3,957 research outputs found

    Analysis of Bayesian classification-based approaches for Android malware detection

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Mobile malware has been growing in scale and complexity spurred by the unabated uptake of smartphones worldwide. Android is fast becoming the most popular mobile platform resulting in sharp increase in malware targeting the platform. Additionally, Android malware is evolving rapidly to evade detection by traditional signature-based scanning. Despite current detection measures in place, timely discovery of new malware is still a critical issue. This calls for novel approaches to mitigate the growing threat of zero-day Android malware. Hence, the authors develop and analyse proactive machine-learning approaches based on Bayesian classification aimed at uncovering unknown Android malware via static analysis. The study, which is based on a large malware sample set of majority of the existing families, demonstrates detection capabilities with high accuracy. Empirical results and comparative analysis are presented offering useful insight towards development of effective static-analytic Bayesian classification-based solutions for detecting unknown Android malware

    Anomaly detection of android malware using One-Class K-Nearest Neighbours (OC-KNN)

    Get PDF
    The advent of the Android Operating System has recorded a remarkable ground-breaking opportunities in the Technological world. However, this great breakthrough also has a very dark side – an uncontrollable rapid continuous releases of malware in the wild, targeted at the platform and all its information and human assets. The misuse-based approaches adopted by many detection systems do no longer have the rigidity and the tenacity to accommodate the rapid successive releases of malware that come in great volume in order to keep up with active defenses against unknown and novel attacks. Systems that are capable of offering anomaly protection are thus in dire need. This study developed a normality model that is based on One-Class K-Nearest Neighbour (OC-kNN) Machine Learning approach for anomaly detection of Android Malware. The OC-kNN was trained, using WEKA 3.8.2 Machine Learning Suite, through a semi-supervise procedure that contained mostly benign and a very few outliers Android application samples. The OC-kNN had 88.57% true performance accuracy for normal instances while 71.9% was recorded as true performance accuracy for outliers (unknown) instances. The false alarm rates for both normal and outlier’s instances were recorded as 28.1% and 11.5%. The study concluded that a One-Class Classification model is an effective approach to be used for the detection of unknown Android malware. Keywords: Android; Machine Learning, Malware, One-Class Classification, Anomaly Detection, Outlier Detection, Novelty Detection, Concept Learning, k-N

    Classification and Analysis of Android Malware Images Using Feature Fusion Technique

    Get PDF
    The super packed functionalities and artificial intelligence (AI)-powered applications have made the Android operating system a big player in the market. Android smartphones have become an integral part of life and users are reliant on their smart devices for making calls, sending text messages, navigation, games, and financial transactions to name a few. This evolution of the smartphone community has opened new horizons for malware developers. As malware variants are growing at a tremendous rate every year, there is an urgent need to combat against stealth malware techniques. This paper proposes a visualization and machine learning-based framework for classifying Android malware. Android malware applications from the DREBIN dataset were converted into grayscale images. In the first phase of the experiment, the proposed framework transforms Android malware into fifteen different image sections and identifies malware files by exploiting handcrafted features associated with Android malware images. The algorithms such as Gray Level Co-occurrence Matrix-based (GLCM), Global Image deScripTors (GIST), and Local Binary Pattern (LBP) are used to extract the handcrafted features from the image sections. The extracted features were further classified using machine learning algorithms like K-Nearest Neighbors, Support Vector Machines, and Random Forests. In the second phase of the experiment, handcrafted features were fused with CNN features to form the feature fusion strategy. The classification performance was evaluated against every malware image file section. The results obtained using the Feature Fusion strategy are compared with handcrafted features results. The experiment results conclude to the fact that Feature Fusion-SVM model is most suited for the identification and classification of Android malware using the certificate and Android Manifest (CR + AM) malware images. It attained an high accuracy of 93.24%

    KLASIFIKASI MALWARE ANDROID DENGAN MENGGUNAKAN METODE CATBOOST ALGORITMA

    Get PDF
    In 2008, Android was introduced as a popular open source project due to its customizability and low hardware requirements. Mid-2021 statistics from GlobalStat Counter shows that Android dominates the mobile operating system market with 72.74%. Despite its popularity, Android is becoming a target for malware attacks in the context of cyber crime. This problem prompted this research to be carried out with the aim of identifying and classifying Android malware which is continuously developing by applying machine learning logic, especially using the methodCatBoost. This method was chosen based on its effectiveness in previous research which has been proven to provide high accuracy. Performance evaluation involves comparisons betweenCatBoost and several previous researchers' methods, inclKNN (K-Nearest Neighbors), SVM (Support Vector Machine), LR (Logistic Regression), RF (Random Forest), ET (Extra Trees), XG (XGBoost), AB (Adaboost), and BG (Bagging), using common metrics such asValidation Accuracy, Detection Accuracy, and F1-Score. The research results show thatCatBoost managed to achieveValidation Accuracy amounting to 96.66%,Detection Accuracy 96,87%, andF1-Score of 96.81% puts it in a competitive position with most other methods, exceptRF (Random Forest). CatBoost's consistent superiority in this comparison shows its potential as an effective and consistent solution in Android malware detection and classification

    A Dynamic Weighted Federated Learning for Android Malware Classification

    Full text link
    Android malware attacks are increasing daily at a tremendous volume, making Android users more vulnerable to cyber-attacks. Researchers have developed many machine learning (ML)/ deep learning (DL) techniques to detect and mitigate android malware attacks. However, due to technological advancement, there is a rise in android mobile devices. Furthermore, the devices are geographically dispersed, resulting in distributed data. In such scenario, traditional ML/DL techniques are infeasible since all of these approaches require the data to be kept in a central system; this may provide a problem for user privacy because of the massive proliferation of Android mobile devices; putting the data in a central system creates an overhead. Also, the traditional ML/DL-based android malware classification techniques are not scalable. Researchers have proposed federated learning (FL) based android malware classification system to solve the privacy preservation and scalability with high classification performance. In traditional FL, Federated Averaging (FedAvg) is utilized to construct the global model at each round by merging all of the local models obtained from all of the customers that participated in the FL. However, the conventional FedAvg has a disadvantage: if one poor-performing local model is included in global model development for each round, it may result in an under-performing global model. Because FedAvg favors all local models equally when averaging. To address this issue, our main objective in this work is to design a dynamic weighted federated averaging (DW-FedAvg) strategy in which the weights for each local model are automatically updated based on their performance at the client. The DW-FedAvg is evaluated using four popular benchmark datasets, Melgenome, Drebin, Kronodroid and Tuandromd used in android malware classification research.Comment: Accepted in SoCTA 202

    Mlifdect: Android Malware Detection Based on Parallel Machine Learning and Information Fusion

    Get PDF
    In recent years, Android malware has continued to grow at an alarming rate. More recent malicious apps’ employing highly sophisticated detection avoidance techniques makes the traditional machine learning based malware detection methods far less effective. More specifically, they cannot cope with various types of Android malware and have limitation in detection by utilizing a single classification algorithm. To address this limitation, we propose a novel approach in this paper that leverages parallel machine learning and information fusion techniques for better Android malware detection, which is named Mlifdect. To implement this approach, we first extract eight types of features from static analysis on Android apps and build two kinds of feature sets after feature selection. Then, a parallel machine learning detection model is developed for speeding up the process of classification. Finally, we investigate the probability analysis based and Dempster-Shafer theory based information fusion approaches which can effectively obtain the detection results. To validate our method, other state-of-the-art detection works are selected for comparison with real-world Android apps. The experimental results demonstrate that Mlifdect is capable of achieving higher detection accuracy as well as a remarkable run-time efficiency compared to the existing malware detection solutions
    • …
    corecore