2,859 research outputs found

    Mining for Structural Variations in Next-Generation Sequencing Data

    Get PDF
    Genomic structural variations (SVs) are genetic alterations that result in duplications, insertions, deletions, inversions, and translocations of segments of DNA covering 50 or more base pairs. By changing the organization of DNA, SVs can contribute to phenotypic variation or cause pathological consequences as neurobehavioral disorders, autoimmune diseases, obesity, and cancers. SVs were first examined using classic cytogenetic methods, revealing changes down to 3 Mb. Later techniques for SV detection were based on array comparative genome hybridization (aCGH) and single-nucleotide polymorphism (SNP) arrays. Next-generation sequencing (NGS) approaches enabled precise characterization of breakpoints of SVs of various types and sizes at a genome-wide scale. Dissecting SVs from NGS presents substantial challenge due to the relatively short sequence reads and the large volume of the data. Benign variants and reference errors in the genome present another dimension of problem complexity. Even though a wide range of tools is available, the usage of SV callers in routine molecular diagnostic is still limited. SV detection algorithms relay on different properties of the underlying data and vary in accuracy and sensitivity; therefore, SV detection process usually utilizes multiple variant callers. This chapter summarizes strengths and limitations of different tools in effective NGS SV calling

    Computational Functional Genomics-Based AmpliSeq™ Panel for Next-Generation Sequencing of Key Genes of Pain

    Get PDF
    The genetic background of pain is becoming increasingly well understood, which opens up possibilities for predicting the individual risk of persistent pain and the use of tailored therapies adapted to the variant pattern of the patient’s pain-relevant genes. The individual variant pattern of pain-relevant genes is accessible via next-generation sequencing, although the analysis of all “pain genes” would be expensive. Here, we report on the development of a cost-effective next generation sequencing-based pain-genotyping assay comprising the development of a customized AmpliSeq™ panel and bioinformatics approaches that condensate the genetic information of pain by identifying the most representative genes. The panel includes 29 key genes that have been shown to cover 70% of the biological functions exerted by a list of 540 so-called “pain genes” derived from transgenic mice experiments. These were supplemented by 43 additional genes that had been independently proposed as relevant for persistent pain. The functional genomics covered by the resulting 72 genes is particularly represented by mitogen-activated protein kinase of extracellular signal-regulated kinase and cytokine production and secretion. The present genotyping assay was established in 61 subjects of Caucasian ethnicity and investigates the functional role of the selected genes in the context of the known genetic architecture of pain without seeking functional associations for pain. The assay identified a total of 691 genetic variants, of which many have reports for a clinical relevance for pain or in another context. The assay is applicable for small to large-scale experimental setups at contemporary genotyping costs

    Computational Functional Genomics-Based AmpliSeq™ Panel for Next-Generation Sequencing of Key Genes of Pain

    Get PDF
    The genetic background of pain is becoming increasingly well understood, which opens up possibilities for predicting the individual risk of persistent pain and the use of tailored therapies adapted to the variant pattern of the patient’s pain-relevant genes. The individual variant pattern of pain-relevant genes is accessible via next-generation sequencing, although the analysis of all “pain genes” would be expensive. Here, we report on the development of a cost-effective next generation sequencing-based pain-genotyping assay comprising the development of a customized AmpliSeq™ panel and bioinformatics approaches that condensate the genetic information of pain by identifying the most representative genes. The panel includes 29 key genes that have been shown to cover 70% of the biological functions exerted by a list of 540 so-called “pain genes” derived from transgenic mice experiments. These were supplemented by 43 additional genes that had been independently proposed as relevant for persistent pain. The functional genomics covered by the resulting 72 genes is particularly represented by mitogen-activated protein kinase of extracellular signal-regulated kinase and cytokine production and secretion. The present genotyping assay was established in 61 subjects of Caucasian ethnicity and investigates the functional role of the selected genes in the context of the known genetic architecture of pain without seeking functional associations for pain. The assay identified a total of 691 genetic variants, of which many have reports for a clinical relevance for pain or in another context. The assay is applicable for small to large-scale experimental setups at contemporary genotyping costs

    Computational Functional Genomics-Based AmpliSeq™ Panel for Next-Generation Sequencing of Key Genes of Pain

    Get PDF
    The genetic background of pain is becoming increasingly well understood, which opens up possibilities for predicting the individual risk of persistent pain and the use of tailored therapies adapted to the variant pattern of the patient’s pain-relevant genes. The individual variant pattern of pain-relevant genes is accessible via next-generation sequencing, although the analysis of all “pain genes” would be expensive. Here, we report on the development of a cost-effective next generation sequencing-based pain-genotyping assay comprising the development of a customized AmpliSeq™ panel and bioinformatics approaches that condensate the genetic information of pain by identifying the most representative genes. The panel includes 29 key genes that have been shown to cover 70% of the biological functions exerted by a list of 540 so-called “pain genes” derived from transgenic mice experiments. These were supplemented by 43 additional genes that had been independently proposed as relevant for persistent pain. The functional genomics covered by the resulting 72 genes is particularly represented by mitogen-activated protein kinase of extracellular signal-regulated kinase and cytokine production and secretion. The present genotyping assay was established in 61 subjects of Caucasian ethnicity and investigates the functional role of the selected genes in the context of the known genetic architecture of pain without seeking functional associations for pain. The assay identified a total of 691 genetic variants, of which many have reports for a clinical relevance for pain or in another context. The assay is applicable for small to large-scale experimental setups at contemporary genotyping costs

    Computational Methods for the Analysis of Genomic Data and Biological Processes

    Get PDF
    In recent decades, new technologies have made remarkable progress in helping to understand biological systems. Rapid advances in genomic profiling techniques such as microarrays or high-performance sequencing have brought new opportunities and challenges in the fields of computational biology and bioinformatics. Such genetic sequencing techniques allow large amounts of data to be produced, whose analysis and cross-integration could provide a complete view of organisms. As a result, it is necessary to develop new techniques and algorithms that carry out an analysis of these data with reliability and efficiency. This Special Issue collected the latest advances in the field of computational methods for the analysis of gene expression data, and, in particular, the modeling of biological processes. Here we present eleven works selected to be published in this Special Issue due to their interest, quality, and originality

    LABRAD : Vol 46, Issue 4 - October 2021

    Get PDF
    Role of Barcoding in a Clinical Laboratory to Reduce Pre-Analytical Errors Congenital Dyserythropoietic Anemia: The Morphological Diagnosis Digital Imaging in Hematology: A New Beginning Metabolomics: Identification of Fatty Acid Oxidation (FAO) Disorders Next-Generation Sequencing for HLA Genotyping Urine Metabolomics to identify Organic Academia Next-Generation Sequencing (NGS) of Solid Tumor Importance of using Genomic Tool in Microbial Identification Radiology Practice in 21st Century: Role of Artificial Intelligence Case Quiz Best of the Recent Past Polaroidhttps://ecommons.aku.edu/labrad/1036/thumbnail.jp

    Integrated Machine Learning and Bioinformatics Approaches for Prediction of Cancer-Driving Gene Mutations

    Get PDF
    Cancer arises from the accumulation of somatic mutations and genetic alterations in cell division checkpoints and apoptosis, this often leads to abnormal tumor proliferation. Proper classification of cancer-linked driver mutations will considerably help our understanding of the molecular dynamics of cancer. In this study, we compared several cancer-specific predictive models for prediction of driver mutations in cancer-linked genes that were validated on canonical data sets of functionally validated mutations and applied to a raw cancer genomics data. By analyzing pathogenicity prediction and conservation scores, we have shown that evolutionary conservation scores play a pivotal role in the classification of cancer drivers and were the most informative features in the driver mutation classification. Through extensive comparative analysis with structure-functional experiments and multicenter mutational calling data from PanCancer Atlas studies, we have demonstrated the robustness of our models and addressed the validity of computational predictions. We evaluated the performance of our models using the standard diagnostic metrics such as sensitivity, specificity, area under the curve and F-measure. To address the interpretability of cancer-specific classification models and obtain novel insights about molecular signatures of driver mutations, we have complemented machine learning predictions with structure-functional analysis of cancer driver mutations in several key tumor suppressor genes and oncogenes. Through the experiments carried out in this study, we found that evolutionary-based features have the strongest signal in the machine learning classification VII of driver mutations and provide orthogonal information to the ensembled-based scores that are prominent in the ranking of feature importance

    RNA Modification in Inflammatory Bowel Diseases

    Get PDF
    Inflammatory bowel disease (IBD) is a chronic inflammatory disorder characterized by damage to the intestinal mucosa, which is caused by a combination of factors. These include genetic and epigenetic alterations, environmental influence, microorganism interactions, and immune conditions. Some populations with IBD show a cancer-prone phenotype. Recent studies have provided insight into the involvement of RNA modifications in the specific pathogenesis of IBD through regulation of RNA biology in epithelial and immune cells. Studies of several RNA modification-targeting reagents have shown preferable outcomes in patients with colitis. Here, we note a new awareness of RNA modification in the targeting of IBD and related diseases, which will contribute to early diagnosis, disease monitoring, and possible control by innovative therapeutic approaches

    Methods in and Applications of the Sequencing of Short Non-Coding RNAs

    Get PDF
    Short non-coding RNAs are important for all domains of life. With the advent of modern molecular biology their applicability to medicine has become apparent in settings ranging from diagonistic biomarkers to therapeutics and fields ranging from oncology to neurology. In addition, a critical, recent technological development is high-throughput sequencing of nucleic acids. The convergence of modern biotechnology with developments in RNA biology presents opportunities in both basic research and medical settings. Here I present two novel methods for leveraging high-throughput sequencing in the study of short non-coding RNAs, as well as a study in which they are applied to Alzheimer\u27s Disease (AD). The computational methods presented here include High-throughput Annotation of Modified Ribonucleotides (HAMR), which enables researchers to detect post-transcriptional covalent modifications to RNAs in a high-throughput manner. In addition, I describe Classification of RNAs by Analysis of Length (CoRAL), a computational method that allows researchers to characterize the pathways responsible for short non-coding RNA biogenesis. Lastly, I present an application of the study of non-coding RNAs to Alzheimer\u27s disease. When applied to the study of AD, it is apparent that several classes of non-coding RNAs, particularly tRNAs and tRNA fragments, show striking changes in the dorsolateral prefrontal cortex of affected human brains. Interestingly, the nature of these changes differs between mitochondrial and nuclear tRNAs, implicating an association between Alzheimer\u27s disease and perturbation of mitochondrial function. In addition, by combining known genetic factors of AD with genes that are differentially expressed and targets of regulatory RNAs that are differentially expressed, I construct a network of genes that are potentially relevant to the pathogenesis of the disease. By combining genetics data with novel results from the study of non-coding RNAs, we can further elucidate the molecular mechanisms that underly Alzheimer\u27s disease pathogenesis

    Genetics of Atrial Fibrillation in 2020 GWAS, Genome Sequencing, Polygenic Risk, and Beyond

    Get PDF
    Atrial fibrillation is a common heart rhythm disorder that leads to an increased risk for stroke and heart failure. Atrial fibrillation is a complex disease with both environmental and genetic risk factors that contribute to the arrhythmia. Over the last decade, rapid progress has been made in identifying the genetic basis for this common condition. In this review, we provide an overview of the primary types of genetic analyses performed for atrial fibrillation, including linkage studies, genome-wide association studies, and studies of rare coding variation. With these results in mind, we aim to highlighting the existing knowledge gaps and future directions for atrial fibrillation genetics research
    corecore