20 research outputs found

    ELM regime classification by conformal prediction on an information manifold

    Get PDF
    Characterization and control of plasma instabilities known as edge-localized modes (ELMs) is crucial for the operation of fusion reactors. Recently, machine learning methods have demonstrated good potential in making useful inferences from stochastic fusion data sets. However, traditional classification methods do not offer an inherent estimate of the goodness of their prediction. In this paper, a distance-based conformal predictor classifier integrated with a geometric-probabilistic framework is presented. The first benefit of the approach lies in its comprehensive treatment of highly stochastic fusion data sets, by modeling the measurements with probability distributions in a metric space. This enables calculation of a natural distance measure between probability distributions: the Rao geodesic distance. Second, the predictions are accompanied by estimates of their accuracy and reliability. The method is applied to the classification of regimes characterized by different types of ELMs based on the measurements of global parameters and their error bars. This yields promising success rates and outperforms state-of-the-art automatic techniques for recognizing ELM signatures. The estimates of goodness of the predictions increase the confidence of classification by ELM experts, while allowing more reliable decisions regarding plasma control and at the same time increasing the robustness of the control system

    Quantifying the reliability of fault classifiers

    No full text
    International audienceFault diagnostics problems can be formulated as classification tasks. Due to limited data and to uncertainty, classification algorithms are not perfectly accurate in practical applications. Maintenance decisions based on erroneous fault classifications result in inefficient resource allocations and/or operational disturbances. Thus, knowing the accuracy of classifiers is important to give confidence in the maintenance decisions. The average accuracy of a classifier on a test set of data patterns is often used as a measure of confidence in the performance of a specific classifier. However, the performance of a classifier can vary in different regions of the input data space. Several techniques have been proposed to quantify the reliability of a classifier at the level of individual classifications. Many of the proposed techniques are only applicable to specific classifiers, such as ensemble techniques and support vector machines. In this paper, we propose a meta approach based on the typicalness framework (Kolmogorov's concept of randomness), which is independent of the applied classifier. We apply the approach to a case of fault diagnosis in railway turnout systems and compare the results obtained with both extreme learning machines and echo state networks

    Private Prediction Sets

    Full text link
    In real-world settings involving consequential decision-making, the deployment of machine learning systems generally requires both reliable uncertainty quantification and protection of individuals' privacy. We present a framework that treats these two desiderata jointly. Our framework is based on conformal prediction, a methodology that augments predictive models to return prediction sets that provide uncertainty quantification -- they provably cover the true response with a user-specified probability, such as 90%. One might hope that when used with privately-trained models, conformal prediction would yield privacy guarantees for the resulting prediction sets; unfortunately, this is not the case. To remedy this key problem, we develop a method that takes any pre-trained predictive model and outputs differentially private prediction sets. Our method follows the general approach of split conformal prediction; we use holdout data to calibrate the size of the prediction sets but preserve privacy by using a privatized quantile subroutine. This subroutine compensates for the noise introduced to preserve privacy in order to guarantee correct coverage. We evaluate the method on large-scale computer vision datasets.Comment: Code available at https://github.com/aangelopoulos/private_prediction_set

    Does Confidence Calibration Help Conformal Prediction?

    Full text link
    Conformal prediction, as an emerging uncertainty qualification technique, constructs prediction sets that are guaranteed to contain the true label with high probability. Previous works usually employ temperature scaling to calibrate the classifier, assuming that confidence calibration can benefit conformal prediction. In this work, we first show that post-hoc calibration methods surprisingly lead to larger prediction sets with improved calibration, while over-confidence with small temperatures benefits the conformal prediction performance instead. Theoretically, we prove that high confidence reduces the probability of appending a new class in the prediction set. Inspired by the analysis, we propose a novel method, Conformal Temperature Scaling\textbf{Conformal Temperature Scaling} (ConfTS), which rectifies the objective through the gap between the threshold and the non-conformity score of the ground-truth label. In this way, the new objective of ConfTS will optimize the temperature value toward an optimal set that satisfies the marginal coverage\textit{marginal coverage}. Experiments demonstrate that our method can effectively improve widely-used conformal prediction methods
    corecore