618 research outputs found

    Design, Actuation, and Functionalization of Untethered Soft Magnetic Robots with Life-Like Motions: A Review

    Full text link
    Soft robots have demonstrated superior flexibility and functionality than conventional rigid robots. These versatile devices can respond to a wide range of external stimuli (including light, magnetic field, heat, electric field, etc.), and can perform sophisticated tasks. Notably, soft magnetic robots exhibit unparalleled advantages among numerous soft robots (such as untethered control, rapid response, and high safety), and have made remarkable progress in small-scale manipulation tasks and biomedical applications. Despite the promising potential, soft magnetic robots are still in their infancy and require significant advancements in terms of fabrication, design principles, and functional development to be viable for real-world applications. Recent progress shows that bionics can serve as an effective tool for developing soft robots. In light of this, the review is presented with two main goals: (i) exploring how innovative bioinspired strategies can revolutionize the design and actuation of soft magnetic robots to realize various life-like motions; (ii) examining how these bionic systems could benefit practical applications in small-scale solid/liquid manipulation and therapeutic/diagnostic-related biomedical fields

    Synthetic Micro/Nanomotors for Drug Delivery

    Get PDF
    Synthetic micro/nanomotors (MNMs) are human-made machines characterized by their capacity for undergoing self-propelled motion as a result of the consumption of chemical energy obtained from specific chemical or biochemical reactions, or as a response to an external actuation driven by a physical stimulus. This has fostered the exploitation of MNMs for facing different biomedical challenges, including drug delivery. In fact, MNMs are superior systems for an efficient delivery of drugs, offering several advantages in relation to conventional carriers. For instance, the self-propulsion ability of micro/nanomotors makes possible an easier transport of drugs to specific targets in comparison to the conventional distribution by passive carriers circulating within the blood, which enhances the drug bioavailability in tissues. Despite the promising avenues opened by the use of synthetic micro/nanomotors in drug delivery applications, the development of systems for in vivo uses requires further studies to ensure a suitable biocompatibility and biodegradability of the fabricated engines. This is essential for guaranteeing the safety of synthetic MNMs and patient convenience. This review provides an updated perspective to the potential applications of synthetic micro/nanomotors in drug delivery. Moreover, the most fundamental aspects related to the performance of synthetic MNMs and their biosafety are also discussed.This work was funded in part by MICINN under Grant PID2019-106557GB-C21 and by E.U. on the framework of the European Innovative Training Network—Marie Sklodowska-Curie Action Nano Paint (Grant Agreement 955612)

    Advanced medical micro-robotics for early diagnosis and therapeutic interventions

    Get PDF
    Recent technological advances in micro-robotics have demonstrated their immense potential for biomedical applications. Emerging micro-robots have versatile sensing systems, flexible locomotion and dexterous manipulation capabilities that can significantly contribute to the healthcare system. Despite the appreciated and tangible benefits of medical micro-robotics, many challenges still remain. Here, we review the major challenges, current trends and significant achievements for developing versatile and intelligent micro-robotics with a focus on applications in early diagnosis and therapeutic interventions. We also consider some recent emerging micro-robotic technologies that employ synthetic biology to support a new generation of living micro-robots. We expect to inspire future development of micro-robots toward clinical translation by identifying the roadblocks that need to be overcome

    The shape – morphing performance of magnetoactive soft materials

    Get PDF
    Magnetoactive soft materials (MSMs) are soft polymeric composites filled with magnetic particles that are an emerging class of smart and multifunctional materials with immense potentials to be used in various applications including but not limited to artificial muscles, soft robotics, controlled drug delivery, minimally invasive surgery, and metamaterials. Advantages of MSMs include remote contactless actuation with multiple actuation modes, high actuation strain and strain rate, self-sensing, and fast response etc. Having broad functional behaviours offered by the magnetic fillers embedded within non-magnetic matrices, MSMs are undoubtedly one of the most promising materials in applications where shape-morphing, dynamic locomotion, and reconfigurable structures are highly required. This review article provides a comprehensive picture of the MSMs focusing on the materials, manufacturing processes, programming and actuation techniques, behaviours, experimental characterisations, and device-related achievements with the current state-of-the-art and discusses future perspectives. Overall, this article not only provides a comprehensive overview of MSMs’ research and development but also functions as a systematic guideline towards the development of multifunctional, shape-morphing, and sophisticated magnetoactive devices

    Assembling nano-objects with polymers: from hybrid nanoarchitecture to funcional materials

    Get PDF

    A Microfluidic Device as a Drug Carrier

    Get PDF
    The development of nanomedicine or medical nanotechnology, has brought important new ways to the development of medicines and biotechnology products. As a result of groundbreaking discoveries in the use of nanoscale materials significant commercialization initiatives have been launched and are at the forefront of the rapidly expanding field of nanotechnology by using smart particles. Microfluidic technologies use nano-and micro-scale manufacturing technologies to develop controlled and reproducible liquid microenvironments. Lead compounds with controlled physicochemical properties can be obtained using microfluidics, characterized by high productivity, and evaluated by biomimetic methods. Microfluidics, for example, can not only produce nanoparticles in a well-controlled, reproducible, and high-throughput manner, but it can also continuously create three-dimensional environments to mimic physiological and/or pathological processes. Materials with smart properties can be manipulated to respond in a controllable and reversible way, modifying some of their properties as a result of external stimuli such as mechanical stress or a certain temperature. All in all, microfluidic technology offers a potential platform for the rapid synthesis of various novel drug delivery systems. Therefore, these smart particles are equally necessary as the drug in drug delivery

    Recent advances in micro-electro-mechanical devices for controlled drug release applications

    Get PDF
    In recent years, controlled release of drugs has posed numerous challenges with the aim of optimizing parameters such as the release of the suitable quantity of drugs in the right site at the right time with the least invasiveness and the greatest possible automation. Some of the factors that challenge conventional drug release include long-term treatments, narrow therapeutic windows, complex dosing schedules, combined therapies, individual dosing regimens, and labile active substance administration. In this sense, the emergence of micro-devices that combine mechanical and electrical components, so called micro-electro-mechanical systems (MEMS) can offer solutions to these drawbacks. These devices can be fabricated using biocompatible materials, with great uniformity and reproducibility, similar to integrated circuits. They can be aseptically manufactured and hermetically sealed, while having mobile components that enable physical or analytical functions together with electrical components. In this review we present recent advances in the generation of MEMS drug delivery devices, in which various micro and nanometric structures such as contacts, connections, channels, reservoirs, pumps, valves, needles, and/or membranes can be included in their design and manufacture. Implantable single and multiple reservoir-based and transdermal-based MEMS devices are discussed in terms of fundamental mechanisms, fabrication, performance, and drug release applications.Fil: Villarruel Mendoza, Luis A.. Comisión Nacional de Energía Atómica. Gerencia de Área de Investigación y Aplicaciones no Nucleares. Gerencia de Desarrollo Tecnológico y Proyectos Especiales. Departamento de Micro y Nanotecnología; ArgentinaFil: Scilletta, Natalia Antonela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Investigación y Aplicaciones no Nucleares. Gerencia de Desarrollo Tecnológico y Proyectos Especiales. Departamento de Micro y Nanotecnología; ArgentinaFil: Bellino, Martin Gonzalo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; ArgentinaFil: Desimone, Martín Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; ArgentinaFil: Catalano, Paolo Nicolás. Comisión Nacional de Energía Atómica. Gerencia de Área de Investigación y Aplicaciones no Nucleares. Gerencia de Desarrollo Tecnológico y Proyectos Especiales. Departamento de Micro y Nanotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentin

    Hydrogel microparticles from lithographic processes: Novel materials for fundamental and applied colloid science

    Get PDF
    In recent years, there has been a surge in methods to synthesize geometrically and chemically complex microparticles. Analogous to atoms, the concept of a “periodic table” of particles has emerged and continues to be expanded upon. Complementing the natural intellectual curiosity that drives the creation of increasingly intricate particles is the pull from applications that take advantage of such high-value materials. Complex particles are now being used in fields ranging from diagnostics and catalysis, to self-assembly and rheology, where material composition and microstructure are closely linked with particle function. This is especially true of polymer hydrogels, which offer an attractive and broad class of base materials for synthesis. Lithography affords the ability to engineer particle properties a priori and leads to the production of homogenous ensembles of particles. This review summarizes recent advances in synthesizing hydrogel microparticles using lithographic processes and highlights a number of emerging applications. We discuss advantages and limitations of current strategies, and conclude with an outlook on future trends in the field.National Science Foundation (U.S.) (Grant DMR-1006147)Novartis-MIT Center for Continuous ManufacturingNational Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant R21EB008814

    Advanced medical micro-robotics for early diagnosis and therapeutic interventions

    Get PDF
    Recent technological advances in micro-robotics have demonstrated their immense potential for biomedical applications. Emerging micro-robots have versatile sensing systems, flexible locomotion and dexterous manipulation capabilities that can significantly contribute to the healthcare system. Despite the appreciated and tangible benefits of medical micro-robotics, many challenges still remain. Here, we review the major challenges, current trends and significant achievements for developing versatile and intelligent micro-robotics with a focus on applications in early diagnosis and therapeutic interventions. We also consider some recent emerging micro-robotic technologies that employ synthetic biology to support a new generation of living micro-robots. We expect to inspire future development of micro-robots toward clinical translation by identifying the roadblocks that need to be overcome
    corecore