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Abstract— This paper presents an approach for tracking
multiple persons using a combination of colour and thermal
vision sensors on a mobile robot. First, an adaptive colour model
is incorporated into the measurement model of the tracker.
Second, a new approach for detecting occlusions is introduced,
using a machine learning classifier for pairwise comparison of
persons (classifying which one is in front of the other). Third,
explicit occlusion handling is then incorporated into the tracker.

I. INTRODUCTION

This paper presents a vision-based people tracking system
allowing a mobile robot to detect and localise people in
its surroundings, which uses a combination of thermal and
colour information (see [2] for further details). The approach
is based on an existing tracking system for thermal im-
ages [13]. While thermal vision is good for detecting people,
it can be very difficult to maintain the correct association
between different observations and persons, especially where
they occlude one another. To further improve tracking of
multiple persons, this paper introduces three main improve-
ments to the system:

• incorporation of an adaptive colour model into the
measurement model of the tracker to improve data
association, using the integral image representation to
speed up processing,

• explicit detection of occlusions, using a machine learn-
ing algorithm AdaBoost for pairwise comparison of
persons (classifying which one is in front of the other),
and

• integration of occlusion handling into the particle filter.
Many approaches for people tracking on mobile platform

are based on skin colour and face recognition (e.g., [15], [1]).
However these methods require persons to be close to and
facing the robot so that their hands or faces are visible. The
system in [9] uses a laser sensor to track multiple persons.
It is based on a particle filter and JPDAF data association.
It uses a global representation of the environment, requires
thresholded sensor data and deals with occlusions of non-
interacting persons only. In contrast our system uses sensor
coordinates, incorporates unthresholded data and can reason
about occlusions of interacting persons. The work of [16]
presents a robotic system that tracks and re-identifies persons

when they re-appear on the scene. However the tracking
procedure is realised by a Baysian network that grows rapidly
and requires storage of all data, and is therefore limited for
use in on-line applications.

II. EXPERIMENTAL SET-UP

We used an ActivMedia PeopleBot robot (Fig. 1) equipped
with different sensors, including a colour pan-tilt-zoom cam-
era (VC-C4R, Canon) and thermal camera (Thermal Tracer
TS7302, NEC), and an Intel Pentium III processor (850
MHz). The colour and thermal camera are mounted close to
each other to allow for easy combination of the information
(see Section IV-A). In our set-up the visible range on the
grey-scale thermal image was equivalent to the temperature
range from 24 to 36 ◦C.

The robot was operated in an indoor environment (a
corridor and lab room). Persons taking part in the exper-
iments were asked to walk in front of the robot while it
performed a corridor following behaviour or while the robot
was stationary. At the same time, image data were collected
with a frequency of 15Hz. The resolution of both thermal
and colour images was 320× 240 pixels.

III. BASIC TRACKER USING THERMAL VISION

A. Tracking a Single Person

Our system uses a particle filter to provide an efficient
solution to the estimation problem despite the high dimen-
sionality of the state space. The particle filter performs both
detection and tracking simultaneously without exhaustive
search of the state space. Moreover the measurements are
incorporated directly into the tracking framework without
any preprocessing such as thresholding that could cause loss
of information.

The posterior probability p(xt|z1:t) of the system be-
ing in state xt given a history of measurements z1:t is
approximated by a set of N weighted samples such that
St = {xi

t, w
i
t}, i = 1, . . . , N. Each xi

t describes a possible
state together with a weight wi

t which is proportional to the
likelihood that the system is in this state. We use a standard
Sampling Importance Resampling (SIR) filter [5] starting
with a uniform initial distribution. The resampling step was
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Fig. 1. ActivMedia PeopleBot robot equipped with a thermal camera and
a standard camera (left). Example of an image from the colour camera
(right-top) and thermal camera (right-bottom).

implemented using the systematic resampling algorithm. The
dynamic model used in the particle filter is a movement with
constant velocity plus small random changes.

B. Tracking Multiple Persons

The above method is extended to the multi-person case
by detecting new persons incrementally as they appear while
maintaining existing tracks of persons. This system uses a set
of independent particle filters to track different persons. To
assign new filters to new persons we use a sequential detector
consisting of a set of N randomly initialised particles. These
particles are used to “catch” a new person entering the scene.
To avoid multiple detections in the same or similar regions,
the weight of detection particles is penalised by a factor
ψd < 1 in cases where particles cross already detected areas.
The weight update equation for the ith detection particle is
modified to wi

t ∝ p(zt|xt = xi
t)ψ, where ψ = ψd if particle

i overlaps with other detected regions and ψ = 1 otherwise.
Thus already existing filters naturally limit the search space
for the detector. Detection occurs when the average fitness of
the particles exceeds a certain threshold for a few consecutive
frames (3 in our experiments). Then the particles from the
detector are used to initialise a new tracker before being re-
initialised for detection of the next new person.

A solution based on independent tracking filters is com-
putationally inexpensive and appropriate for on-line applica-
tions, but suffers in cases when tracked persons are too close
to each other. To reduce these problems we explicitly model
interactions between persons by penalising the weights of
particles that intersect with other detected regions. The
weight update equation for established tracking filters is
changed to wi

t ∝ p(zt|xt = xi
t)ψ, where ψ = e(−ρgim)

and gim expresses the amount of overlap between particle
i and region m, which is multiplied by a factor ρ in the
exponent of the penalty term. This solution is similar to the
interaction model proposed by [8], where the authors propose
a Random Markov Field using a joint state space repre-
sentation. The treatment of interactions in both approaches
has the drawback that in the case of occlusions weaker
filters disappear. Motion information could help here only
in specific situations where persons are just passing by each
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Fig. 2. The elliptic measurement model for thermal images. Model
parameters are shown on the left. Division of ellipses into 7 regions is
shown on the right.

other at sufficient speeds. However this is not the case in
situations where people stop to talk, shake hands, walk in
groups, etc.

C. Elliptic Contour Model

The measurement model used by our thermal tracker is
a contour model consisting of two ellipses: one describes
the position of the body part and the other measures the
position of the head part (Fig. 2). Thus we obtain a 9-
dimensional state vector: xt = (x, y, w, h, d, vx, vy, vw, vh)
where (x, y) is the mid-point of the body ellipse with width
w and height h. The height of the head is calculated by
dividing h by a constant factor. The displacement of the
middle of the head part from the middle of the body ellipse
is described by d. We also model velocities of the body part
as (vx, vy, vw, vh). The velocity of the d component has very
noisy characteristics and is therefore not taken into account.
To calculate the importance weight wi

t of a sample i with
state xi

t we divide the ellipses into m = 7 different regions
(see Fig. 2) and for each region j the image gradient ∆i

j

between pixels in the inner and outer parts of the ellipse
is calculated. The gradient is maximal if the ellipses fit
the contour of a person in the image data. A fitness value
f i for each sample i is then calculated as the sum of all
gradients multiplied with individual weights αj for each
region: f i =

∑m
j=1 αj∆i

j . The weights αj sum to one and
are chosen such that the shoulder parts have lower weight to
minimize the measurement error that occurs due to different
arm positions. The fitness value is finally scaled to values in
[0, 1] in order to represent a likelihood:

pg(zt|xi
t) =

exp(κ · (f i − θ))
exp(κ · (f i − θ)) + exp(κ · (θ − f i))

, (1)

where θ denotes a fitness threshold and the value of κ defines
the slope of the likelihood function.

When the mean gradient value from Eq. 1 is greater than
0.5 then a person is considered to be detected. We also
check the uncertainty of the estimate [7] to avoid detections
in wrong regions when the posterior is multi-modal (e.g.
for multiple persons). This approach is similar to the work
by Isard and Blake [6] for tracking people in a greyscale
image. However, they use a spline model of the head and
shoulder contour which cannot be applied in situations where
the person is far away or visible in a side view, because there
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Fig. 3. Rectangular features: a) thermal image b) colour image with regions
corresponding to different body parts from which colour information is
extracted.

will be no recognisable head-shoulder contour. The elliptic
contour model used here is able to cope with these situations.

IV. ADAPTIVE COLOUR MODEL

A. Colour representation

Since the baseline between cameras is small compared to
the distance to persons, it is possible to align the thermal
and colour images by affine transformation. We then use
an efficient colour representation proposed in [11] based
on the first three moments (mean, variance and skewness)
of the colour distribution. This representation was shown
to be more effective than histogram methods (e.g., [12])
in the domain of image indexing. To include information
about the spatial layout of the colour we divided the region
corresponding to a person’s body into rectangular sub-areas
from which we calculate the colour statistics (see Fig. 3b).
The position and size of these regions is determined from
the information provided by the elliptic contour model.

B. Colour likelihood

The appearance model based on colour moments is created
every time a new detection occurs, i.e. a new track is
initialised in the thermal image. By using the affine transfor-
mation we are able to determine the region corresponding to
a person on the colour image (see Fig. 3). From three rectan-
gular regions corresponding to the person’s head, torso and
legs we collect colour statistics ct of the first three moments
(m1,m2,m3) for three colour channels (R,G,B). Finally
we obtain a feature vector ct of size 3×3×3 = 27. To make
the model more robust to changing light conditions we adapt
it while a person is tracked. In our implementation we store
colour statistics from the last nk frames and calculate their
mean value. The parameter nk influences the robustness and
adaptivity of the colour model. In our experiments nk = 10
corresponding to 0.7 s. We use Euclidean distance to measure
the similarity between the model c?

t and region of interest
ct. Finally, the likelihood model for colour information is

pc(zt|xt) = exp
(
−λd2

t

)
, (2)

where λ is a parameter that determines the shape of the
colour likelihood. Since λ scales the distance, higher values
of λ mean that the colour-based likelihood model is more
peaked, thus having more importance when combined with
the gradient information from the ellipse model.

C. Rapid rectangular features

The simple features based on the colour moments can
be rapidly calculated using an integral image representation
[14]. The estimators for the first three moments of the
colour distribution can be obtained by means of k statistics
calculated using sums of the rth powers of the colour data:

Sr =
x+w∑
i=x

y+h∑
j=y

Ir(i, j), (3)

where I(i, j) is a pixel value of the colour image se-
lected from the rectangular region specified by coordinates
{x, y, x+w, y+h}. Each Sr can be quickly calculated using
the integral image representation. The first three k-statistics
are obtained as

k1 = S1/n, (4)

k2 =
nS2 − S2

1

n(n− 1)
, (5)

k3 =
2S3

1 − 3nS1S2 + n2S3

n(n− 1)(n− 2)
, (6)

where n = w×h. Finally the normalised values of estimators
for mean m1, variance m2 and skewness m3 can be obtained
as m1 = k1, m2 = k2/k1 and m3 = k3/k

3
2
2 . The

normalisation is performed to balance the influence of each
moment on the final score.

D. Combining thermal and colour information

If we assume that the likelihoods for the gradient model
pg(zt|xt) (Eq. 1) and colour model pc(zt|xt) (Eq. 2) are
independent then the data fusion can be realised by taking a
product of these two likelihoods

p(zt|xt) = pg(zt|xt)pc(zt|xt). (7)

The parameters κ, θ (gradient model) and λ (colour model)
specify the shape of the gradient and colour likelihood
functions, thus specifying the importance of the respective
features. The influence of possible correlations between
colour and thermal distributions should be investigated more
thoroughly in future work.

When a person is not detected, a colour model cannot be
built and only gradient information can be used to update
the weight of the particles of a single tracking filter as wi

t =
pg(zt|xi

t)ψ. However as soon as a person is detected the
colour model can be created and the weight update equation
changes to:

wi
t = pg(zt|xi

t)pc(zt|xi
t)ψ, i = 1, . . . , N. (8)

Note that the sequential detector relies only on gradient
information from the thermal image.

V. OCCLUSION DETECTION WITH ADABOOST

To detect occlusions we propose an approach that sorts the
order of all persons in the image according to pairwise com-
parisons. The proposed occlusion detector specifies which
one of two overlapping persons is in front. The order of



the persons from front-to-back is then determined by a sort
procedure requiring MO · log(MO) comparisons where MO

specifies the number of overlapping persons.
There are several features that could indicate the order

of overlapping persons in the image, from which we have
chosen a set of three thermal and three colour features.
The first feature chosen is the strength (i.e., mean gradient
value) of a tracking filter, since a person for which the
corresponding tracker indicates a higher confidence is more
likely to be in front. This feature is, however, very noisy and
affected by many factors such as movement of the camera,
ambient temperature, etc. The top and bottom of the elliptic
model can also indicate the depth of a person since closer
persons appear taller and closer to the upper and bottom
border of the image. However the bottom part can be cut
when persons stand too close to the camera. The top of a
person’s head is a more reliable feature, though it is affected
by the different height of persons. Another set of features
is the colour similarity of the region corresponding to a
person. We have chosen three such regions including the
overlapping, non-overlapping and whole areas of a person.
Occluded persons should have lower similarity values.

We use the AdaBoost (Adaptive Boosting) classification
algorithm [4] for selecting the best combination of features
to detect occlusions. AdaBoost combines results from so-
called “weak” classifiers ht(x) into one “strong” classifier
H(x) = sign(f(x)) as f(x) =

∑T
t=1 αtht(x), where T

is the number of weak classifiers and αt is an importance
weight given to each “weak” classifier ht(x) according to
the performance during the iterative learning process (see
[14] for details). During learning focus is put on the training
examples which were most difficult to classify (this process
is called “boosting”). As a result we obtain a final classifier
that performs better than any of the weak classifiers alone.

Following [14] we use simple weak classifiers based on a
single-valued feature fj(x)

hj(x) =
{

1 : pjfj(x) < pjθj

0 : otherwise, (9)

where θj is a threshold and pj = {−1, 1} is a parity
indicator determining the direction of the inequality sign.
During the training procedure optimal values of θj and pj

are determined by minimising the number of misclassified
training examples.

In addition, we use weak classifiers based on a weighted
combination of features fj(x) =

∑G
i=1 αifi(x), where αi

specifies the weight for an input feature fi(x) (G = 2 in our
experiments). We discretise possible weight values αi from
the range {−1, 1} into Nf fractions. As a result we obtain a
sufficient number of different weak classifiers for selection
by the boosting algorithm.

VI. OCCLUSION HANDLING

The learned occlusion detector can be used to improve
tracking performance during occlusion. It is used in two
different ways: first, to alter the penalising policy between

the trackers (as described in Section III), and second, to re-
identify occluded persons when they reappear.

Our interaction model for tracking multiple persons allows
tracking of people that overlap to a certain degree. This is
achieved by modifying the interaction factor ρ to prevent
target fetching (i.e., to prevent two filters in close proxim-
ity from collapsing around the same tracked object). The
proposed pairwise occlusion detector is used to determine
which of the tracking filters is occluded. We consider two
possible situations: partial occlusion and total occlusion.
During partial occlusion, some part of a person is still
visible. However, the gradient along the contour is disturbed,
which can cause a quick disappearance of the tracker. To
avoid this we change the penalty equation to ψ = e(−ρogij)

where the penalty term ρo < ρ. Interaction with other
filters (non-overlapping with this pair) remains unchanged.
When the head contour of a person becomes occluded the
corresponding tracker is considered to be totally occluded.
This means that we can only guess the true position of this
person. We assume that the state of the occluded person is
the same as the state of the occluding person. No penalty
is considered for the occluded tracker. We keep particles of
the totally occluded tracker for a short time (we use a value
of 8 frames here) in situations when quick occlusions occur
and the velocity of particles may allow resolution of this
occlusion. However after this time has elapsed the particles
of the tracker are removed and the only information kept
is the colour model. When a new person is detected this
information is used to match the colour model to all occluded
trackers. If the colour model is most similar to the closest
occluded tracker then the detected person is considered to
be an occluded one. Otherwise the person is considered to
be a new person. To avoid situations where the occluded
tracker stays forever behind the occluding one, we also
specify a maximum duration of occlusion (in our case 10 s).
This minimises errors in the case where an occluded person
disappears from the scene in some other way (e.g., through
a door or a corridor behind an occluding person) or in cases
of missed assignments to newly detected persons.

VII. EXPERIMENTS
A. Evaluation

Our system was tested on the data collected by the robot
during several runs. In total we collected 11 tracks using
corridor following and 42 tracks with a stationary robot. In
total we obtained 53 different tracks including 12 different
persons (5607 images containing at least one person and
6769 images in total). To obtain the ground truth data we
used a flood-fill segmentation algorithm corrected afterwards
by hand using the ViPER-GT tool [3]. We considered only
a bounding box around a person. The top and bottom edges
were determined from the contours of the head and feet
while the sides were specified by the maximum width of
the torso (without arms). The cases when persons appeared
too close (< 3m) to or too far (> 10m) from the robot were
not taken into account. The size of the bounding box was
specified as 2 ·width and 3.5 ·height of the elliptic contour



detection localisation

recall NR
NT

|AT ∩AR|
|AT |

precision NR
NC

|AT ∩AR|
|AC |

accuracy 2·NR
NT +NC

2·|AT ∩AR|
|AT |+|AC |

TABLE I
DETECTION AND LOCALISATION METRICS.

model, an approximation to the proportions of the human
body. Bounding boxes from the ground truth data are referred
to as targets and those from the tracker as candidates.

We use two kinds of metrics that indicate the quality of
the tracking procedure: detection metrics (counting persons)
and localisation metrics (area matching). Each type of metric
is further divided into three statistics: recall, precision and
accuracy. Recall indicates true positives (“hits”), precision
indicates the level of false alarms, and accuracy is a combina-
tion of both recall and precision (see Table I). These metrics
allow thorough testing of the properties and performance of
the tracker as in [3] and [10].

A candidate is considered to be correctly detected if the
overlap ratio between candidate and target bounding boxes
is greater than 50%. Detection metrics take into account the
number of correctly detected candidates NR in one frame
and compare it with the number of targets NT and number
of all candidates NC . The final result is a weighted average
of all frames. Localisation metrics express relations between
areas corresponding to correctly detected candidates AR, all
candidates AC and targets AT . The final result is a weighted
average of all frames. All of the metrics are normalised to
give percentages.

B. Training of the AdaBoost classifier

We extracted the described thermal and colour features
from the collected data. We considered only cases when
two or more people were overlapping. Moreover since the
behaviour of the tracker without proper occlusion handling
is unpredictable after a total occlusion occurs, we took
only those examples that preceded the moment of the total
occlusion. During the occlusions, the colour models of the
respective persons were not updated. In this way we obtained
121 positive and 121 negative examples giving a total of 242
examples.

We created additional weak classifiers based on weighted
sums of pairs of features with 20 fractions giving, in the
case of all six thermal and colour features used, 1200 new
weak classifiers. We used 60% of randomly selected input
examples as a training set and the remaining part as a test
set. Each training procedure was repeated 10 times.

C. Results

Fig. 4 shows the tracking performance using only thermal
gradient information, with additional colour information, and
with both colour information and explicit occlusion han-
dling. Each experiment was repeated 10 times with different
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Fig. 4. Detection and localisation metrics for tracking multiple persons
without and with colour information and with occlusion handling procedure.

Fig. 5. Selected thermal images from the sequence showing the output from
the tracker before, during and after the occlusion of three simultaneously
tracked persons. The bounding boxes corresponding to occluded persons are
marked by a dotted line.

random variations in the particle filter for each trial using
N = 1000 particles per filter. The system parameters were
optimised individually using an area accuracy metric as the
performance criterion. Both detection and localisation met-
rics indicate a significant improvement when using additional
colour information (p < 0.01). This leads to more precise
estimates and decreases the number of cases where the
tracker loses track of a person. The overall accuracy (84.2%
in detection and 68.7% in localisation) however is affected
by low recall values. Adding the occlusion detector gives
an increase of 6.8% in area recall metrics and 3.1% in area
accuracy metrics. The output from the tracker can be seen
in Fig. 5.

The strong classifier learned from the combination of
thermal and colour features was able to predict correctly in
around 89% of all cases (see Table II). This gives a sig-
nificant advantage over classification results obtained when
thermal and colour features were used separately (p < 0.01).
Thermal features provided significantly better results than
colour features alone.

The most reliable features are the top of a person’s
head, colour similarity of the whole region and of the non-
overlapping area. Weak classifiers based on combinations of



Feature type Results [%]

thermal 76.39± 4.49
colour 69.07± 1.94

both 89.38± 2.48

TABLE II
CLASSIFICATION RESULTS FOR DIFFERENT FEATURE TYPES.

Platform Model

gradient colour I colour III
[ms] [ms] [ms]

robot int. image - 5.12 16.09
0.85 GHz 1000 samples 33.37 50.24 68.79

modern PC int. image - 2.09 4.90
2.00 GHz 1000 samples 13.52 17.66 25.89

TABLE III
AVERAGE PROCESSING TIME NEEDED TO CALCULATE 1000 SAMPLES

USING DIFFERENT MEASUREMENTS MODELS. LABEL “COLOUR I” AND

“COLOUR III” CORRESPOND TO A COLOUR REPRESENTATION USING THE

FIRST MOMENT AND THE FIRST THREE MOMENTS RESPECTIVELY.

these features had the highest importance. Other features also
contributed to the final classifier (e.g., the position of the
bottom of the elliptic model) even though their individual
performance was relatively poor.

Table III presents the average processing time needed for
calculation of 1000 samples when using different colour
representations. It takes about two times longer to calcu-
late one step of the tracking procedure when using all
three moments compared to the tracker based on thermal
information only (around 30Hz on a 2.00 GHz processor
when using 1000 samples). A good trade-off between time
requirements and performance of the tracker for our set-
up is a representation using just the first moment of the
colour distribution (46% more time compared to the gradient
based tracker). The overall performance of the tracker based
on this representation is about 2% lower than the variant
using the three colour moments. When tracking multiple
persons, additional processing time is required for calculation
of penalty terms for the detector and individual tracking
filters. In our case tracking one person required around 8%
extra time for the detector and in the case of four persons
around 36% extra time is needed for calculation of penalty
terms between the trackers.

VIII. CONCLUSIONS AND FUTURE WORK
From the viewpoint of a typical service robot, it can be

very difficult to keep track of which observation corresponds

to which person, due to the unpredictable appearance and
social behaviour of humans. We believe that the question
of how to handle occlusions is impossible to answer in
a general way, i.e. independent of a particular application.
However our solution demonstrates that it is plausible to
deal with occlusions to some extent and through experiments
we showed that this increases the overall performance of
the tracker. Such a solution has obvious pitfalls that should
be considered in future work such as proper handling of
misclassification errors, wrong assignments after occlusions,
uniformly dressed people, etc. A mobile robot itself could be
used to check if the occluded person is really behind another
person by taking appropriate actions. Recognition of human
behaviour could also help to solve this kind of problem.
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