2,069 research outputs found

    Machine Learning Centered Energy Optimization In Cloud Computing: A Review

    Get PDF
    The rapid growth of cloud computing has led to a significant increase in energy consumption, which is a major concern for the environment and economy. To address this issue, researchers have proposed various techniques to improve the energy efficiency of cloud computing, including the use of machine learning (ML) algorithms. This research provides a comprehensive review of energy efficiency in cloud computing using ML techniques and extensively compares different ML approaches in terms of the learning model adopted, ML tools used, model strengths and limitations, datasets used, evaluation metrics and performance. The review categorizes existing approaches into Virtual Machine (VM) selection, VM placement, VM migration, and consolidation methods. This review highlights that among the array of ML models, Deep Reinforcement Learning, TensorFlow as a platform, and CloudSim for dataset generation are the most widely adopted in the literature and emerge as the best choices for constructing ML-driven models that optimize energy consumption in cloud computing

    Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability

    Get PDF
    Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering task-specific monitoring and control services. The unique features of IoT include extreme heterogeneity, massive number of devices, and unpredictable dynamics partially due to human interaction. These call for foundational innovations in network design and management. Ideally, it should allow efficient adaptation to changing environments, and low-cost implementation scalable to massive number of devices, subject to stringent latency constraints. To this end, the overarching goal of this paper is to outline a unified framework for online learning and management policies in IoT through joint advances in communication, networking, learning, and optimization. From the network architecture vantage point, the unified framework leverages a promising fog architecture that enables smart devices to have proximity access to cloud functionalities at the network edge, along the cloud-to-things continuum. From the algorithmic perspective, key innovations target online approaches adaptive to different degrees of nonstationarity in IoT dynamics, and their scalable model-free implementation under limited feedback that motivates blind or bandit approaches. The proposed framework aspires to offer a stepping stone that leads to systematic designs and analysis of task-specific learning and management schemes for IoT, along with a host of new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive and Scalable Communication Network

    Reinforcement Learning Framework for Server Placement and Workload Allocation in Multi-Access Edge Computing

    Full text link
    Cloud computing is a reliable solution to provide distributed computation power. However, real-time response is still challenging regarding the enormous amount of data generated by the IoT devices in 5G and 6G networks. Thus, multi-access edge computing (MEC), which consists of distributing the edge servers in the proximity of end-users to have low latency besides the higher processing power, is increasingly becoming a vital factor for the success of modern applications. This paper addresses the problem of minimizing both, the network delay, which is the main objective of MEC, and the number of edge servers to provide a MEC design with minimum cost. This MEC design consists of edge servers placement and base stations allocation, which makes it a joint combinatorial optimization problem (COP). Recently, reinforcement learning (RL) has shown promising results for COPs. However, modeling real-world problems using RL when the state and action spaces are large still needs investigation. We propose a novel RL framework with an efficient representation and modeling of the state space, action space and the penalty function in the design of the underlying Markov Decision Process (MDP) for solving our problem

    Edge-centric Optimization of Multi-modal ML-driven eHealth Applications

    Full text link
    Smart eHealth applications deliver personalized and preventive digital healthcare services to clients through remote sensing, continuous monitoring, and data analytics. Smart eHealth applications sense input data from multiple modalities, transmit the data to edge and/or cloud nodes, and process the data with compute intensive machine learning (ML) algorithms. Run-time variations with continuous stream of noisy input data, unreliable network connection, computational requirements of ML algorithms, and choice of compute placement among sensor-edge-cloud layers affect the efficiency of ML-driven eHealth applications. In this chapter, we present edge-centric techniques for optimized compute placement, exploration of accuracy-performance trade-offs, and cross-layered sense-compute co-optimization for ML-driven eHealth applications. We demonstrate the practical use cases of smart eHealth applications in everyday settings, through a sensor-edge-cloud framework for an objective pain assessment case study
    • …
    corecore