
University of the Basque Country
UPV/EHU

Doctoral Thesis

Advances on Time Series
Analysis using Elastic Measures

of Similarity

Author:
Izaskun Oregi

Supervisors:
Prof. Dr. Javier Del Ser

Dr. Aritz Pérez

A Thesis submitted in fulfillment of the requirements for the
degree of Doctor of Philosophy

in the

Department of Communications Engineering

May 29, 2020

(c) 2020 Izaskun Oregi Bravo

iii

Declaration of Authorship
I, Izaskun Oregi, declare that this thesis titled, “Advances on Time Series
Analysis using Elastic Measures of Similarity” and the work presented in
it are my own. I confirm that:

• This work was done entirely or mainly while in candidature for a
research degree at this University.

• Where any part of this thesis has previously been submitted for
a degree or any other qualification at this University or any other
institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely
my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself.

Signed:

Date:

v

To Xabi and Esti

vii

UNIVERSITY OF THE BASQUE COUNTRY UPV/EHU

Abstract
Engineering School of Bilbao

Department of Communications Engineering

Doctoral Degree

Advances on Time Series Analysis using Elastic Measures of
Similarity

by Izaskun Oregi

A sequence is a collection of data instances arranged in a structured
manner. When this arrangement is held in the time domain, sequences
are instead referred to as time series. As such, each observation in a
time series represents an observation drawn from an underlying process,
produced at a specific time instant. However, other type of data indexing
structures, such as space- or threshold-based arrangements are possible.
Data points that compose a time series are often correlated with each
other. To account for this correlation in data mining tasks, time series
are usually studied as a whole data object rather than as a collection
of independent observations. In this context, techniques for time series
analysis aim at analyzing this type of data structures by applying specific
approaches developed to leverage intrinsic properties of the time series for
a wide range of problems, such as classification, clustering and other tasks
alike.

The development of monitoring and storage devices has made time se-
ries analysis proliferate in numerous application fields, including medicine,
economics, manufacturing and telecommunications, among others. Over
the years, the community has gathered efforts towards the development of
new data-based techniques for time series analysis suited to address the
problems and needs of such application fields. In the related literature,
such techniques can be divided in three main groups: feature-, model- and
distance-based methods. The first group (feature-based) transforms time
series into a collection of features, which are then used by conventional
learning algorithms to provide solutions to the task under consideration.
In contrast, methods belonging to the second group (model-based) assume
that each time series is drawn from a generative model, which is then har-
nessed to elicit knowledge from data. Finally, distance-based techniques
operate directly on raw time series. To this end, these methods resort
to specially defined measures of distance or similarity for comparing time
series, without requiring any further processing. Among them, elastic sim-
ilarity measures (e.g., dynamic time warping and edit distance) compute

viii

the closeness between two sequences by finding the best alignment between
them, disregarding differences in time, and thus focusing exclusively on
shape differences.

This Thesis presents several contributions to the field of distance-based
techniques for time series analysis, namely: i) a novel multi-dimensional
elastic similarity learning method for time series classification; ii) an adap-
tation of elastic measures to streaming time series scenarios; and iii) the
use of distance-based time series analysis to make machine learning meth-
ods for image classification robust against adversarial attacks. Throughout
the Thesis, each contribution is framed within its related state of the art,
explained in detail and empirically evaluated. The obtained results lead to
new insights on the application of distance-based time series methods for
the considered scenarios, and motivates research directions that highlight
the vibrant momentum of this research area.

ix

Acknowledgements
I owe a sincere debt of gratitude to my esteemed supervisors, Prof. Dr.

Javier Del Ser and Dr. Aritz Pérez, for supporting me and having a lasting
trust in me. Four years ago we launched a tin spaceship to an unknown
place. During this journey, I have felt the vastness around making me
losing control from time to time. However, in these moments you have
always offered wise suggestions and guidance, redirecting the course of
our spacecraft not only to save orbits, but also to interesting unexplored
places. I wish to extend my words of appreciation to Prof. Dr. José A.
Lozano, for his continuous advice and for joining us in our journey. I hope
this is just the first of many other research adventures.

I would like to thank TECNALIA for providing me with the necessary
resources, facilities and help for completing this work. Special thanks are
due to Iñigo Arizaga, Joseba Laka, Isidoro Cirión and Elena Urrutia for
all their efforts to allow us to carry out our research lines. I would like to
also thank all the people in OPTIMA group (both in Derio and Miñano)
for their guidance and full-time help through these years.

I take this opportunity to express my deep gratitude to all JRL mem-
bers, especially to Ibai, Txus, Eneko, Aritz, Eric and Esther. It has been
a real pleasure sharing this time with you. Thank you for your friendship
inside and outside the lab.

I am also grateful to Prof. Dr. Pierre-François Marteau for giving me
the opportunity to visit the Institut de Recherche en Informatique et Sys-
témes Aléatoires (IRISA) at the Université Bretagne Sud (UBS). I am
thankful for your warm reception and collaboration. Special thanks to all
open space mates, for stimulating debates, lunches, gym sessions and their
support during my stay at Vannes.

I wish to thank my family, specially my parents, Luis and Mariví,
for supporting me, teaching me, and inculcating me the values that have
brought me here. Thank you for your unconditional love and patience.

Finally, I would like to thank Esti and Xabi for being the funniest and
most annoying people in the world, I love and hate you in equal measure.
Thank you very much for giving me hope and being always supportive.

xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

I Introduction, Motivation and Objectives 1

1 Learning from Time Series 3
1.1 Streaming Time Series . 4
1.2 Core Problems in Time Series Analysis 5

1.2.1 Time Series Forecasting 5
1.2.2 Time Series Classification 6
1.2.3 Time Series Clustering 8
1.2.4 Anomaly Detection 9
1.2.5 Segmentation and Change Point Detection 10

1.3 TSA Models for Data Mining 11
1.3.1 Feature-based Approaches 11
1.3.2 Model-based Approaches 12
1.3.3 Similarity-based Approaches 12

1.4 Elastic Similarity Measures 13
1.4.1 Definition . 14
1.4.2 Computation . 15
1.4.3 ESM Set and Cost Functions 17

2 Motivation and Objectives 19
2.1 Main Contributions of the Thesis 20

2.1.1 Similarity Learning for MTS Classification 20
2.1.2 On-line ESMs for Streaming Time Series 21
2.1.3 Learning from ODTW Features 21
2.1.4 Using TSA to Protect Deep Neural Networks 22
2.1.5 Attacking ESM-based Classifiers 23

2.2 Structure of the Thesis . 23
2.3 Notation . 24

xii

II Contributions 27

3 Similarity Learning for MTS Classification 29
3.1 Introduction and Related Work 30
3.2 Proposed Similarity . 32

3.2.1 Weights Optimization Procedure 32
3.3 Experimental Results and Discussion 34

3.3.1 Discussion on Predictive Score Results 36
3.3.2 Discussion on the Optimized Weight Values 38

3.4 Conclusions . 39

4 On-line Elastic Similarity for Streaming Time Series 41
4.1 Introduction and Related Work 41
4.2 On-line Elastic Similarity Measures 42

4.2.1 Definition of the Proposed OESM 43
Batch Pattern Scenario 44
On-line Pattern Scenario 45
Convergence of the Proposed OESM 45

4.2.2 Incremental Computation 45
Batch Pattern Scenario 47
On-line Pattern Scenario 48

4.3 Experimental Setup . 49
4.3.1 Efficiency . 50
4.3.2 Forgetting Mechanism 50

Generation of Non-stationary Streaming Time Series 51
Gold-standard Model 53
Memory Parameter 53

4.4 Results and Discussion . 53
4.4.1 Computational Efficiency 53
4.4.2 Reaction Capacity and Predictive Performance . . . 54

Evaluation Method 55
Results: Batch Pattern Scenario 55
Results: On-line Pattern Scenario 57

4.5 Conclusions . 59

5 Learning from ODTW Features 61
5.1 Introduction and Related Work 61
5.2 Streaming Time Series Classification 62
5.3 Pattern End Detection Model 66
5.4 Experimental Study . 68

5.4.1 Description of the STSC Problems 68
5.4.2 Predictive Performance of the PED model 70

Learning the PED Model 70
Performance Results of the PED Model 72

5.4.3 Efficiency of PED for STSC problems 74
Gold-standard and ODTW-NN Classifiers 74
PED-based DTW-NN Classifier 75
STSC Performance Results 75

5.5 Conclusions and Future Research 78

xiii

6 Using TSA Tools to build Robust Image Classifiers 81
6.1 Introduction and Related Work 81
6.2 Adversarial Machine Learning 84

6.2.1 Attack Strategies . 85
6.2.2 Defense Strategies 88

6.3 Proposed Adversarial Defense Method 89
6.4 Experimental Setup . 92
6.5 Results and Discussion . 95
6.6 Conclusions and Future Work 100

7 Adversarial Attacks for Time Series Classification 103
7.1 Introduction and Related Work 103
7.2 Attacking DTW-based NN Classifiers 106

7.2.1 P(; |*) Gradient Computation 108
7.3 Experiments . 109

7.3.1 Results and Discussion 110
7.4 Conclusions . 112

III Concluding Remarks 115

8 Concluding Remarks 117
8.1 Conclusions . 117
8.2 List of Publications . 121

8.2.1 Other Publications 121
8.2.2 Short research visits. 122

8.3 Future Research Lines . 122

Bibliography 125

xv

List of Figures

1.1 Observation alignment of lock-step and ESMs. 13
1.2 Elastic similarity measure computation. 15
1.3 ESM complexity reduction techniques 16

2.1 Structure of the Thesis. 24

3.1 Optimization procedure. 33
3.2 Box-plot of scored 8 values. 40

4.1 Batch and on-line pattern memory functions. 44
4.2 Incremental computation example. 46
4.3 OESM computation for the batch pattern scenario. 47
4.4 OESM computation for the on-line pattern scenario. 49
4.5 Stream time series generation process. 52
4.6 OESM computational complexity results. 54
4.7 NN classifier results for the batch pattern scenario 57
4.8 NN classifier results for the on-line pattern scenario 58

5.1 ODTW measure matrix for different values of d. 64
5.2 Streaming frame database M. 67
5.3 PED model performance results for diffuse event changes. . 72
5.4 PED model performance results for well limited event changes. 73
5.5 Results of the PED model in terms of detection performance

and accuracy over STSC problems with diffuse event changes 76
5.6 Results of the PED model in terms of detection performance

and accuracy over STSC problems with well-delimited event
changes . 77

6.1 Adversarial examples. 95
6.2 Edge count sequences. 96
6.3 MNIST adversarial examples. 100

7.1 Intra-technique transferability experiment results. 110
7.2 P(; = 2|*) for DTW based attacks. 111
7.3 Adversarial time series examples. 112

xvii

List of Tables

1.1 ESM cost functions. 17

3.1 Scores for the simulated datasets and heuristic wrappers. . 37

4.1 TSC databases. 52

5.1 TSC benchmark databases. 69
5.2 STSC problem description. 70
5.3 DNN training parameters and architecture for benchmark

STSC problems. 71
5.4 Summary of the performance statistics of the PED model. . 74

6.1 Database description. 93
6.2 DNN architecture. 94
6.3 Adversarial sample detection results. 94
6.4 Attacker’s success rate. 98
6.5 Defender accuracy (%) against untargeted adversarial im-

ages when using attack and defense strategies from the re-
lated literature, and the proposed OSVM+DNN approach. . 99

xix

List of Abbreviations

Similarity Measures

ED Euclidean Distance
MD Mahalanobis Distance
ESM Elastic Similarity Measures
OESM On-line Elastic Similarity Measures
DTW Dynamic Time Warping
ODTW On-line Dynamic Time Warping
EDIT EDIT distance
EDR EDIT Distance for Real Sequences
ERP EDIT distance with Real Penalty

Time Series & Data Mining

MTS Multivariate Time Series
TSA Time Series Analysis
TSC Time Series Classification
K-NN K Nearest Neighbors
NN Nearest Neighbors
SVM Support Vector Machine
DNN Deep Neural Network
CNN Convolutional Neural Network
AML Adversarial Machine Learning

Chapter 3

DTW� Dependent Dynamic Time Warping
DTW� Independent Dynamic Time Warping
CDTW Correlation-based Dynamic Time Warping
MDTW Mahalanobis-based Dynamic Time Warping
GA Genetic Algorithm
PSO Particle Swarm Optimization
EDA Estimated Distribution Algorithm

Chapter 4

ACC Accuracy
PL Predicted Label
TL True Label
short OESM with short range memory
middle OESM with middle range memory
large OESM with large range memory

xx

full OESM with full range memory

Chapter 5

PED Pattern End Detector
STSC Sreaming Time Series Classification
AUC Area Under the Curve
PED-NN PED based Nearest Neighbors
ODTW-NN ODTW based Nearest Neighbors
GS Gold-Standard model

Chapter 6

BIM Basic Iterative Method
FGSM Fast Gradient Sign Method
PGD Projected Gradient Descent
JSMA Jacobian Saliency Map Attack
C&W Carlini and Wagner attack
DkNN Deep K-Nearest Neighbors
OSVM One-class Support Vector Machine

Chapter 7

DTW-NN DTW based Nearest Neighbors
DTW-SNN DTW based Smoothed Nearest Neighbors
DTW-BIO DTW based Bi-objective Optimization
DTW-FG DTW based Fast Gradient
DTW-IFG DTW based Iterative Fast Gradient

xxi

A good impression of myself
Not much to conceal
I’m saying nothing
But I’m saying nothing with feel

I simply am not here no way I...
Shut up be happy stop whining please

And because of who we are
We react in mock surprise
The curse of “there must be more”
So don’t breathe here,
don’t leave your bags

I simply am not here no way I...
Shut up be happy stop whining please

The dust in my soul
makes me feel the weight in my legs
My head in the clouds
and I’m zoning out
I’m watching TV
but I find it hard to stay conscious
I’m totally bored
but I can’t switch off

Only apathy from the pills in me
It’s all in me, all in you
Electricity
Its all in me, all in you
Only MTV and cod philosophy

We’re lost in the mall, shuffling
through the stores like zombies
What is the point?
What can money buy?
My hand’s on a gun and I find the
range, God tempt me
What did you say?
Think I’m passing out

Only apathy from the pills in me
It’s all in me, all in you
Electricity
Its all in me, all in you
Only MTV and cod philosophy

Water so warm that day
I counted out the waves
As they broke into surf
I smiled into the sun

The water so warm that day
I was counting out the waves
And I followed their short life
As they broke into the shoreline
I could see you
But I couldn’t hear you
You were holding your hat in the breeze
Turning away from me
In this moment you were stolen
There’s black across the sun

Porcupine Tree. Anesthetize.
Fear of a Blank Planet, Roadrunner Records, 2007.

1

Part I

Introduction, Motivation
and Objectives

3

Chapter 1

Learning from Time Series

A time series is a finite sequence of data observations indexed in order,
where each observation represents the value of an event recorded

in a structured way, e.g., at different time stamps, space positions, or
other systematical procedure that implies ordering. Accordingly, a multi-
dimensional time series (MTS) can be formally defined as:

X =

©­­­­­­­«

G11 . . . G18 . . . G1=
...

...
...

G31 . . . G38 . . . G3=
...

...
...

G�1 . . . G�8 . . . G�=

ª®®®®®®®¬
, (1.1)

where each observation is represented by the �-dimensional array:

x8 = (G18 , . . . , G38 , . . . , G�8) for 8 = 1, . . . , = (1.2)

and each dimension is denoted by the =-length sequence:

- (3) = (G31, . . . , G38 , . . . , G3=) for 3 = 1, . . . , �. (1.3)

When the phenomenon or process generating time series data produce
an unique outcome (i.e., when � = 1), we deal with uni-dimensional time
series. In this case, instead of Expression (1.1), a time series is given by:

- = (G1, . . . , G8 , . . . , G=) . (1.4)

Time series are ubiquitous over a large number of domains. Indeed,
processes underlying many real-world phenomena yield time series data.
For instance, daily records of surface deformations or displacements (geo-
physics), signals of the electrical activity of the heart (medicine), hourly
series of air pollutants (ecology), star light curve observations (astronomy),
gene expression sequences (microbiology), pixel histograms of binarized
images, and other similar sources of information. In the view of the preva-
lence and relevance of time series data in these fields, a natural interest
has developed within the research community around problems related to
this kind of data. Moreover, the advent of technological advances on the

4 Chapter 1. Learning from Time Series

collection, storage, retrieval and processing of large amounts of data has
ignited even further the seek of efficient means for analyzing time series
databases. As a consequence, the scientific community has intensified its
research efforts towards the formulation of knowledge extraction problems
defined on time series data, along with the design and validation of learning
models capable of solving them efficiently.

Besides being a sequence of ordered data points, time series are char-
acterized by an intrinsic property that makes them different from other
types of data. Successive measurements in time series are often correlated
with each other, which means that there is a dependence among observa-
tions. Therefore, time series are frequently considered as a whole entity,
not discrete collections of data points that can be analyzed independently
from each other. This has prompted the design of specific techniques that
exploit correlations among the constituent points of time series. The ex-
traction of hidden information from temporal data has given rise to a vast
research area widely known as time series analysis (TSA) [1], [2], which
includes a manifold of challenging learning problems such as forecasting,
classification and clustering. Before delving into these core learning prob-
lems in TSA, we first pause at the definition of streaming time series, which
play a fundamental role in the present Thesis.

1.1 Streaming Time Series
So far we have stated that time series emerge from processing the variables
of limited data-producing events. However, in many applications time se-
ries arise from dynamic processes, where data instances are streamed at
a high speed over time, continuously generating large volumes of samples.
Such samples must be analyzed as fast as possible so as to comply with
memory and space limitations of the computing device under consider-
ation. Illustrative examples of scenarios where stream data is produced
include electricity supply series (energy) [3], human activity signals is-
sued from wearable sensors (medicine) [4] or car flow sequences (traffic
forecasting) [5]. In this context, we define a streaming time series as a
concatenation of arriving data streams:

X=+1 = 〈X=,X=+1,=+1〉 ∈ R�×(=+1) , (1.5)

where 〈·〉 denotes serial concatenation; = + 1 is the total number of data
points received heretofore; and:

X=+1,=+1 = (x=+1, . . . , x=+1) ∈ R�×1 (1.6)

denotes the last received data chunk (also referred to as batch in the con-
text of stream data mining).

In addition to being generated by a potentially endless process, stream-
ing time series might also be non-stationary (i.e., the temporal structure of
the time series can switch over time). Formally, a time series is said to be
stationary when its statistical properties, such as mean and variance, do

1.2. Core Problems in Time Series Analysis 5

not depend on the time stamp at which it is measured, i.e., do not change
over time. Accordingly, stationary time series are those with neither trend
nor seasonal behavior, which can be achieved through differentiation. In
this Thesis we assume that each stationary interval has an associated event
that takes place for a limited period of time (e.g. a jump or a squat in
a human activity signals). Accordingly, a streaming time series can be
defined as a sequence of events over time, i.e.:

X= = 〈X=11 , . . . ,X
=^
^ 〉 ∈ R�×=, (1.7)

where time series -=^^ ∈ R�×=^ represents the ^-th event over the stream;
and = =

∑^
9=1 = 9 is the total number of observations in the stream so far.

Event changes or transitions occur at points = 9 + 1, in the limit between
two consecutive events (for instance, between two consecutive jumps or a
jump followed by a squat).

Based on the definitions as per (1.5) and (1.7), we can describe a
streaming time series as a succession of events whose observations are
received in small chunks over time. In adapting TSA procedures to such
evolving data, the research community is currently proposing new mod-
els that might efficiently deal with the challenges arising from streaming
data [6], [7]. In this context, related literature identifies two main strate-
gies: passive and active – also referred as blind and informed adaptation
methods respectively [8]. Passive adaptation strategies update models to
data continuously, without any explicit detection of change. To this end,
they resort to different mechanisms for making the model forget knowl-
edge acquired in the past, including sliding windows or diversity induction
methods [9]. Active strategies, in contrast, apply change detection proce-
dures to evaluate whether there has been a change as per the received data
points [10]. When a change is detected, part of the knowledge captured by
the model is reinitialized to learn from the upcoming stationary interval
in an agile fashion.

1.2 Core Problems in Time Series Analysis
In this section we introduce some of the most relevant problems related
to time series analysis, namely, time series forecasting [11], classification
[12], clustering [13] and segmentation [14]. This will allow the reader to
properly frame the contributions exposed in the remainder of the Thesis.

1.2.1 Time Series Forecasting
Time series forecasting is, arguably, among the most extensively studied
paradigms in time series analysis. This task consists of mining the rela-
tionships among the entries of a time series to make predictions of future

6 Chapter 1. Learning from Time Series

unobserved values. Specifically, given X (input) and . = (H1, . . . , H=) (tar-
get) time series, time series forecasting aims at learning a function:

5 : R�×= × R= −→ RX

(X, .) −→ (H=+1, ..., H=+X)
(1.8)

that uses historical data (X, .) to estimate X future values of the target time
series . , i.e. (H=+1, . . . , H=+X), where X ∈ N is referred to as the forecasting
horizon (i.e., the number of time steps estimated by 5). This problem
appears with special profusion in a diversity of application scenarios such
as traffic control [11], energy management [15], [16] or finance [17], among
others alike.

In this context, auto-regressive moving-average (ARMA) models are
one of the most basic time series forecasting approaches investigated in
the literature. By modelling the correlation among observations, these
models are used to predict future values of stationary time series. For
this purpose, ARMA models aims at fitting the coefficients of a linear
equation, where the inputs correspond to past time series entries (auto-
regression) and past prediction errors (moving-average) [18]. Although
ARMA models, along with all its variants [19], have been applied in a
wide range of domains, it has been often found that such models leave
some complex relations unexplained. In order to overcome this issue, in the
last decades supervised machine learning models for time series forecasting
have progressively gained momentum in the literature [16].

When addressing forecasting problems with supervised learning meth-
ods, time series are transformed into a collection of input-output pairs
(examples), that serve as a data showcase of the relationships between
observations over the history of the time series. By using these examples
as training data, supervised learning models learn a mapping between in-
puts (observation) and outputs (target). Beyond well-known supervised
learning models utilized profusely for time series forecasting (e.g. Sup-
port Vector Regression, Decision Trees, or regression ensembles), in recent
times forecasting via supervised learning has been dominated by Deep
Neural Networks (DNN), which have shown a superior modeling capacity
and predictive performance, specially when dealing with long-term recur-
rences. In this context, recent works have confirmed that Recurrent Neural
Networks (RNN) and Convolutional Neural Networks (CNNs), either in
isolation or in hybrid CNN-RNN architectures, are the most competitive
models when handling many challenging real-world tasks, including energy
market [20], solar radiation [16] or residential load forecasting [21].

1.2.2 Time Series Classification
Another relevant problem that frequently arises in TSA field is the time se-
ries classification (TSC) task. Specifically, this problem consist of learning

1.2. Core Problems in Time Series Analysis 7

a function 5 (a classifier):

5 : R�×= −→ {1, . . . , !}
X −→ ;

(1.9)

that predicts the category ; of a test time series X based on a set of training
series D = {(X: , ;:)} :=1 with elements, where X: ∈ R�×= represents the
:-th sample and ;: ∈ {1, . . . , !} its corresponding label.

One of the reasons for the importance of TSC lies on its capability to
model real-word problems involving time series data. For instance, let us
consider a scenario where heart beats in ECG (electrocardiogram) data are
categorized as normal or abnormal. In this context, a typical TSC problem
would consist of diagnosing heart diseases by examining the relationships
between labeled and new patient’s ECG time series data. Precisely, TSC
task is frequently applied to a wide range of fields, far beyond medicine
[22]–[24], including science [25], [26] and language sign recognition [27].

To develop the rules that distinguish a class label from each other, one
of the most frequently utilized classifier is the K-nearest neighbors (K-NN).
These broadly known models work on the basis of a predetermined distance
function. Then, when a K-NN classifier is queried for the label of a new
time series, the distance to each sample in the training set is computed,
so the label assigned to the new time series corresponds to the majority
class of its K closest training examples in the training database. In the last
decade, several works have proposed the use of K-NN classifier to deal with
the TSC problem in a variety of application domains [25], [28], [29]. In
[30], for example, the authors resort to K-NN for the classification of multi-
dimensional time series. Similarly, Chen et al. [25] use K-NN classifiers to
label the trajectories of moving objects, whereas Fard et al. [26] employ
them to classify surgical tasks and gestures.

In addition to K-NN, other types of classifiers for time series can be
found in the literature. Kampouraki et al. [31] evaluated the benefits
of heart rate variability feature based support vector machine (SVM) for
ECG heartbeats signal classification. In [32], the authors extract statis-
tical features from time series data to train a multi-layer neural network.
Deng et al. [33] presented the so-called time series forest classifier, an
efficient ensemble of decision trees classifiers that use entropy gain and a
distance measure to evaluate the quality of leafs splits. In this case, the set
of input samples consists of a collection of vectors composed by the mean,
variance and slope measurements extracted from different intervals of each
time series in the database. More recently, Pelletier et al. [34] have pro-
posed a deep learning classifier to categorize satellite image time series. In
this case, the authors employ convolutional layers to automatically learn
temporal features that allows for the label identification. Yakhneko et al.
[35] propose a Markov model that learns the relations among time series
data points to classify biomolecular and text sequences.

8 Chapter 1. Learning from Time Series

1.2.3 Time Series Clustering
Time series clustering consists of building methods that automatically par-
tition a time series database into groups (clusters), by minimizing the
within-cluster and maximizing the between-cluster dissimilarity between
time series. In fact, time series clustering and classification problems re-
semble each other. However, while classification procedures use the a priori
knowledge of the class of each time series to train the model, clustering
algorithms are built on unlabeled data. As a result, clustering procedures
are usually trained for different number of partitions, among which the set
of clusters with best performance with respect to a given evaluation metric
is chosen.

When addressing this problem, partitional clustering algorithms are
often used. Let D = {X: } :=1 ⊆ R�×= be an unlabeled database of
time series. Partitional methods consist of splitting D into K < non-
overlapping clusters1 C = {C1, . . . , CK} by minimizing the total within-
cluster dissimilarity error !� (·), given by:

!� (C1, . . . , CK) =
K∑

k=1

∑
X∈Ck

� (X,Ck) , (1.10)

where � (·, ·) denotes a measure of dissimilarity between sequences, and Ck
is a representative sequence of the k-th cluster minimizing

∑
X∈Ck � (X,Ck).

Two fundamental partitional algorithms are K-means [36] and K-medoids
[37]. Specifically for the K-means approach, � (·, ·) is the squared Euclidean
distance (ED), and Ck the mean of the sequences within the Ck cluster. In
contrast, for the k-medoids Ck represents the medoid time series among
the elements in the k-th cluster, and allows for more general formulations
of the measure of dissimilarity � (·, ·) beyond the ED. In addition to these
procedures, other basic time series clustering methods include hierarchical
approaches, which group data into tree-like structures; density-based mod-
els, where clusters are defined as high density areas separated by subspaces
of low density; or, grid-based algorithms, where clustering is performed
based on a grid-structure division of the space [13], [38].

Clustering is specially useful to examine unlabeled data. In many real-
word domains, the provision of labeled data for model development can be
extremely difficult or expensive to achieve in practice. However, unlabeled
data still possess information worth to be analyzed via clustering methods,
as it can reveal their underlying structure. As a result, several works have
been reported in this regard. For example, Räsänen et al. [39] apply K-
means algorithm to group small customers according to their power. In
this line, the authors in [40] utilized both K-means and K-medoids to group
synthetically generated sequences, ECG signals and electricity supply data.
More recently, Rodrigues et al. propose an incremental clustering system
for streaming time series [3]. Specifically, they presented a hierarchical

1We will utilize K to denote the number of clusters or the number of neighbors in
K-NN classifiers, with the context indicating whether we refer to one or the other.

1.2. Core Problems in Time Series Analysis 9

clustering approach that evolves with data based on a criterion to merge
and split clusters using a correlation-based dissimilarity measure.

1.2.4 Anomaly Detection
Anomaly detection hinges on analyzing data with a view towards discrim-
inating (or analyzing) strange observations called outliers or anomalies
[41]. In general, such observations correspond to unusual observations of
the underlying process, but they might also result from measurement errors
or recording failures. In other words, an outlier is a sample that diverges
from the overall pattern on a sample. Clearly, the presence of abnormal in-
stances can negatively affect the performance of predictive models, as it can
make the model focus excessively on such outliers and consequently, not
generalize properly to new unseen data instances. In another vein, outliers
may possess by themselves practical value, since they can be symptomatic
of an event of interest, as it often happens in industrial prognosis [42]. For
these reasons, the detection of anomalies is an essential step in many data
mining applications.

Anomaly detection has also been a core problem in TSA from the very
inception of the field. In particular, when dealing with time series data,
anomalies can be categorized as point, subsequence or time series outliers
[43], [44]. Mathematically, we consider the dissimilarity function between
sequences, � (·, ·), and let X = (x1, . . . , x=) denote a MTS with x8 ∈ R�.
Then, a data point x8 can be considered a point outlier if it deviates from
its expected value x8 by more than a threshold g > 0. That is, if:

� (x8 , x8) > g. (1.11)

Similarly, a subsequence with l points X0,0+l−1 ⊆ X (with 1 ≤ 0 ≤
= + 1 − l) can be regarded as an subsequence outlier if:

l−1∑
8=0

� (x0+8 , x0+8) > gsub, (1.12)

where gsub denotes a threshold value. In words, a subsequence is declared
to be a outlier if its points consistently diverge from their expected values,
which can be thought to be representative of the usual behavior of the
time series.

In this context, most point and subsequence outlier detection approaches
consist of i) learning a time series prediction model that compute expected
values of x8; and ii) developing a strategy to seek the best value of the
above thresholds g or gsub. An illustrative example of such a procedure is
presented in [45]. In this work, the authors develop a learning approach
composed of a deep convolutional neural network time series predictor,
where the threshold is fitted manually based on data.

An entire time series can also be considered an outlier: i) if, given
a database, there is a sequence that is significantly dissimilar to other
time series in the database, or ii) when a variable of a multi-dimensional
time series behaves oddly with respect to other variables. In order to

10 Chapter 1. Learning from Time Series

detect abnormal sequences in star light-curve databases, Rebbapragada
et. al [46] present a K-means clustering procedure that yields a ranked
list of outliers based on time series similarity to cluster centroids. In this
line, the authors in [47] present a performance comparison of a variety
of anomaly detection algorithms, including kernel-based (i.e. outliers are
detected based on the similarity among sequences), window-based (sub-
sequences are extracted from the time series, and anomalies are detected
based on the score assigned to each subsequence), and Markovian tech-
niques (probabilistic anomaly scores are issued from a Markovian model
fitted to historical data).

1.2.5 Segmentation and Change Point Detection
As has been mentioned at the beginning of this section, time series are
usually hard to process and analyze. Therefore, in TSA it is common
practice to first apply segmentation2 procedures to reduce the number of
data points in the series. Specifically, the objective of time series segmen-
tation is to construct an interval approximation of the time series that
makes it more computationally manageable while preserving, at the same
time, its essential structure.

The relevance of this problem in the TSA domain has increased over
the years, for two main reasons: first, because it contributes to an efficient
data management in terms of storage and evaluation; secondly, because it
allows the identification of structural changes in time series, e.g., change
points, stable periods, decreasing/increasing trend periods or primitive
patterns that provides meaningful information of the observed process.
Consequently, segmentation procedures have been utilized in many appli-
cation domains including financial data evaluation [48]–[50], path predic-
tion [51], genome sequence analysis [52] and gesture recognition [53], to
mention a few.

In order to undertake segmentation tasks, methods based on the Piece-
wise Linear Approximation (PLA) algorithm have been broadly used.
Namely, the goal of this type of segmentation algorithms is to generate
an approximate representation of data using a (fixed) number of non-
overlapping linear segments. PLA-based strategies are categorized into
three main groups: sliding-window, bottom-up and top-down. Roughly,
the idea behind sliding-window methods is to expand a segment, over the
set of observations within a window of fixed length, until some thresh-
old error (e.g., sum of residuals) is exceeded. Once the segment is fitted,
the window slides and the approximation step is repeated using the next
set of data points (not included in the previous step). On the other hand,
bottom-up approaches start with a fine-grained approximation of segments
along the time series. Such algorithms recursively merge adjacent segments
until a stopping criterion is met, which can be a threshold error, the num-
ber of total segments, or any other condition alike. Conversely, top-down

2Depending on the context, time series segmentation problem can also be referred
to as time series summarization or dimensionality reduction.

1.3. TSA Models for Data Mining 11

strategies start with the roughest approximation. In this case, the segmen-
tation task is solved by splitting the segments until the stopping criterion
is met. A detailed technical review along with an extensive empirical com-
parison of PLA-based segmentation algorithms can be found in [54].

From a different point of view, the authors in [49] proposed a segmen-
tation algorithm that detects critical points in financial series to segment
data according to a representative set stock-price patterns. In [52], a pro-
cedure for segmenting MTS is presented. More recently, the authors in [50]
present a novel PLA-based segmentation approach, that uses an evolution-
ary optimization algorithm to minimize the error between the original and
approximate series.

In the statistics literature, the segmentation problem is rather known
as change point detection. In this context, the objective is to find change
points, i.e., critical observations that represent abrupt changes or transi-
tions in time series. Usually, the change point detection problem is formu-
lated in terms of a hypothesis test, where the null hypothesis represents no
change, whereas the alternative hypothesis is that a change has occurred.
Different approaches have been proposed in the literature to address this
problem. Recently, an exhaustive review of most relevant change point de-
tection algorithms has been summarized in [14]. In addition, the authors
of this survey analyze advantages and disadvantages of existing techniques,
and present open research challenges and future directions related to the
change point detection problem.

1.3 TSA Models for Data Mining
In the previous sections we have exposed TSA problems that lie at the
core of TSA, along with a excerpt of works that address such problems
from different technical perspectives. Depending indeed on the way such
research works tackle TSA problems, the current literature classifies TSA
learning procedures into three major categories: approaches based on ex-
tracted features, generative models built for the time series under analysis,
and methods based on raw time series data [2], [12], [13], [55]. In what fol-
lows we provide a brief introduction to each of these categories, concluding
with similarity-based approaches. The present Thesis gravitates on this
latter family of learning algorithms for time series.

1.3.1 Feature-based Approaches
This class of models consists of learning algorithms built on feature vectors
extracted from time series [10], [31], [32]. Given a TSA problem and a
database, models of this type are constructed in two steps. First, each time
series is transformed into a vector of features that preserve the essential
information of the series. Secondly, a predictive model (e.g. a decision
tree, a neural network, a K-medoids) is learned based on the extracted
feature vector.

Two type of features can be found in the TSA literature: global and
subsequence [12], [56], [57]. Global features refer to transformations that

12 Chapter 1. Learning from Time Series

capture dynamical properties of whole time series into a single variable.
An example of a global feature-based classifier is that in [32]. In this work,
the authors propose a multi-layer perceptron classifier based on four di-
mensional feature vectors that include statistical information of the time
series (specifically, mean, variance, skewness and kurtosis). Subsequence
features are instead designed to capture local characteristics of the series.
In this case, features are extracted from different intervals of the time se-
ries. In this context, Deng et al. [33] propose the so-called time series forest
classifier, an efficient ensemble of decision trees classifiers whose input is
drawn from a collection of feature vectors composed by the mean, variance
and slope measurements extracted from different intervals of each time se-
ries in the database. Interestingly, feature-based approaches have been
also proposed for streaming time series. Cavalcante et al. [10] have pro-
posed Feature Extraction for Explicit Concept Drift Detection (FEDD), a
concept drift detector method that identifies changes in time series data
generator models. Based on the feature vector similarity given by Pearson
correlation distance (or cosine distance), this method monitors the evolu-
tion of sequence features in order to test whether a concept change has
occurred over the streaming time series.

1.3.2 Model-based Approaches
As opposed to feature based approaches, model-based learning methods
assume that each time series under analysis is drawn from an generative
model (for instance, a Hidden Markov Model or an auto-regressive model).
To this end, the first step when constructing a model-based learning ap-
proach is to choose the underlying generative model. Then, the parameters
of the model or probability distribution(s) are learned by finding the values
of such parameters that best fits them to the time series of the database.

Examples of model-based procedures include the aforementioned hid-
den Markov models, auto-regressive methods and kernel models, among
others. This family of approaches is exemplified by the work by Yakhneko
et al in [35], where they resort a Markov model in order to classify biomolec-
ular and text sequences. A time series clustering approach is presented in
[58], in which a mixture of ARMA models is used to group time series in
the database. Other model-based methods are outlined in [13], [14], [59].

1.3.3 Similarity-based Approaches
Finally, similarity-based models, also referred to as shape-based or raw-
data-based models [13], [55], [59], are procedures build on raw time series
data. In this case, the similarity among time series is computed directly
from the time series data, without relying on any intermediate modeling or
preprocessing stage. The core idea of these models lies in the definition of a
measure of distance/similarity among time series which, in some contexts,
is used to replace the inner similarity measures of conventional procedures
such as K-NN, K-medoids or SVMs. That is, similarity-based methods
exploit the measure of similarity among time series to adapt predictive
models to temporal data.

1.4. Elastic Similarity Measures 13

Two main groups of similarity measures can be used when constructing
similarity-based models for TSA: lock-step and elastic similarity measures
[55] (see Figure 1.1). The family of lock-step similarities, including Eu-
clidean or Manhattan distance, perform point-to-point comparison. Gen-
erally, lock-step measures are easy to implement and run efficiently, but
they cannot manage highly recurrent mismatches/gaps between time se-
ries, nor handle sequences with different lengths. On the contrary, elastic
similarity measures (ESMs), which include, among others, dynamic time
warping (DTW) [60], allow for more flexible comparisons. In doing so,
ESMs shrink or stretch the time axis in order to find the best alignment
between the time series under comparison, and obtain the smallest distance
between them. As recurrently highlighted in the literature, numerous ex-
periments have provided empirical evidence of the potential of similarity-
based classifiers. However, these results have become more evident when
the chosen measure of similarity belongs to the family of ESMs, specially
when dealing with databases and tasks that intuitively require the shrink-
ing/stretching properties of these measures (e.g. action recognition with
gestural time series data, where the discriminability of the action being
performed should not depend on the time or speed at which the gesture
is performed). Therefore, in many similarity-based methods ESMs have
consolidated themselves as the similarity measures of reference.

(a) Lock-step. (b) Elastic similarity measure.

Figure 1.1: Observation alignment of lock-step and ESMs.

This type of algorithms have played a central role in a diverse collec-
tion of contexts and TSA scenarios [25], [26], [28]–[30]. Particularly, when
addressing supervised problems (like classification) results drawn from a
large number of experiments have shown that ESM based approaches (com-
monly under the DTW) are difficult to outperform [12], [61]. This Thesis is
framed within this family of ESM-based distance models for TSA. There-
fore, we complement this introductory chapter with an overview of the
mathematical foundations of ESMs, which is provided in the next section.

1.4 Elastic Similarity Measures
The mathematical formulation of ESMs can be expressed as an optimiza-
tion problem. As we have already mentioned, the essence of ESM resides
in the ability to stretch or compress the time axis of time series at hand,
so as to minimize the influence of local time shifts in the resulting mea-
sure of similarity. To this end, ESMs are based on a restricted number
of time series alignments or paths, to each of which a weight is assigned.

14 Chapter 1. Learning from Time Series

These path weights represent the degree of dissimilarity of each proposed
alignment. Hence, the optimization problem posed by ESMs seeks to find,
among the all possible time series alignments, that of minimum weight.

1.4.1 Definition
For simplicity we consider two uni-dimensional time series - = (G1, . . . , G<)
and . = (H1, . . . , H=), where < and = represent the number of points in each
sequence. Let a path ? be the sequence of (8, 9) ∈ [1, <] × [1, =] pairs that
represent the alignment between observations G8 ∈ - and H 9 ∈ . . On this
basis, a path ? = {(81, 91), ..., (8&, 9&)} of length &, is considered to be an
allowed path if the following conditions are satisfied:

(81, 91) = (1, 1), (1.13)
(8&, 9&) = (<, =); and (1.14)
(8@ − 8@−1, 9@ − 9@−1) ∈ {(1, 0), (1, 1), (0, 1)} for @ = 2, ..., &, (1.15)

namely, if ? matches every observation in time series - and . from their
beginning to their end, without skipping any point or going steps backward
in time. A sketch of this process is illustrated in Figure 1.1. In order
to select among the set of paths satisfying the above three conditions, a
measure of dissimilarity or cost function 2(G8 , H 9) among G8 and H 9 must
be set. As we will later show, the selection of this dissimilarity sets the
particular ESM under choice. On the basis of this cost function 2(G8 , H 9),
we define the weight of an allowed warping path as:

F(?) =
∑
(8, 9) ∈?

2(G8 , H 9), (1.16)

i.e., as the aggregation of the costs of the (8, 9) pairs that compose the
path ?. This last definition allows stating the definition of a generic ESM.

Definition 1 Given a cost function 2(G8 , H 9), the ESM between time series
- and . is defined as:

� (-,.) = min
?∈P

F(?), (1.17)

where P is the set of allowed paths in the [1, <] × [1, =] lattice.
Figure 1.2a shows, for two simulated time series, a small set of 3 allowed

paths indicated by the dashed, dotted and solid lines. In accordance with
the above definition, these paths are formed by matched pairs that go
from (1, 1) to (<, =) = (10, 10) concatenating ↑,↗,→ unitary steps as per
(1.15). Besides, if we compute the weight of all ? ∈ P, note the optimal
path corresponds to the solid path, for which � (-,.) = 0.

For the sake of simplicity, we will hereafter use �<,= instead of � (-,.),
to denote the ESM between - = (G1, . . . , G<) and . = (H1, . . . , H=). Simi-
larly, 28, 9 will be adopted to denote the cost function 2(G8 , H 9), and

?∗ = argmin
?∈P

F(?) (1.18)

1.4. Elastic Similarity Measures 15

0 0 0

0

0

0

0

1 1 1

1

1

12 2 2

2 1.5

0.5

0.5 1

0

0

0.5

1

1

2 1 0

0 1

1 2

1.50.50.50.50.51.51.51.5

0.5

1

1

1 0

0

0

1 2

110

0 1 1

11

0111

0 0 0 1 2 1.5 2 1 0

1

012

0

1

2

1.5 1.5 1.5 1.50.5 0.5 0.5 0.5 0.50

1 1 1 1 1 10.50 0

0.512 2 2 0

1 0.50

X

Y

`

(a) Alignment and Sakoe-Chiba band.

0 0 0

0

0

0

0

0

1 1 1

1

1

1

1

3 3 3

3 4.5

1.5

0.5 1.5

1.5

1.5

1.5

1.5

5.5

2.5

7.5 8.5 8.5

2.5 3.5

2.5 4.5

310.5

0.5 1 3

0.51.54.54.54.5

2666

7 7 7 2 2 0.5 1 1 2

2

1.5

2

2

3

4

9 9 9 1 1 0

0

0

1 3

111

1 2 1

331010

3111111

11 11 4 5 3.5 3 1 0

10

0

1

2 Y
012

X

11

(b) Recursive computation.

Figure 1.2: ESM measure between two time series - and . with < = = = 10.
The cost function corresponds to the ED, 2(G8 , H 9) = | |G8 − H 9 | |2. (a) Different
examples of allowed paths over [1, 10] × [1, 10] lattice, where cell values show the
cost function and grey areas the Sakoe-Chiba constraints. Under Sakoe-Chiba,
the dashed path is forbidden, consequently it is excluded from the search space

P. (b) ESM computation using dynamic programming methods.

to denote the optimal warping path, i.e., the sequence of alignments that
yields the minimum weight, hence �<,= =

∑
(8, 9) ∈?∗ 28, 9 .

1.4.2 Computation
To solve the problem posed in (1.17) we can resort to a brute force ap-
proach, that is, we can compute all allowed paths to find among them that
with the minimum weight. However, in term of computational efficiency
this is not the best option to solve the problem above, since the number of
allowed paths grows exponentially with the size of the time series < and
=. Instead, dynamic programming techniques are often utilized [62], by
which the ESM is computed by the recursion:

�<,= = 2<,= +min{�<−1,=, �<−1,=−1, �<,=−1}, (1.19)

where �0,0 = 0 and �0, 9 = �8,0 = ∞ for 8 = 1, 2, ..., < and 9 = 1, 2, ..., =.
This computation technique is shown in Figure 1.2b, where each cell (8, 9)
corresponds to �8, 9 , the red cell corresponds to �<,= and the red line
illustrates the optimal path. When using Expression (1.19), ?∗ can be
obtained by going backwards across the matrix, with a computational
complexity of O(= · <).

ESM Complexity Reduction Strategies

Although the recurrence in (1.19) reduces the computational complexity
of ESM to O(< · =), it is still unaffordable in many practical situations
where time series are significantly large. In order to overcome this issue,
several techniques have been proposed in the literature either to reduce the

16 Chapter 1. Learning from Time Series

`
(a) Sakoe-Chiba

`

`
(b) Itakura parallelogram

Figure 1.3: Illustration of most frequently used ESM complexity reduction
techniques.

number of ESM computations in learning methods [63]–[65], or to speed
up the ESM computation itself by coarsening the resolution of the time
series at hand [66], [67].

In this context, the Sakoe-Chiba [68] and the Itakura parallelogram
[69] methods have been commonly applied in the field. To reduce the
number of operations required in the ESM computation, these techniques
limit the number of paths in P simply by adding some constraints to
its definition. In particular, the paths considered by these strategies are
composed of (8@ , 9@) pairs that must satisfy |8@ − 9@ | ≤ 6(8, 9) ∀@ = 1, ..., &,
where 6 : N2 → N is the constraint function:

• In the case of Itakura parallelogram (see Figure 1.3b), 6(8, 9) is defined so
that the lattice [1, <] × [1, =] is limited to a parallelogram with 6(1, 1) =
6(<, =) = 0.

• In the case of Sakoe-Chiba (see Figure 1.3a), 6(8, 9) = ℓ for any (8, 9)
point in [1, <] × [1, =] lattice. Note that, in this way, 6(8, 9) restricts the
lattice to a band around the lattice diagonal, for which ℓ is referred to
as the band width.

An illustrative example of the Sakoe-Chiba constraints is shown in Figure
1.2a for ℓ = 3, where shadowed cells cover forbidden areas for the align-
ments. Note that the discarded paths are on average those of higher length
and probably with higher weights. In fact, the application of the Sakoe-
Chiba band or the Itakura parallelogram permits to compute the ESM in
linear time with respect to the length of the time series.

At this point it is important to highlight that this type of constraints
can also improve the performance of ESM-based classifers. This fact was
proven in [70], where the effect of the Sakoe-Chiba band was analyzed by
measuring the accuracy of DTW-based 1-NN classifiers over a benchmark
of seven time series datasets. By varying the value of the band width ℓ, the

1.4. Elastic Similarity Measures 17

authors showed that narrow constraints improve in general the accuracy
of the classifier.

1.4.3 ESM Set and Cost Functions
Although the ESMs family is a broad set of proposed measures of similarity,
in this Thesis we focus on the most commonly used alternatives, namely,
the dynamic time warping (DTW [60]), the edit distance (EDIT [71]), the
edit distance for real sequences (EDR [25]) and the edit distance with real
penalty (ERP [28]). The most remarkable differences among these ESMs
reside in the data type they can handle, as well as in the definition of the
cost function 28, 9 = 2(G8 , H 9) (Table 1.1):

1. For the DTW, the cost function corresponds to the ED, or alternatively
to the squared ED. Consequently, the DTW is utilized to calculate the
similarity between two numerical time series, namely, with real-valued
data points.

2. From a different perspective, the EDIT distance quantifies the similarity
between two character sequences by counting the number of operations
needed to convert one string into another. As shown in Table 1.1, the
penalty for an operation is usually set to 1. Therefore, this ESM is
suited for sequences of characters (symbols) rather than real-valued
time series.

3. Given two numerical time series, EDR and ERP also count the number
of operations needed to convert two sequences, where the equality holds
whenever the absolute difference between the two time series falls within
the threshold X > 0. Given the definitions in Table 1.1, we note that:

• Just as in the EDIT distance, the cost of each EDR operation is 1.
• The penalty for ERP is proportional to the ED.

Table 1.1: Different ESMs, their cost function 28, 9 = 2(G8 , H 9) and data type.

Elastic Similarity Measure Cost Function Data Type

Dynamic Time Warping (DTW) 2(G8 , H 9) = | |G8 − H 9 | |2 Numerical

Edit Distance (EDIT) 2(G8 , H 9) =

{
0 if G8 = H 9
1 otherwise Character

Edit Distance for Real sequences (EDR) 2(G8 , H 9 ; X) =

{
0 if |G8 − H 9 | ≤ X
1 otherwise Numerical

Edit Distance with Real Penalty (ERP) 2(G8 , G 9 ; X) =
{
0 if |G8 − H 9 | ≤ X
|G8 − H 9 | otherwise Numerical

We have hitherto elaborated on the context in which the current Thesis
is framed. ESMs embody a notable branch of literature and activity in the
field of time series analysis. However, there is still a long road ahead
in what refers to the adaptation of these measures of similarity between
time series to new scenarios and paradigms. There lies indeed the true
contribution of the work presented in this Thesis, which is exposed in the
following Chapter.

19

Chapter 2

Motivation and Objectives

Regardless the outstanding results reported for distance-based models when
using ESMs, in the last decade several works have pointed out the need
for novel similarity proposals that address new paradigms, problems and
needs related to time series. Some of these identified challenges aim at
the analysis of multi-dimensional time series, learning from time series in
stream environments, and the proposal of new TSA approaches that cope
with emerging issues in data mining and machine learning [1], [2], [8]. This
Thesis finds its motivation precisely in the adaptation of existing elastic
similarity measures to these challenges, achieving new insights and novel
technical approximations in the following research lines:

• Measuring the similarity among multi-dimensional time series
(MTS). ESMs have been set as the choice when uni-dimensional time
series are considered. However, this is not true for MST (namely, when
the points of a time series have several dimensions), where the generaliza-
tion of ESMs is all but obvious. A straightforward approach to account
for the multidimensionality of MTS in the similarity definition could be
to treat dimensions separately (independently) or jointly (dependently).
However, disregarding whether the independent or the dependent ap-
proximation is taken, the resulting ESM is not necessarily suitable for
practical applications where latent variables may result in some kind
of relationship among MTS dimensions. This dichotomy has instigated
the interest of the TSA community in the definitions of new ESMs capa-
ble of capturing and exploiting such inter-dimension dependencies, yet
without a clear answer to date.

• Adapting ESMs to stream learning settings. In off-line (batch)
settings, ESMs have been shown to be very effective when dealing with
classification tasks due to their ability to handle time distortions and
mitigate their effect on the resulting measure. In the streaming setting,
where data increases continuously over time and not necessarily in a
stationary manner, stream classification approaches are required to be
fast, with limited memory consumption and capable of adapting to dif-
ferent stationary intervals. In this sense, the computational complexity
of ESMs, and their lack of flexibility to accommodate different station-
ary intervals, make these similarity measures not compliant with the
aforementioned requirements.

20 Chapter 2. Motivation and Objectives

• Evaluating the role of ESMs in the robustness of classification
models against adversarial attacks. It is widely acknowledged that
TSA procedures, just like machine learning models in general, are built
by assuming that data remain statistically stable over time. Indeed,
this hypothesis helps models learn from data patterns, and ensures the
successful predictive performance of the models (that is, models can gen-
eralize their output to new unseen data). This design principle, however,
poses an inherent risk in terms of robustness. In the last few years, sev-
eral works have warned that models built on classical procedures that
assume stationary data can be easily misled by adding small perturba-
tions to the input examples [72]. The study of this vulnerability and the
derivation of safeguard strategies to make them robust against such at-
tacks fall within what has been coined as Adversarial Machine Learning
(AML). In this context, major efforts have been made lately to overcome
this issue, especially in the field of deep learning and image classification,
where such attacks may cause serious security issues [73]–[75]. However,
the intersection between ESMs and AML is still uncharted as per the
current state of the art, despite the susceptibility of EMS-based mod-
els to adversarial attacks, or the existence of prior work dealing with
the extraction of sequence features from image data that could suggest
potential synergies between both realms.

2.1 Main Contributions of the Thesis
The motivation and contributions of the present dissertation find their
roots in the research lines exposed in the previous section. Specifically,
the Thesis presents a number of novel procedures, techniques and tools
that take a step further over the state of the art in TSA, not only in
terms of their originality, novelty and performance with respect to other
algorithmic counterparts, but also by extending the applicability of ESMs
towards two emerging topics in Machine Learning: stream learning and
AML. These contributions are discussed in detail in Part II, including
the necessary literature background to properly frame each contribution,
and critically examining experimental results obtained to shed empirical
evidence on their performance. A brief overview of the contents of each
chapter in Part II is next provided.

2.1.1 Similarity Learning for MTS Classification
Chapter 3 aligns with the first research lines described at the beginning
of this Chapter. It elaborates on the design of an ESM for comparing
MTS series within a time series classification problem. As mentioned pre-
viously, related works in the field of TSA have widely agreed on ESMs
as the measures of reference when classifying uni-dimensional time series.
However, the possible statistical coupling between their different dimen-
sions makes the generalization of these measures to the multivariate case
not straightforward to formulate. In this context, we present a simple
multi-dimensional DTW learning algorithm that finds the best weighted

2.1. Main Contributions of the Thesis 21

combination between two different terms: (i) a dependent DTW, where
the warping path is build on alignments of multi-dimensional data points
(that is, MTS are treated as a whole); and (ii) an independent DTW,
where a warping path is computed for each MTS dimension (i.e. MTS are
regarded as a collection of independent uni-dimensional time series). In
doing so, a benchmark of four heuristic wrappers are used to evolve the
set of weighting coefficients towards maximizing a cross-validated measure
of performance of NN classifiers using the weighted similarity measure.
The performance of the proposed approach is validated over databases
widely utilized in the literature related time series analysis. We conclude
that the obtained performance gains can be enlarged by properly weighing
the influence of each dimension in the alignments of the dependent DTW
warping path.

2.1.2 On-line ESMs for Streaming Time Series
The main objective of Chapter 4 is to adapt ESMs to the requirements
of stream settings. In many real-world applications, data are produced at
high speed creating massive amounts of samples that must be analyzed as
fast as possible, and then discarded, so as to deal with memory limitations.
In addition to the (time and memory) computational complexity, the struc-
ture of arriving samples may change over time, as occurs in streaming time
series when transitioning among successive events. Consequently, conven-
tional procedures for off-line learning are not valid for the on-line analysis
of evolving data. One possible way to overcome this issue is to accommo-
date ESMs to on-line scenarios. In this chapter we propose an adaptation
of the DTWmeasure, which comprises i) a forgetting mechanism and ii) an
incremental way of computing this ESM. The former makes the similarity
consistent with passive adaptation strategies for streaming time series, by
granting more importance in the computation of the similarity measure to
recent observations. The latter reduces the computational complexity by
avoiding unnecessary computations. In order to assess the performance
of the proposed similarity measure, two different experiments are carried
out. The first aims at showing the efficiency of the proposed adaptation in
on-line scenarios. To this end, we calculate and compare the computation
time for the elastic measures and their on-line adaptation. By analyz-
ing the results drawn from a distance-based streaming machine learning
model, the second experiment intends to show the effect of the forgetting
mechanism on the resulting similarity value. The experimentation shows
that the proposed ODTW comply with the computational requirements
and flexibility constraints imposed by the complexity of streaming data.

2.1.3 Learning from ODTW Features
Chapter 5 addresses the problem of learning a OESM-based predictive
model over a streaming time series. However, in this case we resort to an
active strategy when adapting the model to the non-stationary characteris-
tics of the streaming time series. In off-line scenarios, where training data
are fully available, a predictive model comes to operation after learning the

22 Chapter 2. Motivation and Objectives

value of its parameters from the stored data. On the contrary, in on-line
settings models are built and put into service continuously, while stream
data are received. In most practical cases, data chunks received and used
for model updating become eventually non-stationary, as happens in the
transition between events in streaming time series. Furthermore, when
stream data points have complex relationships as in time series, adap-
tation and prediction stages get even more involved due to the trade-off
between the characterization and exploitation of this time correlation, and
the adaptability to changes. This observation is even more relevant when
such predictive models are based on the similarity between time series pat-
terns, since the characterization of the temporal structure of the streaming
time series is essential for the performance of the algorithms.

Based on these premises, Chapter 5 presents an on-line model for de-
tecting event completions in streaming time series based on ODTW mea-
surements. The model, coined as pattern end detector (PED), splits the
streaming time series into meaningful patterns, on which we can employ
conventional (off-line) models to solve the classification task under con-
sideration. Specifically, the problem addressed in this chapter consists
of learning time series label transitions in streaming classification prob-
lems. Hence, when a streaming series is to be classified, the proposed
PED model learns to detect changes over the stream based on features ex-
tracted from ODTW measurements between incoming samples. The result
of this analysis is exploited for better adapting the ODTW-based classifier
to upcoming stationary intervals. The performance of the proposed PED
model is assessed and discussed over 10 benchmark streaming time series
classification problems, drawing interesting insights on the detection accu-
racy of the PED model, as well as the effect of the detection latency on
the performance of the on-line classifier.

2.1.4 Using TSA to Protect Deep Neural Networks
The goal of Chapter 6 is to evaluate the feasibility of using TSA proce-
dures to defend image DNN classifiers from adversarial attacks. Given
the unprecedented capacity to learn patterns from raw data, DNNs have
become the de facto modeling choice to address complex machine learning
tasks more specifically, in computer vision and speech recognition fields.
However, recent works have empirically demonstrated that DNNs might
undergo severe security issues when being fed with adversarial samples,
namely, intelligently manipulated inputs crafted to confuse their output.
In order to overcome this issue, a major effort has been made to find
methods capable of making deep learning models robust to manipulated
inputs. This work presents a new perspective for improving the robustness
of DNNs in image classification. In computer vision scenarios, adversarial
images are crafted by manipulating legitimate inputs so that the target
classifier is eventually fooled, but the manipulation is not visually distin-
guishable by an external observer. The reason for the imperceptibility of
the attack is that the human visual system fails to detect minor varia-
tions in color space, but excels at detecting anomalies in geometric shapes.

2.2. Structure of the Thesis 23

We capitalize on this fact by extracting color gradient features from in-
put images at multiple sensitivity levels to detect possible manipulations.
We resort to a deep neural classifier to predict the category of unseen
images, whereas a discrimination model analyzes the extracted color gra-
dient features with time series techniques to determine the legitimacy of
input images. The performance of our method is assessed over experiments
comprising state-of-the-art techniques for crafting adversarial attacks. Re-
sults corroborate the increased robustness of the classifier when using our
discrimination module, yielding drastically reduced success rates of ad-
versarial attacks that operate on imperceptible color modifications on the
whole image, rather than on localized regions or around the existing shapes
of the image.

2.1.5 Attacking ESM-based Classifiers
In line with the previous problem, Chapter 7 evaluates AML attacks over
ESM-based time series classifiers. We have previously emphasized that
AML studies the robustness of classification models when processing data
samples that have been intelligently manipulated to produce a change in
their output. Techniques aimed at crafting such adversarial samples ex-
ploit concrete vulnerabilities of the classifier at hand, by which pertur-
bations can make a given data instance to be wrongly classified. In this
context, the literature has so far gravitated on different AML strategies
to modify data instances for diverse learning algorithms, in most cases
for image classification. The work in this chapter builds upon this back-
ground literature to address AML for distance-based time series classifiers
(e.g., nearest neighbors), in which adversarial samples are intelligently de-
vised by taking into account the measure of similarity used to compare
time series. In particular, we propose different attack strategies relying
on guided perturbations of the input time series based on gradient infor-
mation provided by a smoothed version of the distance based model to
be attacked. Furthermore, we formulate the AML sample crafting process
as an optimization problem driven by the Pareto front defined over 1) a
measure of distortion of the input sample with respect to its original ver-
sion; and 2) the probability of the crafted sample to confuse the model.
In this case, this formulated problem is efficiently tackled by using multi-
objective heuristic algorithms. Several experiments are discussed so as to
assess whether the crafted adversarial time series succeeds when confusing
the distance-based model under target.

2.2 Structure of the Thesis
This Thesis is divided into three main blocks. Part I consists of Chapters
1 and 2, and provides a brief preface and an overview of the fundamental
elements of TSA. Although the reader is advised to first inspect Chapter
2 for a better understanding of the remainder of the Thesis, an expert in
TSA problems with deep knowledge on ESMs can pass over this chapter
and use it as a reference, only if needed. Part II, comprising Chapters 3

24 Chapter 2. Motivation and Objectives

to 7, embodies the main scientific contributions of the Thesis. There is
no need for reading chapters within this part sequentially in order, since
they are arranged as per the research line under consideration. As such,
Chapter 3 is independent from the others and deals with metric learning
for time series classification. On the other hand, Chapters 4 and 5 address
the adaptation of ESMs to stream settings. Part II consists of Chapters 6
and 7, which cover the use of ESMs in the context of AML. Finally Part
III, which only contains Chapter 8, summarizes the main contributions of
the dissertation, and outlines several research directions stemming from the
findings presented throughout the Thesis. Figure 2.1 schematically depicts
the different reading paths of the Thesis, depending on the background and
specific interests of the reader.

Part II

Multi-dimensional
Time Series
Classification

Chapter 3

Similarity learning for
MTS classification

Learning from
Streaming Time Series

Chapter 4

On-line Elastic
Similarity for Streaming

Time Series

Chapter 5

Learning from
ODTW features

Elastic Similarity Measures
in Adversarial Settings

Chapter 6

Building Robust Image
Classifiers using ESMs

Chapter 7

Adversarial Attacks for
Time Series Classification

Contributions

Part I
Introduction

Chapter 1

Learning from Time Series

Chapter 2

Motivation and Objectives

Part III
Conclusions

Chapter 8

Conclusions and
Future Research Lines

Figure 2.1: Diagram showing the structure of the Thesis.

2.3 Notation
Several notation conventions have been established in Chapter 1 to de-
scribe the formulation and experimentation shown in Chapters 3 to 7.
However, for the sake of readability of the contents in place, notation may
not be consistent at certain points of these chapters. Nevertheless, at such

2.3. Notation 25

points the notation abuse will be clarified explicitly when unclear from the
context and the common knowledge in the field.

27

Part II

Contributions

29

Chapter 3

Similarity Learning for
Multi-Dimensional Time
Series Classification

In previous chapters we have emphasized on the outstanding performance
of DTW-based TSA methods (see Section 1.3.3 and 1.4), as evinced by
the upsurge of literature dealing with their application to different TSA
problems. We have also stressed on the fact that DTW has surpassed
several similarity and distance proposals to become the similarity measure
of choice in many raw-data based TSC models for uni-dimensional time
series data [12]. However, in the multi-dimensional case such a superior
performance is not that clear. In this regard, the relationship among
the dimensions of the time series should be also considered. Thus, the
generalization of the DTW similarity measure to the multi-dimensional
case spans several challenges that remain insufficiently tackled to date.
This chapter focuses on this research line by presenting an adaptation of
the DTW measure for its use in multi-dimensional time series classification
problems.

When measuring the similarity among MTS, we can consider each
multi-dimensional sequence as a collection of uni-dimensional series thus,
performing a DTW for each dimension of the problem independently. On
the contrary, we can consider MTS as indivisible sequences. Thereby,
DTW is computed at once so that the warping path is built on alignments
among multi-dimension data points. We call these two approaches the
independent and dependent DTW, respectively. On this basis, the multi-
dimensional measure of similarity introduced in this chapter consists of a
weighted combination between the independent and dependent DTW ap-
proaches. The optimization of these weights can be conceived as a sort
of flexible feature weighting wrapper, by which the weights can be inter-
preted as the relative importance of the dimensions of the time series for
the TSC at hand. We now delve into the fundamentals of this approach.

30 Chapter 3. Similarity Learning for MTS Classification

3.1 Introduction and Related Work
In Chapter 1 we have defined the DTW as a similarity measure that
stretches and/or shrinks time series along time – prior to their distance
computation – in order to accommodate local time shifts/warps and obtain
the minimum distance between the series at hand. The recurrent equation
to compute the DTW as per Expression (1.19) employs as pairwise dis-
tance (cost function) the standard Euclidean distance (see Table 1.1). To
develop the multi-dimensional version of this measure, in this section we
consider the squared Euclidean distance. Accordingly, the DTW between
the uni-dimensional time series - = (G1, .., G<) and . = (H1, ..., H=) is:

DTW (-,.) = √W<,=, (3.1)

where W<,= is the squared elastic similarity defined as:

W<,= = 2(G<, H=) +min
{
W<−1,=, W<−1,=−1, W<,=−1

}
(3.2)

with W0,0 = 0 and W8,0 = W0, 9 = ∞ for 8 = 1, . . . , < and 9 = 1, . . . , =, and
2(G<, H=) = (G< − H=)2 is the squared cost function.

When the points of a time series have several dimensions, we deal with
multi-dimensional time series (MTS). In this context, let X denote a MTS
with � dimensions, where each point is given by x8 = (G18 , . . . , G38 , . . . , G�8),
and each dimension by the <-length sequence - (3) = (G31, . . . , G38 , . . . , G3<)
as per Equation (1.1). In this context, a straightforward approach to ac-
count for the multi-dimensionality in the above measure of similarity is to
treat dimensions separately (independently) or jointly (dependently). The
first approach assumes that all dimensions of the time series are indepen-
dent, yielding a measure of warping similarity computed as the sum of the
DTW for each dimension, i.e.:

DTWI (X,Y) =
1

�

�∑
3=1

DTW
(
- (3) , . (3)

)
. (3.3)

However, this independence does not necessarily hold in practical applica-
tions. In fact, due to latent variables, it is common in multi-dimensional
problems to present complex relations among the dimensions of the MTS.
In consequence, the dependent DTW considers all dimensions straight-
away using, as the inner cost function, the multi-dimensional version of
the squared Euclidean distance. Then, the dependent measure of similar-
ity DTWD (X,Y) is obtained by means of the recurrence in Expressions
(3.1) and (3.2), where the cost function is given by:

2 (x<, y=) =
�∑
3=1

(G3< − H3=)2 . (3.4)

As aforementioned in the introduction of this section, note the main dif-
ference between DTWI and DTWD lies in the number of warping paths.
That is, while the former performs a warping path for each dimension of

3.1. Introduction and Related Work 31

the problem, the latter computes a single path that consider all dimensions
at once.

Beyond this naive approach to account for the multi-dimensionality of
time series in the DTW computation, the design of a similarity that prop-
erly captures and exploits the exiting relations between dimensions remains
an active research area in the field of multi-dimensional time series classifi-
cation. Bankó and Abonyi in [27] presented a classification algorithm that
combines DTW and PCA-based segmentation in a hybrid scheme, coined
as correlation based dynamic time warping (CBDTW). The classification
algorithm segments MTS homogeneously by using, as the segmentation
cost function, the Hotelling’s)2 statistic (i.e. the MTS distance to the
origin in the PCA space), or the & reconstruction error, which represent
the information loss between the original data and its projection in the
space of principal components. Once the segmentation is done, the DTW
is computed. Similarly, [76] proposes a simple algorithm which selects the
DTW measure – either independent or dependent – that scores best when
predicting the labels, using :-NN, of the time series dataset under analysis.
Interestingly for the scope of this chapter, the authors in [76] discovered
that the threshold to select one distance or another depends on the train-
ing data used for its calculation, which ultimately unveils that practical
databases feature a mixture of independence and dependence relationships
between their dimensions that should be exploited in the definition of the
distance between series. Recently, Mei et al. in [77] proposed a similar-
ity measure called Mahalanobis distance based DTW (MDDTW), which
combines Mahalanobis distance learning and DTW for classification tasks.
In the proposed method, DTW� is utilized to find the similarity between
MTS. However, instead of using Expression (3.4) as the pairwise distance,
they resorted to the generalized Mahalanobis distance given by:

2(x<, y=) = (x< − y=)S(x< − y=)) , (3.5)

where S ∈ R�×� is a symmetric positive semi-definite matrix. As con-
cluded by the authors in [77], the model learning is computationally ex-
pensive due to the need for computing the DTW for different values of S
during the learning process.

Our work is aligned with the above noted need for computationally
efficient multi-dimensional distance learning algorithms, and recent con-
tributions dealing with parametric distance measures for MTS classifica-
tion [30]. Specifically, we propose a weighted measure of similarity that
combines both the independent and the dependent DTW approaches in
its definition. Since the selection of a proper similarity is strongly biased
by the database at hand, we resort to a heuristic wrapper driven by the
cross-validated predictor score. Then, the optimization is just a similarity-
based learning problem operating on the modified space spanned by the
weighted combination of DTW similarities.

This technical approach can be framed within past contributions deal-
ing with the use of wrapping heuristics for distance-based learners (e.g.
[78]), where the distance measure along samples is optimized by weighting
the value of their features rather than by tuning the metric itself. In order

32 Chapter 3. Similarity Learning for MTS Classification

to optimize the weights, four nature-inspired evolutionary meta-heuristics
are used, simulated annealing, particle swarm optimization, genetic algo-
rithms and estimated distribution algorithms. The four alternatives are
evaluated and compared by computer experiments over databases utilized
in the literature. From the obtained results we will not only show the
performance improvements achieved by every heuristic, but also provide
an intuitive insight on how further gains could be achieved.

The remainder of the chapter is organized as follows: Section 3.2 intro-
duces the definition of the proposed DTW-based multi-dimensional simi-
larity and the optimization procedure by means of an heuristic wrapper.
Section 3.3 provides experimental results and finally, Section 3.4 concludes
the chapter.

3.2 Proposed Similarity
We consider two multi-dimensional series X and Y in the �-dimensional
space, each with = data points. Our proposal gravitates on reformulating
the similarity as follows:

DTW>?C (X,Y) =
�∑
3=1

l3DTW
(
- (3) , . (3)

)
+

(
1 −

�∑
3=1

l3

)
DTW� (X,Y) , (3.6)

where 0 ≤ l3 ≤ 1/� and 0 ≤ ∑�
3=1 l3 ≤ 1. Note from the definition that

both DTW� and DTW (for different dimensions) can be computed and
storage in advance. Hence, in terms of computational cost, the optimiza-
tion of the weights 8 = {l3}�3=1 is more efficient. The above definition
allows for the flexibility required to tackle the MTS classification: depend-
ing on the values given to l1, . . . , l�, the resulting similarity can range
from the total dependence to a framework where all dimensions are inde-
pendent of each other (i.e., from l3 = 0 ∀3 ∈ {1, . . . , �} to ∑�

3=1 l3 = 1).

3.2.1 Weights Optimization Procedure
As show in Figure 3.1 (next page), values of 8 are optimized by means of a
heuristic wrapper, where the score function is the accuracy obtained from
a Nearest Neighbor (NN) classifier. Taking into account that NN is sensi-
tive to changes in the training set and that it can suffer from overfitting,
we follow [79] and compute the accuracy by using an estimator with low
variance, namely, the <-repeated :-fold cross-validation (< × :-cv), with
< = 10 and : = 2. The < × :-cv estimator consists of averaging < differ-
ent performance estimates provided by a stratified :-fold cross-validation
(:-cv).

Algorithm 3.1 (next page) sketches the procedure to measure the fitness
of a set of 8 candidate values for any given training dataset. The :-cv
error estimation procedure splits the training data into mutually exclusive

3.2. Proposed Similarity 33

Heuristic wrapper

Distance
computation

ω

...

Training set

Test set

A
A
B
A

B

?
?
?

m-repeated k-fold
cross-validation

(training) (NN)

Prediction
Test score ηi

Stratified k-fold
Fold i

×k(NN)

CV score∑m

i=1
ε̂i/m

ωopt

Figure 3.1: Proposed wrapper scheme for similarity optimization.

:-folds (line 3), from which training and validation sets are successively
constructed (lines 5 and 6). Given a value of 8, the classifier is trained
and evaluated using Expression (3.6) as the similarity among examples in a
1-NN model. The :-cv estimation results from averaging the performance
scores achieved with each fold.

Algorithm 3.1 Computation of the fitness for the wrapper
1: Require: :, <, 8, training data
2: for 8 ∈ {1, . . . , <} do
3: � Shuffle the training data
4: � Sample : stratified folds from training data
5: for 9 ∈ {1, . . . , :} do
6: Set the 9-th fold as the validation set
7: Set remaining folds as the training set
8: for all sample in the validation set do
9: Compute DTW>?C between the validation sample and every

sample in the training set
10: Predict the label for the validation sample to be that of the

training sample with minDTW>?C

11: end for
12: Compute n 9 score by comparing predicted and true labels
13: end for
14: compute :-cv as n̂8 =

∑:
9=1 n 9/:

15: end for
16: return fitness value given by

∑<
8=1 n̂8/<

Regarding the heuristic wrapper, four are the different solvers utilized
to seek the optimum value of weights 8 = {l3}�3=1: Simulated Annealing

34 Chapter 3. Similarity Learning for MTS Classification

(SA), Particle Swarm Optimization (PSO), Estimation of Distribution Al-
gorithm (EDA) and Genetic Algorithm (GA). A brief description of each
of these methods is next provided:

• SA [80] is a low-complexity optimization algorithm known to efficiently
tackle problems with small number of variables. The search process
underlying this heuristic emulates the annealing technique in metallurgy,
by which a material is heated and cooled in a controlled fashion so as to
lead it to a state with minimum internal energy and hence, maximum
hardness. This iterative search process is controlled mainly by 1) the
method to permute the candidate solution at a given iteration; and 2)
the temperature) of the material, which sets the probability that the
mutated individual is accepted as the candidate solution.

• PSO [81] consists of a swarm of particles moving in the space of can-
didate solutions. Each individual in the swarm is characterized by its
position over the search space (which in turn represents the solution 8
proposed by the particle), a velocity vector v, and the memory of both
its own best solution and the global best achieved by the entire swarm.
The optimization procedure consists of spreading the information about
good solutions through the swarm so that particles move over the space
under a velocity vector biased by the positions of the aforementioned
best solutions in the swarm.

• EDA [82] is a population-based optimization algorithm that guides the
search by sampling promising solutions from learned generative prob-
abilistic models. In EDAs new individuals are sampled from a proba-
bility distribution estimated from the previous generation of solutions
and their associated fitness values. In this work we assume for simplic-
ity a canonical EDA, where optimization variables are assumed to be
independent from each other in the probabilistic model.

• GA [83] are heuristic solvers inspired from observed processes in the ge-
netic inheritance among generations of individuals. The main stages of
the algorithm are selection, crossover, mutation, evaluation and replace-
ment. The search technique begins with a randomly generated initial
population of individuals, from which a number of breeding solutions or
parents are selected based on their fitness values. Then, in the crossover
stage two individuals are taken randomly from the selected population
and combined to yield offspring solutions. Finally, each offspring solu-
tion undergoes small perturbations of its compounding variables under
probability ?<. All offspring solutions are then evaluated, replacing
the previous population. The procedure is repeated until a termina-
tion criterion is met (e.g. a fixed number of generations, or a marginal
improvement of the best solution over successive generations).

3.3 Experimental Results and Discussion
The proposed approach is validated over different datasets utilized in the
literature related to time series classification. In particular we will use

3.3. Experimental Results and Discussion 35

the articulatory word [84], cricket and Auslan (sign language used by the
Australian deaf community) [85] datasets. It is important to remark that
for all databases, time series have been normalized via Z-score so that
each dimension has zero mean and unit standard deviations, i.e., ∀3 ∈
{1, . . . , �} of a given MTS X of every database, we perform:

-
(3)
norm =

- (3) − E
[
- (3)

]√
Var

[
- (3)

] , (3.7)

where E[·] and Var[·] denotes expectation and variance, respectively. A
brief description of each dataset and the performed experiments is provided
in what follows:

• The Auslan dataset (AUSLAN) comprises 95 different signs performed by
5 signers, yielding a total of 6648 time series, each with 3 = 15 dimen-
sions [86]. From these dimensions G, H, I and A>;; attributes have been
selected as predictors for a small subset of the overall dataset corre-
sponding to sequences labeled with all, answer, boy, buy, cold, come,
crazy, different, exit and forget. On the one hand, G, H and I variables
record the up-down, right/left and forward/backward movements of the
signers’ hands, respectively. However, they should not be considered to
compose an orthogonal basis, hence relations among variables are ex-
pected to emerge. On the other hand, the A>;; dimension tracks the
palm rotation.

• The Cricket dataset (CRICKET) consists of a collection of 12 referee sig-
nals, each with 10 repetitions. The data contains observations of G, H
and I axes motion measured with an accelerometer placed on both, left
and right wrists of the referee. As in [76], we will use different dimension
pairs to predict each signal.

• The Articulatory word dataset (ARTI) contains tongue, lips and head
motion (using 12 sensors) of native English speakers performing 25 dif-
ferent words. Altogether, the dataset amounts up to 575 time series,
each comprising the G, H and I position of each sensor. Out of the
� = 36 available dimensions, we will use different combinations consid-
ering the sensors on the tongue tip (T1), the upper (UL) and the lower
lip (LL), as done in [76].

Regarding the nature-inspired solvers, a summary of the specific pa-
rameter values utilized for each method is provided below. It must be
noted that the same termination criterion is utilized for all algorithms in
the benchmark, i.e. the algorithm is forced to stop when the fitness value
of the best proposed solution does not improve for a maximum number of
generations maxgen.

• In the 8-th iteration of the SA solver, the acceptance of a new solution
88+1 = 88 += – where = is a random variable given by a standard normal
distribution, N(0, 1) – is ruled by 88+1, 88 and a temperature parameter

36 Chapter 3. Similarity Learning for MTS Classification

)8 that jointly define the solution acceptance probability. The temper-
ature of the algorithm is enforced to go from value 1 to 0 along the
iterations of the algorithm as)8+1 = b)8 where 0 ≤ b < 1 is the cooling
rate. In all simulations b and maxgen are set to 0.1 and 100, respectively.

• In PSO the parameters of the algorithm have been chosen so that the
movement of each particle in the search space 8 is governed by 88+1 =
88 + "indv + "global + "neigh, where 8 ∈ {1, . . . , �} denotes the iteration
index and the vectors in the right side "indv = 0.5(88 − 88−1), "global =

2.1=global (8global − 88) and "neigh = 2.1=neigh (8neigh − 88) correspond
to the tendency to move towards the previous position, the influence to
move towards the entire swarm best solution (8global), and the influence
to move towards the neighbours best solution (8neigh), respe ctively. The
maximum number of generations maxgen is set to 100, whereas =global
and =best are realizations of a continuous random variable uniformly
distributed in the range [0, 1].

• In GA the population size is 40 individuals, from which the number of
solutions in the selection step have been set to 20. In the crossover stage,
the chosen operator is single-point crossover with probability ?2 = 0.9.
Finally the mutation of each offspring element l3 ∈ 8 is changed to
l3 + = with mutation probability ?< = 0.1 where = ∼ N(0, 1). As in
previous solvers the stopping criteria have been set to maxgen = 100.

• In EDA the offspring values 88 of the 8-th generation are drawn from
a multidimensional Gaussian distribution N(-8 ,�8) whose mean vector
-8 and covariance matrix �8 are given by

-8 = (`81, . . . , `83 , . . . , `
8
�), `83 = E[88−13] (3.8)

�8 = diag(Σ81, . . . , Σ83 , . . . , Σ
8
�) : Σ3 = Var[88−13] (3.9)

where 88−1
3

= {l1,8−1
3

, . . . , l
100,8−1
3

} corresponds to the vector collecting
the values of the 3-th variable along a 100-sized population of individuals
drawn from N(-8−1,�8−1) at generation 8 − 1.

3.3.1 Discussion on Predictive Score Results
Besides the computation of a performance estimate to evaluate the fitness
of the 8 parameters proposed by the heuristic wrapper, the goodness of
the optimized classifier when trained over DTW>?C should be measured
over unseen test data. For this reason, we will use again stratified -fold
cross-validation to first split the entire database in training and test sets.
Algorithm 3.2 illustrates, for partitions, the procedure to compute the
goodness measure. In essence, training and test sets are constructed using
 − 1 folds for the former, and the remaining fold for the latter. For all
possible training-test combinations, optimized 8 values are found by using
one of the algorithms described previously (line 6). The average of the
computed scores for the train-test splits yields a measure of the expected
performance of the proposed wrapper when facing new test samples.

3.3. Experimental Results and Discussion 37

T
a
bl

e
3.

1:
A
ve
ra
ge
,fi

rs
t
qu

ar
ti
le

an
d
th
ir
d
qu

ar
ti
le

sc
or
es

fo
r
th
e
si
m
ul
at
ed

da
ta
ba

se
s
an

d
he

ur
is
ti
c
w
ra
pp

er
s.

D
at
as
et

la
be

l
V
ar
ia
bl
es

D
T
W
�

D
T
W
�

D
T
W

SA >
?
C

D
T
W

P
SO
>
?
C

D
T
W

G
A

>
?
C

D
T
W

E
D

A
s

>
?
C

A
vg

.
Q
1
−
Q
3

A
vg

.
Q
1
−
Q
3

A
vg

.
Q
1
−
Q
3

A
vg

.
Q
1
−
Q
3

A
vg

.
Q
1
−
Q
3

A
vg

.
Q
1
−
Q
3

AU
SL

AN
-X

YZ
R

G
,
H
,
I,
A
>
;;

0
.7
5
7

0
.7
14
−
0
.7
86

0
.7
8
9

0
.7
5
0
−
0
.8
12

0
.8
0
0

0
.7
8
6
−
0
.8
4
8

0
.8
14

0
.7
6
8
−
0
.8
48

0
.7
9
6

0
.7
86
−
0
.8
12

0
.7
9
3

0
.7
5
9
−
0
.8
2
1

AU
SL

AN
-X

YZ
G
,
H
,
I

0
.8
0
5

0
.7
26
−
0
.8
57

0
.6
1
4

0
.5
83
−
0
.6
6
7

0
.8
0
5

0
.7
26
−
0
.8
5
7

0
.8
0
0

0
.7
2
6
−
0
.8
57

0
.8
1
4

0
.7
6
8
−
0
.8
4
8

0
.7
7
6

0
.7
14
−
0
.8
4
5

CR
IC

KE
T-

XR
XL

G
ri

gh
t,
G
le

ft
0
.9
4
6

0
.9
17
−
0
.9
58

0
.9
2
1

0
.9
1
7
−
0
.9
27

0
.9
7
1

0
.9
5
8
−
1
.0
0
0

0
.9
71

0
.9
5
8
−
1
.0
00

0
.9
7
1

0
.9
58
−
1
.0
00

0
.9
7
1

0
.9
5
8
−
1
.0
0
0

CR
IC

KE
T-

XR
YL

G
ri

gh
t,
H
le

ft
0
.9
5
4

0
.9
17
−
0
.9
90

0
.9
5
4

0
.9
17
−
1
.0
0
0

0
.9
7
5

0
.9
58
−
1
.0
0
0

0
.9
7
1

0
.9
5
8
−
1
.0
00

0
.9
5
8

0
.9
2
7
−
0
.9
9
0

0
.9
6
7

0
.9
58
−
1
.0
0
0

CR
IC

KE
T-

YR
XL

H
ri

gh
t,
G
le

ft
0
.9
8
8

1
.0
00
−
1
.0
00

0
.9
8
3

1
.0
0
0
−
1
.0
00

0
.9
9
2

1
.0
0
0
−
1
.0
0
0

0
.9
92

1
.0
0
0
−
1
.0
00

0
.9
9
2

1
.0
00
−
1
.0
00

0
.9
8
3

1
.0
0
0
−
1
.0
0
0

CR
IC

KE
T-

YR
YL

H
ri

gh
t,
H
le

ft
0
.9
6
9

0
.9
79
−
1
.0
00

0
.9
8
8

1
.0
00
−
1
.0
0
0

0
.9
9
2

1
.0
00
−
1
.0
0
0

0
.9
8
8

1
.0
0
0
−
1
.0
00

0
.9
9
2

1
.0
0
0
−
1
.0
0
0

0
.9
9
2

1
.0
00
−
1
.0
0
0

CR
IC

KE
T-

ZR
ZL

I r
ig

ht
,
I l

ef
t

0
.9
5
4

0
.9
17
−
1
.0
00

0
.9
7
5

0
.9
3
8
−
1
.0
00

0
.9
7
9

0
.9
6
9
−
1
.0
0
0

0
.9
79

0
.9
6
9
−
1
.0
00

0
.9
7
1

0
.9
69
−
1
.0
00

0
.9
7
1

0
.9
6
9
−
1
.0
0
0

AR
TI

-U
XT

Z
*
!
G
,)

1
I

0
.8
3
9

0
.8
30
−
0
.8
60

0
.8
6
3

0
.8
45
−
0
.8
8
0

0
.8
9
1

0
.8
83
−
0
.9
0
7

0
.9
02

0
.9
0
0
−
0
.9
2
0

0
.8
94

0
.8
8
0
−
0
.9
20

0
.8
94

0
.8
8
0
−
0
.9
17

AR
TI

-T
ZL

Z
)
1
I
,
!
!
I

0
.8
9
5

0
.8
80
−
0
.9
17

0
.9
4
1

0
.9
2
3
−
0
.9
60

0
.9
3
8

0
.9
2
3
−
0
.9
5
7

0
.9
40

0
.9
3
5
−
0
.9
45

0
.9
4
2

0
.9
35
−
0
.9
60

0
.9
4
4

0
.9
2
3
−
0
.9
6
0

AR
TI

-T
ZL

Y
)
1
I
,
!
!
H

0
.8
8
7

0
.8
80
−
0
.9
17

0
.9
3
3

0
.9
20
−
0
.9
5
5

0
.9
33

0
.9
2
3
−
0
.9
55

0
.9
2
3

0
.9
0
0
−
0
.9
3
8

0
.9
26

0
.9
2
0
−
0
.9
40

0
.9
26

0
.9
2
0
−
0
.9
38

AR
TI

-L
XT

YT
Z

!
!
G
,)

1
H
,)

1
I

0
.9
2
3

0
.8
85
−
0
.9
60

0
.9
5
4

0
.9
5
0
−
0
.9
78

0
.9
6
6

0
.9
4
5
−
0
.9
8
5

0
.9
65

0
.9
4
5
−
0
.9
78

0
.9
6
3

0
.9
42
−
0
.9
78

0
.9
6
5

0
.9
4
5
−
0
.9
8
7

AR
TI

-T
YT

Z
)
1
H
,)

1
I

0
.8
9
2

0
.8
83
−
0
.9
17

0
.9
4
9

0
.9
25
−
0
.9
6
0

0
.9
44

0
.9
2
3
−
0
.9
60

0
.9
4
5

0
.9
2
5
−
0
.9
6
0

0
.9
43

0
.9
2
5
−
0
.9
60

0
.9
45

0
.9
2
5
−
0
.9
60

AR
TI

-T
YL

Z
)
1
H
,
!
!
H

0
.8
6
3

0
.8
40
−
0
.8
80

0
.9
1
9

0
.9
0
2
−
0
.9
40

0
.9
2
4

0
.9
0
2
−
0
.9
4
0

0
.9
21

0
.9
0
0
−
0
.9
40

0
.9
2
4

0
.9
00
−
0
.9
55

0
.9
2
4

0
.9
0
0
−
0
.9
5
5

AR
TI

-T
XT

YU
Z

)
1
G
,)

1
H
,*

!
H

0
.9
1
2

0
.9
00
−
0
.9
20

0
.9
3
1

0
.9
20
−
0
.9
4
5

0
.9
4
4

0
.9
40
−
0
.9
5
7

0
.9
3
9

0
.9
2
5
−
0
.9
57

0
.9
4
0

0
.9
4
0
−
0
.9
4
7

0
.9
4
7

0
.9
40
−
0
.9
6
0

AR
TI

-T
XT

YT
Z

)
1
G
,)

1
H
,)

1
I

0
.9
2
8

0
.8
97
−
0
.9
55

0
.9
4
0

0
.9
2
0
−
0
.9
60

0
.9
4
5

0
.9
2
0
−
0
.9
6
0

0
.9
42

0
.9
2
0
−
0
.9
72

0
.9
4
5

0
.9
23
−
0
.9
75

0
.9
3
9

0
.9
2
5
−
0
.9
5
7

38 Chapter 3. Similarity Learning for MTS Classification

Algorithm 3.2 Computation of the test score
1: Require: , dataset
2: Split dataset into stratified folds
3: for 8 ∈ {1, . . . , } do
4: Set the 8-th fold as the test set
5: Set the remaining folds as the training set
6: Optimize 8 using the training set, a heuristic solver and the

fitness in Algorithm 3.1
7: Predict test set labels with the classifier using DTW>?C (·, ·)

with the optimized 8
8: Compute performance score of this fold as [8
9: end for

10: return -cv test score as
∑
8=1 [8/

Table 3.1 shows the average, first and third quartile of the estimated
accuracy rates obtained by the independent DTW� , dependent DTW�

and optimized DTW>?C models for each solver. The bold value in the
table indicates the best average accuracy rate among all schemes in this
benchmark. Several observations can be drawn from the results reported
in this table. To begin with, all wrappers have similar performance, being
SA slightly more accurate than the rest of the heuristic methods. Results
for the AUSLAN dataset suggest that when compared to DTW� and DTW�,
DTW>?C is more resilient to the selection of the variables, specially when
tackled with the SA and PSO algorithms. CRICKET scores are complex to
analyze because all models achieve high accuracy values over the simulated
variable combinations. An exception is the CRICKET-XRXL case, for which
the predictive score with the optimized similarity is higher than its depen-
dent and independent counterparts for all utilized wrappers. Regarding
the rest of datasets, lower performance gains are noted; we can conclude
that in general, our model is at least as accurate as the best among DTW�

and DTW�, regardless the method in use.

3.3.2 Discussion on the Optimized Weight Values
The average accuracy values shown in Table 3.1 provide, in terms of model
fitness, the comparison of DTW>?C with DTW� and DTW� similarity-
based models. However, such results do not render any insights on the
statistical distribution of the obtained scores, nor do they shed any light
on the values of their associated weights 8. A further analysis of the
distribution of 10-fold cross-validation accuracy scores and the optimized
values of {l1, . . . , l�} is done in Figures 3.2a through 3.2f in the form
of box-plots. The subset of simulated cases included in these plots is a
representative sample that best illustrates the casuistry that recurrently
occurs in all performed experiments.

To begin with, Figures 3.2a and 3.2d illustrate the outcomes of the
PSO solver where DTW>?C outperforms both DTW� and DTW� , with

3.4. Conclusions 39

non-zero values for all {l1, . . . , l�}. This indicates that relationships ex-
isting between dimensions are important for classification. Moreover, to
verify that the performance gaps for DTW>?C and those of DTW� and
DTW� are statistically significant, we have performed a non-parametric
Wilcoxon signed-rank test to check whether result samples come from dis-
tribution with different medians. Since the obtained ?-value falls below
0.05 for both cases the hypothesis of statistical significance is confirmed.
In particular, we get ?-value = 0.007 when the test is performed with
DTW>?C and DTW� score samples and ?-value = 0.01 with DTW>?C and
DTW� . Although we have mentioned before that SA is slightly more ac-
curate, note that for this particular case, PSO is among the solvers with
highest accuracy rates.

The discussion follows by Figures 3.2b and 3.2e, which exemplify, for
the ARTI-TZLY database and SA solver, the case when DTW>?C and DTW�

render a similar predictive performance. As could be expected beforehand,
the optimized (l1, l2) weights that gauge the contribution of each dimen-
sion in isolation to the optimized similarity in (3.6) are close to zero, in
contrast to the dependent part contribution. By contrast, SA results for
the AUSLAN-XYZ database (Figures 3.2c and 3.2f) unveil an identical perfor-
mance of the independent and optimized similarity models, and a notably
worse behavior of DTW�. One would accordingly expect high values for
the weights {l1, l2, l3} (close to 1/� = 1/3), so that the independent
part in (3.6) dominates over DTW�. This does not hold in the plotted
results, where the contribution of both independent and dependent parts
are similar; even more, the dependent contribution is never negligible. The
rationale behind this contradictory effect might lie on the tight coupling
among variables imposed in the search for the warping path in DTW�. As
established by the proposed definition of DTW>?C , the optimization of the
contribution of the dependent part to this combined similarity does not
discriminate between dimensions. The variability of the weights in H and,
more specifically, I dimensions (see Figure 3.2f) indicates that the DTW�

part is somehow compensated in order to reduce the lack of predictability
of one of both variables equally weighted inside the dependent part. This
last observation suggests that a generalization of the cost function in Equa-
tion (3.4) might allow for the optimization of each variable (dimension) of
the dependent DTW.

3.4 Conclusions
In this chapter we have defined a simple similarity measure for multidi-
mensional time series classification that not only leverages the ability to
accommodate time warps featured by the DTW, but also takes into ac-
count possible relations existing among dimensions. The proposed scheme
is based on a heuristic wrapper that optimizes the values of the weights
balancing the contribution of independent and dependent DTW. The op-
timization criterion is based on the maximization of the cross-validated
prediction score of a distance-based classifier operating on the similarities
iteratively refined by the heuristic. A benchmark of four meta-heuristic

40 Chapter 3. Similarity Learning for MTS Classification

(a) ARTI-TUXTZ

IND DEP MODEL
0.5

0.6

0.7

0.8

0.9

1.0

TEST SCORES BOXPLOT

(b) ARTI-TZLY

IND DEP MODEL
0.5

0.6

0.7

0.8

0.9

1.0

TEST SCORES BOXPLOT

(c) AUSLAN-XYZ

IND DEP MODEL
0.5

0.6

0.7

0.8

0.9

1.0

TEST SCORES BOXPLOT

T1z ULx DEP
0.0

0.2

0.4

0.6

0.8

1.0
PARAMETERS BOX-PLOT

(d)
T1z LLy DEP

0.0

0.2

0.4

0.6

0.8

1.0
PARAMETERS BOX-PLOT

(e)
x y z DEP

0.0

0.2

0.4

0.6

0.8

1.0
PARAMETERS BOX-PLOT

(f)

Figure 3.2: Box-plot corresponding to the test scores obtained via stratified
10-fold corresponding to the ARTI-TUXTZ (a), ARTI-TZLY (b) and AUSLAN-XYZ (c)
datasets, along with box-plots showing the distribution of weights 8 obtained for
each case: (d), (e) and (f), respectively. The red square denotes sample mean.

algorithms (SA, PSO, GA and EDA) has been used to learn the weights.
When assessed the performance of these optimization algorithms over sev-
eral databases from the literature, we have verified, on one hand, that our
proposed model with a 1-NN classifier performs, in general, equal or better
than the same learner with independent and dependent DTW similarity
measures. On the other hand, we have seen that the performance gap
between the heuristic solvers under consideration is narrow, yet SA seems
to return, on average, slightly more accurate results.

Although the proposed measure has proven to be competitive, some
open research paths can be followed to further improve its performance.
We have seen that the adaptability of the independent part is higher than
that of the dependent part due to its ability to treat each dimension sep-
arately. To ensure the variability of the dependent part in Expression
(3.6), the definition of the inner distance in DTW� should allow weight-
ing differently each dimension in the warping path discovery process. In
close agreement with the conclusions drawn in a similar study [77], this
alternative formulation could additionally decrease the computation cost.
Other error rate functions could be also considered – such as larger-margin
nearest neighbor which is often utilized in distance learning tasks [87] – in
order to guide the learning process of the weights to singularities of the
classification problem (e.g, class imbalance).

41

Chapter 4

On-line Elastic Similarity
Measures for Streaming
Time Series

Considering the acclaimed performance of ESMs in conventional (i.e. off-
line) distance-based TSA methods, this chapter examines how such mea-
sures can be adapted to streaming time series scenarios, where streams are
composed by a sequence of events (see Section 1.1). As already anticipated
in Chapter 1, the challenge in this learning scenario resides in the need for
properly accounting for the correlation of the time series in an incremen-
tal fashion, along with the adaptation of the ESM to accommodate the
transitions between successive events along the stream. Specifically, the
chapter elaborates on the definition and validation of an on-line ESM that
blends together 1) an efficient incremental computation of elastic similar-
ity measures, and 2) a parametric forgetting mechanism that makes the
similarity efficiencly deal with transitions among events.

4.1 Introduction and Related Work
We have hitherto assumed that data are permanently stored in memory
and thereby accessible to algorithms, on request, enabling procedures to
pre-process data prior to model learning. However, in many real-world
applications this assumption does not necessarily hold. Instead, data are
produced at high speed creating massive amounts of samples that must be
analyzed as fast as possible, and then discarded, so as to deal with memory
limitations. Moreover, arriving streams might not be stationary i.e., the
underlying structure of the time series may change over time (see Section
1.1). As a consequence of these two issues, most of the algorithms proposed
in the literature for (non-streaming) time series cannot be applied to an-
alyze such data, mainly due to their lack of adaptation. In learning tasks
defined over streaming time series, the need for adaptation is of utmost
relevance when shifting from one event to another. The model designed
to undertake the task must capture and exploit the time correlation of the
time series under analysis and, at the same time, must selectively forget

42 Chapter 4. On-line Elastic Similarity for Streaming Time Series

the learned knowledge when data belonging to a new event (time series)
arrives over the stream.

In this sense, the TSA community has recently focused its research on
the development of new strategies that might handle the challenges arising
from streaming data [6], [7]. For instance, Cavalcante et al. [10] have re-
cently proposed FEDD, a concept drift detector that identifies changes in
time series data generator models. Based on the feature vector similarity
given by Pearson correlation distance (or cosine distance), this method
monitors the evolution of sequence features in order to test whether a
change has occurred in observed data. In [3] an incremental clustering
system for time series data streams is presented. The so-called On-line
Divisive-Agglomerative Clustering is a tree-like grouping technique that
evolves with data based on a criterion to merge and split clusters using
a correlation-based dissimilarity measure. In this sense, when measur-
ing the similarity among data streams in on-line scenarios, !?-norm and
correlation-based distances are preferred to ESMs [88], [89]. Clearly, the
choice of lock-step distances over ESMs relies on the fact that the former
proposals provide an exact incremental expression, with minimal memory
consumption and demanding a low computational effort.

Bearing this background in mind, a straightforward question that re-
mains open to date is how to adapt ESMs to streaming time series, so that
on-line distance-based models can capitalize on their benefits. This chap-
ter addresses this task by proposing an On-line Elastic Similarity Measure
(OESM), whose definition hinges on two essential characteristics: the first
is a forgetting mechanism, which allows OESM to deal with different sta-
tionary intervals (events), whereas the second corresponds to a spotted
property of elastic similarities that is exploited to compute the measure
within a constant time and fixed amount of consumed memory. To this
end, we consider two different scenarios we coin as on-line pattern and
batch-pattern scenarios. In the former, the OESM is adapted to measure
the similarity between two streaming time series. In the latter, the simi-
larity is computed between a streaming time series and a stored sequence.
Two experiments are conducted to examine different aspects of the pro-
posed OESMs. First, we test the computational efficiency of the OESM
in terms of complexity. Then we study the effect of the forgetting mecha-
nism by analyzing the results drawn by a 1-NN classifier over transitions
between events.

The remainder of the chapter is organized as follows: Section 4.2 in-
troduces the proposed OESM. Section 4.3 describes the experimentation
and Section 4.4 discusses the obtained results. Finally, in Section 4.5 we
summarize the main findings of the chapter, and outline future research
lines.

4.2 On-line Elastic Similarity Measures
Analogously to the formulation of the offline ESM in Section ??, the pro-
posed OESM can be expressed as an optimization problem. That is, OESM
consists of finding the path that aligns two time series with minimum cost,

4.2. On-line Elastic Similarity Measures 43

from their beginning to their end, without skipping any point or going
steps backward in time. However, as already emphasized in the introduc-
tion of this chapter, OESM must be computed incrementally to comply
with the computational requirements of on-line settings, namely, fast exe-
cution and limited memory consumption. Based on dynamic programming
principles similar to those in [90], the incremental computation proposed
in this chapter avoids unnecessary computations thanks to a set of thor-
oughly selected and stored measurements, which we refer to as frontier.
On the other hand, the adaptation of ESM to streaming time series is per-
formed through a memory function. By under-weighting the contribution
of past events, the memory function is set to forget the past and fit OESM
to recent events. Moreover, this forgetting mechanism can be modified
depending on the characteristics of the problem at hand. In this regard,
two problem scenarios are considered:

• Batch pattern: in this first scenario, one of the time series under com-
parison (say, -<) is stored in memory, whereas only the other sequence
(.=) receives new examples over time, as in streaming classification or
early classification problems [91].

• On-line pattern: in this second scenario, both time series -< and .= re-
ceive new data points over time, as occurs in clustering tasks for stream-
ing time series [3].

In what follows, the memory function and the incremental computation
are introduced and described, with an emphasis on the required adapta-
tions to treat on-line or batch pattern scenarios.

4.2.1 Definition of the Proposed OESM
In order to make OESM consistent with the evolution of the streaming
time series, we propose a simple yet effective forgetting mechanism that
mitigates, by means of a memory function, the contribution of earlier time
series alignments in the ESM definition. Following the notation of the
conventional ESM (Equation (1.16)), let -< and .= denote two time series,
and ? ∈ P a path. In the on-line setting, the weight of a path ? is redefined
to be:

Fd (?) =
∑
(8, 9) ∈?

d 5 (8, 9)28, 9 , (4.1)

where 5 : N2 → R is what we hereafter refer to as memory function, and
d ∈ (0, 1] the memory parameter. Note that the definition given above is
just a generalization of Equation (1.16). Indeed, if d = 1, the weight of the
path in Equation (4.1) is equivalent to that in Equation (1.16). Departing
from these definitions, the proposed OESM is formulated in Definition 2.
The reader should note that the adaptation of the ESM to on-line settings
is produced just by replacing Equation (4.1) in (1.17).

Definition 2 (On-line Elastic Similarity Measure) Let -< and .= be two
time series, and Fd (?) the weight of a path ? for a given memory parameter

44 Chapter 4. On-line Elastic Similarity for Streaming Time Series

d ∈ (0, 1]. The OESM between time series -< and .= is defined as:

�d (-<, .=) = min
?∈P

Fd (?), (4.2)

where P is the set of allowed paths.

As in Chapter 1, we will use �<,= instead of �d (-<, .=) to denote the
similarity between -< and .= streams. We next introduce the adaptation
of the memory function to the particularities of the batch and on-line
pattern scenarios.

Batch Pattern Scenario

Based on Definition 2, let us assume that .= is a streaming time series,
whereas -< is a sequence permanently stored in memory (representing e.g.
a reference time series corresponding to a certain label to be predicted by
a similarity-based classifier). In this scenario, the memory function in
Expression (4.2) is given by:

5 (8, 9) = = − 9 . (4.3)

An example of this particular memory function is shown in Figure 4.1a,
where colored bands illustrate all (8, 9) pairs in the lattice [1, 10] × [1, 10]
sharing the same 5 (8, 9) value. Note that, by modulating the cost function
with this memory function as per (4.3), the last alignments contribute
more significantly to the weight of a given path than those that are far
from the current sample (<, =) (Equation (4.1)). That is, the contribution
of 2(8, 9)d 5 (8, 9) to the resulting similarity value depends on the difference
between = and 9 . Since in the batch pattern scenario -< does not evolve
over time, the proposed forgetting mechanism works with the evolution of
.= (see Figure 4.1a), enabling OESM to forget its past.

0

1

2
012

x1

x5

x10

y1 y5 y10

ρ0

ρ1

ρ2

ρ3

ρ4

ρ5

ρ6

ρ7

ρ8

ρ9

(a) Batch pattern scenario

0

1

2
012

x1

x5

x10

y1 y5 y10

ρ0

ρ1

ρ2

ρ3

ρ4

ρ5

ρ6

ρ7

ρ8

ρ9

(b) On-line pattern scenario

Figure 4.1: Representation of the memory function over the [1, 10] × [1, 10]
lattice given two time series -10 and .10, for the batch (left) and on-line pattern
scenarios (right). The color shapes represent the cells sharing the same values

of d 5 (8, 9) . The gray dashed line depicts a warping path ? ∈ P.

4.2. On-line Elastic Similarity Measures 45

On-line Pattern Scenario

In the on-line pattern scheme, the memory function corresponds to:

5 (8, 9) = max{< − 8, = − 9}. (4.4)

An example of the function is shown in Figure 4.1b for < = = = 10.
Again, the colored bands in the plot denote all (8, 9) ∈ [1, <] × [1, =]
sharing the same 5 (8, 9) value. Moreover, the contribution of a (8, 9) pair
to the memory weight does not depend on the path, but on the proximity
to the (<, =) point. In this case, the proposed memory function makes
OESM forget past events of -< and .= streams in accordance with their
evolution rate. The reader should note that the proposed memory function
corresponds to the Chebyshev (or !∞-norm) distance.

Convergence of the Proposed OESM

Considering the definition of the memory function either in Equation (4.3)
or in (4.4), we can assume that ∃" > 0 such that 28, 9 ≤ ", for any (8, 9) in
the [1, <] × [1, =] lattice. Hence, it is straightforward to see that Equation
(4.1) is upper-bounded by a geometric series as:

Fd (?) ≤
max{<,=}∑

8=1

d8−1". (4.5)

It is known that when < and/or = tend to infinity, the geometric series
converge if |d | < 1. Consequently, the similarity measure in Equation (4.2)
would be upper bounded by:

�<,= ≤
"

1 − d , (4.6)

as long as d < 1. Specifically, since 28, 9 ≤ 1 for EDIT and EDR similarity
measures, we can set " = 1. As a result, �<,= ≤ (1 − d)−1 holds for these
particular measures.

4.2.2 Incremental Computation
We recall our arguments in Section 1.4.1, where we stated that ESM can
be efficiently computed using dynamic programming methods. Likewise,
we can solve the optimization problem in Equation (4.2). In this case, the
recursive equation that provides the solution to OESM is given by:

�<,= = 2<,= +min


d 5 (<−1,=)�<−1,=,
d 5 (<−1,=−1)�<−1,=−1,
d 5 (<,=−1)�<,=−1

 , (4.7)

where �0,0 = 0 and �0, 9 = �8,0 = ∞ for 8 = 1, 2, ..., < and 9 = 1, 2, ..., =. The
computational complexity of the OESM is O(< ·=), which results unfeasible
for two time series that grow without bound. In order to alleviate the

46 Chapter 4. On-line Elastic Similarity for Streaming Time Series

complexity and adapt the computation to the on-line setting, we use the
following observation, which stems directly from Equation (4.7):

Observation 1 When computing the ESM, we compute not only the final
result �<,=, but also the intermediate results �8, 9 for all 8 = 1, ..., < − 1
and 9 = 1, ..., = − 1. In other words, the ESM between two time series
-< and .= requires the computation of the ESM between all subsequences
- 8 = (G1, ..., G8) and . 9 = (H1, ..., H 9), for 8 = 1, ..., < − 1 and 9 = 1, ..., = − 1.

In line with this observation, we define the frontier as:

F<,= = {�8,=}<8=1 ∪ {�<, 9 }=9=1, (4.8)

which will be used to avoid unnecessary computations when new data
samples arrive over the stream.

Turning our attention to streaming scenarios, we consider that stream-
ing time series evolve from -A to -< and from . B to .= after receiving
-A+1,< = (GA+1, ..., G<) and . B+1,= = (HB+1, ..., H<) data samples, respec-
tively. The goal of the incremental computation is to calculate �<,= by
resorting to minimum computational resources. To this end, we assume
that, before receiving -A+1,< and . B+1,=, we store in memory the frontier
FA ,B. By definition, �<,= requires the computation of the whole <×= sim-
ilarity matrix, whose elements correspond to �8, 9 for all 8 ∈ {1, ..., <} and
9 ∈ {1, ..., =}. However, in this particular situation we can apply Equa-
tion (4.7) recursively until FA ,B is reached, rather than propagating the
recurrence back to �0,0 = 0.

0 0 0

0

0

0

0

0

1 1 1

1

1

1

1

3 3 3

3 4.5

1.5

0.5 1.5

1.5

1.5

1.5

1.5

5.5

2.5

7.5 8.5 8.5

2.5 3.5

2.5 4.5

310.5

0.5 1 3

0.51.54.54.54.5

2666

7 7 7 2 2 0.5 1 1 2

2

1.5

2

2

3

4

9 9 9 1 1 0

0

0

1 3

111

1 2 1

331010

3111111

11 11 4 5 3.5 3 1 0

10

0

1

2 Y
012

X

11

Figure 4.2: Incremental computation of the DTW between two generic time
series, -< and .=, with < = = = 10. The dark gray area depicts the frontier
F4,3 over the 10 × 10 dimension measure matrix. The dashed lines illustrate the

optimal path to �4,3 and �10,10.

An example of the incremental computation is depicted in Figure 4.2,
where �10,10 (red cell) is computed given F4,3 (dark gray cells). By storing
the frontier, we avoid the computation of 4 × 3 intermediate results (i.e.
the values shadowed in gray in the lower left corner of the matrix). In
general, given the frontier FA ,B, A × B computations are avoided. Hence, the
computational complexity of the incremental computation is O(< ·=−A · B).

4.2. On-line Elastic Similarity Measures 47

We next adapt the incremental computation described above for the batch
and on-line pattern scenarios.

Batch Pattern Scenario

We first consider the batch pattern scenario illustrated in Figure 4.3, where
the batch pattern -< is fixed and stored permanently in memory, whereas
the streaming sequence evolves from . B to .=. Since the length of the
batch pattern is fixed, the given frontier corresponds to:

F<,B = {�8,B}<8=1, (4.9)

which is highlighted in blue in Figure 4.3.
The OESM computation for the batch pattern scenario consists of two

main steps: (1) first �<,= is computed by using Equation (4.7) and F<,B;
(2) then, F<,= is stored as per Expression (4.9) so as to use it in future
similarity measurements. This compute-store procedure is described as a
pseudo-code in Algorithm 4.1, and graphically shown in Figure 4.3.

Y 1,s

Y n

Y (s+1),n

X
m

Dm,s Dm,n

Figure 4.3: OESM computation procedure for a continuous flow of query data
samples in the batch pattern scenario, where black and red curves illustrate the
optimal paths to �<,B and �<,=, respectively. Vertical solid lines represent the
memory function, and the vertical shadowed gray areas denote the frontier.

Algorithm 4.1 OESM pseudo-code for the batch pattern scenario.
1: Require: F<,B, -< , d.
2: for every newly arriving chunk . B,= do
3: � Step 1: compute
4: Compute �<,= based on F<,B using Equation (4.7).
5: � Step 2: store
6: Store frontier F<,= = {�8,=}<8=1.
7: Set B← =.
8: end for

48 Chapter 4. On-line Elastic Similarity for Streaming Time Series

At this point it is important to highlight that in the batch pattern
scenario, the streaming time series is not required to be stored for incre-
mentally computing the similarity measure. Consequently, the memory
complexity of the batch pattern scenario is constant and equal to O(<),
thus meeting the requirements of the on-line learning algorithms. Regard-
ing the running time, in this case the complexity is given by O(< · (=− B)),
where = − B is the number of samples in the arriving chunk.

On-line Pattern Scenario

We proceed by considering the frontier as per Equation (4.8) and the
recurrence in Expression (4.7). Since both -< and .= grow in the on-line
pattern scenario, they must be stored so as to compute �<,= incrementally.
Specifically, we need past sequences -1,A and .1,B to compute the �8, 9
elements in the measure matrix corresponding to (8, 9) ∈ [1, A] × [B + 1, =]
and (8, 9) ∈ [A + 1, <] × [1, B] (i.e., �8, 9 entries highlighted in bold font in
Figure 4.2). Consequently, the memory required to compute OESM in the
on-line pattern scenario lacks an upper bound as the time series grow.

To overcome this issue, we embrace the use of Sakoe-Chiba constraints
introduced in Section 1.4.2. Consequently, in the on-line pattern scenario
the proposed OESM approach blends together the incremental computa-
tion procedure previously described in this section, and the Sakoe-Chiba
strategy. Formally, let us consider the evolving scenario described in Figure
4.4, where ℓ is the Sakoe-Chiba band width, and the blue area corresponds
to the stored frontier given by:

FA ,B = {�8,B}A8=max{1,A−ℓ } ∪ {�A , 9 }
B
9=max{1,B−ℓ } . (4.10)

As in the previous example, the computation procedure for the on-line
pattern scenario is exemplified in Figure 4.4, and described in Algorithm
4.2. Line 4 corresponds to the computation step, and lines 6 and 7 to
the storage step. Accordingly, first �<,= is computed by applying the
recurrence in (4.7), until the frontier is reached. Due to Sakoe-Chiba
band constraints, we assume �8, 9 = ∞ for those 8 ∈ {max{1, A − ℓ}, ..., <}
and 9 ∈ {max{1, B − ℓ}, ..., =} not satisfying |8 − 9 | ≤ ℓ. Then, according
to the Definition in (4.10), the frontier F<,= is stored. In addition, the
last ℓ points of each time series must also be saved in this scenario, i.e.,
we would need to store -max{1,=−ℓ },< and .max{1,<−ℓ },= subsequences for
future OESM computations.

Once the length of the time series (< and =) is greater than ℓ, due to
the imposed constraints the on-line pattern computation procedure leads
to a limited space complexity of O(ℓ). Likewise, the constraints reduce
the running time from quadratic to linear with chunk size, O(ℓ ·max{< −
A, = − B}). According to Figure 4.4, the time series must grow similarly for
OESM to be a consistent computation procedure. When one time series
grows significantly faster than the other, eventually |<−=| > ℓ. In this case,
we store points of -< and .= that might never be used in the computation
of the similarity measure. Therefore, we should take into account the rate
at which time series grow for a proper adaptation of the memory function

4.3. Experimental Setup 49

Algorithm 4.2 OESM pseudo-code for the on-line pattern scenario.

1: Require: FA ,B, -A−ℓ,B, . B−ℓ,B , ℓ, d.
2: for newly arriving chunk . B,= and -A ,< do
3: � Step 1: compute
4: Compute �<,= from FA ,B using Equation (4.7).
5: � Step 2: store
6: Store frontier F<,= using Equation (4.10)
7: Set B← = and A ← <.
8: end for

and the Sakoe-Chiba constraints. Hence, in the on-line pattern scenario,
we assume that time series evolve at a speed such that arriving chunks
satisfy |< − =| ≤ ℓ.

Y 1,s Y (s+1),n

X
1,
r

X
(r
+
1)
,m

Dm,n

Dr,s

Y n

X
m

`

Figure 4.4: In the on-line pattern scenario, OESM computation procedure for
a continuous flow of on-line pattern and query data samples. The black and red
curves illustrate the optimal paths to �<,B and �<,=.The shadowed dark gray
areas correspond to the frontier. According to Equation (4.3), black solid lines

over light gray areas show equidistant (8, 9) points.

4.3 Experimental Setup
In this section we describe the experiments used to analyze, in terms of ef-
ficiency and the forgetting mechanism, the proposed OESM in both batch
and on-line pattern scenarios. The Python 2.7 source code of OESM is

50 Chapter 4. On-line Elastic Similarity for Streaming Time Series

available at http://bitbucket.org/izaskun_oregui/ESM, and can be
used to solve both pattern scenarios. The cost functions implemented
in this repository correspond to DTW, EDR, ERP and EDIT distances.

4.3.1 Efficiency
In order to shed light on the efficiency of OESM, we compare its computa-
tion time in the batch and on-line pattern scenarios with the computation
time required by the conventional ESM with the Sakoe-Chiba constraints.
In this context, two sets of experiments are proposed. Considering a con-
stant size of arriving chunks, the first set of experiments aims at analyzing
the efficiency over time, i.e., we compare the running time as the length
of the time series grows. In the second set of experiments, we consider
arriving chunks of increasing size. The objective is to analyze the running
time required to compute the similarity, assuming that the initial length
of the time series is kept fixed.

To carry out these experiments, we compute the measure of similarity
between two randomly generated streaming time series whose points are
drawn from a uniform distribution with support [0, 1]. Furthermore, we
establish the following experimental conditions:

• Experiment 1: we set the length of the arriving chunks to 1 = 1.
Either in the on-line pattern scheme (OESM) or for the conventional
ESM study, the streaming time series evolve from an initial size of 3
points to a final length of 70 points. In both cases the width of Sakoe-
Chiba band has been set to 35. Regarding the batch pattern scheme
(OESM), the length of the streaming time series ranges from 3 to 70,
while the length of the batch time series is fixed at 35.

• Experiment 2: in this second experiment we analyze the running time
of the OESMs as a function of the length of the arriving chunks. For
both on-line or off-line settings, we compute the similarity measure for
chunk size 1 ∈ [1, 50] assuming that the length of the stored time series
is < = = = 35. As in the previous experiment, the on-line pattern OESM
and the conventional ESM implement Sakoe-Chiba constraints, where
the band length ℓ is set equal to 35.

As we show in Section 1.4.3, the difference among ESM variants resides
in the definition of the cost function. For this set of experiments, we assume
that the time needed to compute the cost functions listed in Table 1.1 is
similar. As a consequence, there is no need for replicating the experiments
with all EMS variants. For these experiments, the considered cost function
corresponds to the Euclidean distance, i.e., the results we show further
correspond to those issued from the conventional DTW and its on-line
adaptation.

4.3.2 Forgetting Mechanism
In this section we present the experimentation used to test the behavior
of the proposed forgetting mechanism when dealing with non-stationary

http://bitbucket.org/izaskun_oregui/ESM

4.3. Experimental Setup 51

streaming time series. The conducted experimentation aims to evaluate
whether it allows OESMs to neglect the past and accommodate to in-
coming stationary intervals. We have decided to evaluate the forgetting
mechanism by means of a supervised classification problem, which allows
quantifying the behavior objectively, in terms of the accuracy. For this
purpose we use a NN classifier, one of the simplest and most widely uti-
lized distance-based approaches.

The experiments are carried out with specially designed non-stationary
time series streams. As we subsequently explain in more detail, these
streams are created by concatenating sequences contained in the Time
Series Classification Archive [92] databases, which are assumed to represent
different events of the streaming time series.

Generation of Non-stationary Streaming Time Series

The generation process uses time series contained in the UCR archive as a
substrate from which to compose the streaming time series for our experi-
mental benchmark. This repository collects real and synthetic databases,
each consisting of multiple time series, each having one class label assigned
from a set of possible class labels. In this sense, let U = {(*: , ;:)} :=1
denote a UCR dataset, where ;: ∈ {1, ..., !} represents the label of the
*: = (D:1 , ..., D:E) time series; ! is the total number of class labels; and
is the total number of time series in the dataset. By drawing time series
randomly from U and concatenating them, we construct a streaming time
series following a predefined duration of stationary intervals. By stationary
we mean that the label assigned to each event of a given interval remains
the same during the duration of the interval. As a result, this duration
establishes the position where label transitions occur. The steps involved
in the creation of streaming time series can be summarized as follows:

1. First, % time series sharing the same class label are selected uniformly
at random from the chosen dataset, which are then z-normalized and
concatenated in order to model a stationary interval. In fact, data
normalization has been widely acknowledged as a major open issue
in stream data mining. Nevertheless, we assume that non-stationary
streaming time series are composed by normalized events, so that the
performance of the proposed adaptation becomes unbiased with respect
to this aspect, and hence focuses strictly on the OESM adaptability.
Parameter % denotes the length (periodicity) of the stationary interval,
i.e., the number of time series of a given class concatenated before a
label change is held.

2. Stationary intervals are assembled together (one after another), in such
a way that two consecutive stationary intervals do not share the same
class label. That is, stationary intervals are concatenated by forcing a
transition at each union. We refer as) to the total number of transitions
in a streaming time series.

An example showing the generation process of a streaming time series from
a generic binary-class datasetU is depicted in Figure 4.5. In this example,

52 Chapter 4. On-line Elastic Similarity for Streaming Time Series

the parameters of the streaming time series are) = 4 transitions and % = 2
time series per stationary interval (periodicity).

Stationary interval

UKU1

T
im

e
S
er
ie
s

D
at
as
et

S
tr
ea
m
in
g

T
im

e
S
er
ie
s

U = {(Uk, ck)}Kk=1, where lk ∈ { , }

Uk Uk+1

1. Create stationary intervals

T = 4 and P = 2

Stream parameters:

2. Assemble stationary intervals

Figure 4.5: Stream time series generation process. The box at the top shows a
binary-class databaseU, where ;: (red or blue) denotes the ground truth label of
time series *: . Given the number of transitions) = 4 and the periodicity % = 2,
the box at the bottom illustrates the resulting streaming time series, where the

dashed vertical lines indicates the transition point.

Table 4.1: Main characteristics of the utilized UCR datasets.

Database (U) Time series
length (E) Number of classes (�) Sakoe-Chiba band (ℓ)

Gun Point 150 2 0
Two Lead ECG 82 2 4

Wafer 152 2 4
Synthetic Control 60 6 4

Two Patterns 128 4 5
Plane 144 7 9
CBF 128 3 14

Faces UCR 131 14 16
Symbols 398 6 32

For each batch and on-line pattern scenario and UCR dataset in Table
4.1, #CP = 50 different on-line classification problems have been created.
For each dataset U, these classification problems consist of a query stream
and a set of reference (streaming) time series defined as:

• Batch pattern scenario: the query stream of the batch pattern sce-
nario is a streaming time series with) = 14 transitions and a periodicity
of % = 1. The batch pattern set (i.e., the reference time series set) is
just a subset of U, where all class labels are equally represented, each
with 10 randomly selected time series.

4.4. Results and Discussion 53

• On-line pattern scenario: the query stream of the on-line pattern
scenario consists of) = 9 transitions with a periodicity of % = 3. In this
case, the on-line pattern set (i.e., the reference stream set) consists of 10·
� stationary streams (10 per class label), each created by concatenating
30 time series with equal labels (that is, with) = 0 and % = 30).

For the sake of fairness, the reference and query streams do not share
any original time series, i.e., in the classification problem design, the ran-
dom sampling is made without replacement.

Gold-standard Model

For comparison purposes we consider, as gold-standard, a classifier based
on the ESM that uses the query stream information (total number of tran-
sitions) and the periodicity %) to reset the measure of similarity and
therefore, to adapt to the incoming stationary interval. By doing so, the
gold-standard classifier can be regarded as a perfect model, as i) it forgets
old stationary intervals immediately; and ii) it adapts to new intervals by
taking into account all query stream points information.

Memory Parameter

The selection of an appropriate value for the memory parameter is not
trivial, as it roughly depends on the problem at hand. In our case we
will set the memory parameter considering the length E of the time series
belonging to every UCR dataset U (second column in Table 4.1). The
considered memory parameters are given by:

d ∈ {0.00011/E , 0.11/E , 0.51/E , 11/E }. (4.11)

In words, by using these values the contribution of the time series point
E steps prior to the sample at hand is weighted by {0.0001, 0.1, 0.5, 1}. We
will hereafter refer to the selected values as short (d = 0.00011/E), middle
(d = 0.11/E), large (d = 0.51/E), and full (d = 1) range memory. Since the
OESM is completely equivalent to the ESM when d = 1, full range memory
OESM and ESM will be used indistinctly.

4.4 Results and Discussion
In this section we present and comment on the experimental results.

4.4.1 Computational Efficiency
Results for the running time are shown in Figure 4.6. The plot on the left
illustrates the results for Experiment 1, whereas the plot on the right shows
the results for Experiment 2 (see Section 4.3.1). After 100 independent
runs of each experiment, the plots show the average computational time (in
seconds) required by each scenario using a Python 2.7 naive code executed
on a single i7 core at 3.10 GHz: the conventional ESM with Sakoe-Chiba

54 Chapter 4. On-line Elastic Similarity for Streaming Time Series

band (red dashed), the on-line pattern (blue) and the batch pattern (gray).
In Figure 4.6a, the vertical solid line indicates the point where the Sakoe-
Chiba band is exceeded.

• Experiment 1: as can be observed in the plot, the running time re-
quired by the conventional ESM (i.e., the ESM computed as per Equa-
tion (1.19)) grows in a quadratic manner when the query stream length
= is lower than or equal to the Sakoe-Chiba band width ℓ, and linearly
once = > ℓ (see red dashed curve). Regarding the running time of the
on-line pattern scenario, it grows linearly when = ≤ ℓ. However, once
= > ℓ, the complexity remains constant (blue solid line). For the batch
pattern scenario, the computational time is constant for any length of
the time series (gray solid line). Observe that once = exceeds the Sakoe-
Chiba band, the running time required by the on-line pattern is twice
the running time for the batch pattern scenario (gray versus blue solid
lines). This is just the consequence of imposing ℓ = < = 35. When a new
sample arrives, the number of elements to be computed in the distance
matrix is equal to the number of elements in the frontier, namely, 35 in
the batch pattern scheme and 69 in the on-line pattern.

• Experiment 2: due to the Sakoe-Chiba band constraints, the running
times of both the conventional ESM and the on-line pattern grow lin-
early. Moreover, the curves are nearly parallel (compare red dashed and
blue solid lines). The required time also increases linearly for pattern
scenario (gray solid line). The selected time series length and the Sakoe-
Chiba band width make the computational complexity O(1) for on-line
and batch pattern scenarios. However, we note that the slopes are quite
different (blue and gray solid lines).

10 20 30 40 50 60 70
Query Stream length (n)

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

T
im

e
(s

e
c)

ESM

Batch pattern

On-line pattern

25 50
0.00000

0.00045

0.00090

(a) Experiment 1

10 20 30 40 50
Chunk size (b)

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

T
im

e
(s

ec
)

ESM

Batch pattern

On-line pattern

(b) Experiment 2

Figure 4.6: Average running times of conventional ESM and the proposed
OESM under different parameters. The number of independent runs is 100.

4.4.2 Reaction Capacity and Predictive Performance
Given the #CP = 50 streaming time series built from each UCR dataset in
Table 4.1, and the values for the memory parameter d in Equation (4.11),
we now discuss, for both batch and on-line pattern scenarios, the results

4.4. Results and Discussion 55

delivered by the OESM-based and gold-standard classifiers. To this end,
we report on the average accuracy and the average ranking defined in the
following section.

Evaluation Method

In order to numerically quantify the accuracy of each classifier either in
the batch or in the on-line pattern scenario, we consider that a classifier
correctly predicts the class label of an arriving query point if the predicted
label coincides with the label of the stationary interval it belongs to. Let
U^ denote the ^-th generated streaming time series built from the UCR
database U. For the 8-th arriving query stream point (recall that the size
of the arriving chunk is 1 = 1), the predictive accuracy is computed as:

ACCU^
(8; d) =

{
1 if PL(8) = TL(8),
0 otherwise (4.12)

where d is the memory parameter, and PL(8) and TL(8) are, for the arriving
point 8, the predicted label and true label, respectively. Note that, TL(8)
is the same for all 8 belonging to the same stationary interval (event).

As already known, the accuracy of the 1-NN classifier strongly depends
on the selected reference and query streams. To account for this statistical
variability, the average accuracy ACCU (8; d) is computed over the #CP
streaming time series built on U.

Given U and a set of memory parameters, suppose we compute the
average accuracy for each d in the set. In order to extract an overall
view of the influence of the memory parameter d across all classification
problems, we have analyzed the experimental results right after a label
transition (i.e., at the beginning of a stationary interval), in the middle or
at the end of the stationary interval. To do so, we apply the following
process to each part (beginning, middle, end):

1. For each 8 in the corresponding part, and given memory parameter d,
we compute the ranking produced by the average accuracy.

2. We compute the average ranking for the average accuracies obtained in
the previous step. In this context, we will use r1 (U, d), r2 (U, d) and
r3 (U, d) to denote the average ranking in the beginning, middle and
end parts, respectively.

For the sake of brevity, we only show a representative sample of the
experiment results in this section. The results issued by the remaining ex-
periments are available in http://bitbucket.org/izaskun_oregui/ESM.

Results: Batch Pattern Scenario

The outcomes for the batch pattern scenario are shown in Figure 4.7.
Considering all values of the memory parameter d and the classification
problems built on Faces UCR dataset, Figure 4.7a illustrates the average
accuracy, ACCU (8; d), over the last 2 simulated stationary intervals. As

http://bitbucket.org/izaskun_oregui/ESM

56 Chapter 4. On-line Elastic Similarity for Streaming Time Series

can be observed in this plot, the results drawn from the gold-standard clas-
sifier are the best throughout the intervals (red curve). Moreover, scores
of this model show a continuous progress that starts from an initial value
of 0.2 to 0.95 in both intervals. On the contrary, the results issued by
the ESM classifier do not improve over time. In fact, the obtained scores
are those of random guessing. Likewise, the results from the long-range
memory OESM-based classifier are those of random guessing (expect at
the end of the stationary intervals where results slightly improve). As
opposed to the gold-standard model, where the measure of similarity is re-
set immediately after the transition between events, long-range and ESM
models are highly influenced by past alignments. As a result, these lat-
ter classifiers are unable to adapt to such transitions. A balance between
the steady progress of the gold-standard model and the impasse of the
long-range and ESM models is observed for short- and middle-range mem-
ory models. In these cases, the smaller the memory parameter value is,
the sooner the accuracy increases due to its capacity to forget. How-
ever, in certain cases this involves a penalty in score once we go ahead
on the stationary interval. Indeed, this noted behavior is consistent with
the stability-plasticity dilemma formulated in the context of incremental
learning over non-stationary streams. This dilemma states that there is
a trade-off between the learning capability of a predictive model and its
flexibility and speed to capture evolving concepts along the stream [93].
Finally, we note that the curves tend to be noisier as d decreases. This is
in part due to the influence of the high difference between past and present
alignments in the OESM.

In order to elucidate whether the observed evolution of ACCU (8; d) can
be extrapolated to all datasets U in the benchmark, Figure 4.7b shows the
empirical average ranking distribution across all U in Table 4.1. Three
plots are included to focus on the (beginning,middle,end) parts of the sta-
tionary intervals. In close accordance with what was expected in Section
4.3.2, the gold-standard results to be the best positioned model in all par-
titions (red violin plot). For the OESM-based models, the ranking varies
as we progress on the stationary interval as follows:

• Beginning : immediately after every stream transition, scores from the
OESM-based classifiers are those from random guessing. In this case the
short-range memory model is slightly better than the rest of the OESM-
based classifiers (middle-range, long-range and ESM). This is directly
related to the fact that short-range memory model reacts sooner than
the rest.

• Middle: a considerable improvement is observed for the short-range
memory model and, to a lesser extend, for the middle-range memory
classifier. Again, this behavior is in line with the aforementioned idea:
the smaller d is, the sooner the accuracy score recovers after the event
change.

• End : note from Figure 4.7a that while the average accuracy issued from
the short-range memory model is stabilized, the middle-range memory
model accuracy continues to improve. Consequently, the middle-range

4.4. Results and Discussion 57

1703 1834 1965
Query sample (i)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
C
C
U
(i
;ρ
)

gold-standard short middle large ESM

(a) Accuracy score

go
ld
-s
td
.

sh
or
t

m
id
dl
e

la
rg
e

ES
M

1

2

3

4

5

r 1
(U

,ρ
)

beginning

go
ld
-s
td
.

sh
or
t

m
id
dl
e

la
rg
e

ES
M

1

2

3

4

5

r 2
(U

,ρ
)

middle

go
ld
-s
td
.

sh
or
t

m
id
dl
e

la
rg
e

ES
M

1

2

3

4

5

r 3
(U

,ρ
)

end

(b) Average ranking distribution

Figure 4.7: Performance of the NN classifier for the batch pattern scenario and
different values of d: (a) Accuracy score over the last 2 simulated stationary in-
tervals of the classification problems (streaming time series) built on the Faces
UCR dataset; (b) Average ranking distribution from the last 5 simulated station-
ary intervals considering all databases in Table 4.1. The violin plots represent
for each partition (beginning,middle,end), the average ranking distribution. The

horizontal white line denotes the median from all considered datasets.

memory model is, in terms of average ranking, the model improving
most in this partition.

The average ranking distribution for the long-range and ESM classifiers
are steadily worse over different partitions. This is an expected result since
the scores drawn from these models do not improve over the interval.

Results: On-line Pattern Scenario

The results for the on-line pattern scenario are summarized in Figure 4.8.
Given the streaming time series built on Faces UCR database, Figure 4.8a
illustrates the average accuracy issued from the gold-standard and OESM-
based classifiers. As observed in this plot, the accuracy score is very similar
to the behavior described for the batch pattern scenario, where models
with smaller values of the memory parameter d react sooner to transitions
than those with larger values. Moreover, the penalty in the scores of

58 Chapter 4. On-line Elastic Similarity for Streaming Time Series

most forgetful models is also more evident than in the previous scenario,
as elicited by results issued by the short-range memory model. Again,
since the ESM model is fully influenced by the past events, the results
drawn from this model are still the same as those from random guessing.
However, the long-range memory model is able to accommodate stream
transitions. This is due to the periodicity increase, i.e., in contrast to the
batch pattern scenario where % = 1, in the on-line pattern scenario % = 3,
hence, the long-range memory model has more time to forget past events
and to adapt to the prevailing stationary interval.

3144 3275 3406 3537 3668 3799 3930
Query sample (i)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
C
C
U
(i
;ρ
)

gold-standard short middle large ESM

(a) Accuracy score

(b) Average ranking distribution

Figure 4.8: Predictive performance of the 1-NN classifier for proposed d values
in the on-line pattern scenario: (a) Given the classification problem built Faces
UCR database, average accuracy over the last 2 simulated stationary intervals; (b)
Considering all datasets in Table 4.1 and the last 5 simulated stationary intervals,
the violin plots in the figure represent, for each part (1468==8=6, <833;4, 4=3), the
average ranking distribution, where the horizontal white line denotes the median.

Similarly to the discussion on the previous scenario, the results consid-
ering all the datasets in Table 4.1 are summarized in Figure 4.8b. In this
case, the analysis of each partition is outlined below:

• Beginning : as in the batch pattern scenario, the gold-standard model
is the best at the beginning of the stationary interval. In contrast, the
OESM models (short-range, middle-range, long-range and ESM models)

4.5. Conclusions 59

do not perform similarly any longer. In this case, the average rank
gets worse as the memory parameter value increases. As the length
of the partition increases, OESM models have more time to react and,
consequently, to adapt to streams transitions, being those models with
small d values the quickest to react.

• Middle: again, gold-standard is the best performing model. Regarding
the OESM-based classifiers, middle- and long-range models are those
improving the most. This occurs because (i) their flexibility to adapt
to changes is slower, and (ii) the score penalty is lower for those models
with higher d values. Finally, the ESM is the worst model for all the
considered datasets.

• End : in this case, the average ranking median is 2 for the conventional
gold-standard model, which means that, in some datasets, results drawn
from the OESM can be as accurate as that of the conventional model.
As mentioned previously, the long-range memory model is able to ac-
commodate stationary interval with lower penalty (in the score) than
models with smaller d values. As a result, the improvement of the long-
range memory model is noteworthy. The ESM, once again, is the model
scoring worst given its lack of adaptability to changes between events.

4.5 Conclusions
This chapter has elaborated on the On-line Elastic Similarity Measure
(OESM), namely, an adaptation of conventional ESMs suited to measure
the similarity between time series in two different streaming scenarios:
on-line pattern and batch pattern. In either case, the proposed OESM
computes the similarity incrementally, and incorporates a novel forgetting
mechanism to adapt to changes in the streaming time series. We have
shown that the proposed adaptation is conceptually simple, that it can
be computed using limited computational resources, and that it is able
to neglect the past so as to focus on newly arriving points over time.
Regarding this last issue, the results drawn from NN classifiers have shown
that the behavior of the proposed forgetting mechanisms is in line with the
stability-plasticity dilemma identified for incremental learning models over
non-stationary data streams [93].

For these reasons, the proposed OESM spans a manifold of research
lines in the pattern recognition field. In particular, it accommodates a di-
rect adaptation of distance-based methodologies to the on-line setting. In
other words, OESM can be adopted by any learning algorithm for evolving
scenarios hinging on distances of similarity between time series, such as
nearest-neighbor classifiers, kernel-based classifiers, partitional or hierar-
chical clustering. Moreover, the proposed formulation can accommodate
other possible inner cost functions 2(G8 , H 9), besides those in DTW, EDR,
EDIT and others alike.

With the aim of giving insights into the influence of the memory pa-
rameter d, the parameter value setting has been made based on the UCR

60 Chapter 4. On-line Elastic Similarity for Streaming Time Series

time series length. As evidenced by the discussed results, different d val-
ues yield different behaviors in the prediction performance of the model.
There stems one of the research lines planned for the future, specifically,
the development of a strategy to select the best value of d given the char-
acteristics of a given problem. Furthermore, the proposed OESM can
be utilized for other supervised and unsupervised classification problems
– such as early classification or clustering – where streaming time series
are involved. Finally, normalization techniques suited for on-line environ-
ments will be investigated, so that the proposed OESM can be applied to
streaming contexts without assuming any prior normalization.

61

Chapter 5

Learning from ODTW
Features

In Chapter 4 we demonstrated that the proposed OESM, i.e., the adapta-
tion of ESM to the on-line setting, has desirable properties for measuring
the similarity among streaming time series. First, we showed that OESM
can be updated in constant time with respect to the size of arriving data
chunks. For this purpose, we computed the run time of the OESM un-
der different conditions. Then, we provided evidence that the proposed
OESM accommodates the streaming time series dynamics by virtue of its
forgetting mechanism. To this end, we developed several OESM based NN
classifiers to evaluate the adaptation of the OEMS objectively in terms of
the accuracy. Based on the results issued from this latter set of experi-
ments, we empirically showed that OESM-NN classifiers are more reactive
to structural changes of the streaming time series when the memory of
the utilized OESM is small. On the contrary, since the OESM incorpo-
rates more information about its past as the memory parameter increases,
we demonstrated that OESM-based classifiers tend to draw more accurate
results at the cost of more time needed to adapt to new events.

This chapter builds upon these previous findings by developing an ac-
tive adaptation strategy to improve both the accuracy and adaptability
to changes of streaming time series classifiers. To this end, we capitalize
on Observation 1 introduced in the previous chapter, which states that
ESM computation requires the estimation of the similarity among all sub-
sequences of the time series at hand. Specifically, we leverage the set
of intermediate OESM computations – termed streaming frames – to de-
velop an on-line pattern end detector (PED) that identifies the boundary
between consecutive events in streaming time series. Then, we exploit the
decisions made by the proposed PED to better adapt predictive algorithms
(in this case, NN classifiers) to upcoming streaming time series events.

5.1 Introduction and Related Work
When analyzing dynamic scenarios that evolve over time, it is of ut-
most importance that predictive models adjust properly to changes in the

62 Chapter 5. Learning from ODTW Features

streams over time. Hence, in recent years there have been numerous pro-
posals aimed at designing learning algorithms capable of performing effi-
ciently in such evolving scenarios [6], [7]. Two main groups of algorithms
can be distinguished depending the mechanism utilized for adaptation [8].
On the one hand, passive (or blind) strategies are based on forgetting
mechanisms such as the under-weighting procedure of the OESM, or slid-
ing window methods to accommodate predictive models to received data
[93]. On the contrary, active (or informed) adaptation strategies adjust
predictive models to upcoming events based on ad-hoc methods devised
to analyze upcoming data, towards determining whether the underlying
process has changed [3], [9], [10].

On this basis, this chapter tackles the problem of developing an active
adaptation strategy for on-line classifiers. Similarly to the change point
detection problem, which aims at finding abrupt changes in time series,
the goal of our devised method is to detect pattern realizations (events) in
streaming time series, in order to leverage conventional off-line classifiers
and adapt them to upcoming events. For this purpose, we endow classifiers
with a procedure that tests incoming streams to detect such transitions
among events. For this purpose we use our proposed PED model. This
procedure consists of a deep Convolutional Neural Network (CNN) whose
trainable parameters are learned from streaming frames, i.e., from images
that are made up of ODTW measurements between reference patterns
and arriving observations. We evaluate the performance of the proposed
PED over streaming time series classification problems defined over 10
benchmark problems. Specifically, we use NN classifiers for this task, and
compare its performance to that of the ODTW-NN and the gold-standard
models introduced in Chapter 4.

The remainder of the chapter is organized as follows: Section 5.2 formu-
lates the streaming classification problem handled in this chapter. Section
5.3 defines the PED model, whereas Section 5.4 presents and discusses
the results drown from the conducted experimentation. Finally, Section
5.5 summarizes the main contributions of the chapter, and outlines future
research directions departing from this work.

5.2 Streaming Time Series Classification
To develop the PED model, we assume the batch-pattern scenario intro-
duced in Section 4.3.2. This scenario undertakes the problem of classifying
every arriving data chunk that comprises the streaming time series based
on a set of stored patterns. Formally, given the database:

B = {(-: , ;:)} :=1 , (5.1)

where ;: ∈ {1, . . . , !} is the category of the reference pattern (event)
-: = (G:1 , . . . , G:8 , . . . , G:<), the streaming time series classification (STSC)
problem consists of classifying the streaming time series defined as the
sequence of events:

〈.1,@ , . . . , .V〉, (5.2)

5.2. Streaming Time Series Classification 63

where sub-sequence .V ∈ R=V represents the V-th event which, in turn, has
an associated label in {1, . . . , !}. Following the notation in Chapter 1, a
streaming time series can be also defined as:

.= =
(
H1, . . . , H 9 , . . . , H=

)
, (5.3)

where = is the total number of data points received so far, i.e., = =
∑V

@=1 =@;
and H 9 represents an observation which fall within one of the events in
Equation (5.2). Therefore, each H 9 ∈ .= has an associated class label
among {1, . . . , !}, which is to be predicted by a classifier. At this point it
is important to recall that Chapter 4 elaborated on an incremental ESM
(namely, OESM) that enabled similarity-based classifiers to leverage the
elastic properties of such measures when addressing learning problems de-
fined on streaming time series.

As stated in the introduction, we herein address the STSC problem by
developing an active strategy that analyzes the OESM measure to adapt
distance-based classifiers to transitions between events of the streaming
time series. To this end, the proposed PED method examines measure-
ments of the ODTW, namely, features extracted from the measure matrix:

M =

©­­­­«
�1,1 �1,2 . . . �1,=

�2,1 �2,2 . . . �2,=

...
...

...

�<,1 �<,2 . . . �<,=

ª®®®®¬
=

(
�8, 9

)
∈ R<×=, (5.4)

where each entry is given by the ODTW similarity:

�<,= = | |G< − H= | |2 +min
{
d�<−1,=−1, �<−1,=, d�<,=−1

}
(5.5)

computed between .= and one of the reference patterns in B for the batch-
pattern scenario. It is worth to emphasize that the measure matrix in (5.4)
results from Observation 1 introduced in the previous chapters, which
states that the computation of the OESM through the recurrence (4.7)
needs intermediate results among all - 8 (8 = 1, . . . , =) and . 9 (9 = 1, . . . , <)
sub-sequences.

Throughout Chapter 4 we displayed the measure matrix several times
to introduce different concepts related to the OESM. Specifically, we used
it to represent the forgetting mechanism (Figure 4.1), depict the frontier
(Figure 4.2), as well as to illustrate the OESM computation procedure
(Figures 4.3 and 4.4). As a matter of fact, the measure matrix contains
useful information that can be analyzed to discover knowledge from data
[90]. This is indeed the approach of this chapter: to take advantage of the
information collected in this matrix over time to detect transitions between
streaming events.

In order to provide evidence on the rich structure of M, Figure 5.1
shows, for different memory parameter values, examples of the ODTW
measure matrix between a generic reference pattern (black sequence on
the left) and a evolving streaming series composed by 7 events (black se-
quence on the top). The M matrix corresponding to the gold-standard

64 Chapter 5. Learning from ODTW Features

model is depicted in the first row of this figure. As in the previous chap-
ter, in this case we assume that the gold-standard represents a scenario
with access to inner information of the streaming time series, namely, to
event changes. Hence, in the gold-standard scenario, we assume that the
similarity (in this case the DTW) is automatically tailored to the dynamics
of the streaming series by initializing it at every transition between con-
secutive events. The resulting matrix M shows a periodic behavior, where
smaller similarities are located near the optimal path (red curve), and
where �8, 9 ∈ M increases as we move away from it. Within the boundary
between consecutive events, both the measure matrix and the optimal path
undergo an abrupt change resulting from the DTW initialization. Indeed,
it is worth to note that such a change illustrates coherent alignments be-
tween the reference series and each of the patterns in the streaming series.

2.5

0.0

2.5
Stream

gold

short

middle

large

2.5 0.0 2.5
Ref.

0

50

Ti
m

e

500 600 700 800 900 1000 1100 1200
Time

full

Figure 5.1: ODTW measure matrix for gold-standard, short, middle, large and
full range memory ODTW scenarios. In each plot, dark colors represent high
�8, 9 values, whereas light colors correspond to small distance measurements.
Vertical dashed lines represent the boundaries (or transitions) between consecu-
tive patterns (stationary intervals). In the gold-standard scenario, the red curve
illustrates the optimal path ?∗, computed separately within each event. In the
remaining figures, the red curve depicts ?min (i.e. the position of the minimum
ODTW measurement at each time stamp), which can be interpreted as the
optimal path of the ODTW when configured with the corresponding memory

parameter (short, middle, range, full).

Similarly to the set of experiments conducted in Chapter 4, plots from
row 2 to 5 in Figure 5.1 display measure matrix M for short (d = 0.00011/a

whith a = 100), middle (d = 0.011/a), large (d = 0.11/a) and full (d = 1.00,

5.2. Streaming Time Series Classification 65

which is equivalent to compute DTW) memory ranges. In contrast to the
gold-standard framework, in these cases stream transitions are unknown,
so the ODTW cannot be initialized. However, the initialization can be
overridden by making ODTW focus on recent observations, i.e., by using
a small memory range through the choice of the d value. By doing so,
M is more reactive to local changes, thus providing more detailed insights
about the configuration of the streaming time series.

Indeed, if we inspect closely the image maps of the measure matrix, we
can see that the structure of M degrades with respect to the gold-standard
(first row) more severely as d increases. Accordingly, ?min (red curve
depicting the position of the minimum ODTW measurement over time)
features an increasing delay with d (compare red curves around pattern
limits), meaning that the ODTW computed with large/full range memory
need more time to accommodate newly arriving events. For instance, in
the full-range memory example (scenario in which ODTW does not forget
anything from the past because d = 1), ?min consists of matching the
last data points in the reference pattern with every point in the stream.
Similarly, in the large-range memory example, ?min shows that ODTW
requires at least half of the interval to forget the past and adapt to new
stream events (note that ?min is almost a diagonal in the second half of
every event). In contrast, when using short- (and, to some extend, middle-
) memory ranges, the adaptation of the ODTW is achieved in the first half
of the period, thus showing that the reference series align with the stream
events properly.

Going back to the computation/storage procedure introduced in Sec-
tion 4.2.2, we showed that the OESM can be efficiently updated by record-
ing a small set of intermediate OESM measurements, i.e., by repeatedly
saving selected elements of the measure matrix over time. Hence, when
new data points arrive, we do not compute the whole measure matrix,
but the sub-matrix corresponding to the new measurements. Bearing this
observation in mind, let us assume that we received the following chunk:

.=+1−s,= = (H=+1−s , . . . , H=) , (5.6)

which contains s observations. Then, in the batch-pattern scenario, the
similarity is updated by computing the sub-matrix:

M=+1−s,= =

©­­­­«
�1,=+1−s . . . �1,=

�2,=+1−s . . . �2,=

...
. . .

...

�<,=+1−s . . . �<,=

ª®®®®¬
, (5.7)

which we referred to as the streaming frame. In words, the measure matrix
(5.4) can be built in an on-line fashion, concatenating M=+1−s,= whenever
new data points arrive, just as frames in a video stream.

Our active adaptation strategy embraces the above observations by
relying on streaming frames rather than on single values of the similarity
�<,=. We analyze M=+1−s,= to determine whether the pattern associated

66 Chapter 5. Learning from ODTW Features

to an event has finished at the =-th time stamp. That is, the PED model
developed in this chapter and explained in the next section capitalizes
on the underlying structure of the measure matrix (as in Figure 5.1) as
reflected by the streaming frames evolving over time.

For a better understanding, in what follows we assume that the ODTW
– and thus, the measure matrix – is computed by using short-to-middle
memory parameter values. Consequently, when clear from the context, we
will avoid any explicit references to the memory parameter. Furthermore,
we will useM=, instead of <0Cℎ1 5 "=+1−s,=, to denote the streaming frame
computed for the last s observed points .=+1−s,=.

5.3 Pattern End Detection Model
This section describes the necessary steps to build the PED model which,
as stated previously, comprises a binary CNN classifier learning from the
ODTW streaming frames. Just as in conventional CNN architectures [94],
the classifier utilized in this work is composed by two main blocks: i) a
set of convolutional layers, which extract hierarchical features from raw
data (in our case, ODTW streaming frames); and ii) a series of fully-
connected neural layers, which map the extracted features to a binary
label indicating whether a transition among events is occurring at the
timestamp corresponding to the input streaming frame.

Let us consider the STSC problem comprising the reference pattern
database B and the streaming time series .= defined in Section 5.2. In
addition, we assume that .= is recorded and labeled beforehand, so we
know the limits occurring in the stream. In this context, the PED learning
procedure follows in order these steps:

1. Computation of streaming frames: we define a (<×=) image com-
posed of channels as:

M = [M1, . . . ,M: , . . . ,M] , (5.8)

where M: is the measure matrix resulting from the computation of
the ODTW between .= and -: ∈ B for a given value of the memory
parameter d. Streaming frames are obtained by applying a fixed-size
sliding window. Thus, moving a window of s time units across the
measure matrix (sample by sample along the stream time axis), we
extract a series of = −s streaming frames given by:{

Ms , . . . ,M8 , . . . ,M=
}
, (5.9)

where M8 represents the 8-th streaming frame, which collects ODTW
similarity measurements between the reference patterns in B and the
. 8+1−s,8 sub-sequence of the streaming time series. The red arrow and
squares shaded in the same color plotted in Figure 5.2 illustrate the
direction of the sliding window and some of the resulting streaming
frames, respectively.

5.3. Pattern End Detection Model 67

2

0

2

Stream

2.5 0.0 2.5
Ref.

0

25

50

75

Ti
m

e

500 600 700 800 900 1000 1100 1200
Time

Figure 5.2: Illustration of the ODTW streaming frame extraction and labeling
processes. As we move a window of s time units along the measure matrix
(indicated by the red arrow), we extract streaming frames. Some of these frames

are depicted as red (event change) and gray (no event change) squares.

2. Construction of the labeled streaming frame database M: the
next step is to generate the streaming frame database, i.e. the assign-
ment of labels toM8+1−s,8 samples for 8 = s, . . . , =. To this end, we split
streaming frames into {0, 1} classes, where frames falling within the 0
(1) category represent no event change (correspondingly, event change)
in the stream. Accordingly, we generate the database of streaming
frames as:

M =
{(
M8+1−s,8 , ;8

)}=
8=s

, (5.10)

where the category ;8 of the 8-th streaming frame is set to 0 (i.e., no
change) if all observations in . 8+1−s,s belong to the same event; and 1
(i.e., event change) otherwise. In Figure 5.2, gray squares show frames
categorized as 0, whereas frames labeled belonging to 1 category are
depicted in red. Since the goal of PED is to detect limits between
consecutive events, it is desirable that s is small so that the procedure
can detect event changes close to the instant where they truly occur.

Given a value of s, it is important to note that the sliding window
method can yield a highly imbalanced database M. In particular, if
we choose small window sizes, the ratio of streaming frames belonging
to the no event change class is significantly higher that that of frames
labeled as event change. It is widely acknowledged that unless properly
counteracted, learning from imbalanced databases can lead to highly-
biased models that do not generalize properly [95]. Hence, we apply
an random under-sampling technique to decrease the ratio of no event
change frames to achieve a balanced M.

3. Training of the binary CNN classifier: we train the CNN clas-
sifier based on generated ODTW streaming frame database M (using
conventional gradient-based backpropagation algorithms), yielding the
proposed PED model that can detect transitions among events from
new streaming frames.

68 Chapter 5. Learning from ODTW Features

5.4 Experimental Study
In this section we empirically analyze the performance of the PED model
and incidentally, the value of streaming frames as information source. In
particular, we evaluate:

1. The accuracy of the PED model when detecting event changes.

2. The contribution and efficiency of the PED when integrated in TSA
procedures. That is, we analyze whether predictions issued by the PED
model can be leveraged when addressing on-line TSA problems, such
as the STSC task described in Section 5.2.

The first goal is undertaken by analyzing precision and prediction de-
lay of the PED model. On the other hand, in order to quantify the effi-
ciency of our procedure for on-line TSA problems we devise a PED-based
active adaptation strategy that adjusts conventional classifiers (in par-
ticular, DTW-NN classifiers) as per the evolution of the streaming time
series under analysis. Then, the efficiency of PED is evaluated by com-
paring the classification accuracy of the DTW-NN model endowed with
PED with the gold-standard (i.e., event changes known a priori) and the
passive ODTW-based NN classifier proposed in Section 4.3. As has been
already mentioned, the gold-standard model can be regarded as the holis-
tic model for our PED-based classifier, as it uses query stream information
to initialize the DTW and tailor the NN to new events. Hence, the more
the accuracy issued from the DTW-NN model with PED approaches that
of the gold-standard, the more efficient PED can be thought to be when
adapting the DTW-NN classifier to event transitions. The motivation for
using ODTW-NN in our experiments stems from the interest in compar-
ing the performance of passive and active adaptation strategies in STSC
problems.

A public repository has been made available at https://git.code.
tecnalia.com/Izaskun.oregui/2019_active-stream-classifier.git,
which includes data and Python code needed for reproducing all the ex-
periments conducted in this chapter.

5.4.1 Description of the STSC Problems
Our STSC problems are built on 10 benchmark time series databases ex-
tracted from the UCR Archive [92] and the time series generation proce-
dures provided in the supplementary material of [96]. The main features
of these furnished databases are summarized in Table 5.1. From left to
right, columns denote the name, length of the patterns, total number of
classes !, and the number of elements in each database. Among them, we
have identified those synthetically generated sets with a symbol “♦” which,
as stated before, have been produced by following the procedure described
in [96]. The parameters for the synthetic sequences have been set as 5
for the noise level, 10 for the shift level (except for TWO PATTERNS and
TWO PATTERNS MOD, where the shift level is 5), and 10 for the warp level.

https://git.code.tecnalia.com/Izaskun.oregui/2019_active-stream-classifier.git
https://git.code.tecnalia.com/Izaskun.oregui/2019_active-stream-classifier.git

5.4. Experimental Study 69

Furthermore, none of generated databases include outlier patterns nor ob-
servations (check supplementary material in [96] for detailed information
of each parameter). The rest of the databases in Table 5.1 correspond to
those downloaded directly from the UCR Archive.

Table 5.1: Main features of benchmark databases.

Database (U) Pattern length (a) Num. of classes (!) Num. patterns ()
CBF♦ 100 3 2223
TWO PATTERNS♦ 100 4 2444
TWO PATTERNS MOD♦ 100 2 2082
SYNTHETIC CONTROL♦ 100 6 2946
RATIONAL♦ 100 4 2444
FACES UCR 131 14 2205
GUN POINT 150 2 200
PLANE 144 7 210
TWO LEAD ECG 81 2 1162
WAFER 152 2 7164

Analogously to our experimental design in Chapter 4, for each database
in Table 5.1 we develop a STSC problem which, we recall, consists of
categorizing streaming time series based on a set of stored reference pat-
terns (see Section 5.2). For this purpose, we split each database into
three non-oversampling sets, namely, the reference pattern set, stream-
ing time series for PED model training, and query streams respectively.
Let U = {(*: , ;:)} :=1 be a benchmark database with examples, where
*: = (D1, . . . , Da) represents the :-th sequence and ;: ∈ {1, . . . , !} its class
label. Given this notation, the STSC problem is given by:

• The set of reference patterns B ⊂ U. In this case, we assume that the
database is composed by one reference pattern per class, hence |B| = !.

• By drawing randomly and concatenating time series, we generate Dtrain,
namely, the set of training series used to fit the PED model. More
precisely, training streaming series are given by:

Dtrain =
{
.
=train
:

} train

:=1
, (5.11)

where train represents the number of samples in the training set Dtrain.
Each stream .

=CA08=
:

is composed by Vtrain = 10 · ! events (i.e., 10 events
per class), yielding a total of =train = 10 · ! · a data points.

• Finally, the classification performance is assessed over a set of test
streaming series, Dtest. Again, concatenating randomly selected refer-
ence series from a subset ofU, we generate test = 12 streams, each com-
posed of Vtest = 20 ·! events (i.e., 20 events per class), and =test = 20 ·! ·a
data points. Accordingly, the set of test streaming time series is defined
as:

Dtest =
{
.
=test
:

} test

:=1
, (5.12)

where .=test
:

denotes the :-th test streaming time series.

Except for the transition and periodicity parameters, which are not con-
sidered in this chapter, the streaming time series generation process used

70 Chapter 5. Learning from ODTW Features

in this chapter is similar to that displayed in Figure 4.5. Table 5.2 shows
a summarized description of the generated STSC problems.

Table 5.2: Summarized description of developed STSC problems.

Database (U) |B|
Dtrain Dtest

 train Vtrain test Vtest

CBF♦ 3 50 30 12 60
TWO PATTERNS♦ 4 37 40 12 80
TWO PATTERNS MOD♦ 2 80 20 12 40
SYN. CONTROL♦ 6 25 60 12 120
RATIONAL♦ 4 37 40 12 80
FACES UCR 14 13 140 12 240
GUN POINT 2 80 20 12 40
PLANE 7 25 70 12 140
TWO LEAD ECG 2 80 20 12 40
WAFER 2 80 20 12 40

5.4.2 Predictive Performance of the PED model
We first analyze the accuracy of the PED model when detect event changes
in the streaming time series. To this end, we fit parameters of the CNN to
each of the STSC databases. Then, we examine the PED model accuracy
as per the precision and the distribution of the detection delay. In partic-
ular, the precision returns the proportion of correctly predicted changes
among all predicted changes, i.e.:

Precision =
true positives

true positives + false positives
, (5.13)

thus giving reliable statistics for analyzing the predictive accuracy of the
model. On the other hand, the delay measures the distance (in time steps)
between the real event transition and its estimation by the PED model.
We use the distribution of this difference to evaluate the eventual lag in
the decisions issued by our developed active strategy.

Learning the PED Model

Given one of the classification problems listed in Table 5.2, the memory
parameter d, and the size of the sliding window s, we construct a PED
model by following the steps described in Section 5.3. That is, we first
compute the ODTW measure matrix for each streaming time series in
Dtrain. Subsequently, we apply the sliding window to extract streaming
frames, and label them to yieldM. Finally, we learn a binary CNN classi-
fier from this generated database of supervised streaming frames. To this
end, we split M into two non-overlapping subsets: training (Mtrain) and
validation (Mval). The first set comprises 80% of the samples in M, and
is used to train the CNN. The second setMval gathers the remaining 20%,
and is utilized for validating the resulting model.

For each STSC problem, Tables 5.3a to 5.3d display the architecture
of the CNN classifier and details on the memory and streaming frames’

5.4. Experimental Study 71

Table 5.3: DNN training parameters and architecture for benchmark STSC
problem. (A) Main characteristics of the DNN training databases. DNN
architecture for (B) CBF (100, 100), TWO PATTERNS (50, 100), TWO PATTERNS
MOD (50, 100), SYNTHETIC CONTROL (25, 200), RATIONAL (75, 100), TWO LEAD ECG
(50, 100) and GUN POINT (50,100). Likewise, (C) displays DNN architecture for
PLANE (20, 100) and FACES UCR (10, 500). Finally, in (D) the structure of DNN
for WAFER (25, 100) database is reported. Utilized epochs and batch sizes are

specified in brackets next to the name of the databases.

Database U
Memory d Mtrain Mval

Range Value N. frames N. streams N. frames N. streams

CBF♦ middle
0.11/a 0.9772 18640 40 4660 10

RATIONAL♦ middle
0.11/a 0.9772 18780 30 4382 7

TP♦ middle
0.11/a 0.9772 18780 30 4382 7

TP MOD♦ middle
0.11/a 0.9772 18360 60 6120 20

TWO LEAD ECG middle-short
0.011/a 0.9719 18360 60 6120 20

SYN. CONTROL♦ middle
0.11/a 0.9772 18920 20 4730 5

PLANE middle-short
0.011/a 0.9685 22120 20 5530 5

FACES UCR middle
0.11/a 0.9826 22260 10 6678 3

GUN POINT middle
0.11/a 0.9848 18360 10 6120 10

WAFER middle
0.11/a 0.9850 18360 10 6120 10

(a)

Layer Type Description

16 filters (3 × 3)2D Convolutional stride (1, 1), same, ReLu

2D Convolutional 32 filters (1 × 1)
stride (1, 1), valid, ReLu

2D Max Pooling Pool size (2 × 2), valid

2D Convolutional 64 filters (1 × 1)
stride (1, 1), valid, ReLu

2D Max Pooling Pool size (2 × 2), valid
Linear 20 units
Dropout 0.3 rate
Sigmoid 2 units

(b)

Layer Type Description

16 filters (3 × 3)2D Convolutional stride (1, 1), same, ReLu

2D Convolutional 1 filters (1 × 1)
stride (1, 1), valid, ReLu
32 filters (3 × 3)2D Convolutional stride (1, 1), same, ReLu

2D Max Pooling Pool size (2 × 2), valid
64 filters (3 × 3)2D Convolutional stride (1, 1), same, ReLu

2D Convolutional 64 filters (3 × 3)
stride (1, 1), valid, ReLu

2D Max Pooling Pool size (2 × 2), valid
Linear 20 units
Dropout 0.3 rate
Sigmoid 2 units

(c)

Layer Type Description

16 filters (3 × 3)2D Convolutional stride (1, 1), same, ReLu

2D Convolutional 32 filters (1 × 1)
stride (1, 1), valid, ReLu
32 filters (3 × 3)

2D Max Pooling Pool size (2 × 2), valid

2D Convolutional 64 filters (3 × 3)
stride (1, 1), valid, ReLu
128 filters (1 × 1)2D Convolutional stride (1, 1), same, ReLu

2D Max Pooling Pool size (2 × 2), valid
Linear 100 units
Dropout 0.3 rate
Linear 20 units
Sigmoid 2 units

(d)

databases considered for its training. As can be observed in these tables,
all classifiers consist of a series of stacked convolutional layers and a final
fully-connected layer mapping the output of the last convolutional output
to the binary target to be predicted. When backpropagating the gradients
to learn the parameters of the model, we opt for binary cross-entropy loss
and an Adam optimizer with a learning rate equal to 0.001. Regarding the
memory of the ODTW, we choose the value of d that performs best for
the PED model. To this end, we have considered three different CNN clas-
sifiers, each trained on frames of a particular d, and we have selected the
parameter that produce the better validation AUC. In this design phase we
have considered short (d = 0.00011/E), short-middle (d = 0.011/E) and mid-
dle (d = 0.11/E) range memories. These proposed values meet our claims
made at the end of Section 5.2, where we stated that the ODTW should be
computed with short-to-middle range memories. As aforementioned at the
end of Section 5.3, the size of the sliding window is desirable to be small
so as to enclose predictions of the PED close to the true limits between

72 Chapter 5. Learning from ODTW Features

consecutive events. Thus, we use a fixed value of s = 7 time units for all
the problems in Table 5.2.

Performance Results of the PED Model

The upper part of each plot in Figures 5.5 and 5.6 (in subsequent pages)
illustrates the outcomes of the PED model for the conducted experiments.
Specifically, each black curve represents a streaming time series (last five
events) of the Dtest set, vertical dashed lines depict limits between con-
secutive events, and red dots and crosses indicate true and false change
PED predictions, respectively. In this regard, we assume that the detector
performs correctly if the predicted event changes overlap the true limits of
the test streaming time series. That is, given a test stream .

=test
:

∈ Dtest,
we consider that PED correctly predicts event changes if the streaming
frame corresponding to the 8-th arriving observation, namely, M8+1−s,8, is
labeled as change and a real event change takes places between 8 + 1 − s
and 8 time instants.

250 25

0.00

0.02

0.04

D
is

tri
bu

tio
n

250 25 250 25
Delay

40 0 40 300 30

CBF TP TPMOD WAFER GUNPOINT

0.0

0.5

1.0

Pr
ec

is
io

n

Figure 5.3: PED model performance results for CBF, TWO PATTERNS (TP), TWO
PATTERNS MOD (TP MOD), WAFER and GUN POINT STSC problems. On top of the
figure, histograms depict the distribution of the detection delay, where negative
(positive) delays indicate the detector has predicted changes before (after) the
real occurrence. In the lower part, boxplots illustrate the PED model precision.

On this basis, we evaluate the accuracy of the PED by computing,
for each database U in Table 5.2 and .=test

:
∈ Dtest, the delay and pre-

cision. Results corresponding to CBF, TWO PATTERNS, TWO PATTERNS MOD,
WAFER and GUN POINT databases are shown in Figure 5.3, whereas out-
comes for FACES UCR, RATIONAL, SYNTHETIC CONTROL, TWO LEAD ECG and
PLANE databases are depicted in Figure 5.4. In both cases, histograms
on the top of this figure represent the distribution of the obtained delays,
where red bands in the background lie between 0 and s, and represent

5.4. Experimental Study 73

the range where true event changes occur. Accordingly, the more delay
measurements fall into this band, the more accurate the PED is.

300 30

0.00

0.02

0.04

D
is

tri
bu

tio
n

250 25 250 25
Delay

200 20 50 0 50

FACESUCR RATIONAL SC TWOLEADECG PLANE

0.0

0.5

1.0

Pr
ec

is
io

n

Figure 5.4: PED model performance results for FACES UCR, RATIONAL,
SYNTHETIC CONTROL (SC), TWO LEAD ECG and PLANE classification problems.
Similarly to Figure 5.3, histograms illustrate the distribution of the delay, and

boxplots the PED model precision.

This being said, we note that the PED trained for databases corre-
sponding to Figure 5.4 show delay distributions with lower variance than
those in Figure 5.3. However, it is important to note that, given the shape
of the patterns within this last group (see e.g. CBF), the limits established
for these examples become unclear for the ODTW/DTW, due to their elas-
ticity property. Hence, despite the predictor appears to be quite imprecise,
such an inaccuracy does not alter the main structure of the patters, as will
be later supported by the STSC performance results (see discussion at the
end of Section 5.4.3).

Regarding the precision of the PED model, boxplots depicted at the
bottom of Figures 5.3 and 5.4 show the distribution of this score for each of
the databases. According to Expression (5.13), the precision lies in [0, 1],
where 0 indicates failure and 1 perfect performance. In line with the delay
results, PED models for databases in Figure 5.4 are more precise than
models in Figure 5.3.

A summarized overview of these results is given in Table 5.4, which
lists the average precision and delay for each database. We can observe
that except for CBF, TWO PATTERNS, TWO PATTERNS MOD and GUN POINT,
the reported results for the considered benchmark are encouraging in terms
of precision. As argued previously, the limits between consecutive events
in CBF, TWO PATTERNS, TWO PATTERNS MOD and GUN POINT databases are
diffuse for the ODTW/DTW similarity, as per a visual inspection of the
events in Figures 5.5 and 5.6. Consequently, streaming frames lose discrim-
inating power, leading to a degradation of the precision and an increase of
the delay of the PED model for these databases.

74 Chapter 5. Learning from ODTW Features

Table 5.4: Summary of the performance statistics of the PED model over the
STSC problems under consideration.

Database U Precision Delay
Classification Accuracy

PED-NN GS ODTW-NN

CBF♦ 0.41 ± 0.06 −0.06 ± 8.73 0.76 ± 0.24 0.88 ± 0.17 0.63 ± 0.42
TWO PATTERNS♦ 0.31 ± 0.07 −1.85± 18.31 0.47 ± 0.26 0.58 ± 0.30 0.40 ± 0.37
TWO PATTERNS MOD♦ 0.32 ± 0.08 0.14 ± 8.73 0.80 ± 0.23 0.85 ± 0.21 0.64 ± 0.43
SYNTHETIC CONTROL♦ 0.91 ± 0.03 0.98 ± 8.10 0.82 ± 0.17 0.88 ± 0.11 0.30 ± 0.15
RATIONAL♦ 0.90 ± 0.04 3.72 ± 4.07 0.53 ± 0.28 0.57 ± 0.28 0.46 ± 0.24
FACES UCR 0.80 ± 0.02 0.43 ± 13.34 0.39 ± 0.20 0.45 ± 0.20 0.20 ± 0.21
GUN POINT 0.62 ± 0.09 1.55 ± 8.24 0.74 ± 0.14 0.78 ± 0.12 0.53 ± 0.15
PLANE 0.97 ± 0.01 4.08 ± 5.77 0.73 ± 0.34 0.87 ± 0.20 0.47 ± 0.40
TWO LEAD ECG 0.74 ± 0.06 1.38 ± 2.81 0.69 ± 0.15 0.72 ± 0.12 0.68 ± 0.18
WAFER 0.79 ± 0.09 −1.17± 24.89 0.55 ± 0.13 0.58 ± 0.14 0.51 ± 0.13

5.4.3 Efficiency of PED for STSC problems
In this subsection we evaluate the efficiency of the PED model when cou-
pled with a DTW-NN classifier to solve STSC problems. To this end, we
use the accuracy introduced in Equation (4.12). For a given database U
and .=test

:
∈ Dtest, the accuracy of the 8-th arriving data point is given by:

ACC: (8) =
{
1 if PL(8) = TL(8),
0 otherwhise, (5.14)

where PL(8) and TL(8) represent the predicted label and the true label for
time instant 8, respectively.

Gold-standard and ODTW-NN Classifiers

As stated at the beginning of this section, we use two alternative NN-
based classifiers to compare the performance of our PED based DTW-NN
classifier. These classifiers correspond to the gold-standard (GS) and the
ODTW-based nearest neighbor (ODTW-NN) procedure. Based on the
canonical DTW, the GS approach consists of a holistic NN-based classifier
that exploits perfect a priori knowledge of the event changes. When a
change occurs, the measure of similarity is reset right at the time where a
new event begins, so that the model accommodates the upcoming event.
On the other hand, the ODTW-NN method utilizes the forgetting mech-
anism of the ODTW measurement to passively adapt the classifier to the
event changes of the streaming time series (see Chapter 4 for a detailed
description).

GS can be thought to be the perfect model because it essentially reduces
to an off-line DTW-NN model performed separately for each event of the
test stream. However, in most realistic streaming scenarios it is difficult to
know when an event transition occurs. Therefore, to ensure a more realistic
comparison we use the ODTW-NN classifier. In this case we use middle
(0.11/a) or middle-short (0.011/a) range memory values depending on
the classification problem at hand (see Table 5.2 for a list of the specific
values in use). That is, we utilize the same memory parameter values for
both the PED model and the ODTW-NN approach for two reasons: i) to
evaluate whether the proposed PED-based adaptation is less reactive than

5.4. Experimental Study 75

the passive adaptation strategy included in the ODTW-NN classifier; and
ii) to compare both PED-based DTW-NN and ODTW-NN classifiers in
terms of accuracy.

PED-based DTW-NN Classifier

Our active adaptation strategy consist of exploiting the event change de-
tection flag issued by PED to trigger the adaptation of DTW-NN classifiers
to upcoming events. That is, we use the output of PED when analyzing
new streaming frames over time to i) let a DTW-NN classifier predict the
label of the received stream sample (if PED model outputs no change);
or ii) adapt the overall model to the new event by resetting the measure
of similarity (if the PED issued event change). It is important to note
the main difference between this classifier and the GS procedure: while
GS is unrealistically aware of the event changes occurring in the stream,
our approach depends on the predictions output by PED. Thereby, GS is
expected to perform better than the PED-based DTW-NN approach, as it
does not undergo any false positives, nor does it suffer from any delay in the
detection of the event shift. Consequently, GS serves as an upper bound
of the performance that the PED-based DTW-NN model could achieve
(hereafter referred to as PED-NN). The closer the outcome of PED-NN is
to that of GS, the more accurate the PED model can be considered to be.

STSC Performance Results

Results corresponding to CBF, RATIONAL and TWO LEAD ECG STSC prob-
lems are summarized at the bottom of Figure 5.5 and 5.6, where each
curve show the performance of PED-NN (green), GS (black) and ODTW-
NN (gray) classifiers. More precisely, such plots display the accuracy over
time averaged over the test = 12 streaming time series in Dtest:

ACC(8) = 1

 test

 test∑
:=1

ACC: (8), (5.15)

where ACC: (8) represents the accuracy of the 8-th arriving point of the
:-th streaming time series as per Equation (5.14).

We focus on the results obtained for CBF STSC problem (Figure 5.5a).
For this problem we observe that both the PED-NN and the GS classi-
fiers show similar average accuracy results, specially in the middle of every
event. On the contrary, at the beginning/end of the event the predictions
issued by the PED-NN model degrade, getting closer to those correspond-
ing to the ODTW-NN approach. Indeed, if we pay attention to the outputs
of the PED model (red dots), it is straightforward to notice that such pre-
dictions have an ample variability, which implies that the similarity is reset
in the PED-NN model sooner/later than expected. As a result, the accu-
racy decreases around the true limits of the event. Results issued for the
RATIONAL STSC problem (Figure 5.6b) exhibit a similar behavior for both
PED-NN and GS classifiers. Regarding the ODTW-NN, the evolution of
ACC stabilizes to levels below the accuracy of PED-NN and GS as we

76 Chapter 5. Learning from ODTW Features
(a

)
CBF

5500
5600

5700
5800

5900
6000

T
im

e

0.0

0.5

1.0

ACC(i)

(b)
TWO

PATTERNS

7500
7600

7700
7800

7900
8000

T
im

e

0.0

0.5

1.0

ACC(i)

(c)
TWO

PATTERNS
MOD

3500
3600

3700
3800

3900
4000

T
im

e

0.0

0.5

1.0

ACC(i)

(d
)
WAFER

5400
5500

5600
5700

5800
5900

6000
T

im
e

0.0

0.5

1.0

ACC(i)

(e)
GUN

POINT

5300
5400

5500
5600

5700
5800

5900
6000

T
im

e

0.0

0.5

1.0

ACC(i)

F
ig

u
r
e

5.5:
R
esults

ofthe
P
E
D

m
odelin

term
s
ofdetection

perform
ance

(top)
and

average
accuracy

ofthe
P
E
D
-N

N
m
odelover

ST
SC

problem
s

(bottom
)
for

(a)
CBF,

(b)
TWO

PATTERNS,
(c)

TWO
PATTERNS

MOD,
(d)

WAFER
and

(e)
GUN

POINT
problem

s.
O
n
the

top,
black

curves
depict

the
last

5
events

of
each

stream
ing

tim
e
series

in
D

test ,
black

vertical
lines

depict
event

changes
and

red
dots

P
E
D

m
odel

change
predictions.

O
n

the
bottom

,gray,black
and

green
curves

illustrate
average

accuracy
scores

A
C
C

along
the

last
5
events

of
test

stream
s
for

G
S,O

D
T
W

-N
N

and
P
E
D
-N

N
classifiers,respectively.

5.4. Experimental Study 77
(a

)
FA

CE
S

UC
R

36
10

0
36

20
0

36
30

0
36

40
0

36
50

0
36

60
0

T
im

e

0.
0

0.
5

1.
0

ACC(i)

(b
)
RA

TI
ON

AL

75
00

76
00

77
00

78
00

79
00

80
00

T
im

e

0.
0

0.
5

1.
0

ACC(i)

(c
)
SY

NT
HE

TI
C

CO
NT

RO
L

11
50

0
11

60
0

11
70

0
11

80
0

11
90

0
12

00
0

T
im

e

0.
0

0.
5

1.
0

ACC(i)

(d
)
TW

O
LE

AD
EC

G

29
00

30
00

31
00

32
00

T
im

e

0.
0

0.
5

1.
0

ACC(i)

(e
)
PL

AN
E

19
50

0
19

60
0

19
70

0
19

80
0

19
90

0
20

00
0

20
10

0
T

im
e

0.
0

0.
5

1.
0

ACC(i)

F
ig

u
r
e

5.
6:

P
E
D

m
od

el
ch
an

ge
pr
ed

ic
ti
on

s
(t
op

)
an

d
av
er
ag
e
ac
cu

ra
cy

of
th
e
P
E
D
-N

N
m
od

el
(b
ot
to
m
)
fo
r
(a
)
FA

CE
S

UC
R,

(b
)
RA

TI
ON

AL
,
(c
)

SY
NT

HE
TI

C
CO

NT
RO

L,
(d
)
TW

O
LE

AD
EC

G
an

d
(e
)
PL

AN
E
ST

SC
pr
ob

le
m
s.

78 Chapter 5. Learning from ODTW Features

move forward along the event. These conclusions also hold for the TWO
LEAD ECG database (Figure 5.6d). In contrast to the previous example,
in this case the ODTW-NN classification accuracy evolves along with GS
and PED-NN classifiers.

For the sake of of brevity, we have only described in detail the progres-
sion of ACC for three representative experiments. The detailed results for
the remaining databases are depicted in Figures 5.5 and 5.6. According to
the division made in the previous section, we have grouped in Figure 5.5
the databases with diffuse event changes (e.g. CBF). On the other hand,
results in Figure 5.6 correspond to databases with well-delimited event
changes, such as RATIONAL and TWO LEAD ECG problems.

Averaged results obtained from all the STSC experiments are summa-
rized in Table 5.4. For each utilized classifier (PED-NN, GS and ODTW-
NN), the last three columns list the ACC results averaged over the whole
simulated period, i.e., for 8 = 1, . . . , =test. As can be concluded from these
results, both the PED-NN classifier and the GS model render similar per-
formance levels in almost all the conducted experiments, which unveils that
predictions of the PED model do not affect severely the structure of the
streaming time series. Moreover, if we compare the results of PED-NN and
ODTW-NN classifiers, we can see that the former leads to better results.
Hence, the PED-NN classifier proposed in this chapter not only efficiently
accommodates the NN classifier to upcoming events without disturbing
any essential relationship among consecutive data points, but also yields
more accurate results as it incorporates DTW (which uses information of
the full event) instead of ODTW (which forgets information of the past as
it moves forward along the event).

On a closing note, these results are conclusive in regards to the conve-
nience of active adaptation strategies for streaming time series classifica-
tion with respect to passive adaptation methods like the ODTW proposed
in the previous chapter. Furthermore, they emphasize on the rich informa-
tion about the stream dynamics contained in the measure matrix, spanning
several research lines departing from this statement.

5.5 Conclusions and Future Research
In this chapter we have proposed to analyze streaming frames (i.e., par-
tial similarity measurements among all sub-sequences of streaming time
series) towards identifying the transition between consecutive events. Our
motivation for this purpose is to adapt DTW-NN models by leveraging the
detection of such transitions. To this end, we have proposed PED, a CNN
classifier that categorizes streaming frames over time into event change or
no event change classes. When a change is detected, a DTW-NN can adapt
to the upcoming event by resetting the computation of the DTW on which
it relies to predict the class of the arriving stream. A benchmark compris-
ing 10 streaming time series classification databases has been designed to
assess the performance of the proposed model, and to compare it to that
of i) the passive adaptation mechanism proposed in Chapter 4 (memory

5.5. Conclusions and Future Research 79

mechanism), and ii) a gold-standard DTW-NN scheme that assumes per-
fect a priori knowledge of the instants at which event transitions occur
to reset the DTW computation. The reported results have demonstrated
that the accuracy of the proposed PED-based DTW-NN procedure and
the gold-standard classifier behave similarly, which underlines the value of
streaming frames as information source of value for problems defined over
streaming time series.

Several research directions are planned to investigate further uses of the
information contained in streaming frames, including clustering and early
classification in streaming time series. Moreover, alternative deep neural
network architectures can be also studied to decrease the variability of pre-
dicted event changes. Finally, given the potential showcased by streaming
frames when detecting changes between events, further efforts will be in-
vested towards examining whether streaming frames can also discriminate
among labels in time series classification.

81

Chapter 6

Using TSA Tools to build
Robust Image Classifiers

In Chapters 4 and 5 we have emphasized that, in the off-line setting, pre-
dictive models assume stationary data. This assumption means that both
training and test samples are governed by the same distribution. This as-
sumption, however, can pose a serious security threat for predictive models.
Actually, several recent works have shown that learning algorithms can be
easily misled when fed with intelligently manipulated data. Consequently,
an individual can intentionally alter the performance of a model by slightly
manipulating, either in the training or in the test stage, the latent distribu-
tion of the data, i.e., breaking away the stationary assumption. The field
of Adversarial Machine Learning (AML) addresses this issue, deriving new
attack strategies and countermeasures devised to make predictive models
robust against adversarial inputs.

This chapter frames its contribution within the AML research area,
by proposing a DTW-based defense strategy to improve the robustness
of Deep Neural Network (DNN) image classifiers against adversarial at-
tacks. DNN classifiers have been recently proven to be specially prone
to adversarial attacks. In order to increase their robustness we propose
a DTW-based one-class classifier, which analyzes the reliability of input
images by processing the sequences generate from the color gradient of
input images at different levels of sensitivity. As will be later shown, the
capability of a DNN model to detect a diversity adversarial attacks is in
general improved when the model is endowed with the proposed defense
strategy.

6.1 Introduction and Related Work
In recent years, DNNs have shown a superior performance in challeng-
ing classification problems that had remained open for decades. These
models have been shown to outperform traditional feature-based learning
methods, particularly in image classification and speech recognition, where
DNNs, by virtue of their capacity to learn features from unprocessed data,
have achieved unrivaled levels of accuracy. As a result, DNNs have recently
become the modeling reference in a plethora of application domains such

82 Chapter 6. Using TSA Tools to build Robust Image Classifiers

as recommender systems [97], driving assistants [98], industrial prognosis
[42], [99] or medical diagnosis [100], among others [101].

One of the principal reasons for the renowned success of DNNs hinges
on their internal architecture: a layer-wise composition of functions capa-
ble of transforming the input data into a representation characterized by
a higher abstraction level [102], [103]. This layered architecture, together
with new forms of neural computation (such as convolutional filters and
recurrent neurons endowed with sequence learning capabilities), have been
proven to be superior at discovering non-linear input-output relationships
from complex data, while requiring very little data preprocessing. As op-
posed to conventional machine learning models, DNNs can be learned di-
rectly from raw data, without any need for designing and applying feature
extraction techniques that can be computationally demanding, or even
unfeasible in problems with highly-dimensional data.

Notwithstanding their superior performance, DNNs also undergo sev-
eral limitations and caveats. On one hand, DNNs are computationally
expensive to train, as they require large amounts of data due to their large
parametric space. On the other hand, interpreting the reasons why an
algorithm has arrived to a particular decision still remains unclear. There-
fore, DNNs are frequently regarded as black-box models with an empirical
– rather than theoretical – understanding of their inner behavior [104].
The lack of interpretability [105] and high number of parameters bring on
one last limitation of DNNs: their vulnerability to adversarial attacks. The
first example of this weakness was presented in [72], where it was revealed
that DNNs draw counter-intuitive results when provided with subtly yet
intelligently manipulated inputs, coined as adversarial examples. The im-
plications of this noted issue can be better understood when exemplified
in a practical scenario. For instance, if we consider an autonomous vehicle
integrating a DNN to detect obstacles and pedestrians from images taken
from the street, the observations and discussions held in [72] make it possi-
ble that an attacker could mislead the DNN – and, consequently, endanger
the safety of pedestrians – by making small perturbations in the analyzed
images, which can be as easy as sticking an apparently inoffensive printed
film onto a traffic signal [106].

Clearly, the existence of adversarial examples poses a severe threat for
DNN-based applications. For this reason, the machine learning commu-
nity has recently taken a closer look at the intersection between DNN
and computer security, thereby spawning a flurry of research related to
the AML paradigm [73], [75]. AML techniques are widely described as a
two-player game: a defender aims to build a model capable of solving a
classification task, whereas an attacker attempts to devise a strategy to
degrade the performance of the model by subtly modifying the data ex-
amples to be predicted. In this context, a number of different attacking
alternatives can be made available to the attacker, depending on the final
objective of the attack [107]. In this work, we focus on evasion attacks,
namely, attacks where the adversary perturbs test inputs in order to make
the model produce a label error. Such attacks are commonly of two types:
targeted or untargeted. Specifically, when considering targeted attacks, the

6.1. Introduction and Related Work 83

objective is to mislead the predictive model by producing a label error
towards a specific label of interest, e.g., authorized. When dealing with
untargeted attacks, the goal is to produce an indiscriminate error in the
model of the defender, no matter which erroneous label is predicted. A
second aspect to consider when setting the rules of an adversarial game
is the knowledge the attacker possesses about the system to be attacked
prior to the adversarial sample crafting process. The attacker might have
full, partial or no knowledge of the architecture of the model under target,
its parameter values, and/or the training data from where it was learned.
In the literature, such scenarios are referred to as white-box, gray-box or
black-box attacks.

As previously mentioned, in computer vision scenarios attackers have
some constraints when manipulating legitimate images. Indeed, crafted
adversarial examples must be similar to the original ones, so an external
observer can visualize and recognize the original object without noticing
any modification in the image. In this context, theoretical studies dealing
with human visual perception of objects have shown that most neurons
conforming the primary human visual cortex are sensitive to color varia-
tions, and are functionally devoted to the extraction of edges from a given
scene by reacting strongly to chromatic contrast borders (see [108], [109]
and references therein). In other words, the human visual cortex is known
to be more sensitive to shape changes than color variations. This weakness
is what adversarial players leverage by modifying pixel values in the image,
so the crafted adversarial sample achieves its goal efficiently by fooling the
DNN, without any apparent modification to the human eye.

This chapter builds on this noted weakness to present a novel method
to make DNNs for image classification more robust against adversarial
examples. The proposed approach consists of a one-class distance fea-
ture classifier that determines the legitimacy of input images by checking
feature vectors built on measures of the DTW (see Section ??). More
precisely, it hinges on the similarity among sequences that summarize the
color content extracted from input images at different levels of sensitiv-
ity. As explained in the remainder of the chapter, two steps are needed
to build this type of classifiers. First, a similarity matrix is generated by
computing the similarity among sequences build on images color differ-
ences. More precisely, these sequences are extracted by from each image
in the classification database. The second consists of learning a distance
feature classifier using each row (or column) of the similarity matrix as
an input feature vector for the model. With the idea of exploiting the
potential of ESMs in such classifiers, the authors in [110] presented a SVM
classifier for time series classification whose kernel was built by means
of the feature vectors extracted from the computation of the DTW be-
tween time series. In particular, two different DTW-based kernels were
considered in this work, namely, the Gaussian Dynamic Time Warping
 GDTW (/,.) = exp [−W�), (/,.)], with W > 0; and the Negated Dy-
namic Time Warping given by:

 NDTW (/,.) = −�), (/,.) , (6.1)

84 Chapter 6. Using TSA Tools to build Robust Image Classifiers

which will be used to compute the kernel for the SVM model of the herein
proposed adversarial defense method. Results presented by the authors in
[110] showed that the SVM built in this way can be as efficient as other
benchmark sequence classifiers.

Several experiments are devised and set up to quantitatively assess the
performance of the proposed method. We will first examine the behav-
ior of the discriminator when deployed as a defensive countermeasure to
several state-of-the-art attack strategies, for which performance statistics
will be computed for both legitimate and adversarial inputs. We compare
the obtained results with those drawn by eight different defense methods.
The obtained results will show that the proposed strategy reduces the suc-
cess rate of those attacks that attempt to confuse the classifier by slightly
manipulating pixels over the entire original image. To the best of our
knowledge, there is no prior work in the literature using tools from time
series analysis for developing adversarial defense strategies.

The chapter is organized as follows: Section 6.2 places a short back-
ground on AML. Section 6.3 describes the proposed defense strategy in
detail. Section 6.4 presents the experimental setup designed to shed light
on the performance of the proposed approach, followed by a thorough dis-
cussion on the obtained results. Finally, Section 6.6 summarizes the main
contributions of the chapter, and outlines future research lines motivated
by our reported findings.

6.2 Adversarial Machine Learning
Let us assume a defender who is asked to solve a classification task based on
a dataset of legitimate (i.e. non-adversarial) examples D = {(x: , ;:)} :=1,
where x: ∈ X represents the :-th training example and ;: ∈ {1, . . . , !} its
corresponding class label. In order to accomplish this goal, we assume the
defender resorts to a DNN classifier that learns a composition of functions:

5 (x;Θ) = 5 (") ()" ; 5 ("−1) ()"−1; . . . 5 (1) ()1; x))), (6.2)

where the parametric function 5 (<) ()m; ·) (< ∈ {1, . . . , "}) represents the
<-th layer of the DNN; and Θ = {)<}"<=1 the set of weights to be learned.
To this end, the DNN model is provided with D and adjusts the weights in
Θ by reducing a cost (loss) function � (5 (x: ;Θ), ;:) [94]. When clear from
the context, we will hereafter use 5 (x) instead of 5 (x;Θ) to denote a given
DNN, � 5 (x: , ;:) instead of � (5 (x: ;Θ), ;:) to express its loss function; and
5; (x) to express the result drawn by the DNN for example x and label ;.

Given a DNN classifier 5 (·) trained on the legitimate dataset D, and a
clean example x, the AML paradigm aims at producing a perturbed exam-
ple x̃ = x + %adv so that 5 (x) ≠ 5 (x̃), i.e., x̃ confuses the model. We must
not lose sight of the fact that adversarial samples must not only fool the
target DNN, but also any possible external observer, e.g., attacks should
not be visually noticed when x represents an image. In this case, the added
perturbation %adv is usually constrained, so it is undetectable to the hu-
man eye. A common strategy in this regard is to impose | |%adv | |? ≤ Y,

6.2. Adversarial Machine Learning 85

where | | · | |? denotes the !?-norm and Y ∈ R+ is the maximum allowed
perturbation. It is important to note that as Y decreases, so does the
difference between the legitimate image x and the crafted adversarial ex-
ample x̃, which ultimately reduces the probability of x̃ being detected by
an external observer. Based on these observations, the AML problem can
be formally stated as follows:

%adv = argmin
%∈X

Ψ(x, x + %),

subject to: | |% | |? ≤ Y,
5 (x + %) = ; ′,

(6.3)

where Ψ(x, x′) is a measure of dissimilarity between sample x and x′,
and ; ′ denotes the class label that 5 (·) must predict for the perturbed
example. In targeted problems, where the attacker is willing to cause
specific label errors in the model, ; ′ refers to the target label, i.e., ; ′ ∈
{1, . . . , ; − 1, ; + 1, . . . , !}, where ; is the class label of the legitimate image
x, i.e., ; = 5 (x). For untargeted problems, ; ′ can be any label different
from the original one, that is, ; ′ ≠ ;.

6.2.1 Attack Strategies
In general, solving the problem in (6.3) is not a straightforward task.
As a result, many adversarial example generation techniques have been
proposed in the literature as means to solve this problem [111], [112].
This chapter focuses on gradient-based adversarial crafting approaches,
which use gradient-based optimization algorithms to search solutions for
the AML problem [73]. These attack strategies include the Fast Gradi-
ent Sign Method (FGSM [113]), the Basic Iterative Method (BIM [114]),
the Projected Gradient Descent (PGD [115]), the Jacobian Saliency Map
Attack (JSMA [111]) and the Carlini and Wagner attack (C&W [116]).
These methods were originally designed to generate adversarial samples
against DNNs, and have lately become reference attack strategies in the
AML literature for two main reasons: their computational efficiency, and
their accuracy when attacking image classifiers [73], [74], [117]–[119]. This
section briefly introduces each of these methods.

When analyzing the stability of DNN classifiers, Szegedy et al. first
realized that slight, non-random image variations were able to change the
prediction of DNN classifiers [72]. Indeed, by adapting the limited-memory
version of the Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) optimization
algorithm to solve the constrained problem in (6.3), the authors demon-
strated that they were able to craft a large number of examples against
different benchmark image classifiers. In a similar way, the attack pre-
sented in [116] resorted to an alternative formulation of the aforementioned
optimization problem and the Adam optimizer to find accurate adversar-
ial samples. Specifically, the authors proposed the following alternative

86 Chapter 6. Using TSA Tools to build Robust Image Classifiers

problem to develop the C&W attack:

%adv = argmin
%∈X

| |% | |? + 2 · ℎ(x + %),

subject to: x + % ∈ [0, 1] |X | ,
(6.4)

where ℎ(·) was defined such that 5 (x + %) = ; ′⇔ ℎ(x + %) ≤ 0. Besides, in
order to meet the constraint in (6.4), the authors introduced w as:

X8 =
1

2
[tanh(F8 + 1)] − G8 ∀8 ∈ {1, . . . , |X|} , (6.5)

which ensures that G8 + X8 ∈ [0, 1], since | tanh(F8) | ≤ 1. Hence, combining
(6.4) and (6.5) yields the following non-constrained optimization problem:

wadv = arg min
w∈R|X|

��������12 [tanh(w + 1)]��������? + 2 · ℎ
(
1

2
[tanh(w + 1)]

)
, (6.6)

where:
ℎ(·) = max {max [5; (·) | ; ≠ ; ′] − 5;′ (·),−^} , (6.7)

and ^ ≥ 0 in (6.7) represents the confidence under which the generated
sample misleads the classifier. In this chapter we will use ? = 2 (i.e. !2-
norm) when crafting adversarial samples from this attack strategy.

The C&W attack is accurate in crafting adversarial samples at the
cost of a high computational complexity. Due to its relative simplicity
and lower processing demand, the FGSM attack [113] has become one of
the most frequently utilized adversarial crafting techniques in AML re-
lated contributions. In contrast to the problem formulated above, where
%adv is computed by minimizing a thoughtfully constructed objective func-
tion, FGSM calculates the perturbations by using the gradient of the loss
function to minimize it towards the target label ; ′. That is:

%adv = sign
[
∇x� 5 (x, ; ′)

]
, (6.8)

where sign[·] denotes the sign function, � 5 (·, ·) the loss of the DNN class-
sifier, and ∇x the gradient operator with respect to variable x. In this
context, the adversarial example is given by:

x̃ = x + Y · sign
[
∇x� 5 (x, ; ′)

]
. (6.9)

In a similar line of reasoning, an iterative version of the FGSM approach
coined as BIM was proposed in [114]. This attack strategy produces ad-
versarial samples by the following recurrence:

x̃(C+1) = Clipx, Y
[
x̃(C) + U · % (C)adv

]
, (6.10)

where C ∈ {1, . . . ,)max} denotes the iteration number, U is a predefined con-
stant, % (C)adv = sign[∇x� 5 (x̃(C) , ; ′)] is the perturbation made to the original
sample along iterations, and Clipx, Y [·] is the so-called clipping operator

6.2. Adversarial Machine Learning 87

of the input sample defined for G8 ∈ x and G̃8 ∈ x̃, as:

Clipx, Y [x̃] = (min {1, G8 + Y,max{0, G8 − Y, G̃8}}) |X |8=1 , (6.11)

where |X| denotes the number of elements of x. This clipping operator
ensures that, in the !∞ space, the resulting adversarial sample x̃ falls within
the Y-neighborhood of the legitimate sample x. Likewise, the PGD attack
proposed in [115] takes recursive steps in the direction of the greatest loss
by forcing the perturbed sample to be projected on a !∞-ball of Y radius
at each step. However, in contrast to BIM, the PGD starts by adding a
random perturbation around the Y-neighborhood of the input sample.

The authors in [111] proposed JSMA, a crafting technique that exploits
the gradients of 5 (·), the function learned during the training phase, to
mislead DNN classifiers. Specifically, JSMA computes the Jacobian matrix
of 5 (·) in order to estimate the adversarial saliency map, which is used to
identify the pixels that imprint the most significant changes on the DNN
model. Hence, small perturbations are inserted into such pixels, producing
adversarial samples that might mislead the model. The proposed strategy
comprises three main steps that are repeated recursively until a stopping
criteria is met. In the first step, the Jacobian matrix is computed for the
input sample x as:

� 5 (x) = (58;′) ∈ R |X |×!, where 58;′ =
m 5;′ (x)
mG8

, (6.12)

and 5;′ (x) denotes the value of x to be assigned to the target class la-
bel ; ′ (i.e., the value output by the DNN when 5 (x) = ; ′). The sec-
ond step corresponds to the construction of the adversarial saliency map
((x, ; ′) = {(8 (x, ; ′)} |X |8=1 , whose 8-th component is given by:

(8 (x, ; ′) =


0 if �8;′ < 0 or

∑
9≠;′

�8 9 > 0,

�8;′

����� ∑9≠;′ �8 9
����� otherwise.

(6.13)

The final step of the JSMA adversarial crafting procedure corresponds
to the modification of x, which is made by increasing its identified criti-
cal features by means of a distortion parameter U. Based on the above
definition, it can be observed that the probability of the target class ; ′
increases (and thereby, the likelihood of the remaining class labels de-
creases) when features with larger saliency values (8 (x, ; ′) are increased.
Hence, after identifying the feature 8max with maximal saliency value, i.e.,
8max = argmax8 (8 (x, ; ′), it is perturbed via distortion parameter U. This
process is repeated until i) the modified input fools the classifier; ii) all
pixels have been modified; or iii) the dissimilarity between the original
and the modified sample exceeds Y.

88 Chapter 6. Using TSA Tools to build Robust Image Classifiers

6.2.2 Defense Strategies
After the seminal work of Szegedy et al. in [72], several defense mechanisms
have been proposed ever since with the aim of making DNNs resilient to
adversarial attacks. This section overviews the most renowned techniques
used for this purpose, by considering whether the defense is held during the
training phase of the model under attack [73] or, instead, the technique
at hand relies on detecting whether a test sample has been modified to
confuse the target model:

• Model training : in this first category two canonical defense strategies
stand out when increasing the robustness of DNN to adversarial exam-
ples, namely, adversarial training [113] and defensive distillation [120].
These techniques aim to build robust DNN by using modified samples
during the training stage. Specifically, the adversarial training proce-
dure proposed in [113] improves the robustness of DNNs by introducing
adversarial samples during the training stage, whereas defensive distil-
lation aims to smooth the decision surface of the model. To this end,
the defensive distillation strategy trains two identical DNNs, the initial
network 5 (·) and the distilled model 53 (·); the latter exploits knowledge
extracted from 5 (·) (in particular, class probability vectors) to make
the model resilient to adversarial samples. Instead of learning the ini-
tial network 5 (·) to smooth the targets of the input images, the Label
Smoothing technique [121] directly modifies the annotation of the train-
ing set.

• Adversarial detection: an alternative defense approach is to analyze the
input test examples before their classification. By using auxiliary models
that identify divergences between training and prediction data, adver-
sarial inputs can be detected and filtered out before being predicted,
thereby making the classifier predict exclusively clean examples. This is
indeed the design rationale of Deep K-Nearest Neighbors (DkNN), a hy-
brid model proposed in [74] that combines a DNN and a K-NN) classifier.
The DNN is used as the base classifier: during its training stage, paths
made by training samples through the internal components (i.e., layers
and neural connections) of the network are traced and saved. During
test time, paths covered by test inputs are compared with those saved at
the training stage by a K-NN classifier. Predictions are declared legiti-
mate only for those test samples whose labels predicted by the DNN are
supported by predictions of their K nearest training samples. Other de-
tection proposals contributed lately include the Feature Squeezing and
the Spatial Smoothing defense strategies [119]. As stated by their au-
thors, the objective of Feature Squeezing is to limit the capacity of the
attacker by transforming input images into a lower-color-depth version
of the original samples. On the other hand, Spatial Smoothing utilizes
blurring techniques to reduce the differences among individual pixels. In
order to detect adversarial samples, these techniques compare the pre-
diction of the original and transformed samples to determine whether the
image under test has been manipulated. Following this idea of prepro-
cessing input images, the Thermometer Encoding approach [122] applies

6.3. Proposed Adversarial Defense Method 89

a non-linear and non-differentiable function to transform the input im-
age before processing it through the DNN classifier. Likewise, the JPEG
Compression method [123] employs the compression of input images in
order to mitigate/erase the variations introduce by the adversarial play-
ers. Another scheme for adversarial detection is the Total Variation
Minimization defense strategy [117], which rebuilds the original image
with minimum variation from a set of randomly selected pixels.

Similarly to the strategies in the last of the above categories, the ap-
proach proposed in this chapter can be regarded as an adversarial detection
strategy that learns an auxiliary model capable of discriminating clean and
adversarial samples. In contrast to the model presented by Papernot et
al. [74], our approach uses an independent1 discriminator built on a set of
specifically extracted features that encode color discontinuities from input
images. Detecting on the basis of these extracted features overcomes the
limited ability of the human visual cortex when detecting minor variations
in color space. Specifically, we extract a set of sequences from each image
in the database through the evaluation of color changes at different lev-
els of sensitivity. Then, we transform each sequence into a feature vector
by computing the distances to other series in the database. A one-class
classifier is then fit based on the obtained vectors of features. It is impor-
tant to note that the proposed discrimination model does not depend on
the attacker’s strategy, nor does it rely on any assumption about the de-
fender’s classification model. That is, our model is focused on attacks that
rely on slight pixel variations over the whole image, thus unseen samples
are uniquely assessed over their color change distribution regardless of the
classifier in use.

6.3 Proposed Adversarial Defense Method
In previous sections we have stressed on the fact that the human eye sys-
tem detects shape anomalies more efficiently than color variations [108],
[109]. This is, in fact, the reason why in image classification attackers
tend to slightly manipulate the color space of clean images to maximize
the probability of misleading the target model. By ensuring small mod-
ifications in the color space, the chances of a successful attack are high
while making the adversarial image apparently invariant for an external
observer (see FGSM and BIM in Section 6.2.1). In order to discriminate
such subtle perturbations, we propose a two-step preprocessing approach
capable of discerning whether the test sample is adversarial or legitimate,
followed by the prediction of the category by the target model exclusively
for those inputs declared as legitimate.

The proposed approach is described in detail in Algorithms 6.1 (train-
ing) and 6.2 (prediction). It consists of a discriminator model which de-
cides whether an image is legitimate or adversarial before the classifier
under attack actually predicts its category. This independence between

1In this context, we use the term independent to emphasize that the discriminator
is built without any consideration of the model to be defended.

90 Chapter 6. Using TSA Tools to build Robust Image Classifiers

the discriminator and the classifier implies that i) our approach can be ap-
plied to enhance the robustness of classifiers of any kind (not only DNN);
and ii) the design of the discriminator is not restricted to any specific
adversarial crafting strategy.

The discriminator is designed as a one-class classifier learned from a set
of legitimate images D, which permits the identification of manipulated
samples disregarding the attacker’s strategy. Without any loss of general-
ity, the discriminator is chosen to be a One-class Support Vector Machine
(OSVM [124]), whose kernel function (i.e., the similarity function that al-
lows comparing any pair of examples) is based on the DTW measure of
similarity between time series. Given its ability to handle local distortions
and mitigate their effect on the computed similarity, this elastic measure
of similarity has been widely utilized in different problems with time se-
ries, such as time series classification or clustering [12]. As mentioned in
Section 6.1, SVM-based models with DTW kernels have been proven to
perform efficiently in several studies [110].

Algorithm 6.1 Proposed method: training
Require: Dataset D = {(x: , ;:) : : = 1 . . . , } composed by 3-channel le-

gitimate images x: = [x': , x
�
:
, x�
:
], edge detection algorithm Edgeg (x)

with sensitivity parameter g, and value range for the sensitivity pa-
rameter {g1, . . . , g<, . . . , g" }.

1: for 2 ∈ {', �, �} do
2: � Let K =

(
 D,E

)
∈ R#×# be the kernel matrix.

3: for D ∈ {1, . . . , } do
4: for E ∈ {1, . . . , } do
5: � Define the edge count sequences:
6: e2D = {42D,<}"<=1 for channel image x2D
7: e2E = {42E,<}"<=1 for channel image x2E
8: for < ∈ {1, . . . , "} do
9: � Process channel image with edge detector:

10: x
2,4364
D,g< = Edgeg< (x

2
D)

11: x
2,4364
E,g< = Edgeg< (x

2
E)

12: � Set edge count for sensitivity g< and channel 2:
13: 42D,< ← number of edge pixels in x

2,4364
D,g<

14: 42E,< ← number of edge pixels in x
2,4364
E,g<

15: end for
16: D,E = −�), (e2D , e2E) (negated DTW, Expression (6.1))
17: end for
18: end for
19: Train a one-class classifier 5 2>2 (e2) for edge count sequences

based on the kernel matrix
20: end for
21: return Trained discriminators (one-class classifiers) 5 '>2 (·), 5�>2 (·), 5 �>2 (·)

In this work we deal with images, which we represent by their con-
stituent RGB channel images x = [x', x� , x�]. To detect whether an
image x is legitimate, the discriminator resorts to a gradient-based edge

6.3. Proposed Adversarial Defense Method 91

detection algorithm to extract a binary image per every RGB channel (lines
10 and 11). This edge detection phase is carried out for several sensitivity
levels g of the edge detection algorithm (e.g., the so-called threshold of a
Canny detector [125]), so that the resulting set of binary images reflects
the spatial distribution of the detected edges per every color channel. We
aggregate the edge information contained in these images by summing up
all their pixels (lines 13 and 14), resulting in a sequence of edge counts
per every channel, each denoting the number of edge pixels in the image
detected at different sensitivity levels.

The rationale behind this procedure is that these sequences, when ob-
tained from an adversarial sample, yield a higher number of detected edge
pixels than the original image from where it was furnished. Adversarial at-
tacking mechanisms modify the pixels of the image disregarding the effect
of the attack in the distribution of edges detected at different sensitivi-
ties. As we will later verify experimentally, adversarial attacks produce
more pixels to be detected as edges beyond a given level of sensitivity
of the detector, thereby yielding a sequence shape that can be efficiently
discriminated from the distribution of these sequences characterized over
legitimate images. In other words, the boundary of legitimate samples
circumscribed by the one-class classifier is determined by the variation of
their color content.

Algorithm 6.2 Proposed method: prediction

Require: Image x = [x', x� , x�] to be predicted, discriminators 5 '>2 (x'),
5�>2 (x�) and 5 '>2 (x�) trained as per Algorithm 6.1, classifier 5 (x;Θ).

1: for 2 ∈ {', �, �} do
2: Let e2 = {42<}"<=1 be the edge count sequence of channel image x2

3: for < ∈ {1, . . . , "} do
4: Process channel image with edge detector: x2,4364g< = Edgeg< (x

2)
5: Set 42< to the number of edge pixels in x

2,4364
g<

6: end for
7: Compute 5 2>2 (e2)
8: end for
9: if 5 '>2 (e') = 5�>2 (e�) = 5 �>2 (e�) = legitimate then

10: return ;̂ the label predicted by 5 (x;Θ) classifier
11: else
12: return ;̂ = adv (x is not legitimate)
13: end if

Once a one-class classifier has been trained for every channel 2 ∈
{', �, �} (line 19 in Algorithm 6.1), the proposed method is ready to de-
clare whether a newly arriving test sample x′ is adversarial (; ′ = adv) or,
instead, must be regarded as legitimate and, thus, subsequently assigned
a predicted label ; ′ ∈ {1, . . . , !} by the trained classifier. This process is
summarized in Algorithm 6.2: each channel of the image to be predicted
is first decomposed in its three channel images (line 1), processed through
the edge detector over the sensitivity value range (lines 2 to 6), and then
processed through the three discriminators 5 '>2 (·), 5�>2 (·) and 5 �>2 (·) (line

92 Chapter 6. Using TSA Tools to build Robust Image Classifiers

7). The outputs of the three discriminators must be aggregated to deliver
a consensus on the legitimacy of the input image. For this purpose, we will
declare an input image as adversarial if the discriminator of at least one
channel predicts that the channel at hand has been altered with respect
to its training samples (lines 9 to 12). Other aggregation functions can
be used instead for this same purpose, e.g., a majority voting between the
outputs of the discriminators. In all cases, the aggregated output of the
three one-class classifiers indicates if the image at hand is legitimate and
can be safely predicted by the trained classifier.

6.4 Experimental Setup
In this section we describe the experiments used to evaluate the perfor-
mance of the proposed method. The overall objective of our experimenta-
tion is to assess the robustness of our method to adversarial samples. To
this end, we focus our analysis on the effect of the discriminator module in
the overall performance of the proposed approach. Specifically, we attack
a DNN classifier with adversarial samples crafted by means of the canon-
ical methods introduced in Section 2, assuming in all cases a white-box
scenario (i.e., the attacker is entirely aware of the structure and trained
parameter values of the classifier to be attacked). Once adversarial ex-
amples have been furnished, we compute the attack detection rate of our
proposed discriminator, as well as the success rate of the attack when aim-
ing to confuse the target model 5 (x;Θ). We enrich the experimentation
by considering two different adversarial scenarios depending on the final
objective of the attacker (targeted or untargeted evasion):

1. Targeted scenario, where the goal is to force specific classification errors
when predicting test samples towards selected labels of interest.

2. Untargeted scenario where the goal is to decrease its confidence by
causing indiscriminate classification errors for test samples.

Experiments in this chapter consider three image classification datasets
widely used in the related literature and made publicly available for the
community:

• The MNIST [126] dataset, consisting of = |D| = 70, 000 instances that
are split into two subsets, the training set with train = 60000 samples
and the test set with train = 10000 samples). Samples are gray-scale
28× 28 images of handwritten digits annotated with the digit itself, i.e.,
! = 10.

• The Street View House Numbers (SVHN [127]) dataset, whose inputs x:
represent 32×32 RGB images collected by Google Street View, depicting
cropped house numbers, with = 99, 289 samples labeled with ! = 10
classes (in this case, train = 73257 and test = 26032).

• The German Traffic Sign Recognition Benchmark (GTSRB [128]), which
comprises 50, 000 images of ! = 43 different traffic signs captured at

6.4. Experimental Setup 93

varying image sizes. In this last case, we have considered images with a
minimum size of 40 × 40 pixels, resulting in = 4000 RGB images. We
have upscaled or downscaled their resolution to make them all of equal
size: 128 × 128 pixels.

In order to build the classifier, the discriminator and the adversarial
samples, each database has been partitioned into three mutually exclusive
subsets, namely, train, test and crafting subsets (see Table 6.1). Train and
test subsets contain samples from the training set of the source database,
which are used to respectively train and evaluate the performance of the
DNN and OSVM models. The crafting subset is forged from the test set of
the source dataset to generate adversarials. All subsets except for the latter
have been drawn by following a stratified random sampling technique. To
create the crafting subset, we have decreased the sample rate of MNIST and
SVHN labels to 25 images per class (5 in the case of the GTSRB dataset), so
as to reduce the time required to conduct the experimentation.

Table 6.1: Description and subset splits of the considered datasets.

Dataset D Train Test CraftingName # labels (!)

MNIST 10 57000 3000 250
SVHN 10 65930 7327 250
GTSRB 43 19171 1725 215

We now describe the learning procedures utilized to build the target
classifier that the attacker aims to confuse, as well as the proposed method
to discriminate adversarial samples. Given that we focus on image classi-
fication, the target classifier is chosen to be a DNN model. The architec-
ture of the target DNN classifier is summarized in Table 6.2. As shown
in this table, the network is made up of 3 convolutional layers, and a
fully-connected layer to allow for multi-class classification. Parameters of
the DNN are learned through backpropagation using Adam optimizer with
learning rate equal to 0.001, batches of 200 training samples and 13 epochs.
For the GTSRB dataset, an additional dense layer is placed in-between be-
fore the output SoftMax layer, and the number of epochs is increased to
15. It is important to note that these configurations replicate the ones
used recently in [74], where the DkNN defense method against adversarial
attacks for image classification mentioned in Section 6.2.2 was presented.

Regarding the discrimination module, the OSVM classifier uses the
negated time warping kernel function NDTW (e, e′) defined in Expres-
sion (6.1). In this case, e and e′ represent the edge count sequences of
two different channel images x2 and x′2 respectively. Thus, each element
4< ∈ e represents the edge count for a value of the sensitivity parameter
g< ∈ [g1, . . . , g"] (lines 3 to 14 in Algorithm 6.1). In our experiments, a
Canny edge detection algorithm is adopted as Edgeg< (x

2) (lines 10 and
11 in Algorithm 6.1) to extract such edge information, using " = 256
sensitivity values {g1, . . . , g" } = {0, . . . , 255} that represent the high-level
threshold of the algorithm (the low-level threshold is always set to 0). In

94 Chapter 6. Using TSA Tools to build Robust Image Classifiers

Table 6.2: DNN architecture for the target model.

Layer Type Description Configuration

64 filters (8 × 8) Categorical crossentropy loss2D Convolutional stride (2, 2), same, ReLu Adam optimizer

2D Convolutional 128 filters (6 × 6) Learning rate 0.001
stride (2, 2), valid, ReLu Batch size 200
128 filters (5 × 5), 13 epochs (MNIST, SVHN)2D Convolutional stride (1, 1), valid, ReLu 15 epochs (GTSRB)

Linear* 200 units*
Linear ! units (!: number of classes)

*: only for the GTSRB dataset.

this way, by changing g<, one obtains edge maps at different levels of sensi-
tivity: the higher g< is, the more restrictive the Canny detector will be to
declare a pixel as an edge. The OSVM variant in [124] is further controlled
by a parameter a ∈ (0, 1] that denotes the fraction of training samples al-
lowed to be outside the estimated region. The value of this parameter is
selected by searching over a fine-grained grid of possible a values, from
which we choose the one leading to better inlier characterization statis-
tics (i.e., maximum fraction of legitimate samples detected as such by the
discriminator) measured over a validation holdout from the training set.

Table 6.3: Detection statistics of the discriminator and classification accuracy
of the DNN model for the considered datasets.

Dataset D DNN OSVM OSVM+DNN(accuracy) (% positive inliers)

MNIST 98.1% 100.0% (a = 0.01) 98.1%
SVHN 87.4% 81.0% (a = 0.12) 77.7%
GTSRB 91.9% 89.3% (a = 0.01) 83.6%

Once the discrimination model is trained as per Algorithm 6.1, the
evaluation of the performance of the overall image classification model is
provided by testing the model over an unseen 10% set of samples selected
at random from D, and not used for training the OSVM and the DNN
models. Table 6.3 reports the performance of the DNN classifier (accu-
racy), the OSVM discriminator (detection rate), and their combination
OSVM+DNN. In the latter case, we quantify the ratio of test images that
were declared to be legitimate by the discriminator, and whose label was
correctly predicted by the classifier. It can be observed in this table that
the inclusion of the discriminator degrades the accuracy of the overall
scheme. However, it provides the attacked classifier with a significantly
enhanced robustness against adversarial attacks, as the results discussed
in the following section clearly show.

6.5. Results and Discussion 95

6.5 Results and Discussion
In this section we evaluate the results of the proposed defense approach
when being attacked with slight-color variation based adversarial crafting
techniques described in Section 6.1. Furthermore, we consider targeted
and untargeted attacks, yielding four adversarial sample sets that have
been built, for all datasets, by selecting a number of legitimate images per
class label drawn from D. As shown in Table 6.1, 25 samples per label
are selected for the MNIST and SVHN datasets (in total, 250 samples per
dataset), whereas for GTSRB this number is reduced down to 5 samples
per label (respectively, 215 samples) due to the increased computational
burden of processing a larger number of classes. These selected samples are
exclusively used for furnishing the attacks, hence they are not considered
for training the DNN classifier nor fed to the OSVM discriminator.

T
ar

ge
t

la
b

el

Input label

(a) MNIST

T
ar

ge
t

la
b

el

Input label

(b) SVHN

Figure 6.1: Example of adversarial examples furnished by BIM that manage to
confuse the DNN towards targeted misclassified labels. For the MNIST dataset,
parameters have been set to)max = 100, U = 0.01 and Y = 0.01, whereas for the

SVHN dataset,)max = 20, U = 0.005 and Y = 0.05.

An illustrative subset of the adversarial examples crafted by BIM that
succeed at confusing the DNN classifier is illustrated in Figures 6.1.a (for
the MNIST dataset) and 6.1.b (for the SVHN dataset). In these plots, ad-
versarial images are arranged in an ! × ! matrix such that the example
in the (; ′, ;) position represents a legitimate image with an original label
;, manipulated by BIM to make the classifier predict its class as ; ′ ≠ ;.
For instance, the image at position (5, 0) in Figure 6.1.a corresponds to a
legitimate image of a 0 digit that has been modified to be classified as a 5
by the DNN model. It is straightforward to note that in the MNIST dataset,
the perturbation made by the adversarial attack gives rise to gray areas
over the black background of the image that maintain the shape informa-
tion of the digit in the image. In contrast, the richer RGB color space of
the SVHN database (Figure 6.1.b) makes it more difficult to visually discern
the attack inserted by BIM in the image. This observation is at the heart

96 Chapter 6. Using TSA Tools to build Robust Image Classifiers

of the design of our proposed defense method (to rely on the detection of
edges in the channels of the image at different resolutions), for which we
next provide further empirical intuition.

Clean Sample

0 100 200
0.0

0.1

0.2

0.3

0.4
R channel

0 100 200
0.0

0.1

0.2

0.3

0.4
G channel

0 100 200
0.0

0.1

0.2

0.3

0.4
B channel

Adversarial Sample

0 100 200
0.0

0.1

0.2

0.3

0.4

0 100 200
0.0

0.1

0.2

0.3

0.4

0 100 200
0.0

0.1

0.2

0.3

0.4

(a)
Clean Sample

0 100 200
0.0

0.1

0.2

0.3

0.4
R channel

0 100 200
0.0

0.1

0.2

0.3

0.4
G channel

0 100 200
0.0

0.1

0.2

0.3

0.4
B channel

Adversarial Sample

0 100 200
0.0

0.1

0.2

0.3

0.4

0 100 200
0.0

0.1

0.2

0.3

0.4

0 100 200
0.0

0.1

0.2

0.3

0.4

(b)

Figure 6.2: Sequences extracted from two clean images of the SVHN database
and those of their adversarial versions produced by BIM with)max = 20, U =
0.005 and Y = 0.10. In both cases, adversarial samples are crafted to force the
DNN to classify the original images (double curve and 100 kmph speed limit
traffic signs) as a 20 km/h speed limit sign. Gray lines in R, G and B channel
plots represent the sequences e2= = {42=,<}"<=1 used to train the OSVM, whereas

the black line corresponds to the sequence of the traffic sign image.

We now focus on Figure 6.2a, where we visualize the output edge count
sequences e2= = {42=,<}"<=1 for the three RGB channels of an original image
retrieved from the SVHN database, and that of its adversarial version. As
previously indicated, edges have been extracted for different threshold val-
ues {g<}256<=1 of a Canny detector. These plots also depict, shaded in gray,
the total of sequences corresponding to the training set of this database,
which serves as a reference of the distribution of sequences for legitimate
images. It is important to observe that even if the adversarial image closely
resembles the original image, modifications made by BIM on the original
sample imprint a shape change of the edge count sequence in all three

6.5. Results and Discussion 97

channels. It is indeed this change that the discriminator aims to detect.
Furthermore, the elasticity provided by the utilized DTW-based kernel
allows accommodating the relative variability of sequences corresponding
to legitimate images over the x-axis, roughly in a similar fashion to what
occurs with this similarity measure over time series with non-linear warps
over the time domain. The second example in Figure 6.2b also supports
this observation by again demonstrating that the edge count sequence of
the adversarial attack has a different shape of the attack when compared
to that of its legitimate (clean) version. In both depicted examples, the
OSVM discriminator, once trained with the sequences in gray, is able to
detect the presence of an adversarial attack in the image.

Once the discriminator is trained with the edge count sequences of
legitimate examples, the DNN classifier can use it as a preprocessor to
decide whether a given image x is adversarial (predicted label ;̂ = adv) or
legitimate. In the latter, the predicted label for the image is given by the
output of the DNN classifier, i.e., ;̂ = 5 (x;Θ). To quantitatively assess
the effectiveness of the combined OSVM+DNN approach, we compute the
ratio of adversarial images – out of the 250 (MNIST, SVHN) or 215 samples
(GTSRB) selected from D for crafting attacks – that succeed at confus-
ing the attacked model. We compute this attack success rate aggregated
over all classes of each database and for both targeted and untargeted
scenarios, meaning that, for the targeted scenario, only attacks that pro-
duce the specifically desired misclassification error are considered a success.
Furthermore, results are reported for the undefended DNN classifier, the
OSVM discriminator, and the (OSVM+DNN) combination. In the case of
the discriminator, the attack success is defined as the ratio of adversarial
images that are not detected as such by the trained OSVM model. Finally,
we also consider different Y values (in accordance with those used in [74]
for attacking these datasets), so that we can also assess how the intensity
of attack impacts on its detectability by the proposed discriminator.

The obtained success rates are summarized in Table 6.4. As expected,
for both FGSM and BIM attacks, the success rate over the DNN always
increases with Y, due to the fact that this parameter defines the ampli-
tude of the perturbation of the attack as per Equations (6.9), (6.10) and
(6.11). On the contrary, the OSVM discriminator reports lower success
rates of the attack as Y increases, since attacks are easier to detect despite
being more effective in achieving its goal to confuse the DNN classifier.
Adversarial samples produced by large Y values are more likely to mis-
lead the DNN, but easier to detect for a human observer. Conversely,
subtle attacks may not be visually detectable by the observer, but might
fail to confuse the classifier due to the low intensity of the adversarial at-
tack. When combining the proposed discriminator and the DNN classifier,
near-zero success rates are obtained by the attacker against the combined
OSVM+DNN approach for both targeted and untargeted scenarios. In
particular, the success rates when attacking the OSVM+DNN scheme for
the MNIST and GTSRB databases are close to zero for all considered cases,
i.e., no adversarial attack is able to confuse the DNN classifier, even for
Y values that yielded very high attack success rates for the undefended

98 Chapter 6. Using TSA Tools to build Robust Image Classifiers

DNN classifier. For instance, in the GTSRB dataset more than 98% of the
crafted adversarial images by BIM with Y = 0.10 confuse the DNN model
towards untargeted labels; when including our proposed discriminator, all
such attacks are detected, lowering the success rate of the attacker down
to 0.00%. When turning the focus to the SVHN database, similarly good
detection scores are observed for the OSVM+DNN approach, yet attack
success rates are not as low as the other two databases considered in our
benchmark. The reason being that images in this database are less de-
fined and noisier than those in the other two databases, thereby making it
more difficult to properly characterize the space of sequences spanned by
legitimate images.

Table 6.4: Success rate (%) of the attacker against DNN / OSVM /
OSVM+DNN. In each cell, the results show the success of adversarial
examples when crafted to confuse the DNN model by using some of the

techniques described in Section 6.2.1.

D Technique Parameters Targeted Untargeted

MN
IS

T

FGSM
Y = 0.10 7.23 / 0.00 / 0.00 34.94 / 0.00 / 0.00
Y = 0.25 49.13 / 0.00 / 0.00 91.97 / 0.00 / 0.00
Y = 0.30 53.95 / 0.00 / 0.00 94.78 / 0.00 / 0.00

BIM
)max = 100
U = 0.01

Y = 0.10 10.84 / 0.00 / 0.00 44.98 / 0.00 / 0.00
Y = 0.25 94.87 / 0.00 / 0.00 100.00 / 0.00 / 0.00
Y = 0.30 99.78 / 0.00 / 0.00 100.00 / 0.00 / 0.00

SV
HN

FGSM
Y = 0.02 32.83 / 89.18 / 28.08 73.42 / 86.94 / 63.06
Y = 0.05 60.46 / 13.71 / 5.46 95.50 / 13.96 / 11.71
Y = 0.07 63.81 / 2.05 / 1.00 97.30 / 2.70 / 2.25

BIM
)max = 20
U = 0.005

Y = 0.02 51.20 / 90.24 / 45.20 79.73 / 91.44 / 72.07
Y = 0.05 93.59 / 24.57 / 20.42 98.65 / 22.52 / 21.62
Y = 0.07 98.55 / 6.71 / 6.01 100.00 / 4.50 / 4.50

GT
SR

B

FGSM
Y = 0.05 55.84 / 3.61 / 0.91 84.58 / 3.48 / 2.99
Y = 0.10 76.36 / 0.13 / 0.07 94.53 / 0.00 / 0.00
Y = 0.15 81.20 / 0.00 / 0.00 96.52 / 0.00 / 0.00

BIM
)max = 20
U = 0.005

Y = 0.05 72.59 / 2.12 / 0.72 95.02 / 2.99 / 2.99
Y = 0.10 91.44 / 0.00 / 0.00 98.51 / 0.00 / 0.00
Y = 0.15 91.44 / 0.00 / 0.00 98.51 / 0.00 / 0.00

Once the performance of the proposed method has been analyzed with
respect to the applied color variations (i.e., based on the maximum al-
lowed perturbation Y of FGSM and BIM attacks), we now proceed by
discussing on a benchmark where we compare the performance of the pro-
posed discriminator for untargeted attacks with respect to the benchmark
techniques introduced in Subsection 6.2.2. The experimentation next dis-
cussed uses the IBM Adversarial Robustness Toolbox [129] for the Label
Smoothing, JPEG Compression, Feature Squeezing, Spatial Smoothing,
Total Variance Minimization and Thermometer Encoding defenses. Re-
garding DkNN, we have utilized the implementation of this defense strat-
egy provided in the Cleverhans library [130]. Furthermore, this set of ex-
periments also considers an extended range of adversarial attacks. Apart

6.5. Results and Discussion 99

from the FGSM and BIM methods used in the first set of experiments,
PGD, JSMA and C&W attacks have been also included in the benchmark.

Results for this benchmark are summarized in Table 6.5. For each
dataset-attack-defense combination defender accuracies are reported, which
denotes the ratio of adversarial samples that do not succeed in confusing
the DNN model. In our case, we have considered that the attack fails
when 1) an adversarial sample is detected as such by the discriminator;
or 2) when an adversarial image is declared as legitimate by the discrim-
inator, but does not yield a different label predicted by the DNN model
than its original clean version. A grid search has been performed to tune
the parameters for the attack and defense strategies. For every attack
and dataset, the chosen parameters are those maximizing the efficiency of
the attack over the unprotected DNN model. Parameters for the defense
strategies are set to those maximizing its adversarial detection accuracy.

Table 6.5: Defender accuracy (%) against untargeted adversarial images when
using attack and defense strategies from the related literature, and the proposed

OSVM+DNN approach.

D Attack DNN
(unprotected)

Feature
Squeezing

Spatial
Smoothing

JPEG
Compression

Label
Smoothing

Thermometer
Encoding

Total
Variation DkNN

OSVM+DNN
(proposed)

MN
IS

T

FGSM 9.03 9.03 14.85 18.87 22.49 31.72 23.27 40.96 100.00

BIM 0.00 0.00 6.42 5.62 10.44 17.67 17.67 27.31 100.00

PGD 0.80 0.80 16.06 3.61 4.01 26.90 23.29 23.69 100.00

JSMA 0.00 55.82 50.20 68.27 76.70 87.95 69.47 92.77 43.37

C&W 0.00 75.90 76.30 81.12 93.57 96.38 84.73 95.98 98.79

SV
HN

FGSM 4.50 8.55 24.32 21.17 26.12 28.37 43.69 30.63 88.29

BIM 1.35 3.60 15.31 17.56 14.41 19.36 40.09 24.32 78.38

PGD 4.50 4.50 12.61 8.11 11.26 18.01 4.95 4.50 36.48

JSMA 0.01 44.14 68.01 64.84 73.42 78.33 54.50 85.13 2.25

C&W 0.00 44.14 60.81 74.77 86.48 75.22 57.65 90.54 2.70

GT
SR

B

FGSM 5.47 6.46 10.94 36.31 36.81 22.52 48.25 54.22 100.00

BIM 1.49 2.48 4.47 18.01 40.09 13.06 45.04 38.85 100.00

PGD 5.47 5.47 6.46 5.97 5.97 13.43 6.96 29.85 82.08

JSMA 0.00 37.31 74.12 69.65 71.14 78.60 78.10 82.08 2.48

C&W 0.04 65.17 77.61 79.10 82.58 83.58 79.60 86.06 7.46

This being said, Table 6.5 illustrates that DkNN and OSVM+DNN ap-
proaches yield a notably superior defender accuracy in comparison to other
benchmark models. More precisely, for the three databases under consid-
eration, the reported scores elucidate that our model clearly dominates
the benchmark when detecting FGSM, BIM and PGD attacks. However,
it fails at detecting adversarial samples crafted with the JSMA and C&W
attack methods. The reasons for this performance degradation can be dis-
cerned if we visually inspect adversarial samples crafted by each of the
considered attack strategies. Therefore, we shift the focus of the discus-
sion towards Figure 6.3, where the effect of the considered attack strategies
is exemplified for a 0 digit of the MNIST database. Interestingly, we ob-
serve that the proposed OSVM+DNN model has more accurate results
when the color perturbations spread out along the whole surface of the

100 Chapter 6. Using TSA Tools to build Robust Image Classifiers

image (FGSM, BIM and PGD). In contrast, the DkNN appear to be more
efficient in detecting adversarial samples in which color variations concen-
trate around already existing edges or modify the shape/forms of the input
image (JSMA and C&W). Such perturbations do not produce significant
differences between edge count sequences for different sensibilities, thereby
lowering the capability of our OSVM+DNN approach to discern between
legitimate and adversarial images.

(a) FGSM (b) BIM (c) PGD (d) JSMA (e) C&W

Figure 6.3: Adversarial MNIST examples crafted by different attack strategies.

These findings motivate future directions around improving the de-
tection performance of the proposed approach for adversarial attacks of
this nature. We will elaborate further on these research lines in Section
6.6. However, before concluding the discussion it is important to gauge
these comparative results jointly with the universality of our approach
with respect to the image classifier and attack technique in use. DkNN is
specifically designed for DNN image classifiers, as it essentially operates by
inspecting the internal activations of the DNN layers to decide whether an
image to be predicted is legitimate or adversarial. This fact underscores
one of the main advantages of the scheme presented in this chapter: the
proposed discriminator exclusively observes information contained in the
image, without any consideration of the image classification model in use.

6.6 Conclusions and Future Work
This chapter proposes a novel method to make image classification models
robust against adversarial samples crafted by an attacker to confuse their
predicted labels. Unlike other techniques reported in the literature for this
purpose, our design builds upon the proven capacity of the human cortex
system to better discriminate shapes than slight color variations. This
fact suggests that adversarial attacks could be better detected if color
variations imprinted by such attacks are decomposed in an alternative
space, emphasizing changes in the distribution of edges over each color
channel of the image under analysis. We have elaborated on this research
hypothesis to build a one-class classifier that discriminates adversarial and
legitimate images by analyzing them over a sequence of edge counts of
the color channels of the image, under different levels of edge detection
sensitivity. This approach allows translating color variations in the image
to shape changes of the edge count sequences extracted from the image.
Furthermore, by concentrating on the effects of the attack on the color
distribution of the image, our defense method is independent of the specific

6.6. Conclusions and Future Work 101

image classifier under attack and the technique used to craft the adversarial
image.

In particular, in order to build the discriminator, a one-class SVM
classifier is learned from a kernel based on the DTW for the edge count
sequences. By doing so, the classifier focuses the discrimination between
legitimate and adversarial samples strictly on shape differences in their
edge count sequences. This particular kernel choice permits the false pos-
itives to be minimized (i.e., legitimate images identified as an adversarial
by the discriminator) that could result from varying color intensities and
other image artifacts impacting on the distribution of edges over the image.

Experimental results obtained for three different image classification
dabases have shed light on the increased robustness against adversarial
endowed by our proposed approach. We have found that the OSVM dis-
criminator built on edge-based information from images is capable of dis-
criminating most adversarial samples crafted from FGSM, BIM and PGD.
The color perturbations imprinted by these attack strategies cover the
whole surface of the image. Regarding the detection of adversarials gen-
erated by JSMA and C&W, our model draws poor performance results,
compared with state-of-the-art strategies in SVHN and GTSRB, due to the
different nature of the perturbations made by these attacks. The color
changes derived from such perturbations concentrate on localized regions
rather than over the whole image, lessening their impact on the edge count
sequences on which our scheme is based.

Several research avenues stem from the findings reported in this chap-
ter. To begin with, the proposed procedure can be improved by considering
other color-content based feature vectors. In particular, we propose to de-
velop of new features that i) can reveal the modifications applied around
original abrupt color discontinuities and/or ii) can be sensitive to large
color variations applied in small rate of image pixels. Moreover, we plan
to investigate how to extrapolate our insights gained on the impact of ad-
versarial attacks on the characteristics of the images to deal with other
kind of attacks not contemplated in this study (e.g., one-pixel attacks
[131]). To this end, a great deal of focus will be placed on understanding
the reasons why such adversarial attacks eventually succeed in confusing
DNN models, analyzing image features that could possibly correlate with
the adversarial attack. Efforts will be also devoted towards considering the
more restrictive scenario of steganography [132], [133], where in addition
to misleading a classifier, the adversarial attack must also embed payload
information that must be extracted after classification.

103

Chapter 7

Adversarial Sample
Crafting for Time Series
Classification

In Chapter 6 we have seen that a distance-based defense strategy can
make DNNs classifiers for image data robust against adversarial attacks.
However, in many practical scenarios it is the case that the data itself is
composed by labeled sequences, wherein the problem is to decide which
label to assign to a new given test sequence. For instance, the problem of
time series classification posed in Section 1.2.2 refers to this problem when
sequences are time series. When this is the case, the use of ESM measures
(in particular, DTW) with NN classifiers has been shown to yield a superior
performance in problems where the correspondence between time series
and labels require a given degree of independence of the similarity with
respect to non-linear transformations (warps) in the time domain.

Unfortunately, the outstanding performance of DTW-NN classifiers
over such problems comes along with similar concerns with their suscepti-
bility to adversarial attacks than those noted for DNN classifiers. Further-
more, it is unclear whether attack strategies originally developed for DNN
classifiers can be extrapolated to DTW-NN classifiers. The contribution of
this chapter contributes precisely to this research gap by proposing novel
attack strategies against DTW-NN classifiers. Through the forthcoming
sections we will reformulate the AML problem from Expression (6.3) for
this particular class of classification models. Once the AML problem for
DTW-based NN classifiers has been posed, we will propose three different
attack strategies, giving an empirically informed insight on their success
rate and transferability among different data splits.

7.1 Introduction and Related Work
As mentioned above, when dealing with sequences ESMs allow for non-
linear warps over time, so that the computation of the similarity of two
time series becomes independent of local time shifts. This property allows
classifiers relying on ESMs to perform better in applications where time
warps and lags between time series do not imply that their class labels

104 Chapter 7. Adversarial Attacks for Time Series Classification

differ from each other. However, as occurs with DNN classifiers, the good
predictive performance of DTW-based NN do not exempt them from be-
ing sensitive to adversarial attacks, aimed at changing their prediction.
For the sake of self-completeness of this chapter, we briefly revisit recently
proposed techniques for adversarial sample crafting from a general perspec-
tive. We refer to Chapter 6, where Section 6.2.1 provides a comprehensive
introduction to the AML problem, along with a detailed introduction to
more benchmark attacks and defense strategies.

This being said, we recall the assumptions and notation from Section
6.2.1 to consider a training set D = {(x: , ;:)} :=1, where x: ∈ X is the
:-th training example, and ;: ∈ {1, . . . , !} its corresponding class label.
As mentioned in Chapter 1, a classification problem consists of learning
a function 5 : X → {1, . . . , !} from D that predicts the class label ; ∈
{1, . . . , !} of any unseen input example x ∈ X. In this context, the goal
of an adversarial attack is to generate a perturbed version of a legitimate
example x that is classified wrongly by classifier 5 . The perturbed sample
is produced as x̃ = x+%adv, where the perturbation vector %adv yields from:

%adv = argmin
%
Ψ(x, x + %), subject to 5 (x) ≠ 5 (x + %), (7.1)

where % is a vector with the same dimension than x, and Ψ(x, x′) is a
measure of dissimilarity between sequences x and x′. A common measure
of dissimilarity used when x and x′ represent sequence data is the !?-
norm distance 3? (x, x′). Since solving (7.1) is not trivial, Szegedy et al.
[72] proposed to reformulate the above problem for !2-norm distance, and
to solve it by means of a L-BFGS solver, yielding:

%adv = argmin
%

Y · 32 (x, x + %) + � 5 (x + %, ;), (7.2)

where ; = 5 (x) (i.e. the true label of x), � 5 (x, H) is the cost (loss) function
used to learn 5 from D (e.g. Mean Square Error in a linear regressor),
and Y > 0 is a constant set to ensure that 32 (x, x̃) = | |x̃ − x| |2 ≤ Y. Line
search strategy was proposed to infer the optimal value of Y.

Instead of solving (7.2) to optimality, Goodfellow et al. [113] proposed
an alternative technique to craft adversarial samples, Fast Gradient Sign
Method (FGSM), which was already explained in Section 6.2.1. Given a
value of Y fixed beforehand, the distortion is given by:

%adv = Y · sign
[
∇x� 5 (x, ;�)

]
, (7.3)

where sign[·] denotes the sign function, ;� ≠ 5 (x) is the target class to
which the adversarial sample G̃ is to be misclassified, and ∇x is the gradient
with respect to x. In this approach the distortion is upper bounded under
the !∞-norm, that is, | |x̃ − x| |∞ ≤ Y. It is important to observe that the
application of FGSM only ensures that a solution to the problem in (6.3)
is provided if a proper selection of Y is made. In this same line of work,
in [134] a fast gradient strategy was proposed for ? = 2 (i.e., to ensure the

7.1. Introduction and Related Work 105

distortion meets | |x̃ − x| |2 ≤ Y). In this case, the distortion is:

%adv = Y ·
∇x� 5 (x, ;�)
| |∇x� 5 (x, ;�) | |2

. (7.4)

More recently, the work in [114] proposed an iterative version of the
FGSM technique, which computes the adversarial sample recurrently as:

x̃(C+1) = x̃(C) + %adv (x̃(C)), (7.5)

where C ∈ {1, . . . ,)max}, x̃(1) = x, and:

%adv (x̃(C)) = U · sign
[
∇x� 5 (x̃(C) , H�)

]
. (7.6)

In order to ensure that adversarial samples satisfy that | |x̃ − x| |∞ is
bounded by Y, U is set to Y/)max. Similarly, for the distortion to meet
| |x̃ − x| |2 ≤ Y, it must be computed as:

%adv (x̃(C)) = U
∇x� 5 (x̃(C) , H�)
| |∇x� 5 (x̃(C) , H�) | |2

, (7.7)

which also depends on Y and)max to achieve a feasible solution to the
problem in (7.1), similarly to what was previously noted for FGSM.

Unfortunately, the properties of ESMs make it not straightforward
to extrapolate the above adversarial sample crafting strategies to ESM
based models. There emerges the twofold contribution of this chapter:
(i) to extend the formulation of an adversarial machine learning problem
to DTW-based time series classifiers, and (ii) to propose novel strategies
to produce adversarial time series capable of confusing DTW based NN
models. For this specific similarity measure, we derive three approaches to
construct such adversarial samples: the first two hinge on the adaptation
of the gradient-based attack strategies reported previously for DNN mod-
els and image data, for which we develop an expression for the gradient
over the distance space spanned by the DTW. The last strategy aims at
circumventing the susceptibility of gradient-based strategies to its para-
metric configuration (i.e. gradient step size) by formulating the sample
crafting process as a bi-objective optimization problem. This problem is
subsequently tackled by using multi-objective heuristics. Computer ex-
periments are performed with databases from the UCR repository [92] to
validate the effectiveness of our proposed strategies when producing ad-
versarial time series, as well as the capability of the produced samples to
confuse models constructed on databases different than the one utilized to
build the attack.

The remainder of this chapter is structured as follows: Section 7.2
and subsections therein describe the proposed strategies to construct ad-
versarial time series for DTW based classifiers. Section 7.3 presents and
discusses the obtained results from the performed computer experiments.
Finally, Section 7.4 ends the chapter by drawing concluding remarks and
identifying future research directions.

106 Chapter 7. Adversarial Attacks for Time Series Classification

7.2 Attacking DTW-based NN Classifiers
Our main design goal is to generate adversarial samples capable of mislead-
ing DTW based NN classifiers. To this end we adapt the adversarial sample
crafting techniques reviewed in Section 7.1 to the DTW. At this point it
is important to highlight that these methods were originally aimed at con-
fusing DNNs designed for image classification. In such models, � 5 (x, H)
is selected to be, in most cases, a cross-entropy loss function. Given its
differentiability, the application of gradient-based techniques is straight-
forward. However, NN is a lazy classifier (it requires no training phase),
and has neither an associated model 5 nor a loss function � 5 (x, H).

Following the workaround used by Papernot et al. in [112], we re-
sort to a smoothed, differentiable approximation of the NN classifier. In
this manner we can proceed forward with the reformulation of the ad-
versarial sample crafting problem in Equation (7.1) with the DTW sim-
ilarity measure. That is, let us assume that the class of a time series
*= must be predicted under the DTW similarity measure. For this pur-
pose, the NN classifier uses a training set of the form U = {(*: , ;:)} :=1,
where *: = (D:1 , ..., D:=) represents a training (reference) time series, and
;: ∈ {1, ..., !} its associated class label. We consider the square Euclidean
distance as the cost function for the DTW computation, i.e. the similar-
ity between - ∈ R< and . ∈ R= is given by DTW (-,.) = √W<,=, where
W<,= = (G< − H=)2 +min

{
W<−1,=, W<−1,=−1, W<,=−1

}
.

When considering a NN classifier, instead of computing the minimum
distance among the query and every training time series, we can define a
conditional probability for a given class ; ∈ {1, ..., !} as:

P(; |*) = 1

 ∑
:=1

Γ;: ,; · f(*,*:), (7.8)

where Γ;: ,; is the Kronecker delta, and f(*,*:) the soft-max function:

f(*,*:) =
exp

[
−DTW(*,*:)2

]∑
A=1 exp [−DTW(*,*A)2]

. (7.9)

Given the conditional probability definition, the classifier predicts a
label for * as argmax; P(; |*), i.e., as the class maximizing the output
conditional probability of the smoothed kNN as per (7.8). Thereby, the
DTW based smoothed NN algorithm (DTW-SNN) produces an adversarial
sample *̃ for a time series * whose true label is ; as:

*̃ = * +Ωadv, (7.10)

where in this case, Ωadv is a time series that represents the perturbation
imprinted to * that can be computed by solving an optimization problem

7.2. Attacking DTW-based NN Classifiers 107

similar to (7.1):

Ωadv = minimize
Ω ∈ R=

DTW(*,* +Ω) (7.11a)

subject to

P(; |* +Ω) < 1/! , (7.11b)

where the constraint states that there is at least one class in {1, . . . , ; −
1, ; + 1, . . . , !} predicted for * +Ω with higher probability than ; itself.

Once we have defined a smoothed version of a NN classifier, we now
derive three different adversarial sample crafting techniques to attack this
particular kind of classifiers under the DTW measure. Such techniques are
inspired partly by those reviewed in Section 7.1, and are described next:

• The first technique, coined as DTW based Bi-objective Optimization
(DTW-BIO), aims at jointly considering the probability of the per-
turbed time series to successfully confuse the target model, as well as
the amount of distortion imprinted to the original time series. Given a
time series database U and the DTW-SNN model defined as per Equa-
tion (7.8), let Ωadv denote the noise added to a clean sample * ∈ U
whose true label is ;. Expression (7.11) postulates that the optimal
Ωadv, when applied to the original sample, is capable of misleading the
classifier while minimally corrupting the clean sample. When solving
this problem, it is important to note that there is no control on the
value of P(; |*̃). That is, we ensure that P(; |*̃) < 1/!, but the problem
formulated in (6.3) does not allow the attack to be designed for arbi-
trarily low values of P(; |*̃). Therefore, we reformulate this problem as
an bi-objective optimization problem that seeks a set of Pareto-optimal
Ω* balancing between the similarity between * and *̃ and the class
probability P(; |*̃):

Ωadv = argmin
Ω
{DTW (*,* +Ω) ,P(; |* +Ω)} , (7.12)

where, since DTW (*,* +Ω) denotes a measure of dissimilarity, the
lower it is, the more similar * and * +Ω will be. In order to efficiently
tackle this bi-objective problem, we resort to a canonical version of the
NSGA-II meta-heuristic solver [135].

• The second technique (DTW-FG) is a DTW based extension of the
FSGM of Goodfellow et al [113]. We limit the dissimilarity between
samples as DTW(*, *̃) ≤ Y, where Y is a positive constant. We derive
a DTW-based gradient descent technique to compute the perturbation
Ωadv by moving the clean time series * along the direction of the nega-
tive gradient of P(; |*):

Ωadv = −Y
∇P(; |*)
| |∇P(; |*) | |2

, (7.13)

where ∇P(; |*) is the gradient of the class probability, and | | · | |2 is
the !2-norm. Section 7.2.1 provides further details on this gradient
computation.

108 Chapter 7. Adversarial Attacks for Time Series Classification

• The third technique (DTW-IFG) adapts the iterative version of the fast
gradient method of Kurakin et al. [114] to the DTW setting. We con-
sider an initial condition of the form *̃ (0) = *. In this case, the adver-
sarial sample would be computed by following the recurrence:

*̃ (C) = *̃ (C−1) +Ωadv (*̃ (C−1)) for C ∈ {1, . . . ,)max}, (7.14)

where:

Ωadv (*̃ (C−1)) = −U
∇P(; |*̃ (C−1))
| |∇P(; |*̃ (C−1)) | |2

. (7.15)

and U = Y/)max to ensure DTW(*, *̃ (C)) ≤ Y. In this case, gradients are
also given as per Section 7.2.1.

7.2.1 P(; |*) Gradient Computation
In what follows we formally derive the gradient for the DTW setting, which
is needed by the proposed DTW-FG and DTW-IFG adversarial crafting
strategies as per (7.13) and (7.15). That is to compute, for 3 ∈ {1, ..., =}:

∇P(; |*) = mP(; |*)
mD3

, (7.16)

where * = (D1, . . . , D3 , . . . , D=) is a time series with = data points. To this
end, we consider the DTW-SNN model introduced in Section 7.2. The
partial derivative with respect the input variable D3 is given by:

mP(; |*)
mD3

=
1

[
 ∑
:=1

Γ;; ,;
mf(*,*:)

mD3

]
. (7.17)

For simplicity we rewrite the soft-max function as f(*,*:) = �1/�2,
where �1 = exp

[
−DTW(*,*:)2

]
and �2 =

∑
A=1 exp

[
−DTW(*,*A)2

]
.

Therefore, Equation (7.17) can be rewritten as:

mP(; |*)
mD3

=
1

[
 ∑
:=1

X;: ,;

m�1

mD3
�2 − �1

m�2

mD3

�2
2

]
. (7.18)

To compute the partial derivatives of �1 and �2, we need to differen-
tiate DTW(*,*:). To this end, let ?∗

:
be the optimal alignment between

*: and *. In other words, let ?∗
:
be the alignment satisfying:

DTW(*,*:) =
√ ∑
(8, 9) ∈?∗

:

(D8 − D:9)2, (7.19)

where D8 and D:9 are the 8-th and 9-th observations of * and *: time series,
respectively (see Equations (1.16) and (1.17)). Therefore, the derivatives

7.3. Experiments 109

of �1 and �2 are given by:

m�1

mD3
= −2

∑
(8, 9) ∈?∗

:

Γ8,3 (D3 − D:9) exp
[
−DTW(*,*:)2

]
, (7.20)

m�2

mD3
= −2

 ∑
A=1


∑
(8, 9) ∈?∗A

Γ8,3 (D3 − DA9) exp
[
−DTW(*,*A)2

] , (7.21)

where we recall that Γ8,3 denotes the Kronecker delta.

7.3 Experiments
We now discuss the results obtained from a set of experiments aimed at
assessing the vulnerability of DTW-NN classifiers against adversarial sam-
ples generated by the techniques presented in Section 7.2. In this set of
experiments we have used the Synthetic Control time series classifica-
tion database from the UCR archive [92]. This database is divided in a
training and test subsets, both with 300 labelled time series (50 per class
label). Given the training set, the challenge associated to this database is
to classify every time series in the test set in one of ! = 6 classes. Two
are the reasons for selecting this dataset: 1) the length of the time series
(60 observations), which allows for DTW computations within reasonable
times; and ii) the performance of DTW-based NN classifiers which, for this
case, report accuracy scores of 0.993.

The discussion will focus on the so-called intra-technique transferability
[112]. Specifically, we will evaluate the capacity of an adversarial sample
crafted by the proposed methods to mislead classification models belonging
to the same family (namely, NN classifiers), yet trained with different
datasets. Consider a set of adversarial samples Ũ built on a classifier 5 ;
in other words, if adversarial samples in Ũ have been designed properly,
5 should misclassify all of them. The intra-technique transferability is
therefore defined as:

'intra

(
Ũ, 5 , 5 ′

)
=

���{*̃ ∈ Ũ : 5 ′(*̃) ≠ 5 ′(*)
}���

|Ũ |
, (7.22)

where | · | denotes set cardinality, 5 is the classifier for which adversarial
samples Ũ were designed, and 5 ′ represents a classifier of the same family
of 5 but trained with a different database. In our case, 5 and 5 ′ are both
DTW-based NN classifiers with different training sets.

To evaluate the intra-technique transferability across more than one
model under attack, we have split the subset of 300 test time series in
5 disjoint, stratified splits. Four of these sets are used as training sets
for the DTW-NN models {U8}48=1, while the remaining one U5 is used to
craft adversarial samples. Consequently, the set of time series that are
modified to confuse models trained on U8 do not participate at all in the
training process of such models. This being said, 'intra

(
Ũ, 5 , 5 ′

)
will be

110 Chapter 7. Adversarial Attacks for Time Series Classification

quantified for all 16 combinations of the considered training sets, e.g. given
a training database U8 for the DTW-NN model, the analysis will verify
whether samples crafted to confuse this trained model (source model) are
misclassified by another DTW-NN model (target model) trained with U8′ ,
where 8, 8′ ∈ {1, . . . , 4}.

7.3.1 Results and Discussion
We begin by discussing the results in Figures 7.1a to 7.1c, where the intra-
technique transferability as per (7.22) is shown for all training set com-
binations between the source and target classifiers and for the proposed
DTW-BIO, DTW-FG and DTW-IFG techniques. For the DTW-BIO ap-
proach, the NSGA-II solver has been configured with a population size
of 100 individuals, tournament selection, SBX crossover and polynomial
mutation with respective distribution parameters equal to 15 and 20, and
a maximum of 104 number of fitness evaluations. Given the set of Pareto-
optimal solutions for each * ∈ U5, the adversarial sample was produced
by adding the perturbation whose P(; |*̃) was closer to (yet smaller than)
1/! = 1/6. To generate gradient-based adversarial samples, Y has been set
to 4.0, which has been tuned off-line as per off-line trial experiments. For
the DTW-IFG case, the maximum number of iterations has been set to
)max = 25.

U1 U2 U3 U4

Source

U1

U2

U3

U4

T
ar

ge
t

1.000 0.237 0.288 0.339

0.339 1.000 0.339 0.356

0.220 0.305 1.000 0.322

0.362 0.310 0.276 1.000

(a) DTW-BIO

U1 U2 U3 U4

Source

U1

U2

U3

U4

T
ar

ge
t

0.864 0.661 0.678 0.780

0.695 0.915 0.729 0.729

0.627 0.661 0.864 0.712

0.690 0.759 0.690 0.948

(b) DTW-FG

U1 U2 U3 U4

Source

U1

U2

U3

U4

T
ar

ge
t

0.983 0.661 0.661 0.712

0.610 1.000 0.780 0.695

0.644 0.627 0.983 0.729

0.603 0.741 0.690 1.000

(c) DTW-IFG

Figure 7.1: Intra-technique transferability for adversarial samples drawn by
a) DTW-BIO; b) DTW-FG; and c) DTW-IFG. Results must be interpreted as
e.g. as shown in entry (1, 3) of DTW-BIO, 28.8% of the adversarial samples
crafted from source model trained with dataset U3 are misclassified by target
model trained with dataset U1. The average accuracy computed over 4 DTW
based NN classifiers fed with training sets U1, U2, U3 or U4 is 0.979 measured

over U5 as their test set.

A first inspection of these plots reveals that as expected, the crafted
adversarial samples perform best when both source and target models
share the same training set (diagonal entries in the matrices). This noted
fact is in accordance with similar conclusions extracted by Papernot et al
in [112], where NN models (under Euclidean distance) were found to be,
to a certain extent, robust to intra-technique transferability. However, it
is clearly shown that gradient-based strategies produce more transferable
adversarial samples than the DTW-BIO technique, due to the fact that

7.3. Experiments 111

this latter approach overfits the crafted perturbation to the training set
of the source model. This calls for further research aimed at determining
whether overfitting is due to the small sizes of the training datasets (60
time series in total, 10 per class), as well as to the disjoint split by which
they were built.

We now turn the focus on Figure 7.2, where we show, for the three
proposed schemes, the achieved trade-off between the distortion of a cor-
rupted sequence with respect its clean version, and the class probability
%(; |*̃) of the produced adversarial time series. To trace the evolution
of DTW-FG as a function of the distortion, the technique has been run
for Y ∈ {1.0, 2.0, 3.0, 4.0}. For the DTW-IFG, the maximum distortion has
been set to be Y = 4.0 and the maximum number of iterations to)max = 25.
The curve depicts the similarity and class probability values for the partial
adversarial time series yielded by the recurrence in Expression (7.15). In
this second plot we can also observe that DTW-BIO attains a more diverse
set of adversarial samples than the other techniques, while requiring less
parameter tuning. The downside is a higher computational complexity
which, depending on the application scenario, can make this approach less
convenient than its gradient-based counterparts.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Distortion

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
P

ro
b

ab
il
it

y

DTW-BIO

DTW-FG

DTW-IFG

Figure 7.2: Class probability %(; |*̃) of the proposed adversarial sample crafting
schemes as a function of the distortion for an arbitrarily chosen time series whose
true label is ; = 2: DTW-BIO (yellow), DTW-FG (blue) and DTW-IFG (red).

Finally, Figure 7.3 compares visually the original sequence and its cor-
responding adversarial time series. From top to bottom, the first figure
depicts the original sequence (black) over the time series in U sharing its
class label ; = 1 (gray). The second figure illustrates the adversarial sample
crafted by DTW-BIO (red solid line), as well as the reference time series
of the predicted class (in this case the gray time series belong to class
; = 3). Likewise, the third and fourth figures illustrate the adversarial
samples generated by DTW-FG and DTW-IFG, respectively. As opposed
to the DTW-BIO example, it is interesting to observe that gradient-based
methods produce an adversarial sample that is misclassified by the target
model as label 6. In all cases, the degradation of the adversarial example

112 Chapter 7. Adversarial Attacks for Time Series Classification

is almost negligible with respect to its clean version, which underscores the
conclusion that robust models against subtle adversarial attacks are also
needed for time series classifiers relying on elastic similarity measures.

−2

0

2

V
al

u
e

Original Sample

−2

0

2

V
al

u
e

DTW-BIO

−2

0

2

V
al

u
e

DTW-FG

0 10 20 30 40 50
Time axis

−2

0

2

V
al

u
e

DTW-IFG

Figure 7.3: Comparison between an arbitrary original sequence (black) and its
adversarial samples (red) crafted by every proposed technique. The class label
predicted for the original and adversarial sequences is represented by the gray set
of time series depicted in the background of each subfigure: from top to bottom,
class label ; = 1 (which is the class of the original time series), ; = 3 (DTW-BIO)

and ; = 6 (DTW-FG and DTW-IFG).

7.4 Conclusions
This chapter has presented three adversarial time series crafting techniques
aimed at misleading outstanding DTW-based NN classifiers for time se-
ries. Specifically, the proposed portfolio of techniques hinge on an opti-
mization problem that aims at discovering the smallest perturbation that,
when added to a legitimate time series, forces DTW-based classifiers to
issue erroneous predictions for the perturbed time series. To solve this
problem, two gradient-based techniques (DTW-FG and DTW-IFG) and a
bi-objective optimization problem (DTW-BIO) have been used.

The performance of these techniques when attacking DTW based NN
classifiers has been empirically assessed by inspecting the intra-technique

7.4. Conclusions 113

transferability across 4 classifiers fed with different training data. We
have utilized the Synthetic Control public time series dataset from the
UCR archive. Conclusions drawn from the results obtained with these
experiments are listed below:

• Regardless the adversarial sample crafting technique, the observed intra-
technique transferability evinces that crafted adversarial time series are
capable of misleading DTW-based NN classifiers trained with different
training sets than the one used for the crafting process.

• Adversarial time series produced by DTW-FG and DTW-IFG are, in
general, more transferable than those furnished by the BIO-DTW tech-
nique. However, BIO-DTW is more effective when attacking target clas-
sifiers whose training set is the same than that of the source model used
for generating the adversarial samples.

• The difference between generated samples and their original version is
almost negligible for the majority of time series considered in the exper-
iments, disregarding the crafting technique.

Several future research lines are rooted on the findings reported in this
chapter. To begin with, each adversarial sample technique should be eval-
uated in a benchmark encompassing a higher number of time series clas-
sification problems. Since DTW permits to compute the similarity among
time series of different length, this study can be extended to the case where
the time series in source and target training sets have different number of
observations. We will also analyze how the transferability of adversarial
samples produced by DTW-BIO evolves with the degree of overlapping be-
tween the training sets of source and target classification models. Finally,
we plan to analyze the so-called cross-technique transferability, which aims
at verifying the capability of adversarial samples to confuse different tar-
get classification models when their learning algorithms differ from that
used in the source classification model (using distance based models such
as Gaussian Mixtures or SVMs).

115

Part III

Concluding Remarks

117

Chapter 8

Concluding Remarks

8.1 Conclusions
Time series have traditionally played a central role in a plethora of real-
world machine learning problems formulated in scenarios hinging on this
kind of data. This noted prevalence of time series data across different
domains and disciplines has occurred on a par with notable improvements
in data collection, storage and retrieval. This technological ecosystem
has sharply ignited the need for efficient modeling approaches capable of
dealing with complex learning paradigms defined on time series data. In
this vein, this Thesis has placed the spotlight on novel approaches that rely
on measures of elastic similarity between time series (ESMs), with a view
towards the formulation and efficient solving of two problems in the time
series analysis field: streaming time series classification, and adversarial
machine learning. The novel contributions achieved in the Thesis are next
summarized:

Development of a novel elastic similarity measure for multi-dimen-
sional time series classification tasks.

First, Chapter 3 has proposed a framework to learn a similarity measure for
MTS to undertake classification tasks. The challenge resides in learning
a multi-dimensional DTW formulation that considers time series of the
same class closer than series among different categories. To this end, we
have proposed DTW>?C , a multi-dimensional measure of similarity that
captures the relations between the different dimensions of the time series,
and efficiently exploits them for classification. The proposed framework
has been modeled through two extreme approximations: the independent,
DTW� , and the dependent, DTW� , DTW formulations. In the former
approximation, the similarity results from averaging the DTW computed
for each dimension of the problem. In this context, each dimension is
treated independently from others, thus performing an warping path (i.e,
an alignment) for each dimension of the problem. By doing so, MTS are
considered as a collection of unrelated uni-dimensional sequences. In the
dependent formulation in contrast, all dimensions are aligned jointly using
the same warping path thereby, considering MTS as a whole entity with
an deep relation among dimensions.

118 Chapter 8. Concluding Remarks

On this basis, the proposed similarity learning problem consist of find-
ing the best combination between the independent and dependent DTW
formulations that minimizes the error of a NN classifier. Specifically, the
proposed similarity measure, DTW>?C , consists of an heuristic wrapper
that maximizes the cross-validation score of a DTW>?C -NN classifier by
weighting the contribution of each dimension of the independent formu-
lation and the dependent measurement. To solve the underlying opti-
mization problem efficiently, four heuristic solvers have been considered,
namely, Simulated Annealing (SA), Particle Swarm Optimization (PSO),
Genetic Algorithm (GA) and Estimation of Distribution Algorithm (EDA).
Results have been reported on the classification accuracy resulting from the
evaluation of each framework over several reference time series classifica-
tion databases. The obtained results have shown that DTW>?C based NN
classifier performs equal or better than DTW� - and DTW�-based counter
parts. No significant differences were found among heuristic solvers, al-
though the DTW>?C optimized via SA issued the most accurate results
in the discussed benchmark. Given the degrees of freedom of the formal
definitions of DTW� and DTW�, we observed that our proposal tends to
adapt the independent part better than its dependent counterpart.

Formulation of an on-line elastic similarity measure (OESM) that
accommodates canonical elastic similarity measures to the char-
acteristics of streaming time series.

Chapter 4 has stressed on the computational issues of learning problems
formulated over streaming time series, namely, the speed, volume and
changing structure of streaming time series data. Hence, on-line learn-
ing algorithms are often required to accommodate the dynamics of the
streaming data efficiently (i.e., with minimal resource usage). The OESM
proposed in this chapter has been precisely conceived to comply with these
two requirements: the efficient update of the measure and its adaptation
to upcoming events. In addition, we consider two different streaming time
series scenarios: (i) the batch pattern scenario, where the similarity is
measured between a stored sequence and the streaming time series; and
(ii) the on-line pattern scenario, where the similarity is computed between
two streaming series that evolve over time.

In both streaming scenarios, OESM comprises a forgetting mechanism
and an incremental computation procedure. On one hand, the forgetting
mechanism accommodates the similarity to evolving streaming time se-
ries by under-weighting the contribution of old observations. To this end,
a memory parameter d ∈ (0, 1] has been defined to tune this weighting
mechanism. On the other hand, the incremental computation updates the
OESM by means of the so-called frontier, i.e., intelligently stored inter-
mediate similarity measurements that are employed thereafter to avoid
redundant computations on newly arriving observations.

Two sets of experiments have been conducted to evaluate the perfor-
mance of the formulated adaptation. In the first set, we have assessed
the efficiency of the OESM in terms of computational complexity. For
this purpose, running times of OESM and ESM have been reported for

8.1. Conclusions 119

different streaming scenarios. The obtained results have evinced that the
use of the frontier set a limit in the usage of computational resources,
thereby making the OESM a suitable approach in this regard for stream-
ing scenarios. In the second set of experiments, we have evaluated the
performance of the proposed forgetting mechanism. In doing so, we have
examined the performance of NN models relying on the proposed OESM
over streaming time series classification problems, and for different values
of the memory parameter d. Results from this second experimental study
conclude that the forgetting mechanism behaves in accordance with the
stability-plasticity dilemma, which states that on-line learning procedures
can retain old knowledge to grasp new information over the stream (sta-
bility), or discard old knowledge to adapt to the prevailing stream data
(plasticity). The challenge in this matter is to properly account for these
two properties in the algorithmic design of the learning algorithm, and
adapt it according to the characteristics of the stream at hand. Obtained
results conform to this established intuition, and open up new research
directions towards the configuration of the memory parameter of the pro-
posed OESM.

Application of elastic similarity frames to develop an active adap-
tation strategy for streaming time series classification in batch
pattern scenarios.

The contribution of Chapter 5 must be also appraised within the context of
streaming time series classification, and constitutes an alternative method
to the need for adaptability that ESM impose when used within stream-
ing contexts. Specifically, instead of facing this from a passive forget-
ting mechanism as in Chapter 4, here we have proposed an active scheme
to identify transitions between periods of the streaming time series com-
posed by events with different labels. Specifically, the proposed approach
is founded on the analysis of ODTW streaming frames, i.e., on arrays of
partial similarity measurements among the reference patterns and incom-
ing stream data points. By doing so, the procedure detects boundaries
between streaming time series class labels that can be leveraged to ac-
tively adapt DTW-NN classifiers to such changes. To this end, we have
developed the Pattern End Detector (PED) model, a deep Convolutional
Neural Network disposed to categorize streaming frames into change or
not change classes. When a change is detected, the PED model inter-
venes the DTW-NN by forcing the classifier to reset the DTW similarity,
thereupon accommodating the NN classifier to the upcoming class. We
evaluate the proposed framework on a benchmark of time series classifica-
tion databases. In this context, the reported PED model delay and false
alarm results have provided empirical insights on the utility of the pro-
posed method when combined with DTW-based NN classifiers. In fact,
classifiers endowed with the proposed PED model and a gold-standard de-
tector (i.e., a DTW-based NN classifier that initializes the similarity when
required, assuming perfect a priori knowledge of the points in time at which
label changes occur) behave similarly in terms of detection accuracy and

120 Chapter 8. Concluding Remarks

predictive performance, which ultimately buttress the suitability of elastic
similarity frames to detect label changes.

Development of attack and defense adversarial machine learning
strategies based on the DTW measure of similarity.

Chapters 6 and 7 have shifted the focus of the Thesis towards the do-
main of Adversarial Machine Learning (AML), targeting the sensitivity
of machine learning models against intelligently modified input samples
devised to confuse their output. To begin with, Chapter 6 has presented
a novel adversarial defense strategy that protect Deep Neural Networks
(DNN) for image classification against such adversarial attacks. Specifi-
cally, we have developed an adversarial detection mechanism that analyzes
the color gradients of input images to detect minor modifications made by
adversarial attacks. To this end, a one-class SVM (OSVM) classifier is
learned that distinguishes legitimate inputs from adversarial samples by
analyzing feature vectors of the DTW. That is, by evaluating the similarity
among edge count sequences – which encode the color variations of an im-
age under different sensitivity levels of the Canny edge detector procedure
– of the legitimate training images and the input example. To evaluate
the performance of the proposed OSVM discriminator, we have analyzed
the detection rate of the proposed strategy when attacking three different
DNN image classifiers via a benchmark of image adversarial sample craft-
ing techniques. Obtained results have rendered accurate detection rates
when dealing with attacks that operate over the whole image space (i.e.,
when attacks make minor color variations, without damaging geometric
shapes). By contrast, the proposed method fails to detect attacks that
imprint changes over small regions of the image, or around the existing
shapes of the image.

Second, Chapter 7 has elaborated on three novel adversarial time series
crafting strategies against DTW-NN models aimed to classify sequences,
for which traditional attack methods from the AML literature cannot be
extrapolated easily. In two of the developed strategies, we have adapted
state-of-the-art gradient-based crafting techniques to the DTW-NN clas-
sifier. In the third strategy, we have generated adversarial samples by
formulating it as a bi-objective optimization problem, where solutions are
governed by a Pareto front between the DTW distortion and the prob-
ability of the attack to mislead the model under target. For each pro-
posed attack technique, we have discussed on the intra-technique trans-
ferability, an evaluation measurement that quantifies the capability of a
strategy to generate samples that mislead classifiers of the same family
(NN in this case), albeit trained on different data splits of the database
at hand. Results stemming from this experimentation study substantiate
that an important number of crafted adversarial samples are able to mis-
lead DTW-NN classifiers. However, adversarial samples generated from
the gradient-based crafting strategies have been found to be, in general,
more versatile (in terms of transferability) than those drawn from the bi-
objective optimization strategy.

8.2. List of Publications 121

8.2 List of Publications
The research work conducted while pursuing this doctoral degree has given
rise to several contributions in journals and conferences of the machine
learning area, which are listed below:

• Journal publications:

– Izaskun Oregi, Aritz Pérez, Javier Del Ser, Jose A. Lozano, “On-line
elastic similarity measures for time series”, Pattern Recognition, Vol.
88, pp. 506-517, 2019 (JCR 5.898, 14/134 ARTIFICIAL INTELLI-
GENCE, Q1).

– Izaskun Oregi, Javier Del Ser, Aritz Pérez, Jose A. Lozano, “Robust
image classification against adversarial attacks using elastic similarity
measures between edge count sequences”, Neural Networks, Vol. 128,
pp. 61-72, 2020 (JCR 5.785, 16/134 ARTIFICIAL INTELLIGENCE,
Q1).

– Izaskun Oregi, Aritz Pérez, Javier Del Ser, Jose A. Lozano, “Learning
label transitions from dynamic time warping features for streaming
time series classification”, under review, 2020.

• Conference publications:

– Izaskun Oregi, Javier Del Ser, Aritz Pérez, Jose A. Lozano, “Nature-
inspired approaches for distance metric learning in multivariate time
series classification”, IEEE Congress on Evolutionary Computation
(CEC), pp. 1992-1998, 2017.

– Izaskun Oregi, Aritz Pérez, Javier Del Ser, Jose A. Lozano, “On-line
dynamic time warping for streaming time series”, Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases
(ECML-PKDD), pp. 591-605, 2017.

– Izaskun Oregi, Javier Del Ser, Aritz Pérez, Jose A. Lozano, “Adversar-
ial sample crafting for time series classification with elastic similarity
measures”, International Symposium on Intelligent and Distributed
Computing, pp. 26-39, 2018.

8.2.1 Other Publications
The candidate has also collaborated actively in other assorted research
lines leading to the following publications:

• Journal publications

– Esther Villar-Rodríguez, Javier Del Ser, Izaskun Oregi, Miren Nekane
Bilbao, Sergio Gil-Lopez, “Detection of non-technical losses in smart
meter data based on load curve profiling and time series analysis”,
Energy, Vol. 137, pp. 118-128, 2017 (JCR 5.537, 4/59 THERMO-
DYNAMICS, Q1).

122 Chapter 8. Concluding Remarks

– Antonio Benítez-Hidalgo, Antonio J. Nebro, Jose M. Garcia-Nieto,
Izaskun Oregi, Javier Del Ser, “jMetalPy: a python framework for
multi-objective optimization with metaheuristics”, Swarm and Evo-
lutionary Computation, Vol. 51, 100598, 2019 (JCR 6.330, 11/134
ARTIFICIAL INTELLIGENCE, Q1).

– Jesús L. Lobo, Izaskun Oregi, Albert Bifet, Javier Del Ser, “Exploiting
the stimuli encoding scheme of evolving spiking neural networks for
stream learning”, Neural Networks, Vol. 123, pp. 118-133, 2020 (JCR
5.785, 16/134 ARTIFICIAL INTELLIGENCE, Q1).

– Jesús L. Lobo, Igor Ballesteros, Izaskun Oregi, Javier Del Ser, Sancho
Salcedo-Sanz, “Stream learning in energy IoT systems: a case study
in combined cycle power plants”, Energies, Vol. 13, N. 3, 740, 2020
(JCR 2.707, 56/103 ENERGY & FUELS, Q3).

• Conference publications:

– Ibai Laña, Javier Del Ser, Manuel Vélez, Izaskun Oregi, “Joint fea-
ture selection and parameter tuning for short-term traffic flow fore-
casting based on heuristically optimized multi-layer neural networks”,
Advances in Intelligent Systems and Computing book series (AISC,
volume 514), pp. 91–100, 2017.

– Aritz D. Martínez, Eneko Osaba, Izaskun Oregi, Iztok Fister, Javier
Del Ser, “Hybridizing differential evolution and novelty search for
multimodal optimization problems”, ACM Genetic and Evolutionary
Computation Conference Companion, pp. 1980-1989, 2019.

– Ibai Laña, Esther Villar-Rodríguez, Urtats Etxegarai, Izaskun Oregi,
Javier Del Ser, “A question of trust: statistical characterization of
long-term traffic estimations for their improved actionability”, IEEE
Intelligent Transportation Systems Conference, pp. 1922-1928, 2019.

– Javier Del Ser, Ibai Laña, Eric L. Manibardo, Izaskun Oregi, Eneko
Osaba, Jesus L. Lobo, Miren Nekane Bilbao, Eleni I. Vlahogianni,
“Deep echo state networks for short-term traffic forecasting: per-
formance comparison and statistical assessment”, IEEE Intelligent
Transportation Systems Conference, 2020 (under review).

8.2.2 Short research visits.

– 11 June 2018 - 24 June 2018. Departamento de Lenguajes y Ciencias
de la Computación, Universidad de Málaga, Spain. Supervisor: Prof.
Dr. José Francisco Aldana Montes.

– 15 September 2019 - 15 December 2019. Institut de Recherche en In-
formatique et Système Aléatoires (IRISA), Université Bretagne Sud,
France. Supervisor: Prof. Dr. Pierre-François Marteau.

8.3 Future Research Lines
As exposed throughout the chapters in Part II, the findings reported in
this Thesis take a step beyond the state of the art in the application of

8.3. Future Research Lines 123

elastic similarity measures to different time series learning problems. The
conclusions held in such chapters have also stimulated several alternative
research directions to be pursued in the future, as well as new questions
and hypothesis worth to be explored in depth. We here summarize the
most noteworthy issues derived from this Thesis, referring to the conclud-
ing sections of Chapters 3 to 7 for further details on their rationale and
envisaged approach:

• In order to further enhance the performance of the DTW>?C similarity
proposed in Chapter 3, we plan to provide a greater flexibility to DTW�.
As pursued in [77], an alternative dependent DTW could be formulated
to weight differently the contribution of each dimension to the warping
path. By doing so, we expect that the dependent part of DTW>?C

captures more accurately the relationships among the dimensions of the
time series. In this vein, it would be also interesting to study other error
rate functions that are commonly used in distance learning tasks, e.g.
the larger-margin nearest neighbor formulation [87].

• Regarding the on-line measure of similarity OESM defined in Chapter
4, we plan to use it to adapt other procedures for time series analysis
to streaming time series, including kernel-based classifiers, K-medoids
or hierarchical clustering algorithms. Additionally, we will also devote
efforts towards normalization techniques that might not alter the shape
of the streaming time series under analysis, so that OESM-based models
can be applied without any prior assumption on the normalization of the
stream.

• In relation to the memory parameter d governing the capability of the
OESM to retain knowledge captured over the streaming time series, we
plan to develop a strategy that selects most appropriate value according
to the characteristics of a given problem e.g., adjusting d to the expected
average length of stationary intervals. We also propose to increase the
list of cost functions: apart from DTW, EDR, EDIT and other functions
alike. In particular, we suggest the use of linear correlation-based costs,
where the measure of similarity considers the mean and the variance (or
co-variance) of the time series.

• Several research lines are aligned with the concept of elastic similarity
frames coined in Chapter 5. Specifically, we propose to exploit this data
structure to develop further active adaptation procedures for address-
ing anomaly detection or classification problems over streaming time
series. One of the main advantages of elastic similarity frames is that
they can be normalized on stream settings, thus overriding any need
for normalizing the streaming time series at hand. In particular, re-
garding supervised learning tasks (e.g. anomaly detection or classifica-
tion), we are determined to build a concept drift detection procedure
based on streaming frames. That is, we plan to develop an algorithm
in which non-stationarities in the correspondence between events (time
series) and labels will be detected by processing underlying structures
of streaming frames computed over the streaming time series. Then, in

124 Chapter 8. Concluding Remarks

the eventuality of a detected drift, we plan to properly accommodate
the learned model to such concept changes.

• With respect to the active adaptation strategy developed in Chapter 5,
we will move towards the design of early classification models for stream-
ing time series. Furthermore, explainable Artificial Intelligence (XAI)
techniques will be investigated to understand what the PED model ob-
serves in the streaming time series (and eventually, the early classifica-
tion model), so as to extract further insights and use this augmented
information to further improve its performance or develop new detec-
tion/adaptation strategies.

• When it comes to the AML defense technique presented in Chapter 6,
we foresee that the proposed OSVM detector can be enhanced by using
novel features that are more sensitive to modifications near the edges of
the original image, and/or circumscribed to small pixel regions of the
image. A closer look will be also taken at encryption techniques such as
steganography, which shares interesting commonalities with AML.

• Finally, a natural step following the experimental study on adversarial
attacks for DTW-based classifiers discussed in Chapter 7 is to analyze
the so-called cross-technique transferability. That is, the capability of
adversarial samples crafted on the DTW-NN classifier to confuse differ-
ent target classification models (e.g. SVMs or Gaussian mixtures). By
doing so, we can characterize the performance of the developed meth-
ods as black-box attack strategies, and identify potential weaknesses of
defense strategies reported in the AML field.

125

Bibliography

[1] T.-C. Fu, “A review on time series data mining”, Engineering Appli-
cations of Artificial Intelligence, vol. 24, no. 1, pp. 164–181, 2011.

[2] P. Esling and C. Agon, “Time-series data mining”, ACM Computing
Surveys, vol. 45, no. 1, p. 12, 2012.

[3] P. P. Rodrigues, J. Gama, and J. Pedroso, “Hierarchical clustering
of time-series data streams”, IEEE Transactions on Knowledge and
Data Engineering, vol. 20, no. 5, pp. 615–627, 2008.

[4] J.-L. Reyes-Ortiz, L. Oneto, A. Samà, X. Parra, and D. Anguita,
“Transition-aware human activity recognition using smartphones”,
Neurocomputing, vol. 171, pp. 754–767, 2016.

[5] E. L. Manibardo, I. Laña, J. L. Lobo, and J. Del Ser, “New per-
spectives on the use of online learning for congestion level prediction
over traffic data”, arXiv:2003.14304, 2020.

[6] J. Gama, Knowledge discovery from data streams. CRC Press, 2010.

[7] G. Krempl, I. Žliobaite, D. Brzeziński, E. Hüllermeier, M. Last,
V. Lemaire, T. Noack, A. Shaker, S. Sievi, M. Spiliopoulou, et al.,
“Open challenges for data stream mining research”, ACM SIGKDD
Explorations Newsletter, vol. 16, no. 1, pp. 1–10, 2014.

[8] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia,
“A survey on concept drift adaptation”, ACM computing surveys
(CSUR), vol. 46, no. 4, pp. 1–37, 2014.

[9] L. L. Minku, A. P. White, and X. Yao, “The impact of diversity
on online ensemble learning in the presence of concept drift”, IEEE
Transactions on knowledge and Data Engineering, vol. 22, no. 5,
pp. 730–742, 2009.

[10] R. C. Cavalcante, L. L. Minku, and A. L. Oliveira, “Fedd: Feature
extraction for explicit concept drift detection in time series”, in
Neural Networks (IJCNN), 2016 International Joint Conference on,
IEEE, 2016, pp. 740–747.

[11] I. Lana, J. Del Ser, M. Velez, and E. I. Vlahogianni, “Road traffic
forecasting: Recent advances and new challenges”, IEEE Intelligent
Transportation Systems Magazine, vol. 10, no. 2, pp. 93–109, 2018.

[12] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The
great time series classification bake off: A review and experimen-
tal evaluation of recent algorithmic advances”, Data Mining and
Knowledge Discovery, vol. 31, no. 3, pp. 606–660, 2017.

126 Bibliography

[13] T. W. Liao, “Clustering of time series data—a survey”, Pattern
recognition, vol. 38, no. 11, pp. 1857–1874, 2005.

[14] S. Aminikhanghahi and D. J. Cook, “A survey of methods for time
series change point detection”, Knowledge and information systems,
vol. 51, no. 2, pp. 339–367, 2017.

[15] C. Deb, F. Zhang, J. Yang, S. E. Lee, and K. W. Shah, “A review on
time series forecasting techniques for building energy consumption”,
Renewable and Sustainable Energy Reviews, vol. 74, pp. 902–924,
2017.

[16] C. Voyant, G. Notton, S. Kalogirou, M.-L. Nivet, C. Paoli, F. Motte,
and A. Fouilloy, “Machine learning methods for solar radiation fore-
casting: A review”, Renewable Energy, vol. 105, pp. 569–582, 2017.

[17] A. Kazem, E. Sharifi, F. K. Hussain, M. Saberi, and O. K. Hussain,
“Support vector regression with chaos-based firefly algorithm for
stock market price forecasting”, Applied soft computing, vol. 13,
no. 2, pp. 947–958, 2013.

[18] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time
series analysis: forecasting and control. John Wiley & Sons, 2015.

[19] J. G. D. Gooijer and R. J. Hyndman, “25 years of time series fore-
casting”, International Journal of Forecasting, vol. 22, no. 3, pp. 443
–473, 2006.

[20] J. Wang and J. Wang, “Forecasting energy market indices with re-
current neural networks: Case study of crude oil price fluctuations”,
Energy, vol. 102, pp. 365–374, 2016.

[21] W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang,
“Short-term residential load forecasting based on lstm recurrent
neural network”, IEEE Transactions on Smart Grid, vol. 10, no. 1,
pp. 841–851, 2017.

[22] W. A. Chaovalitwongse, Y. Fan, and R. C. Sachdeo, “On the time
series :-nearest neighbor classification of abnormal brain activity”,
IEEE Transactions on Systems, Man, and Cybernetics - Part A:
Systems and Humans, vol. 37, no. 6, pp. 1005–1016, 2007.

[23] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi,
“A review of classification algorithms for eeg-based brain–computer
interfaces”, Journal of neural engineering, vol. 4, no. 2, R1, 2007.

[24] S.-N. Yu and Y.-H. Chen, “Electrocardiogram beat classification
based on wavelet transformation and probabilistic neural network”,
Pattern Recognition Letters, vol. 28, no. 10, pp. 1142–1150, 2007.

[25] L. Chen, M. T. Özsu, and V. Oria, “Robust and fast similarity
search for moving object trajectories”, in ACM SIGMOD Interna-
tional Conference on Management of Data, ACM, 2005, pp. 491–
502.

Bibliography 127

[26] M. J. Fard, A. K. Pandya, R. B. Chinnam, M. D. Klein, and
R. D. Ellis, “Distance-based time series classification approach for
task recognition with application in surgical robot autonomy”, The
International Journal of Medical Robotics and Computer Assisted
Surgery, vol. 13, no. 3, 2017.

[27] Z. Bankó and J. Abonyi, “Correlation based dynamic time warp-
ing of multivariate time series”, Expert Systems with Applications,
vol. 39, no. 17, pp. 12814 –12 823, 2012.

[28] L. Chen and R. Ng, “On the marriage of lp-norms and edit distance”,
in 30th International Conference on Very Large Data Bases, VLDB
Endowment, vol. 30, 2004, pp. 792–803.

[29] Y.-S. Jeong, M. K. Jeong, and O. A. Omitaomu, “Weighted dy-
namic time warping for time series classification”, Pattern Recogni-
tion, vol. 44, no. 9, pp. 2231–2240, 2011.

[30] T. Górecki and M. Łuczak, “Multivariate time series classification
with parametric derivative dynamic time warping”, Expert Systems
with Applications, vol. 42, no. 5, pp. 2305–2312, 2015.

[31] A. Kampouraki, G. Manis, and C. Nikou, “Heartbeat time series
classification with support vector machines”, IEEE Transactions on
Information Technology in Biomedicine, vol. 13, no. 4, pp. 512–518,
2008.

[32] A. Nanopoulos, R. Alcock, and Y. Manolopoulos, “Feature-based
classification of time-series data”, International Journal of Com-
puter Research, vol. 10, no. 3, pp. 49–61, 2001.

[33] H. Deng, G. Runger, E. Tuv, and M. Vladimir, “A time series for-
est for classification and feature extraction”, Information Sciences,
vol. 239, pp. 142–153, 2013.

[34] C. Pelletier, G. I. Webb, and F. Petitjean, “Temporal convolutional
neural network for the classification of satellite image time series”,
Remote Sensing, vol. 11, no. 5, p. 523, 2019.

[35] O. Yakhnenko, A. Silvescu, and V. Honavar, “Discriminatively trained
markov model for sequence classification”, in Fifth IEEE Interna-
tional Conference on Data Mining (ICDM’05), IEEE, 2005, 8–pp.

[36] A. K. Jain, “Data clustering: 50 years beyond k-means”, Pattern
recognition letters, vol. 31, no. 8, pp. 651–666, 2010.

[37] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an in-
troduction to cluster analysis. John Wiley & Sons, 2009, vol. 344.

[38] S. Aghabozorgi, A. S. Shirkhorshidi, and T. Y. Wah, “Time-series
clustering–a decade review”, Information Systems, vol. 53, pp. 16–
38, 2015.

[39] T. Räsänen and M. Kolehmainen, “Feature-based clustering for
electricity use time series data”, in International conference on adap-
tive and natural computing algorithms, Springer, 2009, pp. 401–412.

128 Bibliography

[40] A. Bagnall and G. Janacek, “Clustering time series with clipped
data”, Machine Learning, vol. 58, no. 2-3, pp. 151–178, 2005.

[41] A. Carreño, I. Inza, and J. A. Lozano, “Analyzing rare event, anomaly,
novelty and outlier detection terms under the supervised classifica-
tion framework”, Artificial Intelligence Review, pp. 1–20, 2019.

[42] A. Diez-Olivan, J. Del Ser, D. Galar, and B. Sierra, “Data fusion
and machine learning for industrial prognosis: Trends and perspec-
tives towards industry 4.0”, Information Fusion, vol. 50, pp. 92–111,
2019.

[43] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han, “Outlier detection
for temporal data: A survey”, IEEE Transactions on Knowledge and
Data Engineering, vol. 26, no. 9, pp. 2250–2267, 2013.

[44] A. Blázquez-García, A. Conde, U. Mori, and J. A. Lozano, “A re-
view on outlier/anomaly detection in time series data”, arXiv:2002.
04236, 2020.

[45] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed, “Deepant: A
deep learning approach for unsupervised anomaly detection in time
series”, IEEE Access, vol. 7, pp. 1991–2005, 2018.

[46] U. Rebbapragada, P. Protopapas, C. E. Brodley, and C. Alcock,
“Finding anomalous periodic time series”,Machine learning, vol. 74,
no. 3, pp. 281–313, 2009.

[47] V. Chandola, V. Mithal, and V. Kumar, “Comparative evalua-
tion of anomaly detection techniques for sequence data”, in 2008
Eighth IEEE international conference on data mining, IEEE, 2008,
pp. 743–748.

[48] G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and P. Smyth,
“Rule discovery from time series.”, in KDD, vol. 98, 1998, pp. 16–
22.

[49] F.-L. Chung, T.-C. Fu, V. Ng, and R. W. Luk, “An evolutionary
approach to pattern-based time series segmentation”, IEEE Trans-
actions on Evolutionary Computation, vol. 8, no. 5, pp. 471–489,
2004.

[50] A. M. Durán-Rosal, P. A. Gutierrez, S. Salcedo-Sanz, and C. Hervás-
Martínez, “A statistically-driven coral reef optimization algorithm
for optimal size reduction of time series”, Applied Soft Computing,
vol. 63, pp. 139–153, 2018.

[51] M. Goldhammer, S. Köhler, K. Doll, and B. Sick, “Camera based
pedestrian path prediction by means of polynomial least-squares
approximation and multilayer perceptron neural networks”, in 2015
SAI Intelligent Systems Conference (IntelliSys), IEEE, 2015, pp. 390–
399.

[52] E. Bingham, A. Gionis, N. Haiminen, H. Hiisilä, H. Mannila, and
E. Terzi, “Segmentation and dimensionality reduction”, in SIAM
International Conference on Data Mining, SIAM, 2006, pp. 372–
383.

Bibliography 129

[53] O. Amft, H. Junker, and G. Troster, “Detection of eating and drink-
ing arm gestures using inertial body-worn sensors”, in Ninth IEEE
International Symposium on Wearable Computers (ISWC’05), IEEE,
2005, pp. 160–163.

[54] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “Segmenting time
series: A survey and novel approach”, in Data mining in time series
databases, World Scientific, 2004, pp. 1–21.

[55] A. Abanda, U. Mori, and J. A. Lozano, “A review on distance based
time series classification”, Data Mining and Knowledge Discovery,
vol. 33, no. 2, pp. 378–412, 2019.

[56] B. D. Fulcher, “Feature-based time-series analysis”, in Feature En-
gineering for Machine Learning and Data Analytics, CRC Press,
2018, pp. 87–116.

[57] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,
“Deep learning for time series classification: A review”, Data Mining
and Knowledge Discovery, vol. 33, no. 4, pp. 917–963, 2019.

[58] Y. Xiong and D.-Y. Yeung, “Mixtures of ARMA models for model-
based time series clustering”, in IEEE International Conference on
Data Mining, IEEE, 2002, pp. 717–720.

[59] Z. Xing, J. Pei, and E. Keogh, “A brief survey on sequence classifi-
cation”, ACM Sigkdd Explorations Newsletter, vol. 12, no. 1, pp. 40–
48, 2010.

[60] D. J. Berndt and J. Clifford, “Using dynamic time warping to find
patterns in time series”, in Workshop on Knowledge Discovery in
Databases, Seattle, WA, 1994, pp. 359–370.

[61] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh,
“Querying and mining of time series data: Experimental comparison
of representations and distance measures”, Proceedings of the Very
Large Data Bases Endowment, vol. 1, no. 2, pp. 1542–1552, 2008.

[62] R. E. Bellman and S. E. Dreyfus, Applied dynamic programming.
Princeton University Press, 2015.

[63] E. Keogh, “Exact indexing of dynamic time warping”, in 28th Inter-
national Conference on Very Large Data Bases, VLDB Endowment,
2002, pp. 406–417.

[64] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representa-
tion of time series, with implications for streaming algorithms”, in
8th ACM SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery, ACM, 2003, pp. 2–11.

[65] Y. Sakurai, M. Yoshikawa, and C. Faloutsos, “Ftw: Fast similarity
search under the time warping distance”, in 24th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems,
ACM, 2005, pp. 326–337.

130 Bibliography

[66] E. J. Keogh and M. J. Pazzani, “Scaling up dynamic time warping
for datamining applications”, in 6th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM, 2000,
pp. 285–289.

[67] S. Salvador and P. Chan, “Toward accurate dynamic time warping
in linear time and space”, Intelligent Data Analysis, vol. 11, no. 5,
pp. 561–580, 2007.

[68] H Sakoe and S Chiba, “Dynamic programming algorithm optimiza-
tion for spoken word recognition”, IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 26, no. 1, pp. 43–49, 1978.

[69] F. Itakura, “Minimum prediction residual principle applied to speech
recognition”, IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 23, no. 1, pp. 67–72, 1975.

[70] C. A. Ratanamahatana, J. Lin, D. Gunopulos, E. Keogh, M. Vla-
chos, and G. Das, “Mining time series data”, in Data mining and
knowledge discovery handbook, Springer, 2005, pp. 1069–1103.

[71] A. Marzal and E. Vidal, “Computation of normalized edit distance
and applications”, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 15, no. 9, pp. 926–932, 1993.

[72] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks”,
arXiv:1312.6199, 2013.

[73] I. Goodfellow, P. McDaniel, and N. Papernot, “Making machine
learning robust against adversarial inputs”, Communications of the
ACM, vol. 61, no. 7, pp. 56–66, 2018.

[74] N. Papernot and P. McDaniel, “Deep k-nearest neighbors: Towards
confident, interpretable and robust deep learning”, arXiv:1803.04765,
2018.

[75] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of
adversarial machine learning”, Pattern Recognition, vol. 84, pp. 317–
331, 2018.

[76] M. Shokoohi-Yekta, B. Hu, H. Jin, J. Wang, and E. Keogh, “Gen-
eralizing dtw to the multi-dimensional case requires an adaptive
approach”, Data mining and knowledge discovery, vol. 31, no. 1,
pp. 1–31, 2017.

[77] J. Mei, M. Liu, Y.-F. Wang, and H. Gao, “Learning a mahalanobis
distance-based dynamic time warping measure for multivariate time
series classification”, IEEE transactions on Cybernetics, vol. 46,
no. 6, pp. 1363–1374, 2015.

[78] M. R. Peterson, T. E. Doom, and M. L. Raymer, “Ga-facilitated knn
classifier optimization with varying similarity measures”, in 2005
IEEE Congress on Evolutionary Computation, IEEE, vol. 3, 2005,
pp. 2514–2521.

Bibliography 131

[79] J. D. RodríGuez, A. Pérez, and J. A. Lozano, “A general framework
for the statistical analysis of the sources of variance for classification
error estimators”, Pattern recognition, vol. 46, no. 3, pp. 855–864,
2013.

[80] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing”, science, vol. 220, no. 4598, pp. 671–680, 1983.

[81] J. Kennedy, “Particle swarm optimization”, Encyclopedia of ma-
chine learning, pp. 760–766, 2010.

[82] P. Larrañaga and J. A. Lozano, Estimation of distribution algo-
rithms: A new tool for evolutionary computation. Springer Science
& Business Media, 2001, vol. 2.

[83] D. Whitley, “A genetic algorithm tutorial”, Statistics and comput-
ing, vol. 4, no. 2, pp. 65–85, 1994.

[84] J. Wang, A. Balasubramanian, L. Mojica de la Vega, J. R. Green,
A. Samal, and B. Prabhakaran, “Word recognition from continuous
articulatory movement time-series data using symbolic representa-
tions”, 2013.

[85] D. Dua and C. Graff, UCI machine learning repository, 2017. [On-
line]. Available: http://archive.ics.uci.edu/ml.

[86] M. W. Kadous et al., Temporal classification: Extending the clas-
sification paradigm to multivariate time series. University of New
South Wales Kensington, 2002.

[87] K. Q. Weinberger and L. K. Saul, “Distance metric learning for
large margin nearest neighbor classification”, Journal of Machine
Learning Research, vol. 10, no. Feb, pp. 207–244, 2009.

[88] J. Beringer and E. Hüllermeier, “Online clustering of parallel data
streams”, Data & Knowledge Engineering, vol. 58, no. 2, pp. 180–
204, 2006.

[89] M.-Y. Yeh, B.-R. Dai, and M.-S. Chen, “Clustering over multiple
evolving streams by events and correlations”, IEEE Transactions
on Knowledge and Data Engineering, vol. 19, no. 10, 2007.

[90] F. Zhou, F. De la Torre, and J. K. Hodgins, “Hierarchical aligned
cluster analysis for temporal clustering of human motion”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 35,
no. 3, pp. 582–596, 2013.

[91] U. Mori, A. Mendiburu, S. Dasgupta, and J. A. Lozano, “Early
classification of time series by simultaneously optimizing the ac-
curacy and earliness”, IEEE Transactions on Neural Networks and
Learning Systems, 2017.

[92] H. A. Dau, E. Keogh, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi,
C. A. Ratanamahatana, Yanping, B. Hu, N. Begum, A. Bagnall, A.
Mueen, and G. Batista, The ucr time series classification archive,
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/,
2018.

http://archive.ics.uci.edu/ml
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

132 Bibliography

[93] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in non-
stationary environments: A survey”, IEEE Computational Intelli-
gence Magazine, vol. 10, no. 4, pp. 12–25, 2015.

[94] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learn-
ing. MIT Press Cambridge, 2016, vol. 1.

[95] B. Krawczyk, “Learning from imbalanced data: Open challenges and
future directions”, Progress in Artificial Intelligence, vol. 5, no. 4,
pp. 221–232, 2016.

[96] U. Mori, A. Mendiburu, and J. A. Lozano, “Similarity measure
selection for clustering time series databases”, IEEE Transactions
on Knowledge and Data Engineering, vol. 28, no. 1, pp. 181–195,
2015.

[97] H. Wang, N. Wang, and D.-Y. Yeung, “Collaborative deep learning
for recommender systems”, in ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, ACM, 2015,
pp. 1235–1244.

[98] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks”, in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2013,
pp. 6645–6649.

[99] J. Wang, Y. Ma, L. Zhang, R. X. Gao, and D. Wu, “Deep learning
for smart manufacturing: Methods and applications”, Journal of
Manufacturing Systems, vol. 48, pp. 144–156, 2018.

[100] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,
M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I.
Sánchez, “A survey on deep learning in medical image analysis”,
Medical Image Analysis, vol. 42, pp. 60–88, 2017.

[101] L. Deng, D. Yu, et al., “Deep learning: Methods and applications”,
Foundations and Trends R© in Signal Processing, vol. 7, no. 3–4,
pp. 197–387, 2014.

[102] J. Schmidhuber, “Deep learning in neural networks: An overview”,
Neural Networks, vol. 61, pp. 85–117, 2015.

[103] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning”, Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[104] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and
W. Samek, “On pixel-wise explanations for non-linear classifier de-
cisions by layer-wise relevance propagation”, PloS one, vol. 10, no. 7,
e0130140, 2015.

[105] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik,
A. Barbado, S. García, S. Gil-López, D. Molina, R. Benjamins,
and F. Herrera, “Explainable Artificial Intelligence (XAI): concepts,
taxonomies, opportunities and challenges toward Responsible AI”,
Information Fusion, vol. 58, pp. 82–115, 2020.

Bibliography 133

[106] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,
A. Prakash, T. Kohno, and D. Song, “Robust physical-world attacks
on deep learning visual classification”, in IEEE Conference on Com-
puter Vision and Pattern Recognition, 2018, pp. 1625–1634.

[107] B. Biggio, G. Fumera, and F. Roli, “Security evaluation of pat-
tern classifiers under attack”, IEEE Transactions on Knowledge and
Data Engineering, vol. 26, no. 4, pp. 984–996, 2014.

[108] K. J. Seymour, M. A. Williams, and A. N. Rich, “The representation
of color across the human visual cortex: Distinguishing chromatic
signals contributing to object form versus surface color”, Cerebral
Cortex, vol. 26, no. 5, pp. 1997–2005, 2015.

[109] R. Shapley and M. J. Hawken, “Color in the cortex: Single-and
double-opponent cells”, Vision Research, vol. 51, no. 7, pp. 701–
717, 2011.

[110] S. Gudmundsson, T. P. Runarsson, and S. Sigurdsson, “Support
vector machines and dynamic time warping for time series”, in IEEE
International Joint Conference on Neural Networks, IEEE, 2008,
pp. 2772–2776.

[111] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings”,
in IEEE European Symposium on Security and Privacy (EuroS&P),
IEEE, 2016, pp. 372–387.

[112] N. Papernot and P. McDaniel, “Transferability in machine learning:
From phenomena to black-box attacks using adversarial samples”,
arXiv:1605.07277, 2016.

[113] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and har-
nessing adversarial examples”, arXiv:1412.6572, 2014.

[114] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples
in the physical world”, arXiv:1607.02533, 2016.

[115] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks”,
arXiv:1706.06083, 2017.

[116] N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks”, in 2017 IEEE Symposium on Security and Pri-
vacy, IEEE, 2017, pp. 39–57.

[117] C. Guo, M. Rana, M. Cisse, and L. Van Der Maaten, “Countering
adversarial images using input transformations”, arXiv:1711.00117,
2017.

[118] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning”,
arXiv:1602.02697, 2016.

[119] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adver-
sarial examples in deep neural networks”, arXiv:1704.01155, 2017.

134 Bibliography

[120] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distil-
lation as a defense to adversarial perturbations against deep neural
networks”, in IEEE Symposium on Security and Privacy, IEEE,
2016, pp. 582–597.

[121] D. Warde-Farley and I. Goodfellow, “11 adversarial perturbations of
deep neural networks”, Perturbations, Optimization, and Statistics,
vol. 311, 2016.

[122] J. Buckman, A. Roy, C. Raffel, and I. Goodfellow, “Thermometer
encoding: One hot way to resist adversarial examples”, 2018.

[123] G. K. Dziugaite, Z. Ghahramani, and D. M. Roy, “A study of the
effect of jpg compression on adversarial images”, arXiv:1608.00853,
2016.

[124] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and
J. C. Platt, “Support vector method for novelty detection”, in Ad-
vances in Neural Information Processing Systems, 2000, pp. 582–
588.

[125] J. Canny, “A computational approach to edge detection”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 6,
pp. 679–698, 1986.

[126] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition”, Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[127] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learn-
ing”, in Deep Learning and Unsupervised Feature Learning Work-
shop, NIPS, 2011.

[128] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. com-
puter: Benchmarking machine learning algorithms for traffic sign
recognition”, Neural networks, vol. 32, pp. 323–332, 2012.

[129] M.-I. Nicolae, M. Sinn, M. N. Tran, B. Buesser, A. Rawat, M.
Wistuba, V. Zantedeschi, N. Baracaldo, B. Chen, H. Ludwig, I.
Molloy, and B. Edwards, “Adversarial robustness toolbox v1.0.1”,
arXiv:1807.01069, 2018.

[130] N. Papernot, F. Faghri, N. Carlini, I. Goodfellow, R. Feinman, A.
Kurakin, C. Xie, Y. Sharma, T. Brown, A. Roy, A. Matyasko, V.
Behzadan, K. Hambardzumyan, Z. Zhang, Y.-L. Juang, Z. Li, R.
Sheatsley, A. Garg, J. Uesato, W. Gierke, Y. Dong, D. Berthelot,
P. Hendricks, J. Rauber, and R. Long, “Technical report on the
cleverhans v2.1.0 adversarial examples library”, arXiv:1610.00768,
2018.

[131] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling
deep neural networks”, IEEE Transactions on Evolutionary Com-
putation, vol. 23(5), pp. 828–841, 2019.

Bibliography 135

[132] A. Cheddad, J. Condell, K. Curran, and P. Mc Kevitt, “Digital im-
age steganography: Survey and analysis of current methods”, Signal
processing, vol. 90, no. 3, pp. 727–752, 2010.

[133] I. J. Kadhim, P. Premaratne, P. J. Vial, and B. Halloran, “Com-
prehensive survey of image steganography: Techniques, evaluations,
and trends in future research”, Neurocomputing, vol. 335, pp. 299–
326, 2019.

[134] T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii, “Virtual adver-
sarial training: A regularization method for supervised and semi-
supervised learning”, arXiv:1704.03976, 2017.

[135] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II”, IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

	Declaration of Authorship
	Abstract
	Acknowledgements
	I Introduction, Motivation and Objectives
	Learning from Time Series
	Streaming Time Series
	Core Problems in Time Series Analysis
	Time Series Forecasting
	Time Series Classification
	Time Series Clustering
	Anomaly Detection
	Segmentation and Change Point Detection

	TSA Models for Data Mining
	Feature-based Approaches
	Model-based Approaches
	Similarity-based Approaches

	Elastic Similarity Measures
	Definition
	Computation
	ESM Set and Cost Functions

	Motivation and Objectives
	Main Contributions of the Thesis
	Similarity Learning for MTS Classification
	On-line ESMs for Streaming Time Series
	Learning from ODTW Features
	Using TSA to Protect Deep Neural Networks
	Attacking ESM-based Classifiers

	Structure of the Thesis
	Notation

	II Contributions
	Similarity Learning for MTS Classification
	Introduction and Related Work
	Proposed Similarity
	Weights Optimization Procedure

	Experimental Results and Discussion
	Discussion on Predictive Score Results
	Discussion on the Optimized Weight Values

	Conclusions

	On-line Elastic Similarity for Streaming Time Series
	Introduction and Related Work
	On-line Elastic Similarity Measures
	Definition of the Proposed OESM
	Batch Pattern Scenario
	On-line Pattern Scenario
	Convergence of the Proposed OESM

	Incremental Computation
	Batch Pattern Scenario
	On-line Pattern Scenario

	Experimental Setup
	Efficiency
	Forgetting Mechanism
	Generation of Non-stationary Streaming Time Series
	Gold-standard Model
	Memory Parameter

	Results and Discussion
	Computational Efficiency
	Reaction Capacity and Predictive Performance
	Evaluation Method
	Results: Batch Pattern Scenario
	Results: On-line Pattern Scenario

	Conclusions

	Learning from ODTW Features
	Introduction and Related Work
	Streaming Time Series Classification
	Pattern End Detection Model
	Experimental Study
	Description of the STSC Problems
	Predictive Performance of the PED model
	Learning the PED Model
	Performance Results of the PED Model

	Efficiency of PED for STSC problems
	Gold-standard and ODTW-NN Classifiers
	PED-based DTW-NN Classifier
	STSC Performance Results

	Conclusions and Future Research

	Using TSA Tools to build Robust Image Classifiers
	Introduction and Related Work
	Adversarial Machine Learning
	Attack Strategies
	Defense Strategies

	Proposed Adversarial Defense Method
	Experimental Setup
	Results and Discussion
	Conclusions and Future Work

	Adversarial Attacks for Time Series Classification
	Introduction and Related Work
	Attacking DTW-based NN Classifiers
	P(l|U) Gradient Computation

	Experiments
	Results and Discussion

	Conclusions

	III Concluding Remarks
	Concluding Remarks
	Conclusions
	List of Publications
	Other Publications
	Short research visits.

	Future Research Lines

	Bibliography

