137,093 research outputs found

    Non-invasive assessment of kidney oxygenation: a role for BOLD MRI

    Get PDF
    Blood oxygen level-dependent (BOLD) contrast magnetic resonance imaging (MRI) has been applied to investigate kidney oxygenation in human patients. These investigations reflect the progress of radiology from a primarily anatomic discipline to one that provides insight into tissue physiology. In particular, magnetic resonance imaging (MRI) is non-invasive, uses no ionizing radiation, and provides insight into disease development and tissue physiology

    Common mistakes and pitfalls in magnetic resonance imaging of the knee

    Get PDF
    This pictorial review presents an overview of common interpretation errors and pitfalls in magnetic resonance imaging (MRI) of the knee. Instead of being exhaustive, we will emphasize those pitfalls that are most commonly encountered by young residents or less experienced radiologists

    Modelling and simulation of magnetic induction in magnetic particle imaging system

    Get PDF
    In the last century, tomographic imaging has become an essential tool for disease diagnosis. There are several dominant tomographic imaging methods used for medical application such as computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and single photon emission computed tomography (SPECT)

    Magnetic Resonance Lithography with Nanometer Resolution

    Full text link
    We propose an approach for super-resolution optical lithography which is based on the inverse of magnetic resonance imaging (MRI). The technique uses atomic coherence in an ensemble of spin systems whose final state population can be optically detected. In principle, our method is capable of producing arbitrary one and two dimensional high-resolution patterns with high contrast

    Incidental findings on brain magnetic resonance imaging: systematic review and meta-analysis

    Get PDF
    Objective To quantify the prevalence of incidental findings on magnetic resonance imaging (MRI) of the brain

    A Spectral-Scanning Nuclear Magnetic Resonance Imaging (MRI) Transceiver

    Get PDF
    An integrated spectral-scanning nuclear magnetic resonance imaging (MRI) transceiver is implemented in a 0.12 mum SiGe BiCMOS process. The MRI transmitter and receiver circuitry is designed specifically for small-scale surface MRI diagnostics applications where creating low (below 1 T) and inhomogeneous magnetic field is more practical. The operation frequency for magnetic resonance detection and analysis is tunable from 1 kHz to 37 MHz, corresponding to 0-0.9 T magnetization for ^1H (hydrogen). The concurrent measurement bandwidth is approximately one frequency octave. The chip can also be used for conventional narrowband nuclear magnetic resonance (NMR) spectroscopy from 1 kHz up to 250 MHz. This integrated transceiver consists of both the magnetic resonance transmitter which generates the required excitation pulses for the magnetic dipole excitation, and the receiver which recovers the responses of the dipoles

    A Spectral-Scanning Magnetic Resonance Imaging (MRI) Integrated System

    Get PDF
    An integrated spectral-scanning magnetic resonance imaging (MRI) technique is implemented in a 0.12ÎŒm SiGe BiCMOS process. This system is designed for small-scale MRI applications with non-uniform and low magnetic fields. The system is capable of generating customized magnetic resonance (MR) excitation signals, and also recovering the MR response using a coherent direct conversion receiver. The operation frequency is tunable from DC to 37MHz for wide-band MRI and up to 250MHz for narrow-band MR spectroscopy

    Automatic brain segmentation using fractional signal modeling of a multiple flip angle, spoiled gradient-recalled echo acquisition.

    Get PDF
    The aim of this study was to demonstrate a new automatic brain segmentation method in magnetic resonance imaging (MRI)
    • 

    corecore