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ABSTRACT 

Integrated Machine Learning and Bioinformatics Approaches for Prediction of Cancer-Driving 

Gene Mutations 

by Oluyemi Odeyemi 

 Cancer arises from the accumulation of somatic mutations and genetic alterations in cell division 

checkpoints and apoptosis, this often leads to abnormal tumor proliferation. Proper classification 

of cancer-linked driver mutations will considerably help our understanding of the molecular 

dynamics of cancer. In this study, we compared several cancer-specific predictive models for 

prediction of driver mutations in cancer-linked genes that were validated on canonical data sets 

of functionally validated mutations and applied to a raw cancer genomics data.  

By analyzing pathogenicity prediction and conservation scores, we have shown that evolutionary 

conservation scores play a pivotal role in the classification of cancer drivers and were the most 

informative features in the driver mutation classification. Through extensive comparative 

analysis with structure-functional experiments and multicenter mutational calling data from Pan-

Cancer Atlas studies, we have demonstrated the robustness of our models and addressed the 

validity of computational predictions. We evaluated the performance of our models using the 

standard diagnostic metrics such as sensitivity, specificity, area under the curve and F-measure. 

To address the interpretability of cancer-specific classification models and obtain novel insights 

about molecular signatures of driver mutations, we have complemented machine learning 

predictions with structure-functional analysis of cancer driver mutations in several key tumor 

suppressor genes and oncogenes. Through the experiments carried out in this study, we found 

that evolutionary-based features have the strongest signal in the machine learning classification 
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of driver mutations and provide orthogonal information to the ensembled-based scores that are 

prominent in the ranking of feature importance. 
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1 General Introduction 
1.1 Genetic Variation 

 Cancer is driven by changes at the cellular and molecular levels.  Cancer development 

and proliferation are associated with the accumulation of mutations. Notably, quite a few of 

identified mutations are responsible for cellular variations leading to cancer. Most variations are 

neutral and benign (passenger) in nature while a small fraction of the mutations drive the cancer 

development process. Genetic variation describes the mutation in the genome’s DNA sequence. 

Genetic variation is responsible for the distinct traits’ humans exhibit. It is the result of subtle 

differences in the DNA. Variation occurs in germ and somatic cells. The only variation that 

arises in germ cells can be inherited from one individual to another and so affect the dynamics of 

the population, consequently leading to evolutionary changes. Mutation is the primary source of 

genetic variation, however sexual reproduction and recombination contribute significantly to 

genetic variation. A mutation is an alteration in the genome sequence. New mutations occur 

when there are errors during DNA replication that are not corrected by DNA repair enzymes. 

Mutation can be neutral, beneficial or damaging to an organism. Most somatic mutations are 

salient but can occasionally interfere with major cellular functions. Accumulation of genetic 

alteration can result in tumor development in oncogenes, tumor-suppressor genes and stability 

genes (Vogelstein and Kinzler 2004; Vogelstein et al., 2013; Feinberg et al. 2006). Early somatic 

mutation can lead to developmental disorders whereas incessant accumulation of mutation can 

cause cancer. Human cells innately have several safety protocols to protect themselves against 

the lethal effects of mutation inducing cancers. Therefore, it is the defective genes that result in 

cancer proliferation (Yeang et al., 2008; Li et al., 2016).  
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Genetic variations are generally divided into three main classes namely, single base-pair 

substitution, insertion or deletion(indel) and structural variation. Single base-pair substitution is a 

type of mutation in which a single nucleotide base is deleted or inserted from a DNA sequence 

such as in transition (interchange of purine or pyrimidine nucleic acids) and transversion 

(interchange of a purine and pyrimidine nucleic acids). Single nucleotide polymorphisms (SNPs) 

result from the substitution of a single base-pair.  (SNPs) are the most occurring type of genetic 

variation in people. A SNP represents a difference in a single DNA base, and they are found 

approximately in 1 out of every 300 bases. An example of SNPs would be a substitution of a 

thymine nucleic acid with guanine.  

           Indel variation refers to the insertion and/or deletion of nucleotides in genomic DNA. 

Indels play a significant role in the identification and detection of human diseases such as cancer. 

Indels are a common kinase activation system in cancer (Sehn, 2015; Porter et al., 2015; Sanders 

and Mason 2016). Indels are among the most common types of structural variants. Cumulatively, 

there are between 1.5 and 2.7 million indel polymorphisms in the human population, with ~ 0.4 

million short indels in each individual (McMahon et al., 2017). When an indel occurs within the 

coding region of the DNA, it is referred to as ‘in-frame” and if the number of DNA lost or gained 

is divisible by 3, it is referred to as frameshift because the triplet reading code is altered for all 

subsequent nucleotides. Frameshift indels often lead to premature stop codons and most times 

have more functional impact than in-frame indels (Sanders and Mason, 2016; Copley, 2010).  

Yang et al., 2010 found a strong correlation between indels and base substitutions in cancer-

related genes and showed that they tend to concentrate at the same locus in the coding sequences 

with the same samples. Also, they observed that a high proportion of indels are found in somatic 

variation when compared with meiotic mutations. Yang et al. 2010 also concluded that indels can 
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often be the driver-mutation in cancer proliferation that they attributed to the major influence of 

indels on gene function.  

           Structural variation is the large-scale differences in the genomic DNA. They are the 

region of DNA with base size larger than 1 kb. This genetic variation includes copy number 

variants (CNVs) and chromosomal rearrangement events such as duplications, inversions, 

translocation, deletions, and insertions. Identification of structural variation is crucial to genome 

interpretation but has been historically challenging due to limitations inherent to available 

genome technologies. Structural variations are mainly responsible for the evolutionary diversity 

of human genomes at individual and population levels (Dennis and Eichler, 2016; Kosugi et al., 

2019). Pang et al., 2010 and Alkan et al., 2011 observed that the genomic difference between 

individuals caused by structural variations has been estimated to be more than 3 times higher 

than those by SNVs. Therefore, structural variations may have higher impacts on gene functions 

than SNVs and short indels. Consequently, structural variations are affiliated  

with human diseases such as cancer (Stankiewicz and Lupski, 2010).  

1.2 Cancer-Linked Driver Mutation 

 Genomic instability is central to cancer development (McFarland et al., 2017; Burrell et 

al., 2013). Genomic instability is responsible for driver and passenger mutations. Driver 

mutations are responsible for driving carcinogenic processes. Whereas, passenger mutations have 

no proliferative impact on cellular systems. Studies have shown that from sequenced cancers 

passenger mutation accounts for over 90% of all genomic variation. The role of passenger 

mutations is not clearly understood, with some studies arguing that passengers are misclassified 

‘mini-drivers’ or effectively neutral and potentially harmful to cancer (Castro-Giner et al.,2015 
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and McFarland et al., 2013). McFarland et al., 2017 observed that accumulated passenger 

mutations can be moderately harmful to cancer cells. They further observed that although 

passenger mutations exhibit individually weak effects on cancer progression, their collective 

impact is in line with a skewed high number of driver mutations, leading to strife between 

passengers and drivers. Consequently, passenger’s damaging effects are most evident in higher 

mutation rates (McFarland et al., 2017). 

 The identification of driver mutations in cancer remains a challenging task. There are 

several computational strategies aimed at detecting driver genes and ranking mutations for their 

carcinogenicity prospect (Torkamani et al., 2009). Consequently, several driver genes are not 

tagged as disease-related (Brown et al., 2019).  

Presently, the reoccurrence of a mutation in patients remains one of the top reliable markers of 

mutation driver status. Nonetheless, some mutations are more likely to occur than others due to 

differences in background mutations rates arising from different types of DNA replication and 

repair systems (Brown et al., 2019).  From the study of Brown et al., 2019, they showed that 

mutations not yet observed in a tumor had relatively low mutability, thus indicating that 

background mutability might limit the occurrence of mutation. Also, they concluded that 

mutability of driver mutations is often lower than that of passenger mutation and consequently 

adjusting mutation recurrence frequency by mutability significantly improved prediction of 

driver mutation.  

1.3 Functional Prediction and Conservation Scores 

 Many algorithms have been designed to predict the molecular impact of amino acid 

substitutions on protein function and measure the conservation of nucleotide positions. These 
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algorithms map functional predictions and annotations for human splice site variants and non-

synonymous single-nucleotide variants thereby providing key supporting evidence to clinicians 

when interpreting variants per the American College Medical Genetics (ACMG) guidelines. The 

most common functional prediction algorithms are MetaSVM, MetaLR, CADD, PolyPhen2, 

VEST3, PROVEAN, MutationTaster, MutationAssessor, FATHMM, and SIFT while the most 

popular conservation score metrics are PhyloP, LRT and GERP2. 

1.4 Machine Learning  

 Machine learning (ML) is a branch of artificial intelligence based on the concept that 

systems can learn from data through pattern recognition. In recent years, machine learning has 

been used to develop predictive models for a more robust understanding of biological systems. A 

typical machine learning task consists of the following: 1) Exploratory data analysis, 2) Data 

preprocessing, 3) Model training, 4) Feature optimization and model parameterization and 5) 

Final predictions (Kandoi, 2019). Exploratory data analysis (EDA) and data preprocessing are 

pivotal to any ML task. These steps involve data cleaning steps- handling missing values, 

removal of redundant features, feature extraction, identification of predictors and target 

variables. The accuracy of a machine learning model is dependent on its predictors’ capability of 

distinguishing one class from another. 

 ML is broadly classified into supervised (classification and regression) and unsupervised 

learning. Classification tasks have a categorical target variable, for example, gram-positive vs 

gram-negative microorganisms while regression has continuous target variables such as a 

colony-forming unit of Staphylococcus aureus. Unsupervised learning involves tasks without 

pre-defined target variables such as dimension reduction and clustering. 
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 Some popular algorithms used for classification, regression, and unsupervised learning tasks 

include ensemble tree-based algorithms, support vector machines, generalized linear regression, 

general linear regression, k-means and self-organizing maps (Kandoi, 2019). Machine learning 

plays a cardinal role in computational biology and bioinformatics. Drug target identification, 

protein structure prediction, microbial morphology, gene function predictions are some of the 

common applications of ML (Pierre and Soren, 2003; Yang 2010; Mitra 2019). 

In this study we used machine learning models to: (i) identify and characterize cancer driving 

mutations (SNVs) using functional, evolutionary-conservation and ensemble-score predictors, 

(ii) reclassify genomic variants of unknown significance associated with cancer development  

and (iii) classify survival status of unresectable cancers based on clinical and genomic features 

1.5 Dissertation Organization  

This dissertation is divided into six chapters. A summary of each chapter is given below. 

Chapter 1 provides a background introduction to this dissertation. 

Chapter 2 includes a published article motivating the need to study structure-functional analysis 

of cancer-driving mutation in oncogenes and tumor suppressor genes.  By examining sequence, 

structure and ensembled-based features we were able to show that evolutionary conservation 

scores play a critical role in the classification of cancer drivers thereby providing the strongest 

signal in machine learning prediction.  The article has been published under the title, “Machine 

Learning Classification and Structure-Functional Analysis of Cancer Mutations Reveal Unique 

Dynamic and Network Signatures of Driver Sites in Oncogenes and Tumor Suppressor Genes ” 

by Agajanian S, Odeyemi O, Bischoff N, Ratra S, Verkhivker GM in the Journal of Chemical 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Agajanian%20S%5BAuthor%5D&cauthor=true&cauthor_uid=30253099
https://www.ncbi.nlm.nih.gov/pubmed/?term=Odeyemi%20O%5BAuthor%5D&cauthor=true&cauthor_uid=30253099
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bischoff%20N%5BAuthor%5D&cauthor=true&cauthor_uid=30253099
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ratra%20S%5BAuthor%5D&cauthor=true&cauthor_uid=30253099
https://www.ncbi.nlm.nih.gov/pubmed/?term=Verkhivker%20GM%5BAuthor%5D&cauthor=true&cauthor_uid=30253099
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Information and modeling 2018 Oct 22;58(10):2131-2150. doi: 10.1021/acs.jcim.8b00414. Epub 

2018 Oct 3. 

Chapter 3 includes parts of an article “Integration of Random Forest Classifiers and Deep 

Convolutional Neural Networks for Classification and Biomolecular Modeling of Cancer Driver 

Mutations” by Steve Agajanian, Odeyemi Oluyemi, and Gennady Verkhivker published in 

Frontiers in Molecular Biosciences 2019; 6: 44. By analyzing raw nucleotide sequences for 

cancer driver mutation classification, we integrated various ensemble-based approaches with 

deep convolutional neural networks to predict cancer driver mutation in genomic datasets. 

 

Chapter 4 includes a manuscript currently under preparation or submission to a peer-reviewed 

paper. In the paper titled “Machine Learning-Based Overall Survival Status Classification and 

Cox PH Model Analysis of Selected Unresectable Cancers”, by examining genomic features 

such as iAMP21, TCF-HLF, ETV6-RUNX1, MLL Rearranged molecular subtypes, gene 

expression type, fraction of genome altered and clinical features such as age at diagnosis, cell of 

tumor origin (T-cell & B-cell), we build an ensemble-based predictive model to classify overall 

survival status of unresectable cancers namely acute lymphoid leukemia, colorectal 

adenocarcinoma, glioblastoma, and pediatric neuroblastoma. Also, we used the same features for 

the Cox PH survival analysis model. 

Chapter 5 includes a manuscript currently under preparation for submission to a peer-reviewed 

journal. We built a machine learning model to reclassify variants of unknown significance (VUS) 

based on established clinical values. The manuscript is titled, “Machine Learning 

Reclassification of Variants of Uncertain Significance”. 

Chapter 6 includes the general conclusions of this dissertation and the contribution of this study 

to cancer therapy research  
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2.1 Abstract 

Background: Cancer arises from the accumulation of somatic mutations and genetic alterations 

in cell division checkpoints and apoptosis, this often leads to abnormal tumor proliferation. 

Proper classification of cancer-linked driver mutations will considerably help our understanding 

of the molecular dynamics of cancer. 

Methods: In this study, we compared two cancer-specific predictive models- logistic regression 

and random forest for prediction of driver mutations in cancer-linked genes that were validated 

on canonical data sets of functionally validated mutations and applied to a raw cancer genomics 

data.  

Results: By analyzing pathogenicity prediction and conservation scores, we have shown that 

evolutionary conservation scores play a pivotal role in the classification of cancer drivers and 

were the most informative features in the driver mutation classification. Through extensive 
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comparative analysis with structure-functional experiments and multicenter mutational calling 

data from Pan-Cancer Atlas studies, we have demonstrated the robustness of our models and 

addressed the validity of computational predictions. We evaluated the performance of our 

models using the standard diagnostic metrics such as sensitivity, specificity, area under the curve 

and F-measure. To address the interpretability of cancer-specific classification models and obtain 

novel insights about molecular signatures of driver mutations, we have complemented machine 

learning predictions with structure-functional analysis of cancer driver mutations in several key 

tumor suppressor genes and oncogenes. 

Conclusion: Through the experiments carried out in this study, we found that evolutionary-based 

features have the strongest signal in the machine learning classification of driver mutations and 

provide orthogonal information to the ensembled-based scores that are prominent in the ranking 

of feature importance. 

2.2 Introduction 

 Cancer arises from a gradual buildup of somatic mutations and genetic alterations that 

undermine cell division checkpoints and apoptosis, this often leads to abnormal tumor 

proliferation (Iranzo et al.,2018; Reddy et al., 2017; Li and Thirumala, 2016). The primary 

objective of cancer research is the discovery and characterization of functional effects of variants 

that contribute to tumor development. Several DNA sequencing programs have prompted interest 

in cancer studies, consequently yielding vital information needed for understanding genomic 

basis for tumor development. Somatic variations have been extensively characterized through 

deep-sequencing analyses of genome-wide association studies (GWAS) and the coding exomes 

of various cancer types, showing that there are ~140 genes whose intragenic mutations contribute 
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to cancer, with a relatively small fraction of recurrent somatic variants providing a proliferative 

edge to cancer cells and often being detected based on mutational frequency in omics studies. 

 A large percentage of the somatic mutations are passengers that occur randomly as a result of 

mutagenesis, without a known functional impact and biological effect. By analyzing the 

variations driving cancer development in more than 7000 tumors, molecular evolution-informed 

studies have shown that an insignificant fraction of mutated genes is required to transform a 

single normal cell into a cancer cell across diverse cancer types. Novel methods have also 

focused on the discovery of presumed drivers in the genome’s non-coding regions. Albeit major 

driver mutations can substantially promote tumor proliferation, some passengers can be 

singularly weak and yet concertedly lethal, indicating that disease progression is often difficult to 

justify based on a classical binary passenger-driver model. Cancer-linked variations that are 

inconsequential to tumor proliferation and are present at low frequency in cancer cohorts can 

form a set of “mini-drivers”, showing that mutational motifs in cancer genomes are highly 

heterogeneous and can span a continuum of phenotypic impacts. Recent NGS breakthroughs 

have led to the inauguration of interdisciplinary cancer genomic projects and key data portals, 

such as The Catalogue of Somatic Mutations in Cancer (COSMIC) database, The Cancer 

Genome Atlas (TCGA) (Weinstein et al., 2013) and the International Cancer Genome 

Consortium (ICGC) cancer genome projects(Hudson et al., 2010; Zhang et al., 2011). The 

COSMIC database includes data from full exome sequencing of 1020 cancer cell lines. TCGA 

data include information about 40 cancer projects from >20 000 genes, ~3.1 million mutations 

(Jensen et al., 2017) and 33 cancer types. The ICGC data portal includes 86 cancer projects of 22 

cancer primary sites with 81 782 588 annotated simple somatic mutations. (Klonowska et al., 

2016; Hinkson et al.,2017). The cBio Cancer Genomics Portal provides access to cancer 
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genomics data sets from >5000 tumor samples, 215 cancer studies, and 981 genes (Cerami et al., 

2012; Gao et al., 2013). Oncogenomics advancement has provided large complex data needed for 

data-centric analyses of   genetic variations in various cancer types (Nakagawa and Fujita 2018). 

 In recent times, many bioinformatics tools that compute the structural impact of a given 

SNV have been developed for predictions of presumed cancer-linked drivers and functional 

annotation of somatic mutations (Cheng et al., 2016; Ding et al., 2014; Raphael et al., 2014). 

Computational features for analyzing mutations in the protein-coding regions(Sim et al.,2012; 

Adzhubei et al., 2010; Chun et al., 2009;  Reva et al., 2011; Schwarz et al., 2010; Gonzalez-

Perez and Lopez-Bigas, 2011; Choi et al., 2012; Shihab et al., 2013) and several sequence-based 

scores(Davydov et al., 2010; Garber et al., 2009)were efficiently used for prediction of cancer 

driver mutations in the noncoding regions. Combined annotation-dependent depletion (CADD) 

and genome-wide annotation of variants (GWAVA) (Kircher et al., 2014; Ritchie et al., 2014) 

methods were developed for characterization and classification of the noncoding variants by 

combining various genomic annotations into integrated score measures with the aid of support 

vector machine classifiers. Cancer driver annotation (CanDrA) (Mao et al.,2013) and cancer-

specific high-throughput annotation of somatic mutations (CHASM) (Carter et al.,2009) are 

cancer-specific ML approaches that utilized evolutionary, functional and genetic features of 

somatic mutations computed by various prediction algorithms. Cancer-related analysis of 

variants toolkit (CRAVAT), which is a web-based CHASM application, is now often used for 

prioritization of genes and variants important for specific cancer tissue types (Douville et al., 

2013).  

           In the effort to consolidate a comprehensive functional annotation for SNVs discovered in 

exome sequencing studies, a database of human nonsynonymous SNVs (dbNSFP) was 
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developed as a one-stop resource for analysis of disease-causing mutations (Liu et al., 2011; 

2013; 2016). Based on detailed comparisons and machine learning-based integration of 18 

scoring methods for prediction of nonsynonymous SNVs, the two ensemble scores RadialSVM 

and LR were designed, showing superior performance over their 10 component scores (Dong et 

al., 2015). The latest database dbWGFP of functional predictions for SNVs collected 

approximately 8.6 billion possible human whole-genome SNVs, with capabilities to impute a 

total of 48 functional prediction scores for each SNV, including 32 functional prediction scores 

by 13 approaches, 15 conservation features from 4 different tools including ensemble-based 

predictors MSRV, RadialSVM, and LR scores(Wu et al., 2016). 

 ML studies indicated that the incorporation of both sequence and structure-based scores 

can provide important information for classification of cancer genes and driver mutations, but the 

underlying molecular reasons for a weak consensus between functional features remains poorly 

understood and hidden in the feature selection process. Modern deep learning methods can 

leverage large data sets for finding hidden patterns and making robust predictions in cancer 

genomics, and drug discovery applications (Angermueller et al., 2016; Zhang et al., 2017; Min et 

al., 2016; Jing et al., 2018; Zhou and Troyanskava,2015; Yuan et al., 2016). However, it is often 

overlooked that the performance and interpretability of machine learning models are equally 

important for predictions and understanding of cancer mutation signatures. 

           In this study, we compared two ML models, logistic regression (logit)  and random forest 

(RF) classifiers by considering various cancer-specific golden sets of functionally known cancer 

mutations(Carter et al., 2009; Martelotto et al., 2014) and using a set of diverse functional 

prediction and conservation scores that included computations of 48 functional scores using 

dbWGFP server (Wu et al., 2016). By evaluating a diverse spectrum of functional features, we 
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show that conservation-derived and ensemble-based scores were the most informative predictors 

in the ML classification of cancer-linked driver mutation. We used logit and RF models to 

predict and analyze driver mutations in Cbioportal cancer genomics data set (Cerami et al., 2012; 

Gao et al., 2013) by considering 145 601 mutations covering various cancer subtypes and over 

300 genes.  

2.3 Methods  

2.3.1 Data Source and Dataset 
 

 We primarily sourced our datasets from Cbioportal, TCGA, and CanDra (from the 

COSMIC database). We used various well studied benchmarking data sets of functionally 

validated and manually curated variations for our training and validation sets. The initial set 

included a total of 3591 SNVs from oncogenes such as HRAS, BRAF, KIT, PIK3CA, KRAS, 

EGFR, ERRB2, DICER1, ESR1, IDH1, IDH2, MYOD, SF3B1, and tumor suppressor genes 

such as RUNX1, BRCA1, BRCA2 and TP53 (Martelotto et al., 2014). Due to our goal of 

classifying mutation as either driver or passenger, we classified neutral and uncertain SNVs as 

passenger whereas the driver mutations were left intact. The ML model was trained and 

validated only on missense mutations. The first benchmarking had 3706 mutations, with only 

3591 SNVs that included 140 neutral, 849 non-neutral, and 2602 of uncertain function which 

was assigned as passengers. The second employed data set was taken from the original CanDrA 

study (Mao et al.,2013) with 1550 SNVs. The CanDrA data set was initially derived by 

combining ovarian carcinoma (OVC) and glioblastoma multiforme (GBM) mutational data 

extracted from TCGA (Weinstein et al., 2013) and COSMIC databases (Forbes et al.,2015). In 

the GBM sets, 134 SNVs were drivers and 585 SNVs were passenger mutations, while in the 

OVC datasets, 122 SNVs were driver mutations and 709 were passengers (Figure 2-2). The 
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CanDra data set (Mao et al., 2013) was integrated with the benchmarking data set (Martelotto et 

al., 2014) to generate one master training set used to build the ML models. The tree-based 

random forest and logistic regression classification models were used to predict cancer-linked 

driver variants from the cBioPortal cancer genomics data set (Cerami et al., 2012; Gao et al., 

2013) by considering data from over 200 cancer studies covering 20 primary cancer sites (ovary, 

thyroid, CNS/brain, prostate, kidney, bowel, lymphoid, stomach, bladder, head/neck, breast, 

myeloid, uterus, lung, PNS, skin, liver, pancreas, soft tissue, cervix).

 

Figure 2-1 Bar plot showing the distribution of cancer-linked driver mutation in glioblastoma 

multiforme and ovarian carcinoma 
 

 

Figure 2-2. Bar plot showing the distribution of studied cancer genes and mutations from 

Cbioportal database 
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Table 2-1 Some of the studied genes from Cbioportal database categorized by cancer subtypes 

 
 

 

Protein function 

 

Genes 

Cell death regulation 

signaling 

NFKB1, NFKB2, CHUK, DIRAS3, FAS, HLA-G, BAD, BCL2, 

BCL2L1, APAF1, CASP9, CASP8, CASP10, CASP3, CASP7, 

CASP6, GSK3B, ARL11, WWOX 

Telomere Maintenance TERC, TERT 

RTK  

Signaling 

EGFR, ERBB2, ERBB3, ERBB4, PDGFA, PDGFRB, KIT, FGF1, 

IGF1, IGF1R, VEGFA, VEGFB, KDR 

P13K-AKT-mTOR 

signaling 

PIK3CA, PIK3R1, PIK3R2, PTEN, PDPK1, AKT1, AKT2, 

FOXO1, FOXO3, MTOR, RICTOR, TSC1, TSC2, RHEB, 

AKT1s1, RPTOR 

Ras-Raf-MEK-Erk/JNK 

signaling 

KRAS, HRAS, BRAF, RA1, MAP3K1, MAP3K2, MAP3K3, 

MAP3K4, MAP3K5, MAP2K1, MAP2K2, MAP2K3, MAP2K4, 

MAPK1, MAPK3, DAB2, RAB25 

Regulation of ribosomal 

protein synthesis 

RPS6KA1, RPS6KA2, RPS6KB1, RPS6KB2, EIF5A2, EIF4E, 

EIF4EBP1, RPS6, HIFIA 

Angiogenesis 

 

VEGFA, VEGFB, KDR, CXCL8, CXCR1, CXCR2 

Folate transport  

 

SLC19A1, FOLR1, FOLR2, FOLR3, IZUMO1R 

Invasion and metastasis 

genes 

MMP1, MMP2, MMP3, MMP7, MMP9, MMP10, MMP11, 

MMP12, MMP13, MMP14, MMP15, MMP16, MMP19, MMP28, 

ITGB3, ITGB3, PTK2, CDH1, SPARC, WFDC2 
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A total of 80,081 unique missense mutations from 378 cancer genes was considered (after 

excluding 65 520 duplicate mutations in patients with multiple samples from a total of 145 601 

mutations Figure 2-2). glioblastoma/TP53 pathway genes; glioblastoma/RTK/Ras/PI3K/AKT 

signaling genes; glioblastoma/RB pathway genes; Genes implicated in multiple cancer types and 

associated with the following major functions: cell cycle control genes; DNA damage response 

genes; growth/proliferation signaling genes; RTK signaling genes; p53 signaling genes; notch 

signaling genes survival/cell death regulation signaling genes; telomere maintenance genes; Ras-

Raf-MEK-Erk/JNK signaling genes; PI3K-AKT-mTOR signaling genes; regulation of ribosomal 

protein synthesis and cell growth genes; angiogenesis genes; folate transport genes; invasion and 

metastasis genes. A total of 56,634 unique missense mutations were finally analyzed and 

classified by our RF and logit models (Table 2-1). 

2.3.2 Machine Learning: Random Forest and Logistic Regression Classifiers 
 

 Several factors were considered in the choice of our classifiers for our models such as 

easy interpretation, speed (run time) and statistical importance. Afterward, we used and 

compared the performance of logistic regression (logit) and random forest (RF). Logistic 

regression (logit) is an ML classifier that is used to predict the probability of a categorical binary 

outcome. In logit, the dependent variable is a dichotomous(binary) in nature that contains data 

coded as 0 or 1. It answer questions such as how does the probability of obesity (yes/ no) change 

for every additional can of soda drank per day? Logit models the log odds of an event. Logistic 

regression models are based on specific statistical assumptions such as the target variable takes 

the form of a binomial distribution, the absence of outliers in the data and no multicollinearity 

among the predictors. 

 Mathematically, the logit classifier predicts P(Y=1) as a function of X. 
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𝐿𝑜𝑔 ( 𝑌 1 − 𝑌) = 𝑏ₒ + 𝑏₁𝑋₁ + 𝑏₂𝑋₂ + ⋯ + 𝑏ₙ𝑋ₙ                     (2.1) 

Where ( 𝑌 1−𝑌) is the log likelihood of the target variable, 𝑏ₒ is the y-intercept, 𝑏ₙ𝑋ₙ    are the slope 

coefficient and the predictors.  

 RF is a tree-based ensemble classifier where each tree is exposed to a random subset of 

features and a random subset of samples drawn with replacement. In this model, the number of 

trees, the number of features seen by each tree, and the maximum depth of each tree can be tuned 

to fit the data. A data point to be classified is passed to every tree in the forest, and the predicted 

class is the winner of a collective vote by all trees. Because of the bootstrapped nature of all the 

trees in the forest, random forest classifiers are typically robust to noise and can accurately fit 

nonlinear relationships present in data. In the framework of this approach, we used Bayesian 

optimization to optimize the hyper-parameters of the model with 100 iterations in our 

optimization run. By changing values for the hyper-parameters, we monitored how this affects 

the F-score which is the harmonic mean of the precision and recall, to obtain the final set of 

hyper-parameters. We provided accuracy to the optimizer as the average of 10-fold cross-

validation run across three different random seeds. The final set of hyper-parameters chosen by 

Bayesian optimization were maximum depth = 200, maximum features = 32, number of 

estimators = 70. The number of estimators determines the number of trees in the forest, 

maximum depth determines the maximum depth that each tree can grow to, and maximum 

features determine the number of features randomly selected at each node when choosing the 

best tree split. The depth of the random forest model and measurements of information Gini 

impurity implemented in scikit-learn (Pedregosa et al., 2011) were employed and refined to 

achieve the best results and avoid overfitting problem (Biau, 2012)  
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𝐺𝑖𝑛𝑖 𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 = ∑𝑐
𝑖=1 𝑓𝑖(1 −   𝑓𝑖)                                              (2.2) 

Where 𝑓𝑖 is the frequency label of i at a node and c is the number of unique labels. The model 

training and tuning was done using scikit-learn free software machine learning library for the 

Python programming language (pedregosa et al., 2011). In addition, we also explored logistic 

regression classification model that allows for fast training and prediction phases of the model 

without tuning requirement and need for feature rescaling (Palazon-Bru et al., 2017).   

For the model diagnostic, accuracy, recall, precision, and F1 metrics were used to evaluate the 

performance of each classifier. These parameters are defined as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁 𝑎𝑙𝑙 ;   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 𝑇𝑃 + 𝐹𝑃                                                           (2.3) 

     𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 𝑇𝑃 + 𝐹𝑁 ;   𝐹1 = 2 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙                                                       (2.4)   
The true positive (TP) and true negative (TN) are defined as the number of mutations that are 

classified correctly as driver and passenger mutations, respectively. Likewise, false positive (FP) 

and false negative (FN) are defined as the number of mutations that are misclassified into the 

other mutational classes. An F score is a measure of precision and recall and is often used in 

binary classification problems. Precision is defined as the number of positive samples the model 

predicts correctly (true positives) divided by the true positives plus the false positives. Recall is 

defined as true positives divided by true positives plus false negatives. The positive predictive 

value (PPV) and negative predictive value (NPV) were assessed for various components of the 

model. PPV is defined as the proportion of mutations predicted to be driver mutations that were 

experimentally validated as drivers: 
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𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 (𝑃𝑃𝑉) = 𝑇𝑃 𝑇𝑃 + 𝐹𝑃                            (2.5)  
NPV is the proportion of mutations predicted to be passengers that were experimentally 

validated as neutral: 

 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 = 𝑇𝑁𝑇𝑁 + 𝐹𝑁                                     (2.6) 

 The model performance was evaluated using receiver operating characteristic area under 

the curve. The receiver operating curve (ROC) is a graph where sensitivity is plotted as a 

function of 1 – specificity. The sensitivity or true positive rate (TPR) is defined as the percentage 

of non-neutral mutations that are correctly identified as driver mutations: 

       𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑇𝑃𝑅) =  𝑇𝑃𝑇𝑃 + 𝐹𝑁                                                         (2.7) 

The specificity or true negative rate (TNR) is defined as the percentage of mutations that are 

correctly identified as passengers: 

  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑇𝑁𝑅) =  𝑇𝑁𝑇𝑁 + 𝐹𝑃                                                            (2.8) 

The area under the ROC is denoted AUC. A reliable and valid AUC estimate can be interpreted 

as the probability that the classifier will assign a higher score to a randomly chosen positive 

example than to a randomly chosen negative example. The AUC effectively measures 

discrimination of true positive rate versus false positive rate, providing means to evaluate the 

ability of the model to correctly classify drivers and passenger mutations. 

2.3.3 Mutational Predictor Scores: Feature Selection and Feature Importance Analysis 
 

 The first set of selected features were acquired from dbWGFP web server of functional 

predictions for human whole-genome single nucleotide variants that provided 32 functional 

prediction scores and 15 evolutionary features (Wu et al., 2016).  
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Function prediction scores are scores that predict the probability of a SNV to cause a damaging 

change in protein function whereas evolutionary scores are scores providing different 

conservation metrics of a given nucleotide site across multiple species. Some of the score 

features such as RadialSVM, SIFT, PolyPhen, LRT, MSRV, Mutation Assessor , 

MutationTaster, FATHMM,  LR ( Dong et al., 2015 ; Sim et al., 2012 ; Adzhubei et al., 2010 ; 

Chun and Fay, 2009 ;Wu et al., 2016 ; Reva et al., 2011 ; Schwarz et al., 2010 ; Shihab et al., 

2013) can be applied only to SNVs in the protein coding regions, whereas other scores  such as 

Gerp++, SiPhy, PhyloP, Grantham, CADD and GWAVA (Davydov et al., 2010 ; Garber et al., 

2009 ; Grantham, 1974 ; Kircher et al., 2014 ; Ritchie et al. , 2014) can evaluate SNVs spreading 

over the whole genome. The ensemble-based scores RadialSVM and LR are integrated features 

that used support vector machine (SVM) and LR machine learning approaches to combine 

information from 10 individual component scores (SIFT, PolyPhen-2 HDIV, PolyPhen-2 HVAR, 

Gerp++, MutationTaster, Mutation Assessor, FATHMM, LRT, SiPhy, PhyloP), as well as the 

maximum frequency observed in the 1000 genomes populations (Dong et al., 2015).  

 In the final dataset, we imputed 48 feature scores for each SNV (Wu et al., 2016) and the 

resulting data set was divided into training and test sets: 80-20% ratio respectively. Our resulting 

dataset was preprocessed to handle missing values, skewness, distribution disparity etc.  

The training data was subjected to stepAIC feature selection, where features are dropped in a 

step by step manner based on each feature statistical significance hierarchy, and the model 

trained on the resulting features. After the feature selection resulting in a final data set of 32 

features. 
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2.4 Results and Discussion 

2.4.1 ML Classification of Cancer Driver Mutations on Canonical Data Sets: Ensemble-
Based and Conservation Features Consistently Outperform Structural Scores 

 

 Logit and RF models were trained by examining a combination of two canonical cancer-

specific sets of functionally validated mutations (Carter et al., 2009; Martelotto et al., 2014) and 

using a group of various predictors that included functional scores obtained from dbWGFP 

server (Table 2-2). In this analysis, we compared the performance of both classifiers and focused 

on identifying statistical significant predictors that drive cancer predictions in both models 

(Figure 2-3). In accordance with prior studies, the ensemble-based scores LR and RadialSVM 

dominated the feature importance distribution in both models, significantly outweighing the 

importance of other predictors (Figure 2-3A, B). In the RF model, the LR and RadialSVM scores 

were the top ranked predictors with the information value scores of 0.27 and 0.23 respectively, 

followed by a group of sequence-based evolutionary conservation predictors (Mutation Assessor, 

Gerp++, GerpRS, SiPhy, and PhyloP) that also showed significant feature importance (Figure 2-

3A) 

https://pubs.acs.org/doi/10.1021/acs.jcim.8b00414#fig1
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Figure 2-3. Feature importance analysis of the RF and logit machine learning models on the 

canonical cancer-specific data set of functionally validated mutations. Feature importance of a 

final data set of 32 features in machine learning predictions using RF model (A, B) and logit 

model (C,D). Feature importance is measured using the information value and weight of 

evidence criteria. (A) Feature importance analysis of the RF model including all 32 features. (B) 

Feature importance analysis of the RF model after excluding two top ensemble-based features 

LR and RadialSVM. The feature importance values are shown in blue filled bars and annotated. 

(C) Feature importance analysis of the LR model including all 32 features. (D) Feature 

importance analysis of the LR model after excluding two top ensemble-based features LR and 

RadialSVM. The feature importance values are shown in red filled bars and annotated. The 

information value (IV) metric typically indicates that attributes with less than 0.02 score have no 

predictive power, while those that fall between 0.02 and 0.1 are considered to have weak 

predictive power, the features with importance values in the range 0.1–0.2 indicate medium 

predictive power, and the features with importance exceeding 0.2 often indicate strong predictive 

power. 
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 Interestingly, the ensemble features RadialSVM and LR integrate information from 

components that individually also indicate a substantial information value (GERP++, 

MutationTaster, Mutation Assessor, FATHMM, LRT, SiPhy, and PhyloP). LR and RadialSVM 

features were initially developed to differentiate non-pathogenic polymorphisms from 

pathogenic (mutant) missense variants (Dong et al., 2015). The major rationale behind 

consideration of ensemble-based scores alongside with individual components they include was 

therefore to evaluate transferability and performance of various predictors for passenger/driver 

classification. In this analysis, we compared the two ensemble-based scores, both with each other 

and with all other features. The variable importance analysis confirmed that the ensemble based 

LR and RadialSVM dwarfs’ other features in both models. Despite these scores reversed rank in 

the logit model, they remained the top two features with the information scores of 0.332 and 

0.441 for LR and RadialSVM scores respectively (Figure 2-3B). Another significant observation 

of feature importance analysis was that the ensemble predictors not only eclipse their own 

component scores but also demonstrated greater importance than all the other predictors. 

 To evaluate the models ability to recap the predictions in the absence of two ensemble-

based metrics, we repeated our experiments by excluding the ensemble-based metrics  and 

ranked the importance of the remaining mutational scores based on their statistical significance 

(Figure 2-3,C,D). The top ranked features were commensurable to functional scores based on 

evolutionary conservation patterns, such as Mutation Assessor, which was derived to evaluate 

sequence homology of protein families and subfamilies within and between species using 

combinatorial entropy formalism (Reva et al., 2011). Other highly ranked individual features 

included GerpN neutral evolution score and Gerp element scores (Davydov et al., 2010) that 
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estimate amino acid substitution deficits to identify constrained elements in multiple alignments. 

Also, a similar feature importance ranking was observed in the RF-based application of a 

different ensemble learner REVEL (rare exome variant ensemble learner) developed for 

predicting pathogenicity of missense variants, (Ioannidis et al., 2016) where the ensemble-

derived predictors along with Gerp++ and Mutation Assessor  individual scores also showed the 

highest feature importance. Another significant observation of our analysis was that a group of 

evolutionary-based features (GerpRS, GerpN, Gerp++, Mutation Assessor) can be adequately 

potent not only for prediction of pathogenic missense SNVs but also in cancer-specific 

passenger/driver classification of somatic mutations. 

 In the logit model, MSRV, SinBAD_HVAR, and SinBAD_HGMD scores were the top-

ranking scores. MSRV, an integrated feature obtained from a set of 24 physicochemical 

properties and several conservation scores to compute disease-causing nonsynonymous SNV 

mutations (Jiang et al., 2007). SinBaD scores is also an integrated feature that were initially 

developed by a logistic regression model with ninety binary features derived from multiple 

sequence alignment designed for evaluation of mutational effects in protein coding and promoter 

regions (Lehmann and Chen et al., 2013). Another highly ranked feature was likelihood ratio test 

(LRT) score that adopted the log-likelihood ratio of the conserved relative to the neutral model to 

predict functional significance of mutations (Chun and Fay 2009). Noteworthily, some of the 

top- ranking features such as SiPhy, PhyloP, and Grantham were initially developed to provide 

prediction scores for variants spreading over the whole genome. Concurrently, functional scores 

that estimate the impact of mutational variants on the protein coding regions (MutationTaster, 

LRT, SIFT, PolyPhen2_HVAR) contributed less significantly to the feature performance 

(Figure2-3 C,D). Some of the population-based scores that differentiates pathogenic missense 
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mutants from the typical polymorphisms (SIFT, PolyPhen2) were not as important in our 

classification models than cancer-specific features, such as FATHMM designed to distinguish 

somatic drivers (Figure 2-3 C, D). 

 Conversely, we assessed for multicollinearity among each feature of the integrated scores 

so as to identify dominant individual components and leverage the complementary of different 

prediction algorithms for model performance augmentation. The importance measure for an 

individual feature can reflect correlations with other features as well as its intrinsic predictive 

ability because importance may be shared among correlated features. Collinearity indicates a 

linear relationship in a model. When features are highly correlated, they cannot independently 

predict the value of the response variable. In statistical terms, they reduce the significance of the 

features.  To assess for possible redundancies in our model, we computed and analyzed 

Spearman’s rank pairwise correlations between different prediction scores (Figure 2-4). From 

our analysis, RadialSVM and LR are highly correlated with one of its original component scores, 

Mutation Assessor, and moderately correlated with other top performing sequence-based features 

(PhyloP, PhCons, GerpN, GerpRS, and GerpS). These independent features recorded high 

correlation with cancer pathogenicity and can provide classification of cancer driver variations. 

 In our logit model, we observed a significant correlation between RadialSVM and other 

ensemble-based SinBAD_HVAR,SinBAD_HGMD and MSRV scores (Figure 2-4 B). 

Synchronously, the ensemble scores were only moderately correlated with other top performing 

sequence-based features - LRT, PhyloP, PhCons, SiPhy, PhyloP, GerpN, GerpRS, and GerpS. 

Furthermore, we observed that GerpRS, GerpN, Mutation Assessor and LRT were weakly 

correlated with each other and have a fairly low correlation with other scores in the RF model 

Figure 2-4 A). Hence, no pairwise high collinearity was observed in the RF model. Our results 
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are consistent with the evaluation of functional and conservation scores in prediction of disease-

causing SNVs and application of radial SVM machine learning models to predict patterns of 

cancer driver mutations (Dong et al., 2016)  

 

Figure 2-4. Pairwise Spearman’s rank correlation coefficients between different prediction 

scores. The heat map of pairwise Spearman’s rank correlation coefficients is shown for top 

ranking features in the RF model (A) and logit model respectively (B). The high-ranking features 

include ensemble based LR and RadialSVM scores. 

 

Hence, these evolutionary-based features may provide orthogonal information to the ensemble 

scores, leading to the superior feature importance of LR and RadialSVM features. 

2.4.2 Model Evaluation: Random Forest (RF) and Logistic Regression (Logit) 
 

For the model diagnostics, we compared the predictive performance of logit and RF models as 

well the contribution of individual features using area under the curve (AUC) from the receiver 

operating characteristic (ROC) plots, in which  true positive rate TPR (sensitivity) is plotted as a 
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function of 1 – true negative rate TNR (specificity) (Figure 2-5). The plots showed the improved 

performance of the RF model after the feature selection process was complete (AUC = 0.97) as 

compared to the original AUC = 0.85 for the initial set of features (Figure 2-5A). By analyzing 

the contribution of each features to the performance of RF model, we observed that GerpRS 

achieved as high performance in the testing data set (AUC = 0.91) as the ensemble-based LR 

score (AUC = 0.88) and RadialSVM score (AUC = 0.87) (Figure 2-5 B). These observations 

further supported our conclusions that evolutionary conservation scores can often outperform 

other features, including ensemble based LR and RadialSVM scores. A comparative AUC 

analysis in the presence and absence of top ensemble scores showed only an insignificant effect 

on performance of both models (Figure 2-5 C).Interestingly, we observed  strong and similar 

performance in logit and RF models (AUC > 0.9) on the testing set when the top two ensemble 

features were excluded. These findings showed that ensemble-based scores and functional 

features based on evolutionary conservation metrics and statistical descriptors of substitution 

patterns can dominate feature importance ranking. Despite differences in the prediction scores, 

the obtained highly important features reflected a common fundamental signature, namely that 

mutations of evolutionarily conserved residues in functional regions are likely to be harmful and 

can often signify the emergence of cancer driver mutations. In simpler terms, the probabilistic 

evaluation of deleterious mutations that underlies most of the dominant features appeared to be 

also sufficient for robust classification of driver mutations in the canonical cancer data. 
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Figure 2-5. ROC plots of sensitivity (TPR) as a function of 1 – specificity, where specificity is 

TNR. (A) ROC curves for overall performance of the RF model before and after feature 

selection. (B) ROC curves for top 5 prediction scores in the RF model. The ensemble-based LR 

(AUC = 0.88) and RadialSVM scores (AUC = 0.85) are top performing features in the RF 

model. A higher AUC score indicates better performance. (C) Comparison of ROC curves for 

RF and LR models with all selected features and without the top two ensemble scores LR and 

RadialSVM. These plots illustrated a comparative performance of machine learning models for 

top prediction scores. 

 

These findings indicated that ensemble-based scores and functional features based on 

evolutionary conservation measures and statistical descriptors of substitution patterns can 

dominate feature importance ranking. Despite differences in the prediction scores, the obtained 

highly important features reflected a common fundamental signature, namely that mutations of 

evolutionarily conserved residues in functional regions are likely to be deleterious and can often 
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signify the emergence of cancer driver mutations. In other words, the probabilistic evaluation of 

deleterious mutations that underlies most of the dominant features appeared to be also sufficient 

for robust classification of driver mutations in the canonical cancer data sets. 
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3.1 Abstract 

Introduction: Incorporation of machine learning with genome-wide association studies in the 

prediction of the structural and clinical significance of cancer driver variants are at the forefront 

of our understanding of the molecular dynamics of cancer. 

Methods:  In this study, we integrated two ensemble tree-based classifiers (random forest and 

gradient boosting machines) with deep convolutional neural networks (CNN) for prediction of 

cancer driver mutations in the genomic datasets. The feasibility of CNN in using raw nucleotide 

sequences for classification of cancer driver mutations was initially explored by employing label 

encoding, one-hot encoding, and embedding to preprocess the DNA information. These 

classifiers were benchmarked against their tree-based alternatives to evaluate the performance on 

a relative scale. We then integrated DNA-based scores generated by CNN with various 

categories of conservational, evolutionary and functional features into a generalized random 

forest classifier.  

Results: The results of this study have demonstrated that CNN can learn high-level features from 

genomic information that are complementary to the ensemble-based predictors often employed 

for the classification of cancer mutations. 
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Conclusion: By combining deep learning-generated score with only two main ensemble-based 

functional features, we can achieve a superior performance of various machine learning 

classifiers.  

3.2 Introduction  

 Recent advances in next-generation sequencing (NGS) platforms have yielded a large 

amount of cancer genomic data which can be leveraged for classifying driver genes. With the 

increasing number of validated driver mutations, researchers began utilizing machine learning 

models to predict new cancer-linked drivers. The explosion of data generated in genome-wide 

association study (GWAS) and next-generation sequencing (NGS) has been the motivation for 

the development of large bioinformatics data resources such as The Cancer Gene Census of the 

Catalog of Somatic Mutations in Cancer (COSMIC) database (http://cancer.sanger.ac.uk), 

Cancer Genome Atlas (TCGA), Genomics Data Commons Portal 

(https://portal.gdc.cancer.gov/), the International Cancer Genome Consortium (ICGC) and 

formation of international cancer genomic projects. (Forbes et al., 2015; Weinstein et al., 

2013; Jensen et al., 2017; Hudson et al., 2010; Zhang et al., 2011; Klonowska et al., 

2016; Hinkson et al., 2017 ). COSMIC has evolved from ~290 well-characterized cancer genes 

(Futreal et al., 2004) to more than 500 entries (Forbes et al., 2015) where some cancer genes can 

be commonly mutated across cancer types, while other genes are mostly cancer-specific. The 

Cancer Genomics Portal (cBioPortal) (https://www.cbioportal.org/) is an open-access resource 

for big data cancer genomics analyses (Cerami et al., 2012; Gao et al., 2013). These datasets 

have allowed for robust genome-wide analyses of genetic variation in various cancer types 

(Poulos and Wong, 2018). A comparatively small percentage of somatic variants known as 

driver mutations have substantial biological effects and can be amassed over a period of time as a 
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result of a range of mutational processes, rather than inherited (Haber and Settleman, 

2007; Lawrence et al., 2013; Vogelstein et al., 2013). A robust analysis of cancer-linked driver 

genes and mutations has provided a classification of 751,876 distinct missense mutations, 

yielding a dataset of 3,442 functionally validated driver variations (Bailey et al., 2018). Another 

substantial dataset of ~1,050 experimentally tested and functionally validated drivers (Ng et al., 

2018) has expanded our knowledge of cancer-linked variants in oncogenes and tumor suppressor 

genes. TCGA organized the Multi-Center Mutation Calling in Multiple Cancers (MC3) network 

project which produced a complete and consistent collection of somatic mutation calls for the 

~10,400 tumor samples data (Ellrott et al., 2018). Computational strategies that evaluate the 

impact of somatic mutations are often identified by types of input features, models, prediction 

targets such as driver gene, statistical and computational assumptions (Gonzalez-Perez et al., 

2013; Cheng et al., 2016). 

           Several statistical and ML-based somatic variant callers are now available for somatic 

mutation identification and detection, such as VarScan2 (Koboldt et al., 2012), Strelka2 (Kim et 

al., 2018), and SomaticSniper (Larson et al., 2012). DeepVariant (deep CNN strategy) can 

characterize variants in NGS data by identifying statistical relationships around presumptive 

variant sites (Poplin et al., 2018). To enable standardized somatic variant processing from cancer 

sequencing data, deep learning (DL) approach and tree-based random forest (RF)were utilized, 

showing that these ML methodologies could achieve high and similar classification performance 

across all processed variant classes (Ainscough et al., 2018) 

           Several computational techniques have been proposed for cancer driver genes prediction. 

Some of these methods use cohort-based analysis to identify driver genes such as MuSiC (Dees 

et al., 2012), OncodriveFM (Gonzalez-Perez and Lopez-Bigas, 2012), OncodriveFML (Mularoni 
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et al., 2016) and OncodriveCLUST (Tamborero et al., 2013). The success of hybrid methods for 

scoring coding variants has indicated that the integration of different tools may enhance 

predictive accuracy for both coding and non-coding variants (Li et al., 2015). DeepDriver- A 

deep learning-based method predicts driver mutations by CNN trained with a mutation-based 

feature matrix constructed using similarity metrics (Luo et al., 2019). Since various approaches 

are often found to predict unique or partially overlapping subsets of cancer driver mutations, a 

consensus-based strategy was recently proposed, showing considerable promise and 

outperforming the individual approaches (Bertrand et al., 2018). An integrated ML-based 

evaluation framework for the analysis of driver gene predictions compared to the performance of 

these approaches, indicating that the driver mutations predicted by each tool can differ 

significantly(Tokheim C. et al., 2016; Tokheim C. J. et al., 2016). 

           Computational strategies formulated to characterize driver genes have become 

increasingly crucial to facilitate an automated evaluation of biological and clinical effects 

(Raphael et al., 2014; Gnad et al., 2013;  Martelotto et al., 2014;  Cheng et al., 2016; Ding et al., 

2014). Functional computational prediction methods include Functional Analysis Through 

Hidden Markov Models (FATHMM) (Shihab et al., 2013), Sorted Intolerant From Tolerant 

(SIFT) (Sim et al., 2012), PolyPhen-2 (Adzhubei et al., 2010), Mutation Assessor (Reva et al., 

2011), MutationTaster (Schwarz et al., 2010) and Protein Variation Effect Analyzer 

(PROVEAN) (Choi et al., 2012). Cancer-specific High-throughput Annotation of Somatic 

Mutations (CHASM) (Carter et al., 2009; Douville et al., 2013; Masica et al., 2017), Cancer 

Driver Annotation (CanDrA) (Mao et al., 2013), and FATHMM (Shihab et al., 2013). Many new 

approaches have recently addressed a problem of locating driver mutations within the non-

coding genome regions (Piraino and Furney, 2016).To consolidate functional annotation for 
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SNVs discovered in exome sequencing studies, a database of human non-synonymous SNVs 

(dbNSFP) was developed (Liu et al., 2011, 2013, 2016; Dong et al., 2015; Wu et al., 2016). This 

resource allows for the computation of a total of 48 functional prediction scores for each SNV, 

including 32 functional prediction scores by 13 approaches and 15 conservation features (Wu et 

al., 2016). In our recent investigation, two cancer-specific machine learning classifiers were 

proposed that utilized 48 functional scores from the dbWGFP server in the classification of 

cancer driver mutations (Agajanian et al., 2018). 

           In this study, we explore and integrate RF and deep convolutional neural network (D-

CNN) ML methods for the classification and prediction of cancer driver genes. Initially, we 

explore the feasibility of CNN models to classify cancer driver mutations directly from raw 

nucleotide sequence information without the predetermined functional scores. The performance 

of these classifiers was compared with tree-based classifiers (RF and gradient boosting machines 

-GBM) algorithms to provide a comparative evaluation of different classification models. These 

raw sequence-derived scores are advantageous because they can be obtained for any mutation 

with a known chromosome and position, whereas the functional scoring features can be limited 

to subsets of genomic mutations. By designing a practical classification algorithm that could 

leverage information from raw DNA nucleotides, classifiable mutations domain can be 

immensely broadened resulting in more general and robust ML tools. The results of this study 

reveal that CNN models can learn high importance features from genomic information that are 

complementary to the ensemble-based predictor scores traditionally used in ML classification of 

cancer mutations. We show that integration of the DL-derived predictor score with only several 

ensemble-based features can improve performance in capturing driver mutations across a 
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spectrum of ML classifiers and recapitulate the results obtained with a large number of 

functional features.  

3.3 Materials and Methods 

3.3.1 Data Source  
 

 Our primary data sources are cBioPortal (https://www.cbioportal.org/), University of 

California, Santa Cruz (UCSC) Genome Browser  (http://genome.ucsc.edu/) and dbWGFP web 

server  CBioPortal is a publicly curated database hosted by Center for Molecular Oncology at 

Memorial Sloan Kettering Cancer Center (MSK) (Cerami et al., 2012 & Gao et al., 2013).  

UCSC Genome Browser is an open access repository offering genome sequence data from a 

variety of vertebrate and invertebrate species and major model organisms, integrated with a large 

collection of aligned annotations. It is hosted by the University of California, Santa Cruz (UCSC) 

(Tyner et al., 2017). The dbWGFP is a web server of human whole-genome single nucleotide 

variants and their functional predictions (Wu et al., 2016). 

3.3.2 Dataset and Feature Selection 
 

 In our previous work, (Agajanian et al., 2018) we used RF classifier to predict cancer-

linked  drivers using  two consolidated golden datasets (Mao et al., 2013; Martelotto et al., 

2014). In this study, we expanded this dataset by including the passengers from the missense 

mutations analysis and predicted cancer driver mutations in Cbioportal database (Agajanian et 

al., 2018). Based on our prior analysis, we generated a dataset consisting of functionally 

validated 12,941 passenger mutations and 6,389 cancer driver mutations. The passenger/driver 

classifications for 2,570 of these mutations were present in the two previous golden datasets, and 

our RF classifier made predictions on the remaining 16,760 missense mutations from the 
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Cbioportal database. From the performance of our initial model (Agajanian et al., 2018), we 

hypothesize that the incorporation of the missense mutations in the Cbioportal database with the 

two golden datasets would produce an informative dataset for this study. The features used for 

the initial random forest predictions were retrieved from dbWGFP web server (Wu et al., 2016) 

of functional predictions for human whole-genome single nucleotide variants. A total of 32 

sequence-based, functional and evolutionary features characterized in our prior study (Agajanian 

et al., 2018) were initially used for ML studies with the new dataset of cancer mutations.  In 

cancer driver mutation predictions, traditional input data comprise of unique features that cannot 

be directly used in CNN models due to their lack of spatiality in the data. Using chromosomal 

position that corresponded to the mutated nucleotide, we could obtain the surrounding 

nucleotides of the mutation of interest to perform classification with only this raw string of 

nucleotides. For easier representation of the original nucleotide and its mutated version, we 

placed two nucleotide sequences on top of each other, one containing the original nucleotide, and 

the other contained the mutated copy. This would only result in a one nucleotide difference 

between the two, allowing to effectively utilize CNN’s sliding window mechanism. 

The schematic workflow diagram of the CNN approach employed in this study is presented in 

Figure 3-1 
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Figure 3-1. The schematic workflow diagram of the CNN approach employed in this study. To 

determine the optimal architecture, we performed a grid search over a total of 72 different neural 

network architectures. These 72 architectures consisted of between 1 and 3 convolutional layers 

and 1–3 fully connected layers following. The number of nodes in each of these layers was also 

varied between 2 and 256 in powers of 2. The simplest architecture covered in this search 

contains 1 convolutional layer with 2 filters feeding into 1 fully connected layer with 2 nodes, 

and the most complex would have 3 convolutional layers feeding into 3 fully connected layers, 

all containing 256 nodes. 

 

 To generate this dataset, we parsed information from University of California, Santa Cruz 

(UCSC) Genome Browser (http://genome.ucsc.edu/) (Tyner et al., 2017) which takes a 

chromosome (CHR) and a position (POS) on that chromosome as arguments and returns  all 

nucleotides within the sequence. To generate this dataset, we parsed information from the 

University of California, Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu/) (Tyner 

et al., 2017) which takes a chromosome (CHR) and a position (POS) on that chromosome as 

arguments and returns all nucleotides within the sequence. Using the dataset containing 6,389 

driver mutations and 12,941 passengers, we were able to obtain five different datasets of various 

window sizes around each given CHR/POS pair. The explored window sizes (10, 50, 100, 500, 
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and 5,000) produced nucleotide strings of length 21, 101, 201, 1,001, and 10,001, respectively. 

To represent the type of mutation (A->C, A->G, etc.) we stacked two of the same nucleotide 

sequences on top of each other, having one contains the original nucleotide at the position passed 

in initially, and the other containing the mutated version (Figure 2A). This computation yielded a 

total input matrix size of (2, 21), (2, 101), (2, 201), (2, 1001), and (2, 10001), respectively. Three 

various preprocessing techniques were then applied to the dataset to allow it to be passed into the 

CNN model in the numerical form: label encoding (Figure 2B), one-hot encoding (Figure 

2C; Goh et al., 2017), and embedding (Figure 2D). Label encoding works by designating each 

nucleotide its own unique ID (A = 0, C = 1, G = 2, T = 3) This introduces a ranking system on 

the nucleotide sequences that may have implications for the neural network learning (Figure 2B). 

This technique was implemented using the Scikit-learn LabelEncoder package for the Python 

programming language. We also tried introducing dummy variables (one-hot encoding) to the 

dataset by designating each nucleotide its own bit encoded string (A = [0,0,0,0,1], C= [0,0,0,1,0], 

G =[0,0,1,0,0], T = [0,1,0,0,0) (Figure 2C). This tends to be a favorable preprocessing function 

for weight-based classifiers because no ranking system is imposed on the samples. This approach 

tends to be the representation choice for discrete features due to its interpretation by default. 

Because each nucleotide gets its own index in a 5-bit string, a 1 in any particular index means 

that nucleotide is present in that location. For example, since A = [0,0,0,0,1], this can essentially 

be read as “There are 0 ‘n,' 0 ‘g,' 0 ‘t,' 0 ‘c,' and 1 ‘a' nucleotides present at this location.” Since 

the one-hot encoding preprocessing technique complicates the string, the resulting 

dimensionalities were (2, 105), (2, 505), (2, 1005), (2, 5005), and (2, 50005), respectively.  

The final preprocessing method employed for the DNA sequences involved learned embeddings 

created with the word2vec algorithm (Mikolov et al., 2013). This approach analyzes the 
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sequential context of the nucleotides assigning them a numeric representation in vector space. 

Using this representation, the nucleotide segments with similar meaning in the word2vec model 

would yield similar vectors in an N-dimensional representation. This technique was implemented 

using the Word2Vec model from the genism library for the Python programming language. Since 

the vocabulary in this application is fairly small, consisting of only 5-bit components, we chose 

to convert the nucleotide to 2-dimensional vectors which are sufficient to effectively encode this 

set. This resulted in the input sizes (2, 42), (2, 202), (2, 402), (2, 2002), and (2, 20002), 

respectively (Figures 3-1,3-2). The implementation and execution of these three preprocessing 

techniques provides adequate and efficient nucleotide representations for the CNN classifier.  

3.3.3 Machine Learning Models 
 

 We used and compared the performance of CNN models and ensemble(tree-based) 

classifiers. For the ensemble methods, we adopted our earlier established protocol for obtaining 

hyper-parameters (Agajanian et al., 2018). The model training and tuning were done using the 

Sklearn open-source ML library for the Python programming language (Pedregosa et al., 2011; 

Biau, 2012). The Keras framework was used for training, validation, and testing of CNN models 

(Erickson et al., 2017). The dataset was partitioned into training and test set in a 70%-30% ratio. 

Due to the skewness of the label in favor of passenger mutation, oversampling and under-

sampling techniques were used to address potential bias in the prediction models (Blagus and 

Lusa, 2013). To handle for overfitting in our models, we performed five-fold cross-validation, 

splitting the training set up into 5 equal-sized subsets. The model trains on four subsets and 

predicts the fifth. This is repeated five times so that each of the five subsets has been predicted 

on. 

 

https://www.frontiersin.org/articles/10.3389/fmolb.2019.00044/full#F1
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Figure 3-2. Preprocessing of the nucleotide information for CNN machine learning of cancer 

driver mutations. Two different preprocessing techniques were then applied to the dataset to 

allow it to be passed into the CNN model in the numerical form: label encoding and one-hot 

encoding. (A) A schematic diagram of window sliding protocol. To represent the original 

nucleotide and its mutated version, two nucleotide sequences are placed on top of each other, one 

containing the original string, and the other containing the mutated version. This representation 

allows to utilize the sliding window format of the CNN models. (B) A schematic diagram of 

label encoding preprocessing protocol. Label encoding assigns each nucleotide its own unique 

ID (A->0, C->1 etc.) This imposes an ordering on the nucleotide sequences. (C) A schematic 

diagram of one hot encoding preprocessing protocol. One-hot encoding assigns each nucleotide 

its own bit encoded string (A -> [0,0,0,0,1], C-> [0,0,0,1,0]). This tends to be a favorable 

preprocessing function for weight-based classifiers because no artificial ordering is imposed on 

the samples. (D) A schematic diagram of the embedding preprocessing scheme created with the 

word2vec algorithm. 
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A workflow diagram of the CNN approach (Figure 3-1) was  engineered to determine the 

optimal architecture. For this, we performed a grid search over a total of 72 different neural 

network architectures. These 72 architectures consisted of between 1 and 3 convolutional layers 

and 1–3 fully connected layers following. The number of nodes in each of these layers was also 

varied between 2 and 256 in powers of 2. The simplest architecture covered in this search 

contains 1 convolutional layer with 2 filters feeding into 1 fully connected layer with 2 nodes, 

and the most complex would have 3 convolutional layers feeding into 3 fully connected layers, 

all containing 256 nodes.  The ReLU activation function was used, which returns max (0, X). All 

72 different architectures (Table 3-1) were tested using this cross-validation algorithm and the 

architecture that had the highest F1 score across all 3-folds was chosen. Our neural networks 

were trained for 100 epochs, which means that they will pass through the entire dataset 100 times 

to complete their training. In between each epoch, the model recorded its predictions on the 

validation fold, and the epoch with the best performance on the validation set was recorded. The 

best architecture was used for predictions on the test set. Dropout layers was added in between 

layers so that inputs into a layer are randomly set to 0 with a certain probability. This prevents 

overfitting in the model, forcing it to learn without random features present. 

To evaluate the performance of each model, several metrics such as accuracy, precision, recall 

and F1 score were calculated to assess the performance of classification models. These 

parameters are defined as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁 𝑎𝑙𝑙 ;   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 𝑇𝑃 + 𝐹𝑃                     (3˗1) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 𝑇𝑃 + 𝐹𝑁 ;   𝐹₁ = 2 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙                    ( 3˗2)   

https://www.frontiersin.org/articles/10.3389/fmolb.2019.00044/full#F1
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True Positive (TP) and True Negative (TN) are defined as the number of mutations that are 

classified correctly as driver and passenger mutations, respectively. False Positive (FP) and  

False Negative (FN) are defined as the number of mutations that are misclassified into the other 

mutational classes. 

Table 3-1. The parameters of displayed CNN architectures in classification of cancer driver 

mutations 

Architecture No of Layers No of Nodes Per Layer 

0 2 32,2 

1 3 16,8,2 

2 3 16,16,2 

3 3 32,16,2 

4 3 32,8,2 

5 3 64,32,2 

6 3 64,16,2 

7 4 64,64,16,2 

8 4 128,64,16,2 

9 4 128,64,32,2 

10 5 128,64,32,16,2 

Precision is defined as the proportion of positive samples the model predicts correctly (true 

positives) divided by the true positives plus the false positives. Recall is defined as true positives 

divided by true positives plus false negatives. The model performance was evaluated using 

receiver operating characteristic area under the curve. The receiver operating curve (ROC) is a 

graph where sensitivity is plotted as a function of 1-specificity. 
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The area under the ROC is denoted AUC. The sensitivity or true positive rate (TPR) is defined as 

the percentage of non-neutral mutations that are correctly identified as driver mutations: 

  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑇𝑃𝑅) =  𝑇𝑃𝑇𝑃 + 𝐹𝑁                                     (3˗3) 

The specificity or true negative rate (TNR) is defined as the percentage of mutations that are 

correctly identified as passengers: 

  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑇𝑁𝑅) =  𝑇𝑁𝑇𝑁 + 𝐹𝑃                            (3˗4) 

 These metrics allow us to differentiate models by providing assessment options to 

properly evaluate the performance of a model.  F1 score, recall and precision were the primary 

discriminatory metrics we used to evaluate classification performance. Under this data 

distribution, a model that only predicted passengers would yield an accuracy of 66.95%, but an 

F1 score of 0. In the case that two models exhibited the same F1 score, we used the AUC score 

as an alternative evaluation measure. The AUC score summarizes the trade-off between the TPR 

and FPR for a predictive model using a number of probability thresholds.  AUC measures the 

entire two-dimensional area underneath the entire ROC curve (think integral calculus) from (0,0) 

to (1,1). A powerful classifier learns a likelihood function that consistently maps instances of the 

negative class to likelihoods lower than the positive class. A model that is reliable able to do this 

would receive an AUC of 1, whereas a model that only predicted the negative class would also 

receive an AUC of 0. They are appropriate when the observations are balanced between each 

class, whereas precision-recall curves are appropriate for imbalanced datasets. 
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3.4 Results 

3.4.1 Deep Learning Classification of Cancer Driver Mutations from Nucleotide 
Information 

 

 We started by trying to recapitulate our predictions by using a number of CNN 

architectures informed by raw nucleotide sequence data that assessed the ability to make 

predictions based mainly on raw genomic data. The combination of the 3 various preprocessing 

methods enabled us to select the most informative representation of the nucleotides. The one-hot 

encoded sequences produced the model with the best performance, and for simple representation 

we reported only the dimensions and performance of the one-hot encoded model. This 

preprocessing model resulted in input matrices of size (2, 105), (2, 505), (2, 1005), (2, 5005), and 

(2, 50005) corresponding to the different window sizes (10, 50, 100, 500, 1,000) surrounding the 

original nucleotide. Noteworthily, that the word2vec algorithm also learned meaningful 

representations of the nucleotides. The missing place indicator, “n,” was predictably separated 

from the original nucleotides, which were arranged in 2 neat clusters (Figure 3D). Cluster 1 

consisted of the tyrosine (T) and adenine (A) nucleotides, and cluster 2 comprised of cytosine 

(C) and guanine(G) nucleotides. These two clusters are easily identified due to the fact that their 

constituent components are very close to each other while simultaneously being far away from 

the other cluster. 

We used  the 72 different deep learning architectures (Table 3-1) and the results for the window 

size of 10 are presented since they revealed more variance (Figure 3-3). The figures below 

display the 10 best performing models out of the 72 models. The training accuracy continued to 

increase for the duration of training (Figure 3-3A), while on the validation testing set of cancer 

https://www.frontiersin.org/articles/10.3389/fmolb.2019.00044/full#F2
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mutations, the best DL architecture achieved an average validation accuracy of 86.68% with an 

F1 score of 0.61 (Figure 3-3B).  

 

Figure 3-3. The average accuracy of CNN models using exclusively nucleotide information.  

(A) Average accuracy across all 3-folds on an epoch by epoch basis on the training set with the 

sliding window size = 10. (B) Average accuracy across all 3-folds on an epoch by epoch basis on 

the validation set with the sliding window size = 10. 

 

 Noteworthily, we discovered that the CNN model seemed to learn early on, overfitting 

with each successive epoch (Figure 3B). In fact, the model had its highest validation accuracy on 

the first epoch, and subsequently declined after. Furthermore, the AUC and F1 scores of the 

model plateaued all through the computation process. This is further contextualized by the 

ensembled method's performance on the same dataset. The RF classifier exhibited an average 

validation accuracy of 69.86% and F1 measure of 0.58, and the GBM classifier recorded an 

average validation accuracy of 66.59% and an F1 measure of 0.57. Although we investigated a 

number of different architectures using various nucleotide-encoding protocols, a direct brute-

force application of DL/CNN models to predict driver mutations only as a function of 

surrounding nucleotides appeared to be challenging. As a result, we  employed a number  of 

https://www.frontiersin.org/articles/10.3389/fmolb.2019.00044/full#F3
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informative features to recapitulate the level of robust performance achieved in our earlier work 

with functional features and sequence-based conservation (Agajanian et al., 2018).  

 Initially, we used the random forest classifier on the cancer mutation dataset with 

conservation  and functional features retrieved from dbWGFP server and used in our earlier 

study (Agajanian et al., 2018). A repository of human non-synonymous SNVs (dbNSFP) was 

developed with the goal of providing resources for disease-causing mutations analysis (Liu et al., 

2011, 2013, 2016; Dong et al., 2015; Wu et al., 2016) storing ~8.5 billion possible human whole-

genome SNVs, with capabilities to compute a total of 48 functional prediction scores for each 

SNV, including 15 conservation features from four various tools including ensemble-based 

features MSRV, RadialSVM and  LR scores; and 32 functional prediction scores by 13 

approaches. Evolutionary scores refer to scores providing different conservation measures of a 

given nucleotide site across multiple species. Whereas, functional prediction scores refer to 

scores that predict the likelihood of a given SNV to cause a deleterious functional change in the 

protein. Some of the features such as GWAVA, Grantham, Gerp++, SiPhy, PhyloP and CADD 

can evaluate SNVs spreading over the whole genome. Whereas, other scores such as FATHMM, 

SIFT, PolyPhen, SinBaD, LRT, RadialSVM, LR, MSRV, Mutation Assessor and MutationTaster 

can be applied only to SNVs in the protein coding regions. The ensemble-based scores LR and 

RadialSVM  are integrated predictors that used ML methods to combine information from ten 

individual component scores (LRT, FATHMM, SiPhy, PhyloP, SIFT, PolyPhen-2 HDIV, 

PolyPhen-2 HVAR, Gerp++, MutationTaster, Mutation Assessor) (Agajanian et al., 2018). 

In this baseline experiment we analyzed  performance of 32 input predictors on the expanded 

dataset (Figure 3-4A). Similar to our earlier investigation (Agajanian et al., 2018), we discovered 

that the ensemble-based scores RadialSVM and LR considerably overshadowed the contributions 

https://www.frontiersin.org/articles/10.3389/fmolb.2019.00044/full#B3
https://www.frontiersin.org/articles/10.3389/fmolb.2019.00044/full#B3
https://www.frontiersin.org/articles/10.3389/fmolb.2019.00044/full#B63
https://www.frontiersin.org/articles/10.3389/fmolb.2019.00044/full#B63
https://www.frontiersin.org/articles/10.3389/fmolb.2019.00044/full#B64
https://www.frontiersin.org/articles/10.3389/fmolb.2019.00044/full#B65
https://www.frontiersin.org/articles/10.3389/fmolb.2019.00044/full#B25
https://www.frontiersin.org/articles/10.3389/fmolb.2019.00044/full#B117
https://www.frontiersin.org/articles/10.3389/fmolb.2019.00044/full#B3
https://www.frontiersin.org/articles/10.3389/fmolb.2019.00044/full#F4
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of other features (Figure 3-4). By incorporating the DL score in the original features set, we 

applied the RF model for predicting cancer driver mutations with this expanded set of predictors. 

The first question was to evaluate the feature importance of the RF model with the DL score 

included and determine whether the nucleotide-based scoring predictors can contribute to the 

prediction performance in a significant way (Figure 3-4). In the second step of RF classification 

experiments, we added DL score to the original list of 32 features (Figure 3-4B). Interestingly, 

the DL score ranked third following the ensemble-based LR and RadialSVM scores (Figure 3-

4B). Moreover, it was evident that these three feature scores completely dominated feature 

importance distribution, with the DL score contributing almost as much as the ensemble-based 

RadialSVM feature (Figure 3-4B). Quite remarkably, the DL-based score derived by CNN 

exclusively from primary nucleotide information can deliver significant information content. 

 

 

Figure 3-4. (A) Feature importance of 32 functional and sequence conservation features with DL 

score feature produced by CNN model excluded. (B) Feature importance of 33 features with the 

DL score included in the RF classification. The feature importance values are shown in blue 

filled bars and annotated. Feature importance is measured using the information value and 

weight of evidence criteria. 
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3.4.2 Incorporation of CNN Predictions with Ensemble-Based Predictors in Cancer 

Driver Mutations Models  
 

 From the preliminary assessment, we analyzed feature selection again with the goal of 

recapitulate similar accuracy with only eight predictors: LR, LRT, RadialSVM, DL, GerpRS, 

GerpN , verPhyloP, and SiPhy scores (Figure 3-5A). The eight-predictor RF model  produced a 

similar ranking in which the ensemble-based scores and DL score contributed the most (Figure 

3-5A). Evolutionary conservation scores derived from multiple sequence alignments and 

reflecting functional specificity, such as SiPhy (Garber et al., 2009) and GerpRS (Davydov et al., 

2010) also showed significant information score values (Figure 3-5A). Subsequently, we tested 

the performance of the RF model and feature importance by performing ML of cancer driver 

mutations using only  top three predictors (Figure 3-5B) 

 

Figure 3-5. (A) Feature importance ranking based on RF classification with only 8 most 

informative features. (B) Feature importance ranking based on RF classification with only top 

three predictors that included ensemble-based RadialSVM, LR scores, and DL score produced by 

CNN model.  
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The predictability of the RF models with various set of predictors was evaluated using area under 

the curve (AUC) plots (Figure 3-6).  

 

Figure 3-6. The AUC/ROC plots of sensitivity (TPR) versus specificity (TNR). (A) The ROC 

curves for overall performance of the RF model with 32 functional features excluding DL score 

(in green) and 33 features that included DL score (in red). (B) The ROC curves for the RF model 

with all 33 features (in green) and with the top 3 performing features that included LR score, 

Radial_SVM score, and DL score (in red). Higher AUC score indicates better performance. 

These plots illustrated a comparative performance of machine learning models for top prediction 

scores. 

 First, we evaluated the difference in the AUC curves for RF-based classification with 32 

functional features and with additional DL score (Figure 3-6A). The results showed a very 

similar high-level prediction performance with AUC = 0.95–0.96. It is worth noting that due to 

high AUC value for RF classification with 32 informative functional features, the addition of DL 

could not significantly enhance it. However, we showed that this nucleotide-derived predictor 

score provides an additional information content and is complementary to the ensemble-based 

RadialSVM score and LR score. In this context, it was instructive to observe that addition of DL 

score may marginally improve separation between sensitivity and 1 – specificity (FPR) at higher 

values of these parameters (Figure 3-6A). 
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 Interestingly, RF  model that relied on RadialSVM score, LR score, and DL score( top 

three predictors) yielded 94% AUC , thereby showing that these predictors may be adequate for 

robust classification of cancer driver mutations on a fairly large dataset of somatic mutations 

employed in this study. We closely examined the discriminatory ability of the classification 

models (Table 3-2).  

Table 3-2. Statistics and comparative performance metrics of various ML classification of cancer 

driver mutations models for the top eight predictors. 

 Random forest Boosted trees Support vector 

machines 

False negative rate 0.91 0.91 0.75 

True negative rate 0.11 0.12 0.02 

False positive rate 0.12 0.11 0.80 

True positive rate 0.86 0.85 0.95 

Recall 0.90 0.90 0.89 

Precision 0.90 0.90 0.89 

F1- measure 0.90 0.90 0.89 

Accuracy 0.89 0.89 0.89 

 

All algorithms achieved a high classification accuracy of ~90%. The TPR values were higher for 

the RF and SVM  classifiers, but all algorithms resulted in similar high performance 

classification on the dataset with only limited number of major predictors that included DL score 

(Table 3-2). Summarily, our findings supported the notion that ML-derived ensemble functional 

features may play a cardinal role in classification of driver mutations. The major finding of these 

ML experiments was that combination of ensemble-based features and DL score are 
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complementary and when combined can yield comparable classification accuracy. The critical 

lesson from this analysis is that integrated high-level features obtained by ML strategies from 

primary nucleotide and protein sequence information may be adequate for predicting key 

functional phenotypes.  
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4.1 Abstract 

Background: Acute lymphoblastic leukemia, colorectal adenocarcinoma, glioblastoma, and 

neuroblastoma are well studied unresectable cancer types. Ensemble machine learning classifiers 

can be used for the analysis of the overall survival status of selected cancer types. The primary 

objectives of this study were to build: (1) high accuracy machine learning model to classify 

cancer survival status and (2) Cox proportional-hazards survival analysis for pediatric cancers. 

Methods: Data for the four selected cancer types were retrieved from the cBioPortal cancer 

genome database. The high-performance machine learning approaches, gradient boost machine 

(GBM), extreme gradient boosting (XGBoost) and a deep neural network architecture were used 

to and trained on the cancer survival datasets. Five survival status models were built for each of 

the analyzed cancer types and a fifth one was built for the Memorial Sloan Kettering cancer 

center-MSK-IMPACT dataset. Furthermore, Cox proportional- hazards models were 

implemented to conduct survival analysis on pediatric acute lymphoblastic leukemia and 

pediatric neuroblastoma that allow identification and effect size estimation of the statistically 

significant predictors of these cancers. 
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Results: The ensemble tree classifiers and the deep neural network model obtained area under 

the curves values between 0.75 and 0.95 across all five models. The Cox-proportional- hazards 

model showed that age at diagnosis, tumor origin of T-cells( effect size/HR: 0.35) , tumor origin 

of B-cells(HR:0.39), congenital abnormality-no(HR: 0.59),congenital abnormality-yes(HR: 

8.30), molecular subtype-hyperdiploidy without trisomy of both chromosomes 4 and 10(HR: 

0.70) and molecular subtype-iAMP21(HR: 1.67) , TCF3_PBX1_status-negative(HR: 0.76)and 

Trisomy 4 and 10 -negative( HR: 1.52) play a significant role in survival rate of pediatric acute 

lymphoblastic leukemia. Whereas, in the pediatric neuroblastoma INSS-stages 1(HR: 0.44), 

INSS-stage 2a(HR: 0.53),INSS-stage 4(HR: 0.51), INSS stage 4s(HR: 2.69), the number of 

complete sets of cellular chromosomes -ploidy_diploid/DI =1 (HR:0.69) and the number of 

complete sets of cellular chromosomes-DI>1(HR: 2.39) and gender- male (HR: 0.89) were the 

statistically significant features in the Cox PH model. 

Conclusion: Machine learning can be used to predict the overall survival status of cancer using 

age at diagnosis, mutational profile among other risk factors. Age at diagnosis, cell of tumor 

origin, congenital abnormality, molecular subtype, INSS stage, and ploidy make a significant 

impact on the survival rate in pediatric cancers. 

4.2 Introduction 

 The burden of cancer in the US is on the rise, there is an incessant need to develop 

efficient strategies for prevention and standard care (Allemani et al., 2015; Cavalli & Cavalli, 

2013). In 2018, cancer accounted for more than 600,000 deaths in the US (Miller et al.,2018; 

NCBI cancer statistics,2018). However, the US has better survival statistics when compared to 

most other developed countries (Allemani et al.,2015; Centers for Disease Control and 

Prevention, 2019; Gorey, 2009; Coleman et al., 2008). The National Institute of Health (NIH) 
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introduced a couple of programs with a special focus on the early diagnosis as a key approach to 

improving cancer survival rates (Cronin et al., 2018). Survival of cancers is dependent on 

numerous factors namely: (1) stage of cancer (2) cancer type; (3) prior treatment strategy;(3) 

level of fitness. In a study conducted by Lim et al. (2006), they found evidence of cancer survival 

dependence on seasonality of diagnosis and sunlight exposure.  Survival statistics are often used 

for prognosis estimation and evaluation of treatment options (Cancer.net, 2018) 

           Surgical resection remains the main curative treatment approach for most cancers. 

However, more than 60% of patients have unresectable cancer at the time of diagnoses such as 

extra-regional lymph node metastasis and local invasion. Despite recent innovations in 

chemotherapy strategy, the median survival for patients with skin cancer was approximately 113 

months, for aerodigestive cancers was 70 months, and 107 months for patients with salivary 

gland cancers. The survival rates for gastric cancer are among the worst of any cancer with a 

3.1% five-year patient survival (Carey et al., 2019; Yang et al., 2011 and Brenner et al., 2009). 

Data from National Cancer Intelligence Network (NCIN) showed that 70% of acute 

lymphoblastic leukemia (ALL) patients will survive leukemia for five years or more after 

diagnosis (Hoezler et al., 2016; National Cancer Intelligence Network, 2014; Tobias and 

Hochhauser 2015; Wang et al.,2019). 

           Unresectable cancers are cancers that cannot be removed completely by surgery. Cancer 

can be classified as unresectable for several reasons : (1) tumor location-a tumor may be 

interconnected with vital blood vessel; (2) tumor size-too large to remove; (3) metastases-cancer 

cells that have spread to other parts; (4) other medical condition that could increase the risk of 

surgery-severe diabetes raises the risk of surgery to critical levels (Fabre et al., 2015; Imai et al., 

2016; Kato et al., 2015; Nitsche et al.,2015 and Yang et al., 2015) 
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            ALL is the second most common acute leukemia in the US and the American Cancer 

Society ACS estimated that there will be ∼ 6000 new cases of ALL and ∼ 1500 deaths from 

ALL in 2019 (Howlader et al., 2018; Terwilliger and Abdul-Hay, 2017).  ALL is a malignancy 

of hematopoietic stem cells that originates from B and T -cells. ALL pathogenesis involves 

differentiation and abnormal growth of the lymphoid cells’ clonal population. Recent pediatric 

studies have identified genetic syndromes that are predisposing to minor cases of ALL namely, 

Bloom, Down and Nijmegen breakdown syndromes (Terwilliger and Abdul-Hay, 2017; Shah et 

al., 2013; Bieloral et al.,2013; Chessells et al., 2001 and German 1997). Other factors include 

exposure to Human Immunodeficiency Virus (HIV) (Geriniere et al., 1994), Epstein-Barr Virus 

(EBV)(Seghal et al., 2010), pesticide and ionizing radiation(Spector et al.,2006). However, in 

most cases, ALL appears as a new malignancy in previously healthy patients. ALL is often 

driven by mutations, gene aneuploidy, and chromosomal translocation (Mohseni et al., 2018; 

Hunger et al., 2015). Several genetic subsets of B-cell and T-cell ALL such as BCR-ABL1, MLL 

rearrangements, Hypodiploid, iAMP21, ETV6-RUNX1, TCF3-HLF have to be found to play a 

significant role in tumor development. Certain changes in leukemia cells’ genes or chromosomes 

can affect prognosis and children tend to have a less favorable outcome if the leukemia cells 

have a translocation between chromosomes 9 and 22 (Philadelphia chromosome); hypodiploidy 

(fewer than 44 chromosomes)and complex karyotype while on the other hand patients tend to 

have a better outlook if the leukemia cells have hyperdiploidy ( more than 50 chromosomes) and 

a translocation between chromosome 12 and 21. Recent studies have shown that the risk for 

developing ALL is highest in children younger than five years of age and that the risk declines 

until the age of twenty-five and begins to rise again after fifty years of age. NCI SEER data 

indicated that the median age at diagnosis is 16 years and the median age at death stood at 56 
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years. The risk factors for ALL are radiation exposure, certain chemical exposure – benzene, 

certain viral infections -HTLV1, certain genetic syndromes-Down, and Klinefelter syndromes, 

age, race/ethnicity among other factors (Jain et al., 2016). Despite the high response rate to 

chemotherapy, only approximately 35% of adult patients with acute lymphoblastic leukemia 

attain long-term remission (Terwilliger and Abdul-Hay, 2017; Jabbour et al.,2015). The survival 

of young patients with ALL has considerably improved in the 21st century, however, there is 

insufficient data to determine if patients of all ethnic backgrounds have benefited equally (Pulte 

et al., 2013) 

           Similarly, colorectal cancer the third most commonly diagnosed cancer in the US is 

estimated to record over 50,000 deaths in 2019 (American Cancer Society,2020; Howlader et al., 

2016). The treatment for colorectal cancer has evolved in the last decade. FOLFOX and other 

chemotherapy regimens remain the gold standard for therapy, however, the addition of known 

epidermal growth factor receptor (EGFR) inhibitors have improved colorectal cancer outcomes 

(Miyamoto et al.,2017). Fortunately, colorectal cancer has a 90% five-year survival rate if 

detected early (American Cancer Society,2020).   Gliomas, another lethal cancer are the most 

common cranial tumors in adults representing 80% of malignant brain tumors. They originate 

from glial tissue. Glioblastoma, the most prevalent glioma histology (∼45% of all gliomas) has 

37.2%,5.1% and 2.6% survival rates for one-, five- and ten-year periods from diagnosis (Ostrom 

et al.,2015). The minority of these tumors are caused by tuberous sclerosis and neurofibromatosis 

and other Mendelian disorders. Recent studies indicate that isocitrate dehydrogenase mutation, 

cytosine–phosphate–guanine island methylator phenotype and O⁶-methylguanine-DNA 

methyltransferase methylation and other biomarkers significantly improved survival in glioma 

(Ostrom et al., 2015). The Cancer Genome Atlas Research Network glioblastoma studies 
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revealed recurrent alterations in the following pathways: (i) tumor protein 53 (TP53) signaling 

(CDKN2A deletion, TP53 mutation, mouse double minute 1/4 [MDM1/MDM4] amplification); 

(ii) retinoblastoma (RB) signaling (cyclin-dependent kinase inhibitor 2A/2C 

[CDKN2A/CDKN2C] deletion, RB mutation, cluster of differentiation 4/6 [CD4/CD6] 

amplification); and  (iii) receptor tyrosine kinase signaling (phosphatase and tensin 

homolog/neurofibromin 1/phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit 

alpha [PTEN/NF1/PIK3CA] mutation, epidermal growth factor receptor/platelet-derived growth 

factor receptor [EGFR/PDGFRA] amplification)( Cancer Genome Atlas Research Network, 

2008).Glioblastomas are often genetically diagnosed as IDH-wildtype, IDH-mutant or 

Glioblastoma with unknown IDH status. Noushmehr et al. (2010) and Mur et al. (2013) studies 

found a substantial link between a genome-wide glioma cytosine–phosphate–guanine island 

methylator phenotype (G-CIMP) and IDH mutations in all glioma subgroups. 

Neuroblastoma is the most common extracranial solid tumor in infants and originates from the 

neural crest element of the sympathetic nervous system (Stewart et al., 2016; Cheung and Dyer, 

2013). It is a rare type of cancerous tumor and is the most common cancer in children accounting 

for 6% of all cancers in infants. 90% of cases are diagnosed at age five (Stewart et al., 2016). It 

occurs slightly more in males than females. Some of the risk factors associated with 

neuroblastoma are age, heredity, and congenital anomalies. Biopsy, blood, and urine 

catecholamine tests, imaging tests (x-rays, MRI, MIBG, CT scans), neurological exam and bone 

marrow aspiration are among several tests and procedures done for the diagnosis of 

neuroblastoma. Neuroblastoma’s spread description is known as staging. Staging helps clinicians 

to determine the appropriate treatment option for a patient. Upon the diagnosis of neuroblastoma, 

the tumor spread is assessed using the international neuroblastoma staging system committee 
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(INSS) system. The INSS consists of six stages and are summarized as follows:  (1) stage 1- 

tumor can be excised completely by surgery; (2) stage 2A- the tumor is localized and cannot be 

completely removed during surgery and surrounding lymph are not cancerous; (3) stage 2B- the 

tumor is localized and may or may not be completely removed during surgery and the 

surrounding lymph nodes are cancerous; (4) stage 3- the tumor cannot be excised with surgery, 

often cancer has spread to surrounding lymph nodes; (5) stage 4- the tumor has metastasized to 

distant lymph nodes, bones, liver, skin and other organs; and (6) stage 4S- the tumor is localized 

(as in 1 and 2) and it has metastasized to the skin, liver and none in infants (Monclair et al., 

2009).  INSS classification systems in combination with age at diagnosis, MYCN gene status, 

chromosome 11q status, tumor cell ploidy, differentiated cell grade are used to determine the 

clinical risk of a tumor and its response to therapy. A patient’s age and the INSS stage plays a 

key role in the treatment approach for the disease. The treatment regimen for neuroblastoma 

consists of three approaches namely surgery, radiation therapy, iodine 131-MIBG therapy 

(treatment with radioactive iodine), chemotherapy and a combination of high-dose chemotherapy 

and radiation therapy with stem cell transplants 

           In this study, we built a machine learning tree-based ensemble classification model for the 

survival status of patients with selected unresectable cancers: acute lymphoblastic leukemia, 

colorectal adenocarcinoma, glioblastoma, and neuroblastoma. Likewise, we implemented a 

separate Cox-proportional hazard survival analysis for two unresectable pediatric cancers - acute 

lymphoblastic leukemia and neuroblastoma. 
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4.3 Methods 

4.3.1 Survival Status Dataset 
 

 The dataset used in the study was retrieved from cBioPortal (www.cbioportal.org). The 

dataset consists of clinical and genomic features such as age at diagnosis, ploidy, molecular 

subtypes. In this study, we are primarily interested in ensemble classification of cancer survival 

status of the following cancer sets namely pediatric acute lymphoblastic leukemia(ALL), 

glioblastoma (GLIO), colorectal adenocarcinoma (COAD), pediatric neuroblastoma (P-NB) and 

MSK-IMPACT clinical sequencing cohort - targeted tumor-sequencing of 10000 clinical cases. 

Secondarily, we are interested in the survival analysis of ALL and P-NB due to the low median 

age at diagnosis of pediatric acute lymphoblastic leukemia and pediatric neuroblastoma. Table 4-

1 shows the total number of patients and samples used in this study. 

Table 4-1. Total number of patients of selected cancer types and MSK_IMPACT combined 

cancer type 
Profiling Sample 
(TARGET) 

Total Number of Patients 

Acute Lymphoid Leukemia (Pediatric) 1551 

Glioblastoma 585 

Colorectal Adenocarcinoma 594 

Neuroblastoma (Pediatric) 1076 

MSK_IMPACT cohort* 10336 

*includes other cancer types 
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Survival Status Data Preparation and Feature Selection 

 We carried out data management and exploratory analysis steps. In particular, we 

implemented feature rescaling, missing value imputation and subsequent stepwise feature 

selection. We assessed the pairwise correlations between the predictors as orthogonal covariates 

are advantageous for building machine certain learning models. We also studied issues with 

multicollinearity as they have the potential of causing overfitting in machine learning models  

(Vatcheva et al., 2016; Atems and Bergtold, 2015, Zhang et al., 2018; Kroll and Song 2013)  

Missing values imputation was handled by using the nearest neighbor and median values 

approach depending on the data kind (categorical or numerical features). Other discrepancies 

were handled using outlier detection techniques and min-max feature rescaling for data 

normalization while regular expression and stepwise Akaike information criterion (stepAIC) 

were used for feature extraction and feature selection respectively (Li et al., 2016; Zhang, 2016; 

Paja et al., 2017). Since the main objective of this study is to build a predictive model for 

survival status of acute lymphoblastic leukemia, glioblastoma, colorectal adenocarcinoma, and 

neuroblastoma  cancer, we carried out a quantitative and qualitative comparative analysis of the 

overall survival status, sex, ethnicity/race, age at diagnosis, mutation count and survival event.  

4.3.2 Proposed Models 
 

4.3.2.1 Ensemble Classifiers 
 

 In this study, we used a comparative ensemble algorithms approach - extreme gradient 

boosting (xgboost) and gradient boosting machine(gbm) for survival status classification as 

described by Zheng et al, 2020; Chen and Guestrin,2016; Friedman,2001. We compared the 

performance of the classifiers with that of deep neural networks as described by Telenti et al., 
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2018; Kalinin et al., 2018; Angermueller et al.2016. We adopted the D-CNN architecture used in 

the Telenti et al., 2019 for this comparative study.  Also, we investigated variable importance to 

assess the most informative features in the survival ensemble models. To prevent overfitting of 

the classifiers and account for the skewness in the distribution of the overall survival status-

deceased vs living, we oversampled the survival status using the synthetic minority over-

sampling technique -SMOTE (Zheng et al.,2019).  SMOTE theory assumes that the feature space 

of minority class instances is similar. We used F1-score, AUC, precision and recall metrics as 

described by for our model evaluation as described by Zheng et al., 2020. 

4.3.2.2 Cox Proportional Hazard Model 
 

 In the survival analysis of the pediatric neuroblastoma and glioblastoma, we used the cox 

proportional hazards model as described by Wang and Albert, 2016; Meguid et al., 2010; 

Xintong Chen, 2014 for semiparametric modeling the hazards ratio of the covariates. 

4.4 Results and Discussion 

 Our initial exploratory analysis showed that MSK-IMPACT, neuroblastoma (P-NB), 

glioblastoma (GLIO), colorectal adenocarcinoma (COAD) and acute lymphoid leukemia had 

70.77 %, 62.72 %, 29.23%, 79.8% and 73.46% for the survival status distribution (Figure 4-1).  



 

 

83 

 

 

Figure 4-1. Bar plot showing the percentage bar graph of survival status (living versus deceased) 

of acute lymphoid leukemia (ALL), colorectal adenocarcinoma (COAD), glioblastoma (GLIO), 

neuroblastoma (P-NB) and MSK-IMPACT cancer studies 

 

 In the EDA, all 4-cancer types have a higher survival rate except for glioblastoma, this 

can be attributed to tumor location - glioblastoma is found in the brain’s cerebral hemisphere 

which poses a challenge for chemotherapy and radiation. Age as a risk factor can also be 

attributed to the high mortality rate among glioblastoma patients, the average age at diagnosis of 

glioblastoma is sixty-four years and risk increases with an increase in age. Patients with 

glioblastoma face major mortality, with approximately 13000 deaths per year in the US. Also, of 

all 4 cancer types, colorectal had the highest survival rate of 79.8%. This aligns with NCI 

statistics which puts the 5-year survival rate of colorectal cancer at 71% (SEER stage: regional) 

and 90% (SEER stage: localized). Figure 2 shows the age at diagnosis of all four cancer types.  
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Figure 4-2. Summary statistics of age at diagnosis (left to right): ALL, COAD, GLIO and P-NB 

 

The multicollinearity dependence test of the features indicated that most of the features have 

pairwise orthogonality except for sex (male vs female), tumor disease anatomic site (rectum vs 

colon) and tumor type (colon vs rectal) with -0.99, -0.97, -0.78 and -0.91 correlation coefficients. 

From the correlation matrix, diagnosis age, aneuploidy score, fraction genome altered, mutation 

count, overall survival in months, race and other features are good for the model (Figure 4-3)  
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Figure 4-3. Multicollinearity dependence test for some of the clinical (sex, age, race, tumor type, 

overall survival in months) and genomic (fraction genome altered, aneuploidy score, mutation 

count) predictors   

 

4.4.1 Comparative Analysis of Ensemble Classification of Cancer Survival Status 
 

The classifiers performed fairly well at classifying the survival status of ALL, GLIO, COAD, P-

NB and MSK- IMPACT models. The performance of the three classifiers (xgboost, GBM and D-

NN) employed in the survival status model was examined using metrics including 

sensitivity(recall), specificity, precision, AUC and f-score (Table 4-2 and Figure 4.4A-E). 
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The xgboost classifier performed best at classifying the survival status of the cancer types and 

MSK-IMPACT except for the pediatric neuroblastoma model which recorded AUC and F-score 

of 0.9447 and0.9268. In the ALL model, the xgboost classifier performed best with a sensitivity 

score of 0.962, a precision score of 0.856, AUC score of 0.947 and an F score of 0.9058. The 

recall value tells us that of all the ALL patients that survived, 96.12% of them were correctly 

labeled as survived while the precision score tells us that of all the ALL patients that were 

labeled as survivors, 85.59% of them survived. In the GLIO model, the recall and precision 

values tell us that of all the diagnosed patients with glioblastoma that survived, 94.57% of them 

were aptly labeled as survivors while of the diagnosed GLIO patients that were labeled as 

survivors, 87% of them survived. Likewise, our COAD model indicated that of the diagnosed 

patients that were labeled as survivors, 79.17% were correctly labeled as survivors.  Of the 

colorectal adenocarcinoma diagnosed patients that survived, 95% were correctly labeled.  

In the pediatric neuroblastoma model, the GBM classifier outperformed both xgboost and the D-

NN classifiers – of the neuroblastoma survivors, 93.83% of them were correctly labeled as 

survivors whereas of the neuroblastoma patients that were labeled as survivors, 91.57% survived. 

A 
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D 

E 

Figure 4-4. ROC/AUC model evaluation for survival status classification in ALL, GLIO, COAD, 

P-NB and MSK-IMPACT data sets. The ROC plot of three classifiers – xgboost, GBM and D-

NN for ALL.  A: In the ALL models, xgboost classifier performed best at discriminating survival 

status (living v deceased) with an AUC score of 0.7355 whereas, the GBM with AUC 0.719 

performed moderately well when compared with the D-NN with 0.6612 AUC score. B: In the 

GLIO model, the xgboost was the best classifier with AUC score of 0.8448.C:  Xgboost 

classifier (0.9492) performed better at classifying survival status of COAD when compared with 

D-NN (AUC:0.9068) and GBM (AUC: 0.9086) classifiers. D: Interestingly, in the P-NB model, 

GBM (AUC: 0.9447) outperformed xgboost (AUC: 0.9171) and D-NN (AUC: 0.9078) at 

classifying survival status of pediatric neuroblastoma E: MSK-IMPACT survival status – the 

classifiers xgboost classifier with an AUC score of 0.7529 outperformed GBM and D-NN 

respectively 
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Table 4-2. Model evaluation result of the ensemble classifiers and deep neural network survival 

status of selected unresectable cancer types  
CANCER TYPE METRIC CLASSIFIERS 

 

ALL 

 

D-Neural Network Xgboost GBM 

Sensitivity (Recall) 0.9333 0.9619 0.8667 

Specificity 0.9448 0.9414 0.9517 

Precision 0.8596 0.8559 0.8667 

AUC 0.9418 0.9468 0.9291 

F-score 0.8949 0.9058 0.8667 

 

GLIO 

Sensitivity (Recall) 0.9674 0.9457 0.9348 

Specificity 0.2917 0.4583 0.3333 

Precision 0.8396 0.8700 0.8431 

AUC 0.8276 0.8448 0.8103 

F-score 0.8990 0.9063 0.8866 

 

COAD 

Sensitivity (Recall) 0.5417 0.7917 0.7083 

Specificity 1.0000 0.9894 0.9574 

Precision 1.0000 0.9500 0.8095 

AUC 0.9086 0.9492 0.9068 

F-score 0.7027 0.8637 0.7555 

 

P-NB 

Sensitivity (Recall) 0.9012 0.9136 0.9383 

Specificity 0.9118 0.9191 0.9485 

Precision 0.8588 0.8706 0.9157 

AUC 0.9078 0.9171 0.9447 

F-score 0.8795 0.8915 0.9268 

MSK-IMPACT Sensitivity 0.3290 0.3246 0.2894 

Specificity 0.9168 0.9295 0.9521 

Precision 0.6298 0.6549 0.6667 

AUC 0.7452 0.7529 0.7468 

F-score 0.4322 0.4341 0.4036 

 

4.4.2 Informative Features and Feature Importance of Survival Status Classification 
Models 

 

 A combination of clinical and genomic features was used for the feature importance of all 

five models. Due to various cancer types having different number of input features, we narrowed 

the result of the feature features to the top-ten most informative features contributing to survival 

status classification of ALL, GLIO, COAD, P-NB and MSK-IMPACT models (Figure 4-5A-E). 
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Cell of tumor (T-cell) origin, age at diagnosis, cell of tumor (B-cell) origin, Congenital 

abnormality, and the DNA Index were the most informative clinical features in the ALL model. 

Whereas the ETV6-RUNX1, MLL_Rearranged, TCF3-HLF, Hypodiploid and iAMP21 

molecular subtypes were the most informative genomic predictors.  

A 
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Figure 4-5. Top 10 most informative features contributing to classification of survival status of ALL, GLIO, COAD, P-NB and MSK-IMPACT 

models. A: Clinical and genomic features such as cell of tumor origin, age at diagnosis, congenital abnormality, DNA index and Molecular 

subtypes were the most informative predictors in the ALL model. B: Age at diagnosis, mutation count, fraction genome altered, therapy, gene 

expression type, mutation type, sex, methylation status and number of samples per patients are the most informative predictors.  

C:  In the COAD model, age at diagnosis, mutation count, overall survival in month, fraction genome altered were among the top 10 informative 

features. D: Clinical features including INSS stage, age at diagnosis, sex, race and risk group are predominantly the most informative predictor 

when compared with ploidy feature. E: Overall survival in months, fraction genome altered, mutation count, smoking history were among the 

most contributing features to the MSK-IMPACT model. 
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Interestingly, in this ALL model, the clinical features were more informative than genomic 

features (Figure 4-5A). In the GLIO model, age at diagnosis, mutation count, fraction genome 

altered, therapy type, gene expression type, mutation type, sex, methylation status and number of 

samples per patient contributed significantly to the model. Noteworthily, both clinical and 

genomic predictors contributed almost at an equal ratio to the model (Figure 4-5B). 

           In the COAD model, clinical features including age at diagnosis, mutation count, overall 

survival in months, tumor type, sex, tumor anatomic site, number of samples per patient and race 

were the most predominant predictors whereas fraction genome altered was the only contributing 

predictor in the model (Figure 4-5C).  INSS_stage 2A, INSS_stage 3, INSS_stage 4S, age at 

diagnosis, INSS stage 2B, Sex (male), ploidy, race, risk group and ploidy (hyperdiploid) were 

the most statistical important features contributing to the P-NB model. Noteworthily, clinical 

features were predominantly the most informative predictors whereas the genomic features 

didn’t contribute significantly to the P-NB model (Figure 4-5D). In the MSK-IMPACT model, 

overall survival (in months), sample coverage, fraction genome altered, mutation count, tumor 

purity, DNA input, smoking history (unknown), sample type (primary), number of samples per 

patient and smoking history (current smoker) were the most informative features in the model 

(Figure 4-5E). Strikingly, age at diagnosis and sex were the prominent clinical features in ALL, 

GLIO, COAD and P-NB models.    

4.4.3 Survival Analysis 
 

 The median age at diagnosis for our acute lymphoblastic leukemia (ALL) and P-NB 

sample sizes are 8 and 3 years respectively (Figure 4-6). The mean value of the fraction genome 

altered (FGA) were 0.08 and 0.09 respectively even though a large number of the FGAs were 

unknown.  
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Figure 4-6. Summary statistics of age at diagnosis of ALL(left) and P-NB(right) with median 

ages of 3 and 8 respectively.  
 

In this study, we observed the representation of American Indian, Asian, black, Pacific Islander, 

White (and White Hispanic) race/ ethnicity in the survival study (Figure 4-7). A significant 

number of patients’ ethnic backgrounds were unreported. From our findings, children of 

Caucasian descent had the highest reported cases of ALL and P-NB followed by children of 

African descent. This confirms the findings of other studies such as Siegel et al., 2017 and 

Friedrich et al., 2017 that the risk of ALL and P-NB is slightly higher in white and Hispanic 

white children than in other races. 
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Figure 4-7. Distribution of ethnicity and race of ALL and pediatric neuroblastoma P-NB. The 

risk of ALL and neuroblastoma is slightly higher in white and Hispanic white children than in 

other races. 

 

 The best Cox model for ALL showed that the covariates age at diagnosis, cell of tumor 

origin (B and T-cells), congenital abnormality, DNA index, and MLL-rearranged molecular 

subtype were significant predictors of survival (P < 0.05). However, the other covariates such as 

molecular subtypes ETV6-RUNX1, hyperdiploid status 4 and 10 unknown, hyperdiploid without 

trisomy of both chromosomes 4 and 10, hypodiploid, TCF3-HLF, TCF3-PBX1, iAMP21 were 

not significant. The age at diagnosis with a hazard ratio of 1.03 shows that each additional year 

of age at diagnosis is associated with a 3% increase in the risk of dying. Similarly, the cell of 

tumor origin B-cell and T-cell with hazard ratios of 0.39 and 0.35 indicate that subjects with 

these genetic variations have 61 and 64% decrease in the risk of dying compared to the baseline 

group of B-cell precursor respectively. The congenital abnormality variable (No/Yes) with 

hazard ratios of 0.59 and 8.30 indicate a decrease of 41% and an increase of 730% in the risk of 
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dying compared to the baseline group with unknown congenital abnormality status. The 

molecular subtype had 12 levels, unknown, BCR-ABL1, ETV6-RUNX1, Hyperdiploid with a 

status of 4 and 10 unknown, Hyperdiploidy without trisomy of both chromosomes 4 and 10, 

Hypodiploid, iAMP21, MLL-Rearranged, None of above, TCF3-HLF, TCF3-PBX1, Trisomy of 

both chromosomes 4 and 10. Three of the categories, Hyperdiploidy without trisomy of both 

chromosomes 4 and 10, iAMP21, None of above with hazard ratios of 0.70, 0.68 and 1.67 show 

that the first two conditions decrease the hazard by 30 and 32% and the last increase the hazard 

by 67% compared to the baseline group with unknown molecular subtype. The TCF3-PBX1 

biomarker had levels unknown, negative and positive. The negative category with a hazard ratio 

of 0.76 decreases the hazard by 24% compared to the baseline group of TCF3-PBX1 unknown. 

The trisomy 4 and 10 feature had levels, unknown, negative and positive. The negative category 

with a hazard ratio of 1.52 increases the hazard by 52% compared to the baseline group of 

trisomy 4 and 10 unknown (Table 4-3). 
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Table 4-3. Cox-proportional hazard results showing the effect size for pediatric acute 

lymphoblastic leukemia 
Cancer type Covariates Coef Exp(Coef) S.E Wald Z Pr(>|z|) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ALL 

(Pediatric) 

Age at diagnosis 0.03 

 

1.03 

 

0.005 6.66 2.75e-11 

BCR_ABL1_status(negative) -0.33 0.72 0.60 -0.54 0.59 

BCR_ABL1_status(positive) -0.27 0.76 0.68 -0.41 0.68 

Cell of tumor origin (B-cell) -0.93 

 

0.39 

  

 

0.07 -13.29 <2e-16 

Cell of tumor origin (T-cell) -1.04 

 

0.35 0.08 -11.40 <2e-16 

Congenital abnormality (no) -0.53 0.59 0.18  -3.59 <0.001 

Congenital abnormality (yes) 2.12 8.30 0.15 9.17 <0.001 

MS = BCR-ABL1 0.18 1.19 0.36 0.49 0.63 

MS = ETV6-RUNX1 0.01 

 

1.00 0.11 0.01 0.99 

MS =Hyperdiploid with status of 4 and 10 unknown -0.18 0.83 0.25 -0.75 0.46   

MS= Hyperdiploidy without trisomy of both chromosomes 4 and 10 -0.40 0.70 0.13 -2.73 0.01 

MS=Hypodiploid 0.39 1.47 0.31 1.27 0.20 

MS=iAMP21 0.51 1.67 0.26 1.96 0.05 

MS=MLL-Rearranged 0.14 

 

1.15 0.19 0.73 0.47 

MS=None of above -0.39 

 

0.68 0.12 -3.19 0.001 

 MS=TCF3-HLF                                                   0.60 1.83 0.58 -1.04 0.30   

 MS=TCF3-PBX1                                                  0.15 1.17 0.29 0.52 0.60 

 MS=Trisomy of both chromosomes 4 and 10                       0.15 1.16 0.17 0.89 0.37   

TCF3_PBX1_status(negative) -0.27 0.76 0.07 -3.92 <0.001 

TCF3_PBX1_status (positive) -0.29 0.75 0.28 -1.06 0.29 

Trisomy 4 and 10 (negative) 0.42 1.52 0.07 5.23 <0.001 

Trisomy 4 and 10 (positive) 0.23 1.25 0.13 1.73 0.08 
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 Similarly, the best Cox proportional hazards model for pediatric neuroblastoma showed 

that the covariates INSS stages (2a,2b,3,4,4s) and hyperdiploid were significant (P < 0.05). 

However, the covariate unknown ploidy was not significant with p values: 0.4884. The p-values 

of INSS stages- 2,2b,3,4 and 4s diagnosis with a hazard ratio HR exp(coef) = 6.2115, 4.3297, 

3.5981, 9.4593 and 0.6928 indicating a strong relationship between the sex, INSS stage and the 

increased risk of mortality. Holding other covariates constant, a higher hyperdiploid is associated 

with poor survival.  Relatedly, sex =male (p-value: 0.02) with a HR = 0.8918, indicating a very 

strong relationship between the male sex and increased risk of death. (Table 4-4). 

Table 4-4. Cox-Proportional hazard results showing the effect size of pediatric neuroblastoma 

 

 

 

 

NB 

Covariates Coef Exp(Coef) S.E Wald 

Z 

Pr(>|z|) 

Age at Diagnosis  -0.01 0.98 0.03 -0.83 0.40 

INSS Stage 1 -0.84 0.44 0.19 -4.31 1.60e-05 

INSS Stage 2a -0.63 0.53 0.31 -1.98 0.04 

INSS Stage 2b 0.03 1.02 0.25 0.10 0.92 

INSS Stage 3 -0.04 0.96 0.19 -0.18 0.85 

INSS Stage 4 -0.67 0.51 0.18 -3.76 0.0017 

INSS Stage 4s 0.9916 2.6955 0.4747 2.09 0.0367 

MYCN = Amplified 0.28 1.33 0.40 0.71 0.48 

MYCN=Not Amplified -0.11 0.90 0.11 -0.97 0.33 

Ploidy_Diploid(DI =1) -0.367 0.6928 0.0952 -3.86 0.0001 

Ploidy = Hyperdiploid (DI >1) 0.87 2.39 0.21 4.14 3.42e-05 

 Sex=Male                                                                     -0.12 0.89 0.05 -2.33 0.02 

Sex = Female 0.07 1.07 0.09 0.82 0.41 
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5.1 Abstract 

Background: Variants of uncertain significance remain a major challenge in contemporary 

genetic variation screening methods. The advent of next-generation sequencing and other 

bioinformatics resources have uncovered a significant number of variants of uncertain 

significance which often hampers clinical decision-making. 

Methods: We proposed an ensemble machine learning (ML) approach to classifying clinical 

implication value of variants of unknown significance (VUS) using known mutation scores 

(PolyPhen, SIFT and mutation assessor), allele frequency, mutation type (insertion, deletion, 

frame shift), gnomAD among other features. Our machine learning models were evaluated using 

precision, recall, f-measure and area under the curve metrics.  

Result: Our results indicated that extreme gradient boosting and deep neural network classifiers 

had the best performance in the VUS and biological effect classification models respectively. 

Also, our results show that mutation predictive scores were the most informative features in the 

clinical implication classification of the VUS.  

Conclusion: The combination of ML model, genetic profiling and clinical information can 

contribute significantly to our understanding and interpretation of genetically related cancers 
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5.2 Introduction 

 Recent breakthroughs in next-generation sequencing (NGS) have played significant roles 

in our understanding of human genetic variations. NGS technologies such as multigene panels, 

whole-exome sequencing (WES), whole-genome sequencing (WGS) and genome-wide 

association studies (GWAS) have paved the way for the synchronized analysis of many genes 

and the generation of millions of short nucleic acid sequences in parallel (Oulas et al.,2019; Li et 

al., 2017; Shendure and Ji, 2008; Bentley et al., 2008). Most variants identified by NGS in tumor 

cells can be traced to carcinogenic complexity (Ding et al., 2012). NGS results acquired using 

DNA or RNA extracted from tumor tissue often illustrate a convoluted molecular signature that 

varies from that of normal tissue for any given patient (Li et al., 2017).  

           More recently, there is a consensus to incorporate NGS methodologies in clinical 

diagnosis, prognosis, and overall patient counseling. This can be attributed to their cost-

effectiveness and accuracy as evidenced by the increase in FDA approval of NGS methodologies 

(Green and Guyer 2011; Collins and Hamburg 2013). However, the overwhelming amount of 

variants shown in each patient has called into question the interpretation of clinically significant 

genetic variation (Yorczyk et al. 2015). 

           Cancer often arises from two to five mutations in various genes. These mutations are 

complex and with a combinatorial effect commonly lead to tumor proliferation and cancer 

progression (Levine et al.,2019). Oncogenes and tumor suppressor genes play prominent roles in 

cancer progression. An oncogene arises from mutation of proto-oncogenes which often leads to 

activation of uncontrolled cell growth. Most cancer-inducing mutations are acquired and activate 

oncogenes by gene duplication and chromosomal rearrangements. Tumor suppressors normally 

slow down cell division, regulate apoptosis and repair DNA errors. An anomaly in tumor 
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suppression mechanisms can lead to abnormal cell growth. The major difference between a 

tumor suppressor gene and an oncogene is that the former stems from the inactivation of proto-

oncogenes while the latter causes cancer when activated. Studies have shown that most 

oncogenes and tumor suppressor genes are acquired and not inherited (Mair et al., 2016; 

Brognard et al., 2011).  

           Mutation can confer an enhanced activity on a protein or more often reduce the 

functionality of a protein. Loss of function mutations in tumor-suppressor genes is often 

oncogenic. Five main protein types are generally identified as tumor-suppressor gene encoders: 

enzymes that participate in DNA repairs; proteins that promote apoptosis; intracellular proteins 

that regulate progression through a specific stage of cell cycle; receptors for secreted hormones 

that function to inhibit cell proliferation; and checkpoint proteins that stop the cell cycle if DNA 

is damaged. A gain of function mutations is not as common as the loss of function. However, 

activation of a proto-oncogene into an oncogene involves a gain of function mutation. For 

example, ras gene a proto-oncogene that encodes an intracellular signal-transduction 

protein; rasD gene, a ras mutant is an oncogene, which encodes oncoprotein provides an 

uncontrolled growth-promoting signal (Lodish et al., 2000). 

           Clinical mutation screening (CMS) of cancer predisposition genes for the presence of the 

mutation is often used for identifying patients with an elevated risk of cancer (Lindor et al., 

2012). The outcome from CMS is broadly categorized as pathogenic variation, benign mutation, 

and variants of unknown significance (VUS).   

Pathogenic mutation is genetic alterations with sufficient evidence to classify as capable of 

causing disease. Well studied tumor suppressor genes such as APC, BRCA1, BRCA2, NF1, 

TP53 have been linked with pathogenic (or likely pathogenic) variation (He et al. ,2016). For 
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example, the APC gene encodes a protein that is prominent in tumor suppression in WNT 

signaling pathway. Studies have shown that the mutational loss of APC function contributes to 

tumor proliferation and may lead to prostate cancer and colorectal cancer (Andres et al.,2018; He 

et al. ,2016; Markowitz and Bertagnolli 2009: Chen et al., 2013). Benign tumors are generally 

non-life threatening, although there are exceptions to this assumption. Benign tumors, for 

example, may have fatal consequences in the brain. The skull is inadequately equipped to contain 

tumor growth in the brain. Most benign tumors do not progress to malignancy. Benign cells 

retain normal cell’s functionality. The majority of benign tumors have fewer mutations and these 

mutations do not drive the more mutational proliferation (Wang et al., 2016). For example, 

Rutkowski et al., 2000 showed that identifying defective cell types in NF1-associated 

neurofibroma is important to understanding benign tumor mechanisms.  

           Variants of uncertain significance (VUS) are genetic mutations that have an unclear 

impact on protein function (Alosi et al., 2017 and Easton et al., 2007). VUS are often amino acid 

substitutions, intronic variants or small in-frame insertions or deletions. The actual effect of these 

variants on gene function is unknown, this makes the assessment of their clinical significance 

quite complex. About 50% of variants reported in well-studied genes such as p53, BRCA1 and 

BRCA2 are designated as VUS based on the level of clinical evidence (Larson et al. 2014). 

The number of VUS in the residual set remains substantial. The degree of pathogenicity is often 

not trivial, considering that nearly fifty percent of the unique variants are novel, and cannot be 

resolved using published literature and variant databases (Foley et al., 2015). Loss-of-function 

variants represent a very small fraction of known variants. Other identified variants are missense 

and synonymous variants in the exon, single nucleotide changes, or in-frame insertions or 

deletions in intervening and intergenic regions (Mucaki et al., 2016). Several genetic 
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susceptibility testing cancer patients often receive inconclusive and uncertain results that can be 

attributed to inconsistent accuracy in silico protein-coding prediction tools which often becomes 

challenging for clinical risk diagnosis. Variants of uncertain significance such as insertions 

/deletions (INDELs) and single nucleotide polymorphisms (SNPs) cause dilemmas for clinicians 

and uncertainty on how to advise patients. 

In this study, we propose a xgboost machine learning (ML) approach to reclassify the clinical 

significance value of VUS using a variety of prediction scores, mutation type and biological 

effect namely: total number of nonsynonymous mutations in the sample, variant allele frequency 

in the tumor sample, genome Aggregation Database (gnomAD), missense, fusion and in-frame 

deletion) features as predictors. Our ML methodology (1) utilizes probability for clinical 

significance class discrimination, (2) reclassifies a VUS’ clinical implication based on the 

highest probability value, (3) Compares and evaluates the predictive power of various VUS 

classifiers using precision, recall and ROC metrics, and (4) ranks the features based on their level 

of informativeness .  

5.3 Methods 

In this study, we examined the prediction capability of xgboost model at reclassifying VUS 

based on ACMG clinical values of cancer linked variants. The predictive performance of the 

xgboost model was compared with multilayer perceptron and polynomial support vector 

machines (SVM) models.  

5.3.1 Genomic Variation Dataset 
 

Open access CBioPortal and ClinVar databases were the primary sources of datasets (Cerami et 

al., 2012; Gao et al., 2013; Landrum et al., 2017). A total of distinct 145 oncogenes and tumor 
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suppressor genes (TSG) including EGFR, KRAS, BRAF, MYC, BRCA (1 and 2), JAK2, 

IL2, and TP53 were used to aggregate the datasets for this study (Table 5-1). These cancer-linked 

genes are the genes that have been well studied and have enough data for genomic analysis. The 

dataset consisted of functionally validated 18548 tumor suppressor genes samples and 17590 

oncogenic samples (Figure 5-2). A total of 43 functional and structural features including 

missense variant, upstream gene variant, regulatory region variant, allele frequency, mutation 

type, biological response(biotype) were used for the ML experiment. The classification models 

were subsequently used for reclassification of VUS by considering data from 18 primary cancer 

sites including liver, skin, ovary, prostate, kidney, lymphoid, stomach, bladder, cervix, pancreas, 

thyroid, uterus, myeloid, bowel.   
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A 

B 

Figure 5-1: Exploratory data analysis of the clinical implication of cancer-linked variations and 

cancer gene types. (A) Summary distribution of clinical significance of genetic variants. (B) 

Statistical distribution of cancer related genes- tumor suppressors and oncogenes   

5.3.2 Clinical Significance Predictors:  Feature Selection and Feature Importance 

Analysis  
 

 The features selected used for VUS reclassification were obtained from cbioportal for 

cancer genomics. The features used for the reclassification are broadly classified into (1) 

Mutation type (splice region, missense, in-frame insertion, in-frame deletion, fusion);  (2) 
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Prediction scores (SIFT, PROVEAN, MutationAssessor, GERP, CADD, PolyPhen-2, 

FATHMM, MutationTaster); (3) Sequence sample features (allele frequency, copy deletion, 

copy gain, mutant in sample); (4) Biological effect impact (intron variant, splice donor variant, 3 

prime UTR variants, missense variant, deleterious impact, chromosome location, cancer type, 

loss of function, gain of function);  and (5) Biotype/biological response (nonstop decay, misc 

RNA, snoRNA, processed transcript, retained intron, CTCF binding site, processed pseudogene, 

polymorphic pseudogene and translated processed pseudogene).  

 Clinical significance (risk level) was used as the response/target feature.  Multiple 

clinical and genetic evidence were combined to classify variants into 5 distinct risk levels: (1) 

benign variants, (2) likely benign (VLB), (3) VUS, (4) likely pathogenic (VLP) and (5) 

pathogenic variant (Table 5-2) (Richards et al., 2015; Karam et al., 2019). The benign variation 

of clinical value includes polymorphic sequence variants which normally do not lead to disease 

progression. A gene is considered polymorphic if more than one allele occupies the locus of a 

gene within a population and its alleles must have a frequency of one percent or more in the 

population. They are often found outside of genes and have neutral biological and function 

effects. Polymorphic variation affects drug responses and contributes to disease susceptibility as 

in the case of single nucleotide polymorphism.  VLBs are alterations with significant evidence 

against pathogenicity, they are not expected to play a role in disease progression. However, 

additional evidence is usually needed to ascertain the clinical significance of these variants in 

variation disease paradigm.  VUSs are variations in genetic sequence for which association with 

disease risk is unclear. VUS consists of a part of the gene that exhibits some alterations however 

there is no sufficient molecular information to determine if its benign or a risk factor for cancer. 

Over time, data is collected for reclassification of VUS.  Generally, VUS are not used in clinical 
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decision making, therefore other factors are considered along with VUS to make any clinical 

diagnosis. VLPs have a high probability of pathogenicity. The identified variant is considered the 

likely cause of the cancer but with a degree of uncertainty. The variants often result in impetuous 

truncation in a gene where loss of function has been established as a mechanism of pathogenicity 

for cancer development. Pathogenic variation involves alterations that increase susceptibility and 

contribute to cancer development. Some pathogenic variants may not be wholly penetrant. Some 

of these variants may not be adequately equipped to cause cancer on their own such as in the 

case of recessive conditions. Usually, additional evidence has no impact on the classification of 

the variants. 

 We computed 243 features for each sample in the datasets. The VUS data was queried 

and set aside as unlabeled data. The remainder of the dataset (benign, VLB, VLP and pathogenic 

samples) was resampled and partitioned into train and test sets (70-30 percent ratio) so as to 

remove bias and prevent model overfitting.  The train set consists of 70.80 % VLP, 28.39 % 

MUT, 0.48 % VLB and 0.33 % POLY samples (Figure 5-2A).  The training set was subjected to 

outright removal of redundant features with high sparsity and recursive feature elimination 

process, where one by one a feature is removed, and the model trained on the resulting data set. 

If the accuracy of the model stays above a predefined threshold, the feature is removed 

permanently, and the process is repeated. If removal of any feature increases the accuracy, the 

threshold increases also. Single value elimination was used. We set a threshold of 0.001 less 

accuracy to declare a feature important to prediction, resulting in a final data set of 43 features. 

The test set contained 30% of the samples from the original data set, ensuring that the 

distribution of variants of known significance were equivalent to that of the original data set 
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A statistical test of dependence- Pearson’s correlation was done to assess the pairwise 

relationships among the predictors. Ideally, orthogonal pairwise relationships are ideal and 

desirable for building machine learning models. The goal of the multicollinearity check is to 

identify pairwise relationship (high intercorrelations) that have potential of causing overfitting in 

the machine learning models (P. Vatcheva et al., 2016; Atems and Bergtold, 2015, Kroll and 

Song 2013). Data discrepancies- missing values imputation was handled by using nearest 

neighbor and median values approach depending on the data kind (categorical or numerical 

features).Other discrepancies were handled using outlier detection techniques and min-max 

feature rescaling for data normalization while regular expression for feature extraction of string 

features (Geng et al., 2018). 

𝛽 ̂ ≡  𝑎𝑟𝑔𝑚𝑖𝑛(∥ 𝑦 − 𝑋𝛽 ∥2+ 𝜆2 ∥ 𝛽 ∥2+ 𝜆1 ∥ 𝛽 ∥1           (5˗1) 

Where  𝛽̂ 𝑖𝑠 𝑝𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, ∥ 𝛽 ∥2   
is the quadratic penalty term,  

 𝜆 → 𝑡𝑢𝑛𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝛽 → 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠 
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Table 5-1. List of oncogenes and tumor suppressors used for data collection and aggregation 
Tumor Suppressors Oncogenes 

APC IL2 TNFAIP3 ABL1 EVI1 MYC 

ARHGEF12 JAK2 TP53 ABL2 EWSR1 MYCL1 

ATM MAP2K4 TSC1 AKT1 FEV MYCN 

BCL11B MDM4 TSC2 AKT2 FGFR1 NCOA4 

BLM MEN1 VHL ATF1 FGFR1OP NKFB2 

BMPR1A MLH1 WRN BCL11A FGFR2 NRAS 

BRCA1 MSH2 WT1 BCL2 FUS NTRK1 

BRCA2 NF1  BCL3 GOLGA5 NUP214 

CARS NF2 BCL6 GOPC PAX8 

CBFA2T3 NOTCH1 BCR HMGA1 PDGFB 

CDH1 NPM1 BRAF HMGA2 PIK3CA 

CDH11 NR4A3 CARD11 HRAS PIM1 

CDK6 NUP98 CBLB IRF4 PLAG1 

CDKN2C PALB2 CBLC JUN PPARG 

CEBPA PML CCND1 KIT PTPN11 

CHEK2 PTEN CCND2 KRAS RAF1 

CREB1 RB1 CCND3 LCK REL 

CREBBP RUNX1 CDX2 LMO2 RET 

CYLD SDHB CTNNB1 MAF ROS1 

DDX5 SDHD DDB2 MAFB SMO 

EXT1 SMARCA4 DDIT3 MAML2 SS18 

EXT2 SMARCB1 DDX6 MDM2 TCL1A 

FBXW7 SOCS1 DEK MET TET2 

FH STK11 EGFR MITF TFG 

FLT3 SUFU ELK4 MLL TLX1 

FOXP1 SUZ12 ERBB2 MPL TPR 

GPC3 SYK ETV4 MYB USP6 

IDH1 TCF3 ETV6  
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Table 5-2. The classification of genetic variants, based on the ACMG guidelines 

Allelic Variants clinical significance value  

Polymorphism Benign (POLY) Benign 

 Variant-likely benign Likely benign (VLB) 

Uncertain significance 

Inconclusive 

Variant of uncertain 

significance (VUS)  

VUS 

 Variant-likely pathogenic Likely pathogenic (VLP) Pathogenic 

Somatic not response Pathogenic (MUT) 

 

For comparison purposes, we examined the result of binary VUS classification. In the binary 

models, the clinical significance values POLY and VLB were recategorized as “Benign” variants 

while the VLP and MUT were redesignated as “pathogenic” variants. 

5.3.3 Proposed Models:  Extreme Gradient Boosting (xgboost) 
 

  In this experiment, we used xgboost as the primary classifier and compared its 

performance with two other ML classifiers: polynomial support vector machines (poly-SVM) 

and deep-neural network (multilayer perceptron) for VUS reclassification (Chen and Guestrin, 

2016; Narasimhan and Agarwal 2017; Zhang et al., 2019; Agajanian et al., 2019 and 

Sakellaropoulos et al., 2019). The choice of classifiers was chosen based on the following 

criteria: speed and run time on train set and statistical- probabilistic interpretability of the 

classification outcome. It is important to note that nominal features such as cancer gene type, 

mutation type, and variation copy were processed for modeling using dummy variable (one-hot 

encoding) technique. Dummy variables ensure a non-rank numerical representation of the 

categorical features. xgboost, SVM-Poly, and NN classifiers were used for the 4 class and binary 
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reclassification of the clinical implication of the VUS. To avoid the drawback of overfitting of 

the classifiers and account for the skewness in the distribution of the benign-pathogenic binary 

class, we oversampled the clinical implication using the synthetic minority over-sampling 

technique -SMOTE (Zheng et al.,2015). For the model evaluation, we used the f-measure, 

precision, recall, sensitivity, specificity and area under the curve (AUC) metrics as earlier 

described in chapter 2. After evaluating the model performance, feature importance was done to 

rank the most informative features used by the model for VUS reclassification. 

5.4 Results and Discussion 

5.4.1 Machine learning classification of cancer linked genes on variant datasets:  
Prediction scores, Mutation type and Sequence sample features outperform 
biological response predictors 

 

 We trained the SVM, xgboost and MLP/D-NN models by considering cbioportal cancer-

linked variants datasets and using a set of diverse features including mutation type features; 

biological response features; sequence sample features and prediction scores. In this analysis, we 

examined the performance of the three classifiers and focused on identifying the five most 

informative sets of features that contribute significantly to the VUS reclassification process 

(Figure 5-3). In our prediction score sets, SIFT was the most informative feature that contributed 

to the reclassification of VUS followed by PROVEAN, mutationassessor, Gerp and CADD. 

Whereas in the mutation_type set, fusion was the most informative predictor followed by 

missense, splice region, in-frame deletion and in-frame insertion (Figure 5-3A).  In the sequence 

sample features set, allele frequency was the most significant feature that contributed to the VUS 

reclassification while copy gain, copy deletion, mutant in a sample and COSMIC occurrence 

came in second, third, fourth and fifth place respectively. Whereas gain of function (bio_eff (G)) 
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and loss of function (biol_eff (L)) were the most prominent features in the biological 

response/biological effect set (Figure 5-3A). Interestingly, upon the combination of the four 

feature sets, allele frequency remained the most informative features in the ML reclassification 

of the VUS (Figure 5-3B). In addition, missense variation that was less prominent among the 

mutation_type set, is more informative upon the combination of all feature sets. Among the top 

ten combined features, biological response feature sets, biological were cumulatively the least 

informative features in the importance distribution in our model (Figure 5-2B) 

5.4.2 Examination of Intercorrelation pairwise relationship among the prediction scores, 
mutation type, sequence sample features and biological response feature sets. 

 

 A key rationale behind consideration of the intercorrelation among the features sets is to 

examine the pairwise relationship among the predictors to identify and evaluate if there is 

codependency among the prediction scores, mutation type, sequence sample features, and 

biological features sets. Multicollinearity introduces bias and variance in a model and thereby 

compromising the predictive power of a model. To check for feature codependency, we 

computed and analyzed pairwise correlations between the feature sets with Pearson's pairwise 

correlation coefficient (Figure 5-4). From our findings, SIFT had an inverse relationship with 

MutationAssessor and PolyPhen scores -0.62 and -0.54. However, PolyPhen had a high positive 

correlation with mutation assessor 0.48 (Figure 5-4). This confirms the complementary nature of 

the mutation scores in predicting cancer pathogenicity. Overall, the correlation coefficient matrix 

indicated that the combination of these features is orthogonal and therefore not prone to model 
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overfitting

A 

 B 

Figure 5-2: Feature importance analysis of xgboost ML model on cancer-linked dataset of 

genomic variation showing the most informative features in VUS reclassification. (A) Feature 

importance of prediction scores, mutation type, sequence sample and biological response feature 

sets showing top-five most informative features. (B) Feature importance of all four feature sets 

combination showing top ten most informative features 
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Figure 5-3. Pearson’s pairwise correlation coefficients between the prediction scores, mutation 

type, sequence sample and biological response features sets. 

 

5.4.3 Comparative Analysis of Machine Learning Reclassification of Clinical Implication 
of Variants of Uncertain Significance  

 

 We evaluated and compared the predictive performance of xgboost, SVM and D-NN/ 

MLP models using sensitivity(recall), specificity, precision and f-score metrics (Table 5-3). 

The table showed that the xgboost model outperformed the SVM and D-NN/MLP models  

( f-score = 0.92 ) in the reclassification of VUS clinical implication.  Xgboost had a sensitivity of 

0.9177 and a precision of 0.9311. 
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Table 5-3. Comparative evaluation of classifiers for VUS clinical implication reclassification 

 

Metric 

Classifiers 

SVM-POLY Xgboost Neural Network 

Recall (Sensitivity) 0.8365 0.9177 0.8399 

Precision  0.8411 0.9311 0.8147 

F-score 0.8388 0.9244 0.8271 

 

 In the xgboost model, we recorded a recall, precision and f-measure scores of 0.9177, 

0.9311 and 0.9244 respectively. This can be attributed to the relatively small sample size of the 

benign and VLB class. On the other hand, xgboost had a weighted true positive rate of 91.77% 

benign, VLB, VLP, and oncogenic(pathogenic) predictions respectively. In simpler terms, the 

percentage of VUS mutations that were correctly classified as benign, VLB, VLP and pathogenic 

while it had a true negative rate (specificity) of 84.25% (VLP) and 97.21%(pathogenic). Xgboost 

recorded a precision of 0.935 and 0.9272 this means that a VUS was predicted to be likely 

pathogenic (VLP) and pathogenic the predictions were correct 93.5% and 92.72% of the time 

respectively. In the SVM-poly model, we had recall and precision scores of 0.8365 and 0.8411 

respectively. Of the benign mutations, VLB, VLP and pathogenic, 83.65% were classified as 

benign, VLP and pathogenic. Of the mutations classified as benign, VLP and pathogenic, 

84.11% of them were correctly classified. In the deep neural network model, of the benign 

mutations, VLB, VLP, and MUT 83.99% of them were classified as benign, VLB, VLP and 

MUT while of the mutations classified as benign, VLB, VLP, and MUT 81.47% of them were 

correctly classified. Overall, the xgboost model performed best with an F-score of 0.9244 when 

compared with the SVM-poly and D-NN models.  
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In the binary classification model, the xgboost classifier (with AUC: 0.7844) outperformed SVM 

(AUC: 0.7365) and D-NN (AUC: 0.7404) classifiers at reclassifying VUS(Figure 5-5).   

Evaluating the multiclass and binary models, we observed that the classifiers were better at 

reclassifying VUS based on ACMG 4 point scale (benign, VLB, VLP and pathogenic)  when 

compared with the benign-pathogenic dichotomous class. 

 

Figure 5-4: ROC/AUC plot for binary reclassification of VUS. Xgboost outperform SVM and D-

NN at reclassifying VUS  
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6 Conclusion 
 

Identification and characterization of cancer driving mutations remain a challenge in 

understanding tumor progression. Several bioinformatic strategies have been developed to 

examine the functional effects of variants that contribute to cancer.  The incorporation of 

biological context in predictive models means more robust and biologically relevant predictions. 

In this dissertation, we leveraged ML predictions to (i) identify and classify cancer-linked 

mutations, (ii) reclassify the clinical significance value of VUS and (iii) predict survival status of 

selected unresectable cancers. 

In the  ML classification and functional analysis of cancer mutations study (Chapter 2), 

we compared two cancer-specific machine learning classifiers (Logit vs. RF) for prediction of 

driver mutations in cancer-associated genes that were validated on canonical data sets of 

functionally validated mutations and applied to a large cancer genomics data set. We have found 

that evolutionary-based features to be the most informative in machine learning predictions and 

provide orthogonal information to the ensemble-based scores that dominate feature importance 

ranking. By utilizing a comparative analysis with various structure–functional experiments and 

multicenter mutational calling data from Pan-Cancer Atlas studies, we demonstrated that the 

robustness of machine learning models that capture ∼90% of experimentally validated 

mutational hotspots among predicted driver mutations. The results of this study have also 

indicated that although the range of predicted driver mutations may be broader than the 

experimentally validated group of drivers, some of the predicted “false positive” variants can 

present viable candidates for further experimental testing and validation. 
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           In the integration of RF and D-CNN for classification of cancer driver mutations study 

(chapter 3), we demonstrated that various ML approaches for prediction cancer driver mutations. 

We explored the D-CNN model's capability of classifying cancer driver mutations directly from 

raw nucleotide sequence information without depending on functional prediction and 

evolutionary scores. The results further demonstrate that though D-CNN models can learn high-

level features from genomic information that has sufficiently high importance, accurate 

classification of cancer mutation driver phenotype using exclusively nucleotide data is not a 

practical approach.  

           In the survival status study (chapter 4), we used an xgboost model to predict the survival 

status of five cancer studies and found that genomic features (molecular subtypes and ploidy) 

and clinical features (age at diagnosis, race, sex) are critical components of survival status 

classification. In the feature importance ranking analysis, age at diagnosis was a dominant 

feature in ALL, COAD, GLIO and P-NB cancer studies. In the ALL Cox model, age at 

diagnosis, cell tumor origin (T and B cells), TCF3_PBX1_status(negative), congenital 

abnormality, MS= Hyperdiploidy without trisomy of both chromosomes 4 and 10 are statistically 

significant features. Likewise, the INSS stage and ploidy are key predictors for examining the 

survival rate of pediatric neuroblastoma. The results of this study suggest the further exploration 

of genomic features will help in the understanding of survival indicators of cancer diseases. 

           In the VUS reclassification study (chapter 5), we have developed an intuitive machine 

learning-based approach to classifying the clinical significance value of VUS. The major 

findings of the present study are as follows (i) xgboost classifier does a decent job at 

reclassifying clinical significance value of  VUS  with a precision score of 0.9177, recall score of 

0.9311 and  f-measure score of 0.9244 (ii) based on the analysis of our result, the three classifiers 
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reclassified most of the VUS as VLP,(iii) the classifiers are better at clinical significance 

discrimination for  ACMG four-tiered scheme than the binary models and  (iv) mutation scores 

and allele frequency are the most informative features need for VUS reclassification. Genomic 

data remains the deciding factor in the clinical significance value of a variant -the level of 

clinical evidence. To gather sufficient data, a collaboration between academia and industry 

collaboration has to be fostered. Machine learning in combination with clinical information 

about a patient (phenotype information and familial medical history) can help genetic counselors 

and clinicians in understanding clinical interpretation of genetically related cancers.  

Contribution of This Work to Cancer Studies 

Previous works use clinical indicators in the diagnosis of cancer. However, we used the 

combination of clinical and genomic features in the prediction and classification of cancer-

driving mutations, VUS reclassification, and cancer survival classification.  To evaluate the most 

informative features in the cancer classifications mentioned earlier, we ranked features based on 

their contribution to the models. This work has contributed to the identification and 

characterization of cancer-driving genes, which are vital for early cancer detection. We have 

demonstrated the robustness of the ML approach in the prediction and classification of cancer-

driving mutations based on functional, evolutionary conservation, and integrated ensemble 

scores. Our ML approach has highlighted the role of SNVs in cancer diagnosis. Additionally, 

integration of ML approach with other computational strategies may improve the survival 

outcomes of unresectable cancers. 
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