3,523 research outputs found

    Advances on Time Series Analysis using Elastic Measures of Similarity

    Get PDF
    A sequence is a collection of data instances arranged in a structured manner. When this arrangement is held in the time domain, sequences are instead referred to as time series. As such, each observation in a time series represents an observation drawn from an underlying process, produced at a specific time instant. However, other type of data indexing structures, such as space- or threshold-based arrangements are possible. Data points that compose a time series are often correlated with each other. To account for this correlation in data mining tasks, time series are usually studied as a whole data object rather than as a collection of independent observations. In this context, techniques for time series analysis aim at analyzing this type of data structures by applying specific approaches developed to leverage intrinsic properties of the time series for a wide range of problems, such as classification, clustering and other tasks alike. The development of monitoring and storage devices has made time se- ries analysis proliferate in numerous application fields, including medicine, economics, manufacturing and telecommunications, among others. Over the years, the community has gathered efforts towards the development of new data-based techniques for time series analysis suited to address the problems and needs of such application fields. In the related literature, such techniques can be divided in three main groups: feature-, model- and distance-based methods. The first group (feature-based) transforms time series into a collection of features, which are then used by conventional learning algorithms to provide solutions to the task under consideration. In contrast, methods belonging to the second group (model-based) assume that each time series is drawn from a generative model, which is then har- nessed to elicit knowledge from data. Finally, distance-based techniques operate directly on raw time series. To this end, these methods resort to specially defined measures of distance or similarity for comparing time series, without requiring any further processing. Among them, elastic sim- ilarity measures (e.g., dynamic time warping and edit distance) compute the closeness between two sequences by finding the best alignment between them, disregarding differences in time, and thus focusing exclusively on shape differences. This Thesis presents several contributions to the field of distance-based techniques for time series analysis, namely: i) a novel multi-dimensional elastic similarity learning method for time series classification; ii) an adap- tation of elastic measures to streaming time series scenarios; and iii) the use of distance-based time series analysis to make machine learning meth- ods for image classification robust against adversarial attacks. Throughout the Thesis, each contribution is framed within its related state of the art, explained in detail and empirically evaluated. The obtained results lead to new insights on the application of distance-based time series methods for the considered scenarios, and motivates research directions that highlight the vibrant momentum of this research area

    Investigating the Effects of Network Dynamics on Quality of Delivery Prediction and Monitoring for Video Delivery Networks

    Get PDF
    Video streaming over the Internet requires an optimized delivery system given the advances in network architecture, for example, Software Defined Networks. Machine Learning (ML) models have been deployed in an attempt to predict the quality of the video streams. Some of these efforts have considered the prediction of Quality of Delivery (QoD) metrics of the video stream in an effort to measure the quality of the video stream from the network perspective. In most cases, these models have either treated the ML algorithms as black-boxes or failed to capture the network dynamics of the associated video streams. This PhD investigates the effects of network dynamics in QoD prediction using ML techniques. The hypothesis that this thesis investigates is that ML techniques that model the underlying network dynamics achieve accurate QoD and video quality predictions and measurements. The thesis results demonstrate that the proposed techniques offer performance gains over approaches that fail to consider network dynamics. This thesis results highlight that adopting the correct model by modelling the dynamics of the network infrastructure is crucial to the accuracy of the ML predictions. These results are significant as they demonstrate that improved performance is achieved at no additional computational or storage cost. These techniques can help the network manager, data center operatives and video service providers take proactive and corrective actions for improved network efficiency and effectiveness

    Advances on Time Series Analysis using Elastic Measures of Similarity

    Get PDF
    135 p.A sequence is a collection of data instances arranged in an structured manner. When thisarrangement is held in the time domain, sequences are instead referred to as time series. As such,each observation in a time series represents an observation drawn from an underlying process,produced at a specific time instant. However, other type of data indexing structures, such as spaceorthreshold-based arrangements are possible. Data points that compose a time series are oftencorrelated to each other. To account for this correlation in data mining tasks, time series are usuallystudied as a whole data object rather than as a collection of independent observations. In thiscontext, techniques for time series analysis aim at analyzing this type of data structures by applyingspecific approaches developed to harness intrinsic properties of the time series for a wide range ofproblems such as, classification, clustering and other tasks alike.The development of monitoring and storage devices has made time series analysisproliferate in numerous application fields including medicine, economics, manufacturing andtelecommunications, among others. Over the years, the community has gathered efforts towards thedevelopment of new data-based techniques for time series analysis suited to address the problemsand needs of such application fields. In the related literature, such techniques can be divided in threemain groups: feature-, model- and distance- based methods. The first group (feature-based)transforms time series into a collection of features, which are then used by conventional learningalgorithms to provide solutions to the task under consideration. In contrast, methods belonging to thesecond group (model-based) assume that each time series is drawn from a generative model, whichis then harnessed to elicit information from data. Finally, distance-based techniques operate directlyon raw time series. To this end, these latter methods resort to specially defined measures of distanceor similarity for comparing time series, without requiring any further processing. Among them,elastic similarity measures (e.g., dynamic time warping and edit distance) compute the closenessbetween two sequences by finding the best alignment between them, disregarding differences intime gaps and thus focusing exclusively on shape differences.This Thesis presents several contributions to the field of distance-based techniques for timeseries analysis, namely: i) a novel multi-dimensional elastic similarity learning method for timeseries classification; ii) an adaptation of elastic measures to streaming time series scenarios; and iii)the use of distance-based time series analysis to make machine learning methods for imageclassification robust against adversarial attacks. Throughout the Thesis, each contribution is framedwithin its related state of the art, explained in detail and empirically evaluated. The obtained resultslead to new insights on the application of distance-based time series methods for the consideredscenarios, and motivates research directions that highlight the vibrant momentum of this researcharea

    Deep Video Precoding

    Get PDF
    Several groups worldwide are currently investigating how deep learning may advance the state-of-the-art in image and video coding. An open question is how to make deep neural networks work in conjunction with existing (and upcoming) video codecs, such as MPEG H.264/AVC, H.265/HEVC, VVC, Google VP9 and AOMedia AV1, AV2, as well as existing container and transport formats, without imposing any changes at the client side. Such compatibility is a crucial aspect when it comes to practical deployment, especially when considering the fact that the video content industry and hardware manufacturers are expected to remain committed to supporting these standards for the foreseeable future. We propose to use deep neural networks as precoders for current and future video codecs and adaptive video streaming systems. In our current design, the core precoding component comprises a cascaded structure of downscaling neural networks that operates during video encoding, prior to transmission. This is coupled with a precoding mode selection algorithm for each independently-decodable stream segment, which adjusts the downscaling factor according to scene characteristics, the utilized encoder, and the desired bitrate and encoding configuration. Our framework is compatible with all current and future codec and transport standards, as our deep precoding network structure is trained in conjunction with linear upscaling filters (e.g., the bilinear filter), which are supported by all web video players. Extensive evaluation on FHD (1080p) and UHD (2160p) content and with widely-used H.264/AVC, H.265/HEVC and VP9 encoders, as well as a preliminary evaluation with the current test model of VVC (v.6.2rc1), shows that coupling such standards with the proposed deep video precoding allows for 8% to 52% rate reduction under encoding configurations and bitrates suitable for video-on-demand adaptive streaming systems. The use of precoding can also lead to encoding complexity reduction, which is essential for cost-effective cloud deployment of complex encoders like H.265/HEVC, VP9 and VVC, especially when considering the prominence of high-resolution adaptive video streaming

    QoE on media deliveriy in 5G environments

    Get PDF
    231 p.5G expandirá las redes móviles con un mayor ancho de banda, menor latencia y la capacidad de proveer conectividad de forma masiva y sin fallos. Los usuarios de servicios multimedia esperan una experiencia de reproducción multimedia fluida que se adapte de forma dinámica a los intereses del usuario y a su contexto de movilidad. Sin embargo, la red, adoptando una posición neutral, no ayuda a fortalecer los parámetros que inciden en la calidad de experiencia. En consecuencia, las soluciones diseñadas para realizar un envío de tráfico multimedia de forma dinámica y eficiente cobran un especial interés. Para mejorar la calidad de la experiencia de servicios multimedia en entornos 5G la investigación llevada a cabo en esta tesis ha diseñado un sistema múltiple, basado en cuatro contribuciones.El primer mecanismo, SaW, crea una granja elástica de recursos de computación que ejecutan tareas de análisis multimedia. Los resultados confirman la competitividad de este enfoque respecto a granjas de servidores. El segundo mecanismo, LAMB-DASH, elige la calidad en el reproductor multimedia con un diseño que requiere una baja complejidad de procesamiento. Las pruebas concluyen su habilidad para mejorar la estabilidad, consistencia y uniformidad de la calidad de experiencia entre los clientes que comparten una celda de red. El tercer mecanismo, MEC4FAIR, explota las capacidades 5G de analizar métricas del envío de los diferentes flujos. Los resultados muestran cómo habilita al servicio a coordinar a los diferentes clientes en la celda para mejorar la calidad del servicio. El cuarto mecanismo, CogNet, sirve para provisionar recursos de red y configurar una topología capaz de conmutar una demanda estimada y garantizar unas cotas de calidad del servicio. En este caso, los resultados arrojan una mayor precisión cuando la demanda de un servicio es mayor

    Deep-learning based precoding techniques for next-generation video compression

    Get PDF
    Several research groups worldwide are currently investigating how deep learning may advance the state-of-the-art in image and video coding. An open question is how to make deep neural networks work in conjunction with existing (and upcoming) video codecs, such as MPEG AVC/H.264, HEVC, VVC, Google VP9 and AOMedia AV1, as well as existing container and transport formats. Such compatibility is a crucial aspect, as the video content industry and hardware manufacturers are expected to remain committed to supporting these standards for the foreseeable future. We propose deep neural networks as precoding components for current and future codec ecosystems. In our current deployments for DASH/HLS adaptive streaming, this comprises downscaling neural networks. Precoding via deep learning allows for full compatibility to current and future codec and transport standards while providing for significant savings. Our results with HD content show that 23%-43% rate reduction takes place under a range of state-of-the-art video codec implementations. The use of precoding can also lead to significant encoding complexity reduction, which is essential for the cloud deployment of complex encoders like AV1 and MPEG VVC. Therefore, beyond bitrate saving, deep-learning based precoding may reduce the required cloud resources for video transcoding and make cloud-based solutions competitive or superior to state-of-the-art captive deployments

    A Survey of Machine Learning Techniques for Video Quality Prediction from Quality of Delivery Metrics

    Get PDF
    A growing number of video streaming networks are incorporating machine learning (ML) applications. The growth of video streaming services places enormous pressure on network and video content providers who need to proactively maintain high levels of video quality. ML has been applied to predict the quality of video streams. Quality of delivery (QoD) measurements, which capture the end-to-end performances of network services, have been leveraged in video quality prediction. The drive for end-to-end encryption, for privacy and digital rights management, has brought about a lack of visibility for operators who desire insights from video quality metrics. In response, numerous solutions have been proposed to tackle the challenge of video quality prediction from QoD-derived metrics. This survey provides a review of studies that focus on ML techniques for predicting the QoD metrics in video streaming services. In the context of video quality measurements, we focus on QoD metrics, which are not tied to a particular type of video streaming service. Unlike previous reviews in the area, this contribution considers papers published between 2016 and 2021. Approaches for predicting QoD for video are grouped under the following headings: (1) video quality prediction under QoD impairments, (2) prediction of video quality from encrypted video streaming traffic, (3) predicting the video quality in HAS applications, (4) predicting the video quality in SDN applications, (5) predicting the video quality in wireless settings, and (6) predicting the video quality in WebRTC applications. Throughout the survey, some research challenges and directions in this area are discussed, including (1) machine learning over deep learning; (2) adaptive deep learning for improved video delivery; (3) computational cost and interpretability; (4) self-healing networks and failure recovery. The survey findings reveal that traditional ML algorithms are the most widely adopted models for solving video quality prediction problems. This family of algorithms has a lot of potential because they are well understood, easy to deploy, and have lower computational requirements than deep learning techniques
    corecore