitat de la topologia d'aquests equilibris creix notablement en incrementar l'acceleració de les plaques, quan les diferents branques de solucions interaccionen per mitjà de bifurcacions de node-sella i punts de codimensió-2 en forma de bifurcacions de cúspide. Al marge de l'interès específic de cada un dels tres problemes estudiats, aquests també han servit com a demostració conceptual de l'aplicabilitat i idoneïtat dels mètodes i eines desenvolupats en el transcurs d'aquesta tesi, que poden ajudar a abordar un ampli ventall de problemes en una gran varietat de disciplines de la física i l'enginyeria.Postprint (published version

    Hybrid nanofluid flow past a shrinking cylinder with prescribed surface heat flux

    Get PDF
    This numerical study was devoted to examining the occurrence of non-unique solutions in boundary layer flow due to deformable surfaces (cylinder and flat plate) with the imposition of prescribed surface heat flux. The hybrid Al2O3-Cu/water nanofluid was formulated using the single phase model with respective correlations of hybrid nanofluids. The governing model was simplified by adopting a similarity transformation. The transformed differential equations were then numerically computed using the efficient bvp4c solver with the ranges of the control parameters 0.5%≤ϕ1,ϕ2≤1.5% (Al2O3 and Cu volumetric concentration), 0≤K≤0.2 (curvature parameter), 2.60) and a flat plate (K=0) with the inclusion of only the suction (transpiration) parameter. The real and stable solutions were mathematically validated through the stability analysis. The Al2O3-Cu/water nanofluid with ϕ1=0.5% (alumina) and ϕ2=1.5% (copper) has the highest skin friction coefficient and heat transfer rate, followed by the hybrid nanofluids with volumetric concentrations (ϕ1=1%,ϕ2=1%) and (ϕ1=1.5%,ϕ2=0.5%), respectively. Surprisingly, the flat plate surface abates the separation of boundary layer while it enhances the heat transfer process

    A numerical study of heat transfer and entropy generation in Powell-Eyring nanofluid flows.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Pietermaritzburg.The heat transfer in non-Newtonian nanofluid flow through different geometries is an important research area due to the wide application of these fluids in biomedical, chemical and thermal engineering processes. The continuous generation of entropy leads to exergy loss which reduces the performance and efficiency of any physical system, therefore, the minimization of entropy generation becomes necessary. In this thesis, we present a numerical study of heat transfer and entropy generation in non-Newtonian nanofluid flows. We study the flow of a Powell-Eyring nanofluid, using models developed from experimental data. The equations that model the flow are, in each case, reduced to systems of nonlinear differential equations using Lie group theory scaling transformations. Accurate, efficient and rapidly converging spectral numerical techniques including the spectral quasilinearizzation, spectral local linearization and bivariate spectral quasilinearization methods are used to find the numerical solutions. The results show, among other findings, that increasing either the nanoparticle volume fraction or thermal radiation parameter enhances the nanofluid temperature, entropy generation and the Bejan number. In addition, we find that the Nusselt number increases with the temperature ratio parameter and thermal radiation. The results from this study may find use in the design of cooling devices to enhance and optimize the performance of thermal systems
    corecore