145,276 research outputs found

    Multispectral Image Processing for Plants

    Get PDF
    The development of a machine vision system to monitor plant growth and health is one of three essential steps towards establishing an intelligent system capable of accurately assessing the state of a controlled ecological life support system for long-term space travel. Besides a network of sensors, simulators are needed to predict plant features, and artificial intelligence algorithms are needed to determine the state of a plant based life support system. Multispectral machine vision and image processing can be used to sense plant features, including health and nutritional status

    Improved data association and occlusion handling for vision-based people tracking by mobile robots

    Get PDF
    This paper presents an approach for tracking multiple persons using a combination of colour and thermal vision sensors on a mobile robot. First, an adaptive colour model is incorporated into the measurement model of the tracker. Second, a new approach for detecting occlusions is introduced, using a machine learning classifier for pairwise comparison of persons (classifying which one is in front of the other). Third, explicit occlusion handling is then incorporated into the tracker

    DDD17: End-To-End DAVIS Driving Dataset

    Full text link
    Event cameras, such as dynamic vision sensors (DVS), and dynamic and active-pixel vision sensors (DAVIS) can supplement other autonomous driving sensors by providing a concurrent stream of standard active pixel sensor (APS) images and DVS temporal contrast events. The APS stream is a sequence of standard grayscale global-shutter image sensor frames. The DVS events represent brightness changes occurring at a particular moment, with a jitter of about a millisecond under most lighting conditions. They have a dynamic range of >120 dB and effective frame rates >1 kHz at data rates comparable to 30 fps (frames/second) image sensors. To overcome some of the limitations of current image acquisition technology, we investigate in this work the use of the combined DVS and APS streams in end-to-end driving applications. The dataset DDD17 accompanying this paper is the first open dataset of annotated DAVIS driving recordings. DDD17 has over 12 h of a 346x260 pixel DAVIS sensor recording highway and city driving in daytime, evening, night, dry and wet weather conditions, along with vehicle speed, GPS position, driver steering, throttle, and brake captured from the car's on-board diagnostics interface. As an example application, we performed a preliminary end-to-end learning study of using a convolutional neural network that is trained to predict the instantaneous steering angle from DVS and APS visual data.Comment: Presented at the ICML 2017 Workshop on Machine Learning for Autonomous Vehicle

    CMOS Vision Sensors: Embedding Computer Vision at Imaging Front-Ends

    Get PDF
    CMOS Image Sensors (CIS) are key for imaging technol-ogies. These chips are conceived for capturing opticalscenes focused on their surface, and for delivering elec-trical images, commonly in digital format. CISs may incor-porate intelligence; however, their smartness basicallyconcerns calibration, error correction and other similartasks. The term CVISs (CMOS VIsion Sensors) definesother class of sensor front-ends which are aimed at per-forming vision tasks right at the focal plane. They havebeen running under names such as computational imagesensors, vision sensors and silicon retinas, among others. CVIS and CISs are similar regarding physical imple-mentation. However, while inputs of both CIS and CVISare images captured by photo-sensors placed at thefocal-plane, CVISs primary outputs may not be imagesbut either image features or even decisions based on thespatial-temporal analysis of the scenes. We may hencestate that CVISs are more “intelligent” than CISs as theyfocus on information instead of on raw data. Actually,CVIS architectures capable of extracting and interpretingthe information contained in images, and prompting reac-tion commands thereof, have been explored for years inacademia, and industrial applications are recently ramp-ing up.One of the challenges of CVISs architects is incorporat-ing computer vision concepts into the design flow. Theendeavor is ambitious because imaging and computervision communities are rather disjoint groups talking dif-ferent languages. The Cellular Nonlinear Network Univer-sal Machine (CNNUM) paradigm, proposed by Profs.Chua and Roska, defined an adequate framework forsuch conciliation as it is particularly well suited for hard-ware-software co-design [1]-[4]. This paper overviewsCVISs chips that were conceived and prototyped at IMSEVision Lab over the past twenty years. Some of them fitthe CNNUM paradigm while others are tangential to it. Allthem employ per-pixel mixed-signal processing circuitryto achieve sensor-processing concurrency in the quest offast operation with reduced energy budget.Junta de Andalucía TIC 2012-2338Ministerio de Economía y Competitividad TEC 2015-66878-C3-1-R y TEC 2015-66878-C3-3-

    Data association and occlusion handling for vision-based people tracking by mobile robots

    Get PDF
    This paper presents an approach for tracking multiple persons on a mobile robot with a combination of colour and thermal vision sensors, using several new techniques. First, an adaptive colour model is incorporated into the measurement model of the tracker. Second, a new approach for detecting occlusions is introduced, using a machine learning classifier for pairwise comparison of persons (classifying which one is in front of the other). Third, explicit occlusion handling is incorporated into the tracker. The paper presents a comprehensive, quantitative evaluation of the whole system and its different components using several real world data sets

    Virtual sensors for erroneous data repair in manufacturing a machine learning pipeline

    Get PDF
    Manufacturing converts raw materials into finished products using machine tools for controlled material removal or deposition. It can be observed using sensors installed within and around machine tools. These sensors measure quantities, such as vibrations, cutting forces, temperature, currents, power consumption, and acoustic emission, to diagnose defects and enable zero-defect manufacturing as part of the Industry 4.0 vision. The continuity of high-quality sensor data streams is fundamental to predicting phenomena, such as geometric deformations, surface roughness, excessive coolant use, and imminent tool wear with adequate accuracy and appropriate timing. However, in practice, data acquired by some sensors can be of poor quality and unsuitable for prediction due to sensor faults stemming from environmental factors. In this paper, we answer if we can repair erroneous data in a faulty sensor based on data simultaneously available in redundant sensors that observe the same process. We present a machine learning pipeline to synthesize virtual sensors that can step in for faulty sensors to maintain reasonable quality and continuity in sensor data streams. We have validated the synthesized virtual sensors in four industrial case studies.publishedVersio
    corecore