3,264 research outputs found

    3D Magnetic Analysis of the CMS Magnet

    Get PDF
    The CMS magnetic system consists of a super-conducting solenoid coil, 12.5 m long and 6 m free bore diameter, and of an iron flux-return yoke, which includes the central barrel, two end-caps and the ferromagnetic parts of the hadronic forward calorimeter. The magnetic flux density in the center of the solenoid is 4 T. To carry out the magnetic analysis of the CMS magnetic system, several 3D models were developed to perform magnetic field and force calculations using the Vector Fields code TOSCA. The analysis includes a study of the general field behavior, the calculation of the forces on the coil generated by small axial, radial displacements and angular tilts, the calculation of the forces on the ferromagnetic parts, the calculation of the fringe field outside the magnetic system, and a study of the field level in the chimneys for the current leads and the cryogenic lines. A procedure to reconstruct the field inside a cylindrical volume starting from the values of the magnetic flux density on the cylinder surface is considered. Special TOSCA-GEANT interface tools have being developed to input the calculated magnetic field into the detector simulation package.Comment: 4 pages, 6 figures, 1 equation, 14 reference

    Finite Elements Magnetic Analysis of the CLIC MDI Region

    Full text link
    Considering the current CLIC SiD detector design and the machine parameter L*, the final focus quadrupole QD0 will be placed inside the experiment itself. This configuration is very challenging from an integration point of view. Among several other aspects, the iron-dominated QD0 will need an active magnetic shielding to avoid undesired interactions with the magnetic field generated by the main solenoid of the detector. This shielding will be provided by a superconducting anti-solenoid, and this paper aims to describe the method used to design such device, the results obtained and the issues still to be solved.Comment: 7 pages, LCWS11 Granad

    Method of Producing Improved Bearing Components by Elimination or Control of Fiber Orientation, Including Magnetic Analysis

    Get PDF
    Producing improved bearing components by elimination or control of fiber orientatio

    Magnetic Modeling of the Diwak-Derekan Geothermal Area with Extension to Bawen, Central Java

    Get PDF
    In an effort to further advance understanding of Diwak-Derekan geothermal system, a second period of geomagnetic survey of the area including Kaliulo hot spring, Jatikurung hot spring and Kendalisodo geothermal hot spring has been carried out. The magnetic residual anomalies have been reproduced especially on the southern part of the study area. 3D magnetic analysis and interpretation of geological data acquired and collected in the field. Based on magnetic field anomaly and the field geological data, a speculation shows that magnetization intensity assumed for the existence of a cooling magma intrusion is suggested at the southern part of the study area, that is located at Sajen Village

    An equilibrium model for RFP plasmas in the presence of resonant tearing modes

    Full text link
    The equilibrium of a finite-beta RFP plasma in the presence of saturated-amplitude tearing modes is investigated. The singularities of the MHD force balance equation JXB=grad(p) at the modes rational surfaces are resolved through a proper regularization of the zeroth-order (equilibrium) profiles, by setting to zero there the gradient of the pressure and parallel current density. An equilibrium model, which satisfies the regularization rule at the various rational surfaces, is developed. The comparison with the experimental data from the Reversed Field eXperiment (RFX) gives encouraging results. The model provides an easy tool for magnetic analysis: many aspects of the perturbations can be analyzed and reconstructed.Comment: Final accepted version. 36 page

    Formation of magnetic minerals at hydrocarbon-generation conditions

    Get PDF
    In this paper, we report the pyrolysis and formation of magnetic minerals in three source rock samples from the Wessex Basin in Dorset, southern England. The experimental conditions in the laboratory recreated the catagenesis environment of oil source rocks. Magnetic analysis of both the heated and the unheated samples at room temperature and at very low-temperatures (5 K), coupled with transmission electron-microscopy imaging and X-ray analysis, revealed the formation of nanometre-sized (<10 nm), magnetic particles that varied across the rock samples analysed, but more importantly across the pyrolysis temperature range. Magnetic measurements demonstrated the formation of these magnetic minerals peaked at 250 °C for all rock samples and then decreased at 300 °C before rising again at 320 °C. The newly formed magnetic minerals are suggested to be primarily pyrrhotite, though magnetite and greigite are also thought to be present. The sizes of the magnetic minerals formed suggest a propensity to migrate together with oil potentially explaining the magnetic anomalies observed above and within oil fields

    Rock-magnetic Analysis of Sediments from Andvord Bay

    Get PDF

    Damage-based fracture with electro-magnetic coupling

    Get PDF
    Acoupled elastic and electro-magnetic analysis is proposed including finite displacements and damage-based fracture. Piezo-electric terms are considered and resulting partial differential equations include a non-classical wave equation due to the specific constitutive law. The resulting wave equation is constrained and, in contrast with the traditional solutions of the decoupled classical electromagnetic wave equations, the constraint is directly included in the analysis. The absence of free current density allows the expression of the magnetic field rate as a function of the electric field and therefore, under specific circumstances, removal of the corresponding magnetic degrees-offreedom. A Lagrange multiplier field is introduced to exactly enforce the divergence constraint, forming a three-field variational formulation (required to include thewave constraint). No vector-potential is required or mentioned, eliminating the need for gauges. The classical boundary conditions of electromagnetism are specialized and a boundary condition involving the electric field is obtained. The spatial discretization makes use of mixed bubble-based (of the MINI type) finite elementswith displacement, electric field and Lagrange multiplier degrees-of-freedom. Three verification examples are presented with very good qualitative conclusions and mesh-independence

    Ferromagnetism in two mouse tumours

    Get PDF
    A variety of living organisms has been found recently that are biochemically able to precipitate the ferromagnetic mineral magnetite (Fe3O4). Originally discovered in the radular teeth of a primitive marine mollusc (Lowenstam, 1962), magnetite has since been reported in bacteria (Frankel, Blakemore & Wolfe, 1979), arthropods (Gould, Kirschvink & Deffeyes, 1978), and vertebrates (Walcott, Gould & Kirschvink, 1979; Zoeger, Dunn & Fuller, 1981; Walker & Dizon, 1981). Although the presence and biological origin of this material are clear, very little is yet known about the distribution or metabolic function of ferromagnetic minerals in vertebrate tissue. Magnetic remanence, which uniquely indicates the presence of ferromagnetic particles, has been previously detected in localized areas associated with the dura membranes of homing pigeons (Walcott et al. 1979) and dolphins (Zoeger et al. 1981), in pigeon neck muscles (Presti & Pettigrew, 1980), in the mid-brain of monkeys, and in human adrenal glands (Kirschvink, 1981). We report here the first discovery of anomalously high concentrations of ferromagnetic material in two strains of neoplasms, YC-8 lymphoma and Lewis lung tumour, as well as the apparent absence of such material in three human carcinomas (gastric, colon and renal)
    corecore