
1

Deep Video Precoding
Eirina Bourtsoulatze, Aaron Chadha, Ilya Fadeev, Vasileios Giotsas, and Yiannis Andreopoulos

Abstract—Several groups worldwide are currently investigating
how deep learning may advance the state-of-the-art in image
and video coding. An open question is how to make deep neural
networks work in conjunction with existing (and upcoming) video
codecs, such as MPEG H.264/AVC, H.265/HEVC, VVC, Google
VP9 and AOMedia AV1, AV2, as well as existing container and
transport formats, without imposing any changes at the client
side. Such compatibility is a crucial aspect when it comes to
practical deployment, especially when considering the fact that
the video content industry and hardware manufacturers are
expected to remain committed to supporting these standards for
the foreseeable future.

We propose to use deep neural networks as precoders for
current and future video codecs and adaptive video streaming
systems. In our current design, the core precoding component
comprises a cascaded structure of downscaling neural networks
that operates during video encoding, prior to transmission.
This is coupled with a precoding mode selection algorithm for
each independently-decodable stream segment, which adjusts the
downscaling factor according to scene characteristics, the utilized
encoder, and the desired bitrate and encoding configuration.
Our framework is compatible with all current and future
codec and transport standards, as our deep precoding network
structure is trained in conjunction with linear upscaling filters
(e.g., the bilinear filter), which are supported by all web video
players. Extensive evaluation on FHD (1080p) and UHD (2160p)
content and with widely-used H.264/AVC, H.265/HEVC and VP9
encoders, as well as a preliminary evaluation with the current
test model of VVC (v.6.2rc1), shows that coupling such standards
with the proposed deep video precoding allows for 8% to
52% rate reduction under encoding configurations and bitrates
suitable for video-on-demand adaptive streaming systems. The
use of precoding can also lead to encoding complexity reduction,
which is essential for cost-effective cloud deployment of complex
encoders like H.265/HEVC, VP9 and VVC, especially when
considering the prominence of high-resolution adaptive video
streaming.

Index Terms—video coding, neural networks, downscaling,
upscaling, adaptive streaming, DASH/HLS

I. INTRODUCTION

IN JUST a few years, technology has completely overhauled
the way we consume television, feature films and other

prime content. For example, Ofcom reported in July 2018
that there are now more UK subscriptions to Netflix, Amazon
and NOW TV than to traditional pay TV services.1 The
proliferation of over-the-top (OTT) streaming content has
been matched by an appetite for high-resolution content. For
example, 50% of the US homes will have UHD/4K TVs by
2020. At the same time, costs of 4K camera equipment have
been falling rapidly. Looking ahead, 8K TVs were introduced
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1https://www.ofcom.org.uk/about-ofcom/latest/media/media-
releases/2018/streaming-overtakes-pay-tv

at the 2018 CES by several major manufacturers and several
broadcasters announced they will begin 8K broadcasts in time
for the 2020 Olympic games in Japan. Alas, for most countries,
even the delivery of FHD (1080p) content is still plagued by
broadband infrastructure problems.

To get round this problem, OTT content providers resort to
adaptive streaming technologies, such as Dynamic Adaptive
Streaming over HTTP (DASH) and HTTP Live Streaming
(HLS), where the streaming server is offering bitrate/resolution
ladders via the so-called “manifest” file [1], [2]. This allows
the client device to switch to a range of lower resolutions
and bitrates when the connection bandwidth does not suf-
fice to support the high-quality/full-resolution video bitstream
[1]. In order to produce the bitrate/resolution ladders, high-
resolution frames are downscaled to lower resolutions, with
the frame dimensions being reduced with decreased bitrate.
Within all current adaptive streaming systems, this is done
using standard downscaling filters, such as the bicubic filter,
and the chosen resolution per bitrate stays constant throughout
the content’s duration and is indicated in the manifest file.
At the client side, if the chosen bitrate corresponds to low-
resolution frames, these frames are upscaled after decoding
to match the resolution capabilities of the client’s device.
Unfortunately, the impact on visual quality from the widely-
used bicubic downscaling and the lack of dynamic resolution
adaptation per bitrate can be quite severe [3]. In principle, this
could be remedied by post-decoding learnable video upscaling
solutions similar to learnable super-resolution techniques for
still images [4], [5]. However, their deployment requires
substantial changes to the client device, which are usually
too cumbersome and complex to make in practice (a.k.a., the
hidden technical debt of machine learning [6]). For example,
convolutional neural network (CNN) based upscalers with tens
of millions of parameters cannot be supported by mainstream
CPU-based web browsers that support DASH and HLS video
playback.

A. Precoding for Video Communications

Precoding has been initially proposed for MIMO wireless
communications as the means to preprocess the transmitted
signal and perform transmit diversity [7]. Precoding is similar
to channel equalization, but the key difference is that it shapes
(precodes) the signal according to the operation of the utilized
receiver prior to channel coding. While channel equalization
aims to minimize channel errors, a precoder aims to minimize
the error in the receiver output.

In this paper, we introduce the concept of precoding for
adaptive video streaming. As illustrated in Fig. 1, precoding
for video is done by preprocessing the input video frames of
each independently-decodable group of pictures (GOP) prior
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Fig. 1. Proposed deep video precoding framework. The precoding module performs dynamic resolution adaptation during encoding, prior to streaming. The
optimal scale factor is chosen by our adaptive precoding mode selection algorithm which operates per GOP, bitrate and codec and is passed to the server-based
manifest file that points all adaptive streaming clients to the available content chunks (GOPs) and their bitrate and resolution settings.

to standard encoding, while allowing a standard video decoder
and player to decode and display them without requiring any
modifications. The key idea of precoding is to minimize the
distortion at the output of the client’s player. To achieve this,
we leverage on the support for multiple resolutions at the
player side and introduce a multi-scale precoding convolu-
tional neural network (CNN) that progressively downscales
input high-resolution frames over multiple scale factors. A
mode selection algorithm then selects the best precoding
mode (i.e., resolution) to use per GOP based on the GOP
frame content, bitrate and codec characteristics. The precoding
CNN is designed to compact information in such a way
that the aliasing and blurring artifacts generated during linear
upscaling are mitigated. This is because, in the vast majority
of devices, video upscaling is performed by means of linear
filters. Thus, our proposed deep video precoding solution
focuses on matching standard video players’ built-in linear
upscaling filter implementations, such as the bilinear filter2.

Our experiments with standard FHD (1080p) and UHD
(2160p) test content from the XIPH repository and well-
established implementations of H.264/AVC, H.265/HEVC and
VP9 encoders show that, by using deep precoding modes
for downscaling, we can significantly reduce the distortion of
video playback compared to conventional downscaling filters
and fixed downscaling modes used in standard DASH/HLS
streaming systems. We further demonstrate through extensive
experimentation that the proposed adaptive precoding mode
selection achieves 8% to 52% bitrate reduction for FHD
and UHD content encoding at typical bitrate ranges used in
commercial deployments. An important effect of the proposed
precoding is that video encoding can be accelerated, since

2Despite an abundance of possible upscaling filters, in order to remain effi-
cient over a multitude of client devices, most web browsers only support the
bilinear filter for image and video upscaling in YUV colorspace, e.g., see the
Chromium source code that uses libyuv (https://chromium.googlesource.com).

many GOPs tend to be shrunk by the precoder to only 6%-64%
of their original size, depending on the selected downscaling
factor. This is beneficial when considering cloud deployments
of such encoders, especially, in view of upcoming standards
with increased encoding complexity.

In summary, our contributions are as follows:

• the concept of deep precoding for video delivery is intro-
duced as the means of enhancement of the rate-distortion
characteristics of any video codec without requiring any
changes on the client/decoder side;

• a multi-scale precoding CNN is proposed, which down-
scales high-resolution frames over multiple scale factors
and is trained to mitigate the aliasing and blurring arti-
facts generated by standard linear upscaling filters;

• an adaptive precoding mode selection algorithm is pro-
posed, which adaptively selects the optimal resolution
prior to encoding.

It is important to emphasize that deep video precoding
is a source encoding optimization framework carried out at
the server side, prior to transmission, in order to optimally
“shape” the input signal by deriving the best downscaled
representation according to input GOP segment, bitrate, codec
and upscaling capabilities at the receiver, without considering
transport conditions. Fig. 1 illustrates how our proposed deep
video precoding can be used in conjunction with client-
driven adaptive streaming systems like the widely-deployed
DASH/HLS standards. As shown in Fig. 1, precoding for
each content, codec and target bitrate is independent of how
DASH/HLS players will switch between encoding ladders to
adapt the video bitrate to the transport bandwidth, latency
and buffer conditions. That is, once the DASH/HLS-compliant
stream is produced by our approach for each encoding bitrate
and the manifest file is created with the corresponding bitrate
and resolution information per video segment, adaptive bitrate
streaming, stream caching and stream switching mechanisms
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that cope with bitrate and channel fluctuations can operate
as usual. The key difference in our case is that the client
receives, decodes and upscales bespoke representations created
by the proposed precoder. Hence, our proposal for deep video
precoding is done in its entirety during content encoding
and remains agnostic to the transport conditions experienced
during each individual video bitstream delivery.

B. Paper Organization

The remainder of this paper is organized as follows. In
Sec. II, we review related work. The proposed multi-scale
deep precoding network architecture design, loss function, and
implementation and training details are presented in Sec. III.
The precoding mode selection algorithm is presented in Sec.
IV. Experimental results are given in Sec. V, and Sec. VI
concludes the paper.

II. RELATED WORK

Content-adaptive encoding has emerged as a popular solu-
tion for quality or bitrate gains in standards-based video en-
coding. Most commercial providers have already demonstrated
content-adaptive encoding solutions, typically in the form of
bitrate adaptation based on combinations of perceptual metrics,
i.e., lowering the encoding bitrate for scenes that are deemed
to be simple enough for a standard encoder to process. Such
solutions can also be extended to other encoder parameter
adaptations, and their essence is in the coupling of a visual
quality profile to a pre-cooked encoder-specific tuning recipe.

A. Resolution Adaptation in Image and Video Coding

It has been known for some time that reducing the input res-
olution in image or video coding can improve visual quality for
lower bitrates as the encoder operates better at the “knee” of its
rate-distortion curve [8]. Starting from non-learnable designs,
Tsaig et al. [9] explored the design of optimal decimation
and interpolation filters for block image coders like JPEG and
showed that low-bitrate image coding between 0.05 bits-per-
pixel (bpp) to 0.35 bpp benefits from such designs. Kopf et al.
[10] proposed a content-adaptive method, wherein filter kernel
coefficients are adapted with respect to image content. Oztireli
et al. [11] proposed an optimization framework to minimize
structural similarity between the nearest-neighbor upsampled
low-resolution image and the high-resolution image. Recently,
Katsavounidis et al. [3], [12] proposed the notion of the dy-
namic optimizer in video encoding: each scene is downscaled
to a range of resolutions and is subsequently compressed to
a range of bitrates. After upscaling to full resolution, the
convex hull of bitrates/qualities is produced in order to select
the best operating resolution for each video segment. Quality
can be measured with a wide range of metrics, ranging from
simple peak signal to noise ratio (PSNR) to complex fusion-
based metrics like the video multimethod assessment fusion
(VMAF) metric [13]. While Bjontegaard distortion-rate (BD-
rate) [14] gains of 30% have been shown in experiments for
H.264/AVC and VP9, the dynamic optimizer requires very

significant computational resources, while it still uses non-
learnable downscaling filters. A learnable CCN-based down-
scaling method for image compaction was proposed by Li et
al. [15], where the downscaling CNN is trained jointly with
either a fixed linear upscaling filter or a trainable upscaling
CNN. While that work also explored the concept of learnable
downscaling, it is designed for fixed-ratio downscaling and
does not provide content, bitrate and codec adaptivity as our
proposed deep precoding approach. However, it forms an
important learnable downscaling framework that we use as
one of the benchmarks for our work.

B. Super-resolution Methods

Overall, while the above methods have shown the possibility
of rate saving via image and video downscaling, they have
not managed to significantly outperform classical bicubic
downscaling within the context of practical encoding. This has
led most researchers and practitioners to conclude that down-
scaling with bicubic or Lanczos filters is the best approach,
and instead the focus has shifted on upscaling solutions at
the client (i.e., decoder) side that learn to recover image
detail assuming such downscaling operators. For example,
Georgis et al. [16] proposed backprojection-based upscaling
that is tailored to Gaussian kernel downscaling and showed
that such approaches can be beneficial for FHD and UHD/4K
encoding with H.264/AVC and HEVC up to 10mbps and
5mbps, respectively. The majority of recent works in this
field consider CNN-based upscaling methods. This has been
largely motivated by the success of deep CNN architectures
for single image super-resolution, that have set the state-of-
the-art, with recent architectures like VDSR [17], EDSR [18],
FSRCNN [19], DRCN [20] and DBPN [4] achieving several
dB higher PSNR in the luminance channel of standard image
benchmarks for lossless image upscaling. Thus, Afonso et
al. propose a spatio-temporal resolution adaptation where a
CNN-based super-resolution model is used to reconstruct full-
resolution content [21]. Li et al. [22] introduce the block
adaptive resolution coding framework for intra frame coding,
where each block within a frame is either downscaled or
coded at original resolution and then upscaled with a trained
CNN at the decoder side. This concept was later extended to
include P and B frames as well [23]. Differently from the
previous methods that operate in the pixel domain, Liu et
al. perform down and upsampling in the residue domain and
design upsampling CNN for residue super resolution (SR) with
the help of the motion compensated prediction signal [24].
However, regardless of the domain where they operate, the
common principle of all these works is that they use hand-
crafted filters for downscaling and perform upscaling at the
decoder side using codec-tailored CNN models integrated in
the coding standard which requires modifications to the codec.

C. Neural-network Representation and Coding Methods

While most research efforts have focused on learning
optimal upscaling filters [25], inspired by the success of
autoencoders for image compression [26], [27], some recent
works revise the problem of joint downscaling and upscaling
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using deep CNN-based methods. Shocher et al. [28] recently
proposed an upscaling method using deep learning, which
trains an image-specific CNN with high and low-resolution
pairs of patches extracted from the test image itself. Weber
et al. [29] used convolutional filters to preserve important
visual details, and Hou et al. [30] recently proposed a deep
perceptual loss based method. Kim et al. [31] proposed an im-
age downscaling/upscaling method using a deep convolutional
autoencoder, and achieved state-of-the-art results on stan-
dard image benchmarks. An end-to-end image compression
framework for low bitrates compatible with existing image
coding standards was introduced in [32]. It comprises two
CNNs: one for image compaction prior to encoding and one
for post-processing after decoding. Adaptive spatio-temporal
decomposition prior to encoding, followed by CNN-based
spatio-temporal upscaling after decoding was proposed by
Afonso et al. and was validated with H.265/HEVC encoding
[21]. Finally, Wave One recently proposed video encoding
with deep neural networks [33] and demonstrated quality gains
against a conventional video encoder without B frames, and
focusing on very-high bitrate encoding (20mbps or higher for
FHD). While these are important achievements, most of these
proposals are still outperformed by post-2013 video encoders,
like HEVC and VP9, when utilized with their most advanced
video buffering verifier (VBV) encoding configurations and
appropriate constant rate factor tuning [34]. In addition, all
these proposals require advanced GPU capabilities on both
the client and the server side that cannot be supported by
existing video players as they break away from current stan-
dards. Therefore, despite the significant advances that may
be offered by all these methods in their future incarnations,
they do not consider the stringent complexity and standards
compatibility constraints imposed when dealing with adaptive
video streaming under DASH or HLS-compliant clients like
web browsers. Our work fills this gap by offering deep video
precoding as the means to optimize existing video encoders
with the entirety of the precoding process taking place on the
server side and not requiring any change in the video transport,
decoding and display side.

III. MULTI-SCALE PRECODING NETWORKS

While any downscaling method can be used with the video
precoding framework of Fig. 1, to enhance the performance
of our proposal in a data-driven manner, we introduce a
multi-scale precoding neural network. The precoding network
comprises a series of CNN precoding blocks that progressively
downscale high resolution (HR) video frames over multiple
scale factors. We design the precoding CNN to compact
information such that a standard linear upscaler at the video
player side will be able to recover in the best possible way.
This is the complete opposite of recent image upscaling
architectures that assume simple bicubic downscaling and an
extremely complex super-resolution CNN architecture at the
video player side. For example, EDSR [5] comprises over 40
million parameters and would be highly impractical on the
client side for 30-60 frame-per-second (fps) FHD/UHD video.

In the following subsections, we describe the design of the
proposed multi-scale precoding networks, including the net-

Fig. 2. The architecture of our multi-scale precoding network for video down-
scaling, comprising a root mapping R and precoding streams P1, P2, . . . PM .
The luminance frame of each input video frame is downsampled to multiple
lower resolutions by the precoding network at the server via the precoding
streams.

work architecture, loss function, and details of implementation
and training.

A. Network Architecture

The overall architecture of the precoding network is de-
picted in Fig. 2. It consists of a “root” mapping R fol-
lowed by M parallelized precoding streams Pm. The net-
work progressively downscales individual luminance frames
x ∈ RH×W (where H and W are the height and width,
respectively) over the scale factors in S. Considering that
the human eye is most sensitive to luma information, we
intentionally process only the luminance (Y) channel with
the precoding network and not the chrominance (Cb, Cr)
channels, in order to avoid unnecessary computation. Dong
et al. [35] support this claim empirically and, additionally,
find that training a network on all three channels can actually
worsen performance due to the network falling into a bad
local minimum. We also note that this permits for chroma
subsampling (e.g., YUV420) as the chrominance channels
(Cb,Cr) are downscaled independently using the standard
bicubic filter.

1) Root mapping: The root mapping R, illustrated in Fig 3,
comprises two convolutional layers and extracts a set of high-
dimensional feature maps r ∈ RH×W×K from the input x,
where K is the number of output channels of the root mapping.
The root mapping R constitutes less abstract features (such as
edges) that are common amongst all precoding streams and
scale factors. Therefore, this module is shared between all
precoding streams, which helps in reducing complexity.

2) Precoding stream: The extracted feature maps r are
passed to the precoding streams. As depicted in Fig. 3, a
precoding stream Pm comprises a sequence of Nm precoding
blocks, which progressively downscale the input over a subset
of Nm scale factors, Sm = {sm1, sm2, . . . , smNm} ⊆ S,
where 1 < sm1 < sm2 < · · · < smNm . The allocation of
scale factors to a precoding stream is done in such a way that:
(i) complexity is shared equally between streams for efficient
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Fig. 3. Root mapping R and m-th precoding stream Pm. The root mapping
extracts high-dimensional feature maps r and is shared by all precoding
streams. The precoding stream Pm contains a sequence of precoding blocks
and progressively downsamples the input high-resolution frames over a set of
Nm scale factors.

parallel processing and (ii) the ratio of most of the consecutive
pairs of scales sm(n−1), smn within a stream is constant, i.e.,
αmn = smn/sm(n−1) = αm ∈ Z+. Such construction of
precoding streams exploits the inter-scale correlations among
similar scales and enables parameter sharing within each
precoding stream, thus further reducing the computational
complexity. Most importantly, it renders our network amenable
to standard encoding resolution ladders, such as those used in
DASH/HLS streaming [2].

Given a precoding stream Pm, the n-th constituent precod-
ing block receives a function of the output map pm(n−1) ∈
RH/sm(n−1)×W/sm(n−1)×K from the preceding block and out-
puts embedding pmn ∈ RH/smn×W/smn×K . Notably, we
utilize a global residual learning strategy, where we use a skip
connection and perform a pixel-wise summation between the
root feature maps r (pre-activation function and after linear
downscaling to the correct resolution with a linear downscaling
operator D↓smn

) and pmn. Similar global residual learning
implementations have also been adopted by SR models [36]–
[38]. In our case, our precoding stream effectively follows
a pre-activation configuration [39] without batch normaliza-
tion. We find empirically that convergence during training is
generally faster with global residual learning, as the precoding
blocks only have to learn the residual map to remove distortion
introduced by downscaling operations.

The resulting downscaled feature map is finally mapped
by a single convolutional layer Fmn to ymn. Importantly,
the sequence of precoding blocks only operates in a higher
dimensional feature space without any heavy bottlenecks. It is
then the job of convolutional layers Fmn to aggregate block
outputs into single channel representations of the input x,
downscaled by a factor of smn. For Nm precoding blocks
and set of Nm scale factors Sm, the embedding stream
outputs a set of Nm corresponding downscaled representations

Fig. 4. Precoding block design, comprising a series of 3 × 3 and 1 × 1
convolutions. The linear downscaling operation D↓αmn is only performed
when the downscaling to the target resolution cannot be achieved via stride
in the first convolutional layer. The linear mapping learned from the first
layer (pre-activation function) is passed to the output of the second 3 × 3
convolutional layer (post-activation function) with a skip connection and pixel-
wise summation.

Ym = {ym1,ym2, . . . ,ymNm} of the input x.
The output activations in Ym are clipped (rescaled) between

the minimum and maximum pixel intensities and each repre-
sentation can, thus, be passed to the codec as a downscaled low
resolution (LR) frame. These frames can then be individually
upscaled to the original resolution using a linear upscaling
U↑s on the client side, such as bilinear, lanczos or bicubic,
where ↑ s indicates upscaling by scale factor s. We refer to
the upscaled frame generated from the downscaled frame ymn
as x̂mn and denote the set of Nm upscaled representations of
x as X̂m = {x̂m1, x̂m2, . . . , x̂mNm

}.
3) Precoding block: Our precoding block, which consti-

tutes the primary component of our network, is illustrated in
Fig. 4. The precoding block consists of alternating 3× 3 and
1× 1 convolutional layers, where each layer is followed by a
parametric ReLU (PReLU) [40] activation function. The 1×1
convolution is used as an efficient means for channel reduction
in order to reduce the overall number of multiply-accumulates
(MACs) for computation.

The n-th precoding block in the m-th precoding stream
is effectively responsible for downscaling the original high
resolution frame by a factor of smn. In order to maintain low
complexity, it is important to downscale to the target resolution
as early as possible. Therefore, we group all downsampling
operations with the first convolutional layer in each precoding
block. Denoting the input to the precoding block as imn, the
output of the first convolutional layer Cmn of the precoding
block as cmn (as labelled in Figure 4) and spatial stride as k:

cmn =

{
Cmn(imn; k = αmn), if αmn ∈ Z+

Cmn(D↓αmn
(imn); k = 1), otherwise

(1)

In other words, downscaling is implemented in the first
convolutional layer with a stride if αmn is an integer; other-
wise we use a preceding linear downscaling operation D↓αmn

(bilinear or bicubic).
The aim of the precoding block is to reduce aliasing artifacts

in a data-driven manner. Considering that the upscaling opera-
tions are linear and, therefore, heavily constrained, the network
is asymmetric and the precoding structure can not simply
learn to pseudo invert the upscaling. If that were to be the
case, it would simply result in a traditional linear anti-aliasing
filter, i.e., a lowpass filter that removes the high frequency
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components of the image in a globally-tuned manner, such that
the image can be properly resolved. Removing the high fre-
quencies from the image leads to blurring. Adaptive deblurring
is an inverse problem, as there is typically limited information
in the blurred image to uniquely determine a viable input.
As such, within our proposed precoding structure, we can
respectively model the anti-aliasing and deblurring processes
as a function composition of linear and non-linear mappings.
As illustrated in Fig. 4, this is implemented with a skip
connection between linear and non-linear paths, as utilized in
ResNet [41] and its variants, again following the pre-activation
structure. In order to ensure that the output of the non-linear
path has full range (−∞,∞), we can initialize the final PReLu
before the skip connection such that it approximates an identity
function.

B. Loss Function

Given the luminance channel of a ground-truth frame x ∈
RH×W (with Y ranging between 16-235 as per ITU-R BT.601
conversion), our goal is to learn the parameters for the root
R and all precoding streams P1, P2, . . . PM . We denote the
root module parameters as θ and the parameters of the m-th
precoding stream as φm. For the m-th precoding stream with
downscaling over Nm scale factors and I training samples per
batch, the composite loss function Lm can be defined as:

Lm(X̂m,x;θ,φm) =
1

I

I∑
i=1

Nm∑
n=1

( ∣∣∣x̂(i)
mn − x(i)

∣∣∣
+ λ

∣∣∣∇x̂(i)
mn −∇x(i)

∣∣∣ ) (2)

The first term represents the L1 loss between each generated
upscaled frame x̂mn = U↑smn

(ymn) and the ground-truth
frame x, summed over all Nm scales, where ymn = Fm,n ◦
Pm,↓smn

◦ R(x;θ,φm) and Pm,↓smn
is the part of the m-

th precoding stream that includes all precoding blocks up to
the n-th block and is responsible for downscaling the input
feature maps r by the scale factor smn. The second term
represents the L1 loss between the first order derivatives of
the generated high resolution and ground-truth frames. As
the first order derivatives correspond to edge extraction, the
second term acts as an edge preservation regularization for
improving perceptual quality. We set the weight coefficient
λ to 0.5 for all experiments; empirically, this was found to
produce the best visual quality in output frames. Contrary to
recent work [15], [31], we do not add a loss function constraint
between the downscaling and upscaling as our upscaling
is only linear and, therefore, already heavily constrains the
downscaled frames. Most importantly, we do not include the
codec in the training process and train end-to-end (i.e., without
encoding/transcoding), such that the model does not learn
codec specific dependencies and is able to generalize to mul-
tiple codecs. Finally, as we train the parallelized multi-scale
precoding network over all streams synchronously, our final
loss function is the summation of (2) over all M precoding
streams:

L(X̂,x;θ,φ) =

M∑
m=1

Lm(X̂m,x;θ,φm) (3)

where X̂ = X̂1∪ X̂2∪· · ·∪X̂M and φ = {φ1,φ2, . . . ,φM}.

C. Implementation and Training Details

In our proposed multi-scale precoding network, we initialize
all kernels using the method of Xavier intialization [42]. We
use PReLU as the activation function, as indicated in Fig. 3 and
4. We use zero padding to ensure that all layers are the same
size and downscaling is only controlled by a downsampling
operation such as a stride or a linear downscaling filter.
The root mapping R comprises a single 3 × 3 and 1 × 1
convolutional layers. We set the number of channels in all
1× 1 and 3× 3 convolutional layers to 4 and 8, respectively
(excluding Fm,n, which uses a kernel size of 3 × 3 but with
only a single output channel).

Our final parallelized implementation comprises three pre-
coding streams P1, P2 and P3, with the set of scale factors
S \ {1} partitioned into three subsets: S1 = {4/3, 2, 4},
S2 = {3/2, 3, 6} and S3 = {5/4, 5/2}. Collectively, these
include all representative scale factors used in DASH/HLS
streaming systems [2], as well as additional scale factors
that offer higher flexibility in our adaptive mode selection
algorithm. In terms of complexity, for a 1920 × 1080 × 4 -
dimensional feature map (assuming no downscaling), a single
precoding block requires approximately only 1.33G MACs for
downscaling and 640 parameters. Our final implementation
requires only 3.38G MACs and 5.5K parameters over all scales
per FHD input frame (1920× 1080), including root mapping
and all precoding streams.

We train the root module and all precoding streams end-to-
end with linear upscaling, without the codec, on images from
the DIV2K [43] training set. We train all models with the
Adam optimizer with a batch size of 32 for 200k iterations.
The initial learning rate is set as 0.001 and decayed by a factor
of 0.1 at 100k iterations. We use data augmentation during
training, by randomly flipping the images and train with a
120 × 120 random crops extracted from the DIV2K images.
All experiments were conducted in Tensorflow on NVIDIA
K80 GPUs. We do not use Tensorflow’s built-in linear image
resizing functions and rewrite all linear upscaling/downscaling
functions from scratch, such that they match standard FFmpeg
and OpenCV implementations.

IV. ADAPTIVE VIDEO PRECODING

Given the trained multi-scale precoding network, the mode
selection algorithm operates on a per GOP, bitrate and codec
basis. The goal of mode selection is to determine the optimal
precoding scale factor for each GOP. While one can use
operational rate-distortion (RD) models for H.264/AVC or
H.265/HEVC [44] for evaluation of the best precoding modes,
such models cannot encapsulate the complex and sequence-
dependent RD behavior of each codec preset. On the other
hand, exhaustive search solutions like the Netflix dynamic
optimizer [3] require numerous highly-complex encodings per
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bitrate and scale factor. This makes them impractical for high-
volume/low-cost encoding systems. Our approach provides a
middle ground between these two opposites by computing
operational rate-distortion characteristics of the video encoder
for each precoding mode and video segment in an efficient
manner.

The precoding mode selection algorithm is outlined in
Algorithm 1 and comprises three steps. The first step is to
obtain the rate-distortion characteristics of each precoding
mode (scale). Let S = {s1, s2, . . . , sN} be the complete set of
scale factors that may include the native (i.e., full) resolution.
Each GOP segment g is precoded into all possible scales in
S with the multi-scale precoding network. Let hi denote the
precoded version of GOP g using scale factor si ∈ S. All
precoded versions of GOP g are then encoded with the video
encoder’s preset and encoding parameters. As such, per scale
factor si, we obtain a single GOP encoding, which, after
decoding and upscaling to the native resolution, produces a
single rate-distortion point (Ri, Di) on the RD plane.3 This
provides significant reduction of the required encodings versus
approaches like the Netflix dynamic optimizer, which needs a
convex hull of several rate-distortion points per scale factor
si, i.e., several encodings per scale factor [3]. To accelerate
this step even further and avoid unnecessary computational
overhead, we introduce a “footprinting” process: instead of
encoding all frames of the GOP, we perform selective encoding
of only a few frames, e.g., keeping only every n-th frame in
the GOP. This significantly speeds up the initial encoding step,
especially if multiple precoding modes are considered, as n
times fewer frames need to be precoded and encoded per scale
factor. We store the set of tuples R = {(Ri, Di,hi, si)}|S|i=1.

Once all the RD points are obtained, we start the pruning
process. First, we eliminate all precoding modes, whose RD
points do not provide for a monotonically decreasing RD
curve. That is, for every precoding mode i, if there exists
a precoding mode j, such that Rj ≤ Ri and Dj < Di, the si
precoding mode is pruned out. If, after this elimination pro-
cedure, the number of remaining precoding modes is greater
than two, we further prune out precoding modes by eliminating
those modes whose RD points do not lie on the convex hull
of the remaining RD points [45], [3]. We refer to the set of
pruned tuples as Rpruned ⊆ R. After the pruning stage, we re-
encode the remaining precoded GOP representations hi using
constant bitrate (CBR) encoding. The bitrate used for the CBR
encoding is equal to the average of the bitrates of all RD
points remaining after the elimination step. After decoding
and upscaling to the native resolution, we obtain a new set
of tuples, R′pruned, corresponding to the CBR encoding. This
final step of the algorithm essentially remaps the RD points
that remain after the pruning process to a common bitrate
value, which is enforced by the CBR encoding. The optimal
precoding mode s∗ is then selected as the mode providing the
lowest distortion among this new set of remapped RD points.

For illustration purposes, we demonstrate in Fig. 5a-5d
the operation of the mode selection algorithm on the first

3We use mean squared error (MSE) to measure distortion. Even though
other distortion measures could be used, MSE is fast to compute and is
automatically provided by all encoders.

Algorithm 1 : Algorithm for adaptive mode selection
Input: GOP segment g, complete set of scale factors S
Output: optimal precoding mode s∗, optimal precoded version
h∗ of GOP segment g

1: procedure MODESELECTION(g,S)
. Step 1: Extract RD points for all precoding modes

2: R← {}
3: for each s ∈ S do
4: h← PRECODE(g, s)
5: (e, R) ← ENCODE(h, preset, params)
6: ĥ ← DECODE(e)
7: ĝ ← UPSCALE(ĥ)
8: D ← ‖ĝ − g‖2
9: R← R ∪ {(R,D,h, s)}

10: end for
. Step 2: Prune out RD points

11: Rsorted ← ((Ri, Di,hi, si) ∈ R|Ri > Ri−1)
|S|
i=1

12: Rpruned ← {Rsorted[1]}; Dref ← D1

13: if |S| > 1 then
14: for i = 2 to |S| do
15: (Ri, Di)← Rsorted[i]
16: if Di < Dref then
17: Rpruned ← Rpruned ∪ {(Ri, Di,hi, si)}
18: Dref ← Di

19: end if
20: end for
21: end if
22: if |Rpruned| > 2 then
23: Rpruned ← CONVEXHULL(Rpruned)
24: end if

. Step 3: Re-encode remaining RD points with CBR
25: R′pruned ← {}
26: for each (R,D,h, s) ∈ Rpruned do
27: (e, R) ← ENCODE(h, preset, params, ‘CBR’)
28: ĥ ← DECODE(e)
29: ĝ ← UPSCALE(ĥ)
30: D ← ‖ĝ − g‖2
31: R′pruned ← R′pruned ∪ {(R,D,h, s)}
32: end for
33: (R∗, D∗,h∗, s∗)← minD(R

′
pruned)

34: end procedure

GOP (first 30 frames) of the aspen FHD sequence when
the latter is encoded with H.264/AVC with target bitrate
set to 500kbps. For downscaling, we use nine scale factors
S = {1, 5/4, 4/3, 3/2, 2, 5/2, 3, 4, 6} with our trained multi-
scale precoding network (described in Section III), while
upscaling is performed using the bilinear filter. Fig. 5a shows
the set of RD points obtained after precoding the GOP for
each scale factor in S and encoding with H.264/AVC via
VBV encoding with the CRF values of Table I, which is
representative of real-world streaming presets [34], and both
maximum bitrate and buffer size set to 500kbps. As shown
in Fig. 5b, the RD points (and the corresponding precoding
modes) that do not provide for a monotonically increasing
rate-PSNR curve are eliminated from the RD plane. Since
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(a) (b) (c) (d)

Fig. 5. Illustration of the operation of the proposed precoding mode selection algorithm during the encoding of the first 30 frames of the aspen FHD video
sequence. (a) RD points corresponding to all encodings of the first GOP with H.264/AVC for all scale factors in S. (b) Remaining RD points after the pruning
of the points in (a) that do not provide for a monotonically increasing RD curve. (c) RD points remaining after the elimination of the points that do not lie
on the convex hull of the RD points in (b). (d) Remapping of the RD points in (c) with CBR encoding at average bitrate after the pruning process.

there are more than two points remaining after this step, we
next prune out the points that do not lie on the convex hull,
which leaves us with two candidate precoding modes s = 6
and s = 5/2. We finally re-encode the GOP, precoded with
the two modes, with CBR encoding at 567kbps, which is the
average bitrate of the two points in Fig. 5c. This results in the
two RD points shown in Fig. 5d. The selected precoding mode
is s∗ = 6, since it renders the highest PSNR value between
the two points. Notice that the CBR encoding acts as an RD
remapping and leads to both modes obtaining lower PSNR
values than their PSNRs under VBV encoding. However, the
absolute PSNR values are not relevant, since we are looking
for the maximum PSNR under CBR; the final precoding mode
is applied on the entire GOP and the encoding uses the VBV
encoding mode preset. Finally, it is also of interest to notice
that for this low-bitrate case, the s = 1 case (full resolution) is
immediately shown to be suboptimal, and the mode selection
is left to select from the higher-quality/higher-bitrate mode of
s = 5/2 and the lower-quality/lower-bitrate mode of s = 6,
with the latter prevailing when remapping the two points into
CBR encoding at their average rate.

V. EXPERIMENTAL RESULTS

In this section, we evaluate our proposed adaptive video
optimization framework in scenarios with the widest prac-
tical impact. We first compare the performance of the pro-
posed multi-scale precoding network with the performance
of standard linear downscaling filters for individual precoding
modes. Then, we evaluate the entire adaptive video precoding
framework by comparing it to standard video codecs via their
FFmpeg open-source implementations, as well as to external
highly-regarded video encoders that act as third-party anchors.
The use of FFmpeg encoding libraries instead of the reference
software libraries provided by the MPEG/ITU-T or AOMedia
standardization bodies allows for the use of the same VBV
model architecture for all tests and corresponds to a widely-
used streaming-oriented scenario found in systems deployed
around the world.

A. Content and Test Settings

The test content comprises 16 FHD (1920 × 1080)
and 14 UHD (3840 × 2160) standard video sequences

TABLE I
CRF VALUES FOR LIBX264 AND LIBX265 AND SPEED FOR LIBVPX-VP9

UNDER OUR UTILIZED PRECODING MODES.

Encoders

s libx264 libx265 libvpx-vp9

1 23 - -
5/4 23 - -
4/3 23 23 speed=1
3/2 23 23 speed=1
2 18 18 speed=1

5/2 18 18 speed=1
3 18 18 speed=1
4 18 18 speed=1
6 18 18 speed=1

in 8-bit YUV420 format from the XIPH collection4,
which have also been used in AOMedia standardiza-
tion efforts. The FHD test content comprises the se-
quences aspen, blue sky, controlled burn, rush field cuts,
sunflower, rush hour, old town cross, crowd run, tractor,
touchdown, riverbed, red kayak, west wind easy, pedes-
trian area, ducks take off, park joy, which have frame rates
between 25fps and 50fps. The UHD sequences used in the tests
are Netflix BarScene, Netflix Boat, Netflix BoxingPractice,
Netflix Crosswalk, Netfix Dancers, Netflix DinnerScene, Net-
flix DrivingPOV, Netflix FoodMarket, Netflix FoodMarket2,
Netflix Narrator, Netflix RitualDance, Netflix RollerCoaster,
Netflix Tango, Netflix TunnelFlag, all at 60fps.

Performance is measured in terms of average PSNR and
average VMAF, calculated with the tools made available by
Netflix [13]. Average PSNR is the arithmetic mean of the
PSNR values of all YUV channels of each frame. Similarly to
PSNR, VMAF is measured per frame and the average VMAF
is obtained by taking the arithmetic mean over all frames.

4https://media.xiph.org/video/derf/ The 4K (4096× 2160) sequences used
were cropped to the 3840× 2160 (UHD) section of the central portion and
were encoded to 8-bit YUV420 format (using x265 lossless compression)
prior to encoding to produce UHD sequences. For the experiments of Section
V-B, we used only the first 240 frames of these UHD sequences as well as
the standard two-pass rate control settings in FFmpeg [46]. This corresponds
to the typical configuration used in general-purpose video encoding. For the
experiments of Section V-C, we used the single-pass VBV encoding settings
for libx264/libx265/libvpx-vp9 that correspond to OTT streaming scenarios
and can be found in FFmpeg documentation [47] and the downscaling factors
and CRF values of Table I.
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TABLE II
BD-RATE (∆R) AND BD-PSNR (∆P) RESULTS FOR REPRESENTATIVE DOWNSCALING FACTORS.

H.264/AVC H.265/HEVC

bicubic Lanczos bicubic Lanczos

s ∆R ∆P ∆R ∆P ∆R ∆P ∆R ∆P

5/2 -24.70% 0.61dB -19.21% 0.45dB -25.17% 0.55dB -18.84% 0.39dB
2 -18.85% 0.56dB -14.71% 0.42dB -19.25% 0.52dB -14.46% 0.37dB

3/2 -17.11% 0.45dB -11.75% 0.31dB -13.18% 0.32dB -8.26% 0.20dB

TABLE III
BD-RATE (∆R) AND BD-VMAF (∆V) FOR REPRESENTATIVE DOWNSCALING FACTORS.

H.264/AVC H.265/HEVC

bicubic Lanczos bicubic Lanczos

s ∆R ∆V ∆R ∆V ∆R ∆V ∆R ∆V

5/2 -39.74% 7.86 -34.30% 6.49 -39.73% 7.03 -33.75% 5.74
2 -30.32% 5.81 -27.57% 5.18 -30.20% 5.12 -27.41% 4.57

3/2 -23.21% 3.43 -21.73% 3.18 -18.66% 2.61 -17.67% 2.46
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Fig. 6. Rate-distortion curves in terms of (a) PSNR and (b) VMAF for FHD content encoded with H.264/AVC and scale factor s = 5/2.

While PSNR has been used for decades as a visual quality
metric, VMAF is a relatively recent perceptual video quality
metric adopted by the video streaming community, which has
been shown to correlate very well with the human perception
of video quality. It is a self-interpretable [0, 100] visual quality
scoring metric that uses a pretrained fusion approach to merge
several state-of-the-art individual visual quality scores into
a single metric. Both PSNR and VMAF are calculated on
native resolution frames after decoding and upscaling with the
bilinear filter that is supported by all video players and web
browsers.

B. Evaluation of Precoding Modes

We first evaluate the performance of our proposed multi-
scale precoding network against the bicubic and Lanczos
filters, which are the two standard downscaling filters sup-
ported by all mainstream encoding libraries like FFmpeg. We
focus on three indicative scale factors on FHD content, opting

for a very common scenario of H.264/AVC encoding under
its FFmpeg libx264 implementation. Specifically, we use the
“medium” preset, two pass rate control mode [46], GOP=30,
and bitrate range of 0.5− 10Mbps.

BD-rate [14] gains with respect to PSNR and VMAF are
shown in Table II and Table III, respectively. Our precoding is
shown to consistently outperform bicubic and Lanczos down-
scaling for all modes. For PSNR, its BD-rate gains ranged
from 8% to 25%, while, for VMAF, rate reduction of 18%-
40% is obtained. Indicative rate-distortion curves with respect
to PSNR and VMAF for s = 5/2 scaling factor are presented
in Fig. 6a and Fig. 6b, showing that the proposed precoding
network consistently outperforms conventional downscaling
filters. While the gain increases at higher bitrates, substantial
gain is observed in the low bitrate region as well. Specifically,
for PSNR, the BD-rate and BD-PSNR gains over bicubic
(Lanczos) downscaling for the 0.5-2Mbps rate region (zoomed
part of the curve in Fig. 6a) are 10.54% (6.9%) and 0.27dB
(0.18dB), respectively. For VMAF, the BD-rate and BD-
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Fig. 7. Two segments of frame 25 of the crowd run FHD sequence encoded
at 5000Kbps with the settings corresponding to Fig. 6. The precoded stream
preserves the lettering and overall shapes significantly better than Lanczos
and bicubic downscaling. Best viewed under magnification.

Fig. 8. Two segments of frame 77 of rush field cuts FHD sequence encoded
at 5000Kbps with the settings of Fig. 6. The precoded stream preserves the ge-
ometric structures significantly better than Lanczos and bicubic downscaling.
Best viewed under magnification.

VMAF gains over bicubic (Lanczos) downscaling are 29.29%
(24.74%) and 5.94 (4.91), respectively, for the same low bitrate
region. Example segments of a frame encoded at 5000kbps
with the proposed precoding, and the Lanczos and bicubic
downscaling are shown in Fig. 7 and Fig. 8. The improvement
in visual fidelity demonstrated in the figures is also captured
by the (approx.) 10-point average VMAF difference shown
at the 5Mbps point of Fig. 6b. Several of the FHD video
sequences encoded with a variation of the proposed precod-
ing and H.265/HEVC (and the corresponding H.265/HEVC
encoded results) are also available for visual inspection at
www.isize.co/portfolio/demo. They can be played with any
player, since our proposal does not require any change at the
streaming or client side.

TABLE IV
AVERAGE BD-RATE (∆R) AND BD-PSNR (∆P) FOR 16 FHD TEST

SEQUENCES AND SETTINGS DESCRIBED IN SECTION V-C. THE PROPOSED
PRECODING, ISIZE, IN CONJUNCTION WITH H.264/AVC, H.265/HEVC

AND VP9 IS EVALUATED AGAINST STANDALONE H.264/AVC,
H.265/HEVC AND VP9 ENCODINGS AS WELL AS COMMERCIAL

SOLUTIONS INCLUDING AWS MEDIACONVERT (AVC AND HEVC) AND
AWS ELASTIC TRANSCODER (VP9).

AVC + iSIZE HEVC + iSIZE VP9 + iSIZE

∆R ∆P ∆R ∆P ∆R ∆P

AVC -14.80% 0.72dB – – – –
HEVC – – -8.09% 0.27dB – –
VP9 – – – – -30.70% 1.21dB
AWS -18.23% 0.86dB – – -19.62% 1.17dB

TABLE V
AVERAGE BD-RATE (∆R) AND BD-VMAF (∆V) FOR 16 FHD TEST

SEQUENCES AND SETTINGS DESCRIBED IN SECTION V-C. THE PROPOSED
PRECODING, ISIZE, IN CONJUNCTION WITH H.264/AVC, H.265/HEVC

AND VP9 IS EVALUATED AGAINST STANDALONE H.264/AVC,
H.265/HEVC AND VP9 ENCODINGS AS WELL AS COMMERCIAL

SOLUTIONS INCLUDING AWS MEDIACONVERT (AVC AND HEVC) AND
AWS ELASTIC TRANSCODER (VP9).

AVC + iSIZE HEVC + iSIZE VP9 + iSIZE

∆R ∆V ∆R ∆V ∆R ∆V

AVC -26.29% 8.47 – – – –
HEVC – – -15.57% 3.03 – –
VP9 – – – – -25.81% 6.07
AWS -41.60% 12.18 – – -19.52% 6.75

C. Evaluation of Adaptive Precoding for Video-on-Demand
Encoding

Since precoding can be applied to any codec and any video
resolution, there is a virtually unlimited range of tests that can
be carried out to assess its performance on multitude scenarios
of interest. Here, we focus on test conditions appropriate for
highly-optimized video-on-demand (VOD) encoding systems
that are widely deployed today for video delivery. Our evalua-
tion focuses on average bitrate-PSNR and birate-VMAF curves
for our test FHD and UHD sequences and we present the
results for: H.264/AVC in Fig. 9 and Fig. 10; H.265/HEVC
in Fig. 11 and Fig. 12; and VP9 in Fig. 13 and Fig. 14. The
corresponding BD-rate gains of our approach, which we term
“iSize”, in conjunction with each of these encoders vs. the
corresponding encoder implementations, averaged over all test
sequences, are presented in Tables IV-VII. For the proposed
precoding method, we use footprinting with speed-up factor 5,
i.e., only every 5th frame is processed during the selection of
the best precoding mode, and the same encoding configuration
is used as for the corresponding baseline encoder.

Regarding H.264/AVC and H.265/HEVC, we use the
highly-optimized “slower” preset and VBV encoding for
libx264/libx265, with GOP=90, and the widely-used crf=23
configuration for VBV (see footnote 4 for further details).
For our approach, we employed (per codec) the precoding
modes and crf values shown in Table I. To illustrate that
our gains are achieved over a commercially competitive
VOD encoding setup, for H.264/AVC we also include results

https://www.isize.co/portfolio/demo
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TABLE VI
AVERAGE BD-RATE (∆R) AND BD-PSNR (∆P) FOR 14 UHD TEST

SEQUENCES AND SETTINGS DESCRIBED IN SECTION V-C. THE PROPOSED
PRECODING, ISIZE, IN CONJUNCTION WITH H.264/AVC, H.265/HEVC

AND VP9 IS EVALUATED AGAINST STANDALONE H.264/AVC,
H.265/HEVC AND VP9 ENCODINGS AS WELL AS COMMERCIAL

SOLUTIONS INCLUDING AWS MEDIACONVERT (AVC AND HEVC) AND
AWS ELASTIC TRANSCODER (VP9).

AVC + iSIZE HEVC + iSIZE VP9 + iSIZE

∆R ∆P ∆R ∆P ∆R ∆P

AVC -52.30% 4.17dB – – – –
HEVC – – -17.76% 0.58dB – –
VP9 – – – – -48.82% 2.03dB
AWS -47.25% 3.77dB – – -36.50% 2.02dB

TABLE VII
AVERAGE BD-RATE (∆R) AND BD-VMAF (∆V) FOR 14 UHD TEST

SEQUENCES AND SETTINGS DESCRIBED IN SECTION V-C. THE PROPOSED
PRECODING, ISIZE, IN CONJUNCTION WITH H.264/AVC, H.265/HEVC

AND VP9 IS EVALUATED AGAINST STANDALONE H.264/AVC,
H.265/HEVC AND VP9 ENCODINGS AS WELL AS COMMERCIAL

SOLUTIONS INCLUDING AWS MEDIACONVERT (AVC AND HEVC) AND
AWS ELASTIC TRANSCODER (VP9).

AVC + iSIZE HEVC + iSIZE VP9 + iSIZE

∆R ∆V ∆R ∆V ∆R ∆V

AVC -46.58% 15.52 – – – –
HEVC – – -19.68% 4.27 – –
VP9 – – – – -33.32% 5.82
AWS -68.70% 35.11 – – -67.77% 16.65

with the high-performing AWS MediaConvert encoder5 using
the MULTI PASS HQ H.264/AVC profile and its recently-
announced high-performance QVBR mode with the default
value of quality level 7. The results of Tables IV-VII show
that, against the H.264/AVC libx264 implementation, the av-
erage rate saving of our approach for both FHD and UHD
resolution under both metrics (PSNR and VMAF) is 35%;
the corresponding saving of our approach against H.264/AVC
AWS MediaConvert is 44%. For H.265/HEVC libx265, the
average saving of our approach is 15%.

Regarding VP9, we employed VBV encoding with min-
max rate (see more details at [49]), GOP=90 frames,
maxrate=1.45×minrate, speed=1 for lower-resolution encod-
ing (see Table I) and speed=2 for the full-resolution encod-
ing anchor, since we only utilize downscaled versions with
6% to 64% of the video pixels of the original resolution.
Additional bitrate reduction may be achievable by utilizing
two-pass encoding in libvpx-vp9, but we opted not to use
VBV encoding to make our comparison balanced with the
VP9 implementation provided by the AWS Elastic Transcoder,
which was used as our external benchmark for VP9. The
settings of the Elastic Transcoder jobs were based on the built-
in presets6, which we customized to match the desired output
video codec, resolution, bitrate, and GOP size, and we set

5AWS tools do not support H.265/HEVC, so no corresponding benchmark
is presented for that encoder from implementations external to FFmpeg.
However, libx265 is well recognized as a state-of-the-art implementation and
is frequently used in encoding benchmarks [48].

6https://docs.aws.amazon.com/elastictranscoder/latest/developerguide/preset-
settings.html

the framerate according to the input video framerate. Such
customization is necessary because the built-in presets do not
follow the input video parameters and they serve mainly as
boilerplates. The results of Tables IV-VII show that, against
the VP9 libvpx-vp9 implementation, the average rate saving
of our approach for both FHD and UHD resolution under both
metrics (PSNR and VMAF) is 35%; the corresponding saving
of our approach against VP9 AWS Elastic Transcoder is 36%.

D. Further Comparisons and Discussion

1) Evaluation of adaptive precoding on HD (720p) content:
To examine the performance of our approach for lower-
resolution inputs, we carried out a smaller-scale evaluation
of our proposed adaptive precoding method on four 1280 ×
720 HD video sequences, namely ducks take off, in to tree,
old town cross and park joy from the XIPH collection. The
average BD-rate gains of our approach versus the standalone
H.264/AVC encoding for bitrates in the region of 0.5-2.5Mbps
and same settings as in Section V-C were found to be 3.01%
and 0.11dB for PSNR, and 2.27% and 0.68 for VMAF. These
gains are modest in comparison to those obtained for FHD
and UHD content. This indicates that our proposal is more
suitable for high-resolution content.

2) Evaluation of adaptive precoding in conjunction with
the current VVC Test Model (VTM): Beyond comparisons
with existing standards, to show that our proposed deep video
precoding can offer gains even over upcoming video coding
standards, we evaluate our method in conjunction with the cur-
rent VTM (version 6.2rc1). As the utilized VTM is very slow
(2-10min per frame on single-core CPU execution), for this
evaluation, we limited our tests to seven FHD sequences from
the XIPH collection (aspen, controlled burn, old town cross,
crowd run, rush field cuts, touchdown, tractor) and two bi-
trates: 1.8mbps and 3mbps. The utilized settings were as
provided in the VTM software7, with the default rate control
enabled and set to the target bitrates and IntraPeriod is set
to 64 frames. The results are summarized in Table VIII. We
can see that rate reduction of 8%-9% is offered at slight
increase of PSNR and VMAF. This first evaluation illustrates
that our proposal can achieve gains even against the current
VTM model of the Joint Video Experts Team. We would also
like to note that the VVC standard is still under development
and it is expected that these results will change depending on
the features that will be included in the final version of the
standard.

3) Evaluation against other CNN-based downscaling
frameworks: To compare the core CNN designs of our precod-
ing framework against recent work on CNN-based downscal-
ing, we investigate the performance of our proposed precoding
network under fixed downscaling ratio of s = 2 followed by
bilinear upscaling on four standard test image datasets: Set5,
Set14, BSDS100 and Urban100. Our benchmarks comprise
bicubic and CNN-based [15] downscaling coupled with bicu-
bic and Lanczos upscaling filters that are more complex than
our bilinear upscaling. As summarized in Table IX, with the
exception of Li et al. [15] on BSDS100 followed by Lanczos

7https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware VTM
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Fig. 9. Performance comparison of H.264/AVC encoding with proposed adaptive precoding versus standalone H.264/AVC encoding and AWS MediaConvert
H.264/AVC encoder (QVBR mode) on FHD content: (a) PSNR and (b) VMAF.
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Fig. 10. Performance comparison of H.264/AVC encoding with proposed adaptive precoding versus standalone H.264/AVC encoding and AWS MediaConvert
H.264/AVC encoder (QVBR mode) on UHD content: (a) PSNR and (b) VMAF.
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Fig. 11. Performance comparison of H.265/HEVC encoding with proposed adaptive precoding versus standalone H.265/HEVC encoding on FHD content:
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Fig. 12. Performance comparison of H.265/HEVC encoding with proposed adaptive precoding versus standalone H.265/HEVC encoding on UHD content:
(a) PSNR and (b) VMAF.
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Fig. 13. Performance comparison of VP9 encoding with proposed adaptive precoding versus standalone VP9 encoding and AWS Elastic Transcoder VP9
encoder on FHD content: (a) PSNR and (b) VMAF
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TABLE VIII
AVERAGE PSNR, VMAF AND OBTAINED BITRATE FOR VVC ENCODING

(VTM V.6.2RC1) WITH PROPOSED PRECODING VERSUS STANDALONE
VVC ENCODING ON FHD CONTENT.

VVC+iSize VVC

PSNR 27.22dB 28.18dB 27.15dB 28.04dB
VMAF 94.06 96.57 91.48 95.72

Bitrate (Mbps) 1.636 2.748 1.796 2.988

upscaling, our approach outperforms all reference methods on
all datasets, and achieves this result with the very lightweight
bilinear upscaling at the client side. In addition, our framework
has significantly lower complexity than Li et al. [15], as for
an 1920×1080 input frame and s = 2, our precoding network
requires only 3.38G MACs and 5.5K parameters over all scales
compared to 153G MACs and 30.6K parameters required by
Li et al. [15].

4) Impact of edge preservation loss: The purpose of the
edge preservation loss in Eq. (2) is to ensure structural
preservation for the non-integer downscaling ratios that utilize
bilinear downscaling instead of a stride. We explore the impact
of the edge preservation loss by computing average PSNR and
SSIM over the DIV2K validation set for λ ∈ {0, 0.5, 2, 5} and
indicative scaling factors. The results are reported in Table X.
Without the edge preservation loss (λ = 0), the average PSNR
and SSIM for scaling factor s = 3/2 that utilizes bilinear
downscaling are 35.86dB and 0.957, respectively. Increasing
lambda to 0.5, the PSNR and SSIM increase to 36.6dB and
0.962, respectively. A similar increase is exhibited for scaling
factor s = 4/3, where PSNR increases from 37.96dB to
38.23dB. However, we notice that as the weight increases, the
metrics saturate and there can be a detrimental effect on integer
ratios, such as s = 4, where the mean absolute error (MAE)
and feed-through from higher scaling factors is sufficient in
ensuring fidelity to the input frame. Therefore, in order to
ensure a balance in performance over all scaling factors, we
set λ = 0.5 in all our results.

E. Runtime Analysis for Cloud-based VOD Encoding

Since VOD encoding configurations are typically deployed
over a cloud implementation, it is of interest to benchmark the
complexity of encoding with our deep video precoding modes
versus the corresponding plain encoder. Table XI presents
benchmarks for typical precoding scales on an AWS t2.2xlarge
instance with each precoding and encoding running in two
threads on two of the Intel Xeon 3.3GHz CPUs. The results
correspond to the average processing of each GOP (comprising
90 frames and excluding I/O). By comparing the standard
encoding time per video coding standard (scale 1) with our
precoding and encoding time for the remaining scales, we see
that, as scale increases, the encoding time reduces by up to
a factor of five, while precoding time remains quasi-constant.
The rate savings versus downscaling by these factors using
bicubic and Lanczos filters are shown in Table II and Table
III (for FHD content). These results indicate that, especially
for the case of complex encoding standards like H.265/HEVC
and VP9 that require long encoding times for high-quality

VOD streaming systems, the combination of precoding with
the appropriate ratio may allow for a more efficient realization
on a cloud platform with substantial reduction in rate (or
improvement in quality) than using linear filters. In this con-
text, precoding effectively acts as a data-driven pre-encoding
compaction mechanism in the pixel domain, which allows for
accelerated encoding, with the client linearly upscaling to the
full resolution and producing high quality video.

VI. CONCLUSION

We propose the concept of deep video precoding based on
convolutional neural networks, with the current focus being on
downscaling-based compaction under DASH/HLS adaptation.
A key aspect of our approach is that it remains backward com-
patible to existing systems and does not require any change
for the streaming, decoder, and display components of a VOD
solution. Given that our approach does not alter the encoding
process, it offers an additional optimization dimension going
beyond content-adaptive encoding and codec parameter opti-
mization. Indeed, experiments show that it brings benefits on
top of such well-known optimizations: under high-performing
two-pass and VBV-based FHD and UHD video encoding,
our precoding offers 8%-52% bitrate saving versus leading
AVC/H.264, HEVC and VP9 encoders, with lower gains of-
fered for HD (720p) content. An early-stage evaluation against
the VVC Test Model v6.2rc1 showed that our approach may
also be beneficial for advanced encoding frameworks currently
under consideration by video coding standardization bodies. In
addition, a comparison against a state-of-the-art CNN-based
downscaling framework and bicubic or Lanczos upscaling
showed that our proposal offers a better downscaler even when
the less-complex bilinear filter is used for upscaling at the
client side. The compaction features of our solution ensure
that, not only bitrate is saved, but also that video encoding
complexity reduction can be achieved, especially for HEVC
and VP9 VOD encoding. Future work will consider how to
extend the notion of precoding beyond adaptive streaming
systems by learning to adaptively preprocess video inputs such
that they are optimally recovered by current decoders under
specified perceptual quality metrics.
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