
 

Abstract—Characterisation and control of plasma instabilities 

known as edge-localised modes (ELMs) is crucial for the 

operation of fusion reactors. Recently, machine learning methods 

have demonstrated good potential in making useful inferences 

from stochastic fusion data sets. However, traditional 

classification methods do not offer an inherent estimate of the 

goodness of their prediction. In this work, a distance-based 

conformal predictor classifier integrated with a geometric-

probabilistic framework is presented. A first benefit of the 

approach lies in its comprehensive treatment of highly stochastic 

fusion data sets, by modeling the measurements with probability 

distributions in a metric space. This enables calculation of a 

natural distance measure between probability distributions: the 

Rao geodesic distance. Secondly, the predictions are accompanied 

with estimates of their accuracy and reliability. The method is 

applied to the classification of regimes characterized by different 

types of edge-localized modes based on measurements of global 

parameters and their error bars. This yields promising success 

rates and outperforms state-of-the-art automatic techniques for 

recognizing ELM signatures. The estimates of goodness of the 

predictions increase the confidence of classification by ELM 

experts, while allowing more reliable decisions regarding plasma 

control and at the same time increasing the robustness of the 

control system.  

 

Index Terms— Conformal predictors, edge-localized 

modes, geodesic distance, information manifold. 

I. INTRODUCTION 

IGH confinement or H-mode plasmas in tokamaks are 

usually characterized by cyclic instabilities near the 

plasma edge, referred to as edge-localized modes or 

ELMs. ELMs result in a sudden exhaust of particles and 

energy but are nonetheless advantageous for attaining 

stationary plasma conditions as they result in impurity and 

helium ash expulsion. With ELMs as the basis for distinction, 

H-mode plasmas can be roughly categorized into three types: 

ELM-free H-mode, H-mode with small ELMs and H-mode 
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with large or type I ELMs. The H-mode with relatively large 

low-frequency type I ELMs has become the reference plasma 

scenario for ITER, and beyond. Characteristics of ELMs, their 

control and comprehensive physical understanding are crucial 

for ITER and next step fusion devices. On one hand the 

beneficial properties of ELMs, in terms of enhanced edge 

particle transport are well recognized, on the other hand, there 

has been concern that on future large devices giant ELM 

bursts could damage divertor and first wall surfaces or disrupt 

internal transport barriers [1]. This has motivated intensive 

research for accomplishing effective ELM control and 

mitigation. Optimization of control and mitigation 

mechanisms and enhancement of the physical understanding 

necessitates the discrimination of different observed classes of 

ELMs.  In contrast to the existing mostly phenomenological 

categorizations of ELM types, this work is aimed at 

developing a data-driven methodology for automatic 

classification and discrimination of ELMs. 

Recently, machine learning and pattern recognition techniques 

have shown substantial potential in data-driven studies of 

fusion plasmas by extracting useful patterns of interest from 

fusion data [2]-[5]. This yields an important tool for real-time 

plasma control, e.g. in ITER, in order to maintain good plasma 

equilibrium or control certain types of instabilities. Moreover, 

a data-driven study of the primary physical variables that 

determine the confinement regimes and instabilities, such as 

ELMs, can improve substantially the understanding of the 

governing physical mechanisms. 

The objective of the present work is twofold. First, we wish to 

contribute to the discrimination of diverse ELM behavior by 

presenting an effective methodology for quantitative 

distinction between ELM types. Second, for practical purposes 

we aim to contribute to the dependability and robustness of 

control strategies by providing a discriminator for ELM types 

equipped with estimates of reliability and accurateness. We 

present an automated classification system for ELM types and 

apply our method to classify regimes with small and type I 

ELMs. The system, currently, makes use of a standard set of 

global plasma and engineering variables related to plasma 

confinement. The focus of the current work is to obtain better 

classification rates compared to existing classifiers and thus 

the obtained success rates can be further optimized by using 

more informative plasma and engineering parameters.   

The act of classification is fundamentally related to the 

occurrence of clustering structure in the data space, where 

each cluster of measurement points corresponds to a certain 

plasma phenomenon, such as a specific type of ELMs. Hence 

our method falls within the domain of pattern recognition 

methods, with the clusters constituting a pattern in the data 
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space, reflecting an important aspect of the physics of the 

plasma.  

The classification system proposed in this paper is integrated 

with the probabilistic data representation framework presented 

earlier by Verdoolaege et al. [3]-[4]. The primary motivation 

for this framework is the substantial uncertainty that 

frequently characterizes the measurements of plasma 

quantities, which may contain both a stochastic and systematic 

component. The main factors contributing to stochastic 

uncertainty are hardware noise and plasma fluctuations, since 

these can usually not be modelled tractably in a deterministic 

way. The proposed framework takes into account the 

statistical error bars or, more generally, the stochastic features 

of the data, by modelling the data with suitable probability 

distributions. In order to characterize the data patterns, such as 

clusters, in the associated probabilistic space, a similarity 

measure between probability distributions is required. The 

mathematical field of information geometry provides an 

appropriate similarity measure between probability density 

functions (PDFs), which are interpreted as points on a 

Riemannian differentiable manifold, or information manifold 

[6]-[8]. The PDF parameters provide a coordinate system on 

the manifold and the Rao geodesic distance (GD) serves as a 

natural similarity measure between PDFs. The classifier, 

which then operates in this information space, is based on 

conformal predictors (CPs), first described by Vovk et al. [9] 

and Saunders et al. [10]. Conformal prediction offers various 

advantages over the traditional machine learning methods 

(MLMs). Most noteworthy, they provide information about 

their own accuracy and reliability with the only assumption of 

randomness of the data samples. Also known as the iid 

hypothesis, the randomness assumption implies that all 

training samples are independent of each other and are 

identically distributed according to the same (but unknown) 

distribution [11]. Unlike traditional MLMs, CPs do not 

enforce a rigid separation between learning and prediction, but 

learn dynamically alongside making predictions. Furthermore, 

they do not require prior probabilities as the Bayes classifier 

and also have the ability to detect ambiguities in the 

classification task, i.e., when a unique class cannot be assigned 

to a new example. 

In this paper a computationally efficient nearest-neighbor CP 

coupled with the geometric-probabilistic data representation 

framework is deployed for classification of H-mode plasma 

regimes into H-mode with small ELMs and H-mode with type 

I ELMs. The proposed technique is compared with a 

discriminant analysis classifier and a nearest-neighbor 

classifier, which are well-established state-of-the-art MLMs. 

The presented technique not only yields higher classification 

accuracy, but also returns a quantitative estimate of the 

prediction’s accuracy and reliability, which traditional MLMs 

do not provide. Furthermore, the classification performance is 

calculated for both the geodesic distance geometry of the data 

and the conventional Euclidean distance. The geodesic 

distance improves the classification performance, establishing 

itself as a natural similarity measure between probability 

distributions lying on an information manifold.  

The outline of the paper is as follows. In Section II we discuss 

the modalities of our proposed geometric-probabilistic 

framework and the details of the approach. Section III 

discusses the application of conformal predictors to ELM 

identification in relation to our modeling framework. Section 

IV presents the experimental setup, visualization and 

classification results and their analysis. Section V concludes 

the paper.  

II. A GEOMETRIC-PROBABILISTIC PATTERN RECOGNITION 

FRAMEWORK 

 

A. The geometry of probability distributions 

 

The Fisher information can be regarded as a metric tensor 

(Fisher-Rao metric) on an information manifold, which is a 

Riemannian differentiable manifold formed by a family of 

PDFs, such as the Gaussian family [3]-[4]. Once the metric is 

known, geodesic equations can be established and solved, 

allowing for the calculation of the geodesic (shortest-path) 

distances on the manifold [7]-[8]. Given a probability model 

𝑝(𝒙|𝜽) for a vector-valued variable 𝒙, labelled by an m-

dimensional parameter vector 𝜽, the components of the Fisher 

information matrix 𝑔𝜇𝜐 are defined through the relations 

 

                       𝑔𝜇𝜈(𝜽) =  −𝔼 [
𝜕2

𝜕𝜃𝜇𝜕𝜃𝜈 ln 𝑝(𝒙|𝜽)]                     (1) 

𝜇, 𝜈 = 1, … , 𝑚. 
 

 

B. The geometry of the univariate Gaussian distribution 

 

In this paper we model the data using a simple univariate 

Gaussian model. The Fisher-Rao metric for the Gaussian 

distribution, parameterized by its mean μ and standard 

deviation σ, can be given via the quadratic line element [12]: 

 

                             𝑑𝑠2 =  
1

𝜎2 𝑑𝜇2 + 
2

𝜎2 𝑑𝜎2                               (2) 

 

A closed-form expression exists for the GD, permitting a fast 

evaluation. Indeed, for two univariate Gaussian distributions 

𝑝1 (𝑥|𝜇1, 𝜎1) and 𝑝2 (𝑥|𝜇2, 𝜎2), parameterized by their mean 𝜇𝑖 

and standard deviation 𝜎𝑖  (𝑖 = 1, 2), the GD is given by [12] 

 

                            𝐺𝐷 (𝑝1||𝑝2) =  √2 ln
1+𝛿

1−𝛿
                              (3)     

 

                         𝛿 ≡ [
(𝜇1 − 𝜇2)2 +2(𝜎1−𝜎2)2

(𝜇1 − 𝜇2)2 +2(𝜎1+𝜎2)2]

1

2
                            (4) 

 

A convenient Gaussian geometric model is provided by the 

Poincaré half-plane, which is represented in Fig. 1(a). The 

horizontal axis corresponds to the mean μ of the Gaussian 

distribution, while on the positive part of the vertical axis the 

standard deviation σ is represented. Every point in this half-

plane corresponds to a unique Gaussian and the geodesics 

between two points are half-circles as well as half-lines ending 

on the horizontal axis, the latter connecting distributions that 

differ only in their standard deviation (not drawn). The 

distance between points along one of these curves in the 



Poincaré half-plane is the same as the actual geodesic distance 

between the points. The evolution of the distribution along an 

example geodesic is shown in Fig. 1(b). 

Finally, in the case of multiple independent Gaussian 

variables it is easy to prove that the squared GD between two 

sets of products of distributions is given by the sum of the 

squared GDs between corresponding individual distributions 

[12]. 

III. CONFORMAL PREDICTORS 

In classification systems, each observation (or sample) is 

expressed as an ordered pair (𝑥𝑖 , 𝑦𝑖), where 𝑥𝑖  is a feature 

vector (i.e. the set of parameters that characterize the sample 𝑖) 
and 𝑦𝑖  is the class label of the observation 𝑖, where the set of 

labels is finite and usually small. Given a data set of 𝑁 

samples, a conventional MLM uses a subset of the data set, 

which it designates as a training set for determining the 

prediction rule. Then follows a testing phase, wherein a subset 

of the dataset is used for determining the goodness of the 

prediction rule. Conformal predictors obviate the need of a 

distinct training and testing phase, which is the premise of 

classical machine learning methodologies. CPs offer so-called 

blended learning and prediction, as they learn and predict at 

the same time, continuously improving their performance as 

they carry out each prediction and discover how accurate the 

prediction was. Samples that get classified are added to a 

hypothetical “bag” of samples and participate in the 

classification of the next incoming samples. 

CPs estimate the goodness of their prediction by means of two 

figures of merit: confidence and credibility. Confidence 

gauges the reliability of the prediction, while credibility is an 

indicator of how representative the training set is for the new 

sample that is to be classified. New confidence values are 

obtained at each classification, taking into account both the 

previous samples that have been classified and all possible 

labels for the current one. For classifying each incoming 

sample, CPs evaluate how different the current sample is from 

each cluster (class) within the bag samples by determining a 

“nonconformity score” for the current sample with respect to 

each cluster (class) within the bag samples. In this work, a 

nearest-neighbor scheme is used for determining the 

nonconformity score. Essentially, the nonconformity score for 

the current sample is provided by its distance to its nearest 

neighbors for both classes, amongst the bag samples. 

Specifically, the nonconformity score 𝛼𝑖 of a given sample 𝑖 is 

calculated as  

 

                                            𝛼𝑖 =  
𝑑𝑖−𝑆𝐿 

𝑑𝑖−𝐷𝐿 
                                                (5) 

 

Where 𝑑𝑖−𝑆𝐿 is the distance to sample  𝑖′s nearest neighbor in 

the bag with the same label and 𝑑𝑖−𝐷𝐿 is the distance to sample 

 𝑖′s nearest neighbor in the bag with a different label. 

The nonconformity score for sample 𝑖 is computed with 

respect to both classes, assuming membership of sample 𝑖 of 

each of the classes 𝑗 = 1, 2 in turn. By doing this for each 

sample, a ranking can be determined of the nonconformity 

scores. Then, for each class 𝑗 a p-value is calculated based on 

this ranking, namely: 

 

                            𝑝𝑗 =  
# { 𝑖=1,…,𝑀|𝛼𝑖≥ 𝛼𝑞}

𝑀
                                (6) 

 

Here, M is the number of bag samples, i.e. the samples that 

have already been classified, and  𝛼𝑞 is the nonconformity 

score for the sample that is to be currently classified. The p-

value is essentially the fraction of bag samples that are at least 

as different as the current sample. The current sample is 

assigned to the class with the largest corresponding p-value. 

The largest p-value itself is referred to as the credibility, while 

the complement of the other p-value is the confidence of the 

classification task: 

 

                      Credibility = max(𝑝𝑗),  𝑗 = 1, 2                     (7) 

 

                      Confidence = 1 − min(𝑝𝑗),   𝑗 = 1, 2               (8) 

 

The smaller p-value is essentially the probability of the 

prediction being in error and thus the probability of 

correctness of the current prediction is automatically 

quantified by the confidence. 

In case where the p-value assigned to each class is the same, 

CP deems that a unique class cannot be assigned to the current 

sample.  It refrains from making any (possibly incorrect) 

decision and separates the current sample whilst labelling it 

ambiguous. 

Despite the numerous advantages offered by CPs, the method 

can become computationally expensive and thus infeasible in 

real time, for very large data sets. This is a direct consequence 

of the dynamic learning capabilities possessed by CP. This 

limitation is overcome by deploying a computationally 

efficient variant of CP: inductive conformal predictors (ICPs) 

[11]. ICPs offer a compromise between dynamic learning and 

computational time, without causing degradation of the 

classification performance. ICPs divide the dataset into two 

sets: the proper training set and the calibration set. The proper 

training set, similar to a conventional MLM, is used for 

computing the decision rule once, which is dynamically 

improved as each sample from the calibration set (a pseudo 

test set) is classified. In this work, ICPs as well as a 

theoretically pure form of CPs known as transductive 

conformal predictors (TCPs) are each applied. TCPs in 

contrast to ICPs require a minimalistic proper training data set 

and at the least one sample per class suffices. 

As a similarity measure in calculating the nonconformity 

scores, we first considered the Euclidean distance between the 

sample’s feature vector and that of the bag samples. Then we 

compared its performance to that of the GD, this time treating 

the features as quantities with an error bar, hence Gaussian 

distributions. 

IV. ELM IDENTIFICATION 

 

A. Physics picture of ELM types 

 

 



The physical mechanisms of the different observed classes of 

ELMs are complex. As a result, no unified first principles 

theory describing ELMs exists. Type I ELMs mainly seem to 

be driven by the steep pressure gradient, whereas small ELMs 

appear to be controlled by the absolute value of the edge 

temperature along with steep pressure gradient. This suggests 

that small ELMs are linked to resistive MHD phenomena 

whereas type I ELMs are associated with ideal MHD [13]-

[15]. Considerable progress has been made in ELM modelling 

activity [16]-[17], with the peeling-ballooning model 

appearing as the leading candidate for explaining the trigger 

for the ELMs. This model builds on the two instability sources 

near the plasma edge namely, current and pressure gradients. 

It outlines a pseudo-triangular operating diagram for ELMs in 

the space of the ballooning pressure gradient and the 

normalized edge current.  

Currently, type I ELMs and small ELMs are primarily 

distinguished by their response to increased heating power. 

The ELM repetition frequency for type I ELMs increases with 

increasing power and decreases for small ELMs. 

An alternate way of distinguishing between the two classes is 

to compare temperatures and densities at the pedestal top. In 

[18] it is shown that type I ELMs are clustered around a 

hyperbola of constant, high pedestal pressure. This constant 

corresponds to the theoretically predicted onset of pressure 

driven, ideal MHD ballooning mode instability. Small ELMs 

appear to occur below a critical pedestal temperature 𝑇𝑒,𝑐𝑟𝑖𝑡 

which tends to increase with the toroidal magnetic field. 

Further, on the 𝑛𝑒𝑑𝑔𝑒 − 𝑇𝑒𝑑𝑔𝑒  diagram [18] they are seen as 

two clusters: one at low 𝑇𝑒,𝑝𝑒𝑑 and high 𝑛𝑒,𝑝𝑒𝑑 and the other at 

high 𝑇𝑒,𝑝𝑒𝑑   and low  𝑛𝑒,𝑝𝑒𝑑.  

A crucial distinction between type I and small ELMs is their 

effect on plasma confinement. Type I ELMy H-modes have 

superior overall plasma confinement but the ELM size possess 

serious concerns for future fusion machines. On the contrary, 

the size of small ELMs offers no concern for the machine 

operation but the energy confinement time is 10-30% below 

that in type I H-mode [14]-[15]. 

In order to predict ELM behavior in next step fusion 

devices and ensure operation in the desirable ELMy regimes, 

development of an automated discrimination scheme for 

ELMs is required, constituting the starting point of this work. 

 

B. ITPA database 

 

In this work for ELM regime identification we employed 

measurements from the International Tokamak Physics 

Activity (ITPA) Global H-mode Confinement Database (DB3, 

version 13f), henceforth referred to as the “ITPA database” 

[19]-[20]. The ITPA database contains more than 10,000 

validated measurements of various global plasma and 

engineering variables at one or several time instants during 

discharges in 19 tokamaks. The data have been used 

extensively for determining scaling laws for the energy 

confinement time, mainly as a function of a set of eight 

plasma and engineering parameters: plasma current, vacuum 

toroidal magnetic field, total power loss from the plasma, 

central line-averaged electron density, plasma major radius, 

plasma minor radius, elongation and effective atomic mass. 

We have used the same eight global variables to discriminate 

between type I and small ELMs. Specifically, all database 

entries with a confinement mode labelled HGELM and 

HGELMH were considered to belong to the H-mode region 

with type I ELMs and all database entries tagged HSELM and 

HSELMH were regarded as belonging to the H-mode region 

with small ELMs. For current work, the database entries have 

been normalized to bring all variables in proportion with one 

another prior to subsequent operations. 

It should be noted that classification of ELM characteristics 

based on global non-time-resolved data is a considerable 

challenge. Indeed, in addition to the information contained in 

the global time-averaged values of the plasma parameters, 

space-resolved measurements, near the plasma boundary, of 

the plasma density and temperature could easily improve the 

recognition rates. Similarly, estimates of changes in the 

thermal and fast particle energy content per ELM burst and 

measurements of ELM frequency obtained from time traces of 

plasma quantities, such as the Dα radiation, can also 

considerably improve the predictive capacity of the method. 

However, in the present work we did not yet take into account 

these additional sources of information, although our method 

is perfectly able to incorporate and treat these data. 

The ITPA database lists typical error estimates of 

measurements for the various plasma and engineering 

variables. This represents very limited information on the 

probability distribution underlying each quantity. 

Nevertheless, effective utilization of this limited information 

proves beneficial. In this work it is assumed that the error bars 

pertain to a statistical uncertainty in the data, specifically that 

they represent a single standard deviation. According to the 

principle of maximum entropy, the underlying probability 

distribution is Gaussian with mean the measurement itself and 

standard deviation the error bar. Also, it is supposed that for 

stationary plasma conditions, all variables are statistically 

independent and so the joint distribution factorizes. This 

means that the joint distribution for the eight variables 

mentioned above is assumed to be just the product of the 

individual univariate Gaussian distributions. Clearly, this is a 

strong assumption and it is imposed here mainly for keeping 

the calculations tractable. It is noteworthy that our formalism 

has no difficulties with the heterogeneous sources of the 

measurements, coming from different tokamaks and possibly 

with different error bars for essentially the same quantities. 

The reason is that the error estimates are automatically 

embedded in the probabilistic data description. 

The number of samples from each tokamak belonging to the 

H-mode class with ELMs is given in Table I. Further, the 

numbers of small and type I ELM samples per machine are 

also listed. 

 

C. Visualization 

Visualization of high-dimensional data sets through a 

projection in the two-dimensional Euclidean plane is a useful 

tool for enabling plasma physicists to gain knowledge about 

the internal structure of the data and relationships in it. Its goal 

is to amplify human cognition and provide an intuitive insight 

into the possible interactions and relationships in complex and 



frequently large data sets [21]. Hence, visualization of the data 

within the region of the operational space corresponding to H-

mode with ELMs can be very useful because it can potentially 

yield enhanced insight in the configuration of the operational 

space. It can convey important information regarding the 

conditions, under which specific plasma regimes occur, as 

well as the “distance” of the current plasma conditions from a 

certain desired or undesirable regime. Visualization of the 

operational space is not a straightforward task as the 

information is not normally directly available, since the 

number of variables labeling the operational space is often 

greater than two. Hence the dimensionality of the data space is 

higher than two, preventing a simple plot of the data in a two-

dimensional diagram. Moreover, in our framework each 

measurement is represented by a Gaussian probability 

distribution with a mean and an error bar. This distribution 

cannot be represented by a point in a Euclidean space but 

naturally lies on a curved Riemannian manifold. Therefore, 

data visualization is a natural starting point in distinguishing 

between regions of different ELMs, which essentially are 

found in neighboring or overlapping regions of the operational 

space. 

In this work, visualization of the high-dimensional and/or 

probabilistic (non-Euclidean) data is obtained by projection of 

the data onto a two-dimensional Euclidean plane. To do this, 

we use metric multidimensional scaling (MDS), which is a 

well-regarded information visualization technique [22] and is 

widely used in perceptual mapping. MDS provides a two-

dimensional mapping of the ITPA database, which originally 

spans eight dimensions (16 in case the standard deviation of 

each measurement is counted as an extra parameter). In order 

to calculate the distance in the original high-dimensional data 

space, we use the GD in the case when the probabilistic 

representation of the data is taken into account. 

A projection using MDS is shown in Fig. 2 for the entire ITPA 

database. Certainly, the visual map is an approximation of the 

original configuration, but nevertheless MDS yields a 

projection of points in the Euclidean space with least 

distortion of all pairwise distances; i.e. the mapping is 

approximately isometric. Hence, the real value of the 

projection lies in the relative position of the points with 

respect to each other and in contrast to usual scientific 

visualizations the coordinate axes are less significant. Further, 

a visual map from a subset of the data is also plotted in Fig. 2. 

These are ASDEX, AUG, JET and DIII-D, as these machines 

are the major contributors to the ELM date in the ITPA 

database. Visualizations in Fig. 2 incorporate the measurement 

uncertainty as MDS uses the GD between Gaussian product 

distributions. It can be readily noted from Fig. 2 that there is a 

considerable overlap between the ELM classes, rendering the 

classification task a veritable challenge (although it should 

always be remembered that the visualization is a projection, 

inevitably resulting in information loss). Further it can be seen 

in Fig. 2 (c) and 2(d) that the data of ASDEX and JET roughly 

conform to two clusters. This distribution is due to different 

levels of plasma current and toroidal fields in the machines. 

Also, it can be observed from visual inspection of Fig. 2 (f) 

that the data of AUG is heavily unbalanced with very few 

samples from the H-mode region with small ELMs. Despite 

these constraints imposed by the data set, our classification 

scheme is able to attain a relatively good separation between 

the two classes. 

 

D. Classification via conformal prediction 

 

The experiments were performed for 20%, 50% and 70% of 

the total data being treated as a proper training set, followed 

by the dynamic learning for the remaining data. Proper 

training data were selected at random from the entire database, 

while ensuring the same balance with respect to the class 

variable as was present in the original data, i.e. if, say, the 

original data contained 70% samples from class 1 and 30% 

samples belonged to class 2, then the samples which constitute 

the training set also maintain the same ratio with respect to 

class label. The results are given in Table II. Transductive 

conformal prediction is also carried out for reference. This is 

shown in Table II as the entry which uses 0.01% of the total 

data as the initial proper training data. The GD is the distance 

measure of choice used to calculate the nonconformity scores, 

for the results presented in Table II. Similar experiments were 

conducted using the Euclidean distance, operating on the 

measurement values without consideration of the error bars. 

These results are presented in Table III. Table II and Table III 

each report the success rate (SR) for classification, which is 

the average over the two classes for correct predictions made 

as a percentage of total predictions. Similarly, the error rate 

(ER) is provided, which is the average over the two classes for 

the incorrect predictions made as a percentage of total 

predictions. Also listed is the ambiguity (AM), i.e. the ratio of 

the number of samples for which a prediction could not be 

made, for the total number of samples in the data set. The last 

two columns for each table contain the average values of 

confidence and credibility for the predictions made. The SRs 

achieved with the GD and Euclidean similarity measures are 

also illustrated in Fig. 3. 

The most noteworthy outcome is that the GD gives a superior 

performance in contrast to the Euclidean distance, both in 

terms of success rate and the average confidence level of the 

predictions. This establishes that exploiting the information 

content residing in measurement uncertainty is important for 

identifying ELM types. 

Furthermore, the CPU time (in seconds) for the CP 

classification obeys a linear law: 

 

                                   𝑡 = 1.30𝑛 + 48                                   (9) 

 

where n is the number of samples which constitute the 

calibration set, i.e. are dynamically classified. ICPs provide a 

significant reduction in computational time, as they effectively 

reduce the size of the calibration set without introducing 

degradation in success rates. 

 

E. Comparative analysis 

 

In previous works, discriminant analysis has been used for 

ELM identification [23]. To allow a homogeneous comparison 

between CPs and other well-established MLMs we perform 

the classification of H-mode with small and type I ELMs 



using linear discriminant analysis (LDA), quadratic 

discriminant analysis (QDA) and a 1-nearest-neighbor 

classifier. 50% of the data is used as training data, thus 

enabling a direct comparison with the entry with 50% of the 

data used as proper training data in Tables II and III. Balance 

with respect to the class variable is kept intact in the randomly 

selected training data. Each experiment is repeated 10 times 

with different random training sets and thus each mentioned 

result is in fact an average over 10 replications. The average 

SRs for classification alongside their standard deviation (STD) 

are given in Table IV. 

It can be readily seen that CPs provide a significantly higher 

success rate in contrast to well-established MLMs, in addition 

to providing an estimate of the classification accuracy 

(confidence) and reliability (credibility). 

 

F. Validation 

 

We further empirically validated the performance of our 

classification scheme and the obtained results using N-fold 

stratified cross-validation. This is an established model 

validation technique, since for an optimal choice of N, it 

reduces the bias in the prediction output while combating 

variance and yet being computationally feasible. The 

mechanism behind cross-validation is illustrated in Fig. 4. It 

operates by dividing the available data into roughly N equal 

parts and then iteratively training and testing the classification 

scheme using N-1 parts for training and the remaining one part 

for testing. Hence each sample in the data set gets eventually 

used for training and testing. We performed all our 

experiments using 10-fold cross-validation. The obtained 

results are given in Tables V and VI. 

 

The success rates are higher for each classification scheme, 

compared to the results in the previous section. However, the 

important observation is that CP consistently performs better 

than the other techniques. Furthermore, again the GD measure 

gives the better performance as compared to the Euclidean 

distance. Fig. 5 illustrates the success rates for each 

classification scheme. The results are shown for 10-fold cross-

validation and also for 50% of the total data being used for 

training (from section 4.3). Superior performance of CP 

coupled with GD can be readily noted. 

 

G. Performance for individual machines 

 

Finally, we provide success rates for classification of ELM 

regions for individual machines. Results are given in Table 

VII and were obtained using a 10-fold cross-validated 

inductive conformal predictor with the geodesic distance.  

Class-wise success rates are also given for each machine, 

where the two classes are H-mode region with small ELMs, 

denoted by ‘S’ and H-mode region with type I ELMs, denoted 

by ‘Type I’. 

 

For analyzing the results given in Table VII, the following 

characteristics of data need to be considered: 

 Class imbalance:  a two-class data set is considered 

imbalanced (or skewed) when one of the classes is 

heavily under-represented in comparison to the other 

class. 

 Dispersion of data: degree to which the data points 

within a cluster are dispersed over the feature space. 

Class imbalance for each machine is listed in Table VIII, 

while the statistics of dispersion within the class are given in 

Table IX. Dispersion is quantized by computing the mean 

distance to the nearest neighbor within the class. The larger 

the mean distance to the nearest neighbor, the larger is the 

spread within the class. Furthermore, higher is the standard 

deviation in the distance to the nearest neighbor for the 

samples, the lower is the likelihood of occurrence of localized 

clusters of a certain class. The distance to nearest neighbor is 

based on the GD between the probability distributions. 

The data from JET are balanced and also have smallest within-

class dispersion of all the machines. This can also be seen by 

visual inspection of Fig. 2(d), where localized clusters of each 

class can be observed despite the limitations of the projected 

space. Hence classification performance for data from JET is 

high on the whole and also for each class individually. The 

data from ASDEX are not just partially unbalanced but also 

suffer from large within-class dispersion. This is also verified 

by the visual projection in Fig. 2(c).  As a consequence, 

classification performance is lower than that of other 

machines. The data from AUG are highly unbalanced in the 

favor of class type I, i.e. H-mode region with type I ELMs. As 

a result, the classification performance for class type I is very 

high and that of class S, i.e. H-mode region with small ELMs, 

is considerably lower. However, the high success rate for class 

type I outweighs the other effects, making the overall average 

success rate for this machine the highest. The success rate for 

class S for DIII-D is the lowest amongst all machines. Once 

again, this can be attributed to a partial imbalance of the class 

towards class type I and a higher dispersion within class S as 

compared to class type I. 

 

H. Practical implications 

 

The most significant contribution of this work is the 

development of an alternative methodology for classification 

of ELM types. It is noteworthy that the relative performance 

of the proposed method in contrast to other techniques is more 

important than the absolute value of the success rate. This is 

so because the absolute success rates are a stronger indicator 

of the quality of the chosen features and their discriminatory 

power for the problem at hand, rather than the goodness of the 

classification scheme. Incorporating additional features such 

as pedestal parameters, ELM frequency etc. is likely to 

significantly improve success rates and forms a part of the 

authors’ ongoing work. Further, more accurate estimates of 

error bars and more precise information regarding the 

distribution of the uncertainties could be very useful for 

optimizing the classification performance. Suitability and 

advantages of the developed method have been demonstrated 

using the ITPA database, despite the limited information 



offered by it on the underlying probability distribution of the 

predictors. Having established the merits of the technique it 

can be rightfully argued that the method can be deployed as 

one of the layers in an embedded multi-layer classifier for 

ELM types.  

V. CONCLUSIONS 

 

We have presented an approach that offers a new perspective 

to the discrimination of ELM types, as an addition to the 

existing predominant phenomenological categorizations. The 

presented approach conducts pattern recognition using global 

plasma data while consistently taking into account 

uncertainties: first uncertainty of the data themselves and then 

of the classification results. This is important in order to 

increase the reliability of classifiers for resolving the 

underlying physics and for plasma control decisions.  

The proposed distance-based conformal predictor classifier 

integrated with the geometric-probabilistic framework 

provides for an automated classifier for ELM types with high 

success rates and a figure of its own merit: confidence and 

credibility. Furthermore, it possesses dynamic learning 

capability and a mechanism for detection of ambiguities, 

which is advantageous over incorrect classification. The 

method is generic and can be applied to other problems in 

nuclear fusion, such as disruption prediction. In addition, it is 

exportable to other application domains in signal and image 

processing. The method can also potentially help in 

quantifying the change in the behavior of ELMs in response to 

control and mitigation strategies. 
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Fig. 1.  (a) Illustration of the Poincaré half-plane with several half-circle geodesics, one of them between the points p1 and p2. b) Probability densities 
corresponding to the points p1 and p2 indicated in (a). The densities associated with some intermediate points on the geodesic between p1 and p2 are also drawn. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Fig. 2.  Two-dimensional projections using MDS with indicated small ELM and type I ELM clusters. (a) ELM data from the entire ITPA database with small 
ELMs on top. (b) ELM data from the entire ITPA database with type I ELMs on top. (c) ELM data from ASDEX. (d) ELM data from DIII-D. (f) ELM data from 

AUG. 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

Fig. 3.  Success rates (%) for CP 

 

 

 
 

 

 

 

 

 

 

 

Fig. 4.  Prototype for N-fold cross-validation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

Fig. 5.  Comparative success rates (%) for different classification schemes. 

Results are shown for both 10-fold cross-validation and random sampling of 
training data, where 50% of the total data is selected for training. 



 
TABLE I 

TOTAL NUMBER OF SAMPLES FROM EACH TOKAMAK IN THE ITPA DATABASE BELONGING TO THE H-MODE REGION WITH ELMS. THE 
NUMBER OF SAMPLES PER CLASS, I.E. SMALL AND TYPE I ELMS, IS ALSO GIVEN. 

Machine Total samples Type I ELMs Small 
ELMs 

ASDEX 445 287 158 

AUG 583 498 85 
CMOD 46 0 46 

COMPASS 26 13 13 

DIII-D 343 249 94 
JET 1780 980 800 

JFT-2M 76 0 76 

JT60-U 89 35 54 
PBXM 80 19 61 

PDX 117 48 69 

TCV 15 15 0 
TFTR 99 5 94 

TDEV 10 0 10 

START 9 0 9 
MAST 12 0 12 

NSTX 6 0 6 

 

 
 

 
TABLE II 

SUCCESS RATES (SR), ERROR RATES (ER), AMBIGUITIES (AM) AND AVERAGE CONFIDENCE (CO) AND CREDIBILITY (CR) FOR 

CLASSIFICATION OF ELM TYPES USING VARIOUS SIZES OF THE PROPER TRAINING DATA SET AND WITH THE GEODESIC DISTANCE AS 

THE SIMILARITY MEASURE. 

Initializing 

training data 

(%) 

SR (%) ER (%) AM 

(%) 

CO (%) CR (%) 

0.01 75.98 23.89 0.108 92.3 57.7 

20 77.39 22.57 0.034 92.5 55.4 

50 78.85 21.06 0.108 92.7 49.6 

70 78.58 21.31 0.089 93.0 45.6 

 

 

 
 

 

TABLE III 

SIMILAR TO TABLE II, BUT WITH THE EUCLIDEAN DISTANCE AS THE SIMILARITY MEASURE. 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

Initializing 

training data (%) 

SR 

(%) 

ER 

(%) 

AM 

(%) 

CO 

(%) 

CR 

(%) 

0.01 72.85 27.04 0.11 90.5 56.8 

20 72.80 27.20 0.00 89.6 55.7 

50 72.84 27.16 0.00 89.6 51.3 

70 73.01 26.99 0.00 89.8 48.1 



TABLE IV 

AVERAGE SUCCESS RATES (SR) AND CORRESPONDING STANDARD DEVIATIONS (STD) FOR THE CLASSIFICATION OF REGIMES WITH 

DIFFERENT ELM TYPES BASED ON LINEAR DISCRIMINANT ANALYSIS (LDA), QUADRATIC DISCRIMINANT ANALYSIS (QDA), 1-NEAREST 
NEIGHBOR (1-NN) USING GD AND 1-NN USING THE EUCLIDEAN DISTANCE. 

 

 

 
 

 

 
 

 

 
 

 

 
 

TABLE V 

SUCCESS RATES (SR), ERROR RATES (ER), AMBIGUITIES (AM) AND AVERAGE CONFIDENCE (CO) AND CREDIBILITY (CR) FOR 

CLASSIFICATION OF ELM REGIMES USING 10-FOLD CROSS-VALIDATION WITH THE GD AND EUCLIDEAN DISTANCE AS A SIMILARITY 
MEASURE. 

Classifier Distance 

Measure 

SR 

(%) 

ER 

(%) 

AM 

(%) 

CO 

(%) 

CR 

(%) 

CP (ICP) GD 80.19 19.69 0.134 94.1 43.5 

Euclidean 73.50 26.48 0.027 90.2 48.1 

 

 

 
 

 

Table VI 

SUCCESS RATES (SR) AND CORRESPONDING STANDARD DEVIATION (STD) FOR THE CLASSIFICATION OF ELMY REGIMES WITH 10-FOLD 

CROSS-VALIDATION USING LINEAR DISCRIMINANT ANALYSIS (LDA), QUADRATIC DISCRIMINANT ANALYSIS (QDA), 1-NEAREST 

NEIGHBOR (1-NN) USING THE EUCLIDEAN DISTANCE AND FINALLY 1-NN USING THE GD. 

 

Classifier SR (%) STD (%) 

LDA 59.89 0.92 

QDA 68.28 0.81 

1-NN GD 78.27 0.88 

1-NN Euclidean 72.85 0.67 

 
 

 

 
 

 

 
Table VII 

SUCCESS RATES (SR), ERROR RATES (ER), AMBIGUITIES (AM), AVERAGES CONFIDENCE (CO) AND AVERAGE CREDIBILITY (CR) FOR ELM 

REGIME CLASSIFICATION USING ITPA DATA FROM JET, ASDEX, AUG AND DIII-D, BASED ON A 10-FOLD CROSS-VALIDATED INDUCTIVE 

CONFORMAL PREDICTOR. 

 

 

Classifier SR (%) STD (%) 

LDA 60.26 0.39 

QDA 68.65 0.33 

1-NN GD 70.50 0.97 

1-NN Euclidean 67.47 0.48 

Machine Class SR(%)  by class SR (%) 

 

ER (%) AM (%) CO (%) CR (%) 

JET S 76.76 78.32 21.34 0.34 94.1 43.5 

Type I 79.88 

ASDEX S 64.23 70.46 28.46 1.14 91.2 44.2 

Type I 76.70 

AUG S 69.35 82.86 16.49 0.53 97.3 40.1 

Type I 96.37 

DIII-D S 61.10 74.33 25.67 0.00 93.3 40.6 

Type I 87.55 



Table VIII 

NUMBER OF SAMPLES FROM EACH CLASS FOR EACH MACHINE, DETERMINING THE RESPECTIVE CLASS BALANCE. 

Machine Class No. of 

samples per 
class 

Ratio of 

 class S to 
class Type I 

Class balance 

JET S 800 45:55 Balanced 

Type I 980 

ASDEX S 158 35:65 Partially 

 Unbalanced Type I 287 

AUG S 85 15:85 Unbalanced 

Type I 498 

DIII-D S 94 27:73 Partially  

Unbalanced Type I 249 

 

 
 

 

 

 

Table IX 

MEASURE OF DISPERSION WITHIN EACH CLASS FOR EACH MACHINE. 

Machine Class Mean distance to NN Standard 

deviation 

JET S 1.75 2.33 

Type I 1.48 2.02 

ASDEX S 9.13 3.01 

Type I 9.83 2.93 

AUG S 12.78 2.79 

Type I 13.08 2.27 

DIII-D S 4.56 3.20 

Type I 2.69 2.00 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 


