2,488 research outputs found

    Envisioning the Future Role of 3D Wireless Networks in Preventing and Managing Disasters and Emergency Situations

    Full text link
    In an era marked by unprecedented climatic upheavals and evolving urban landscapes, the role of advanced communication networks in disaster prevention and management is becoming increasingly critical. This paper explores the transformative potential of 3D wireless networks, an innovative amalgamation of terrestrial, aerial, and satellite technologies, in enhancing disaster response mechanisms. We delve into a myriad of use cases, ranging from large facility evacuations to wildfire management, underscoring the versatility of these networks in ensuring timely communication, real-time situational awareness, and efficient resource allocation during crises. We also present an overview of cutting-edge prototypes, highlighting the practical feasibility and operational efficacy of 3D wireless networks in real-world scenarios. Simultaneously, we acknowledge the challenges posed by aspects such as cybersecurity, cross-border coordination, and physical layer technological hurdles, and propose future directions for research and development in this domain

    A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From Communications to Sensing and Intelligence

    Full text link
    Due to the advancements in cellular technologies and the dense deployment of cellular infrastructure, integrating unmanned aerial vehicles (UAVs) into the fifth-generation (5G) and beyond cellular networks is a promising solution to achieve safe UAV operation as well as enabling diversified applications with mission-specific payload data delivery. In particular, 5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in three-dimensional (3D) space. On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference. Besides the requirement of high-performance wireless communications, the ability to support effective and efficient sensing as well as network intelligence is also essential for 5G-and-beyond 3D heterogeneous wireless networks with coexisting aerial and ground users. In this paper, we provide a comprehensive overview of the latest research efforts on integrating UAVs into cellular networks, with an emphasis on how to exploit advanced techniques (e.g., intelligent reflecting surface, short packet transmission, energy harvesting, joint communication and radar sensing, and edge intelligence) to meet the diversified service requirements of next-generation wireless systems. Moreover, we highlight important directions for further investigation in future work.Comment: Accepted by IEEE JSA

    Location prediction and trajectory optimization in multi-UAV application missions

    Get PDF
    Unmanned aerial vehicles (a.k.a. drones) have a wide range of applications in e.g., aerial surveillance, mapping, imaging, monitoring, maritime operations, parcel delivery, and disaster response management. Their operations require reliable networking environments and location-based services in air-to-air links with cooperative drones, or air-to-ground links in concert with ground control stations. When equipped with high-resolution video cameras or sensors to gain environmental situation awareness through object detection/tracking, precise location predictions of individual or groups of drones at any instant possible is critical for continuous guidance. The location predictions then can be used in trajectory optimization for achieving efficient operations (i.e., through effective resource utilization in terms of energy or network bandwidth consumption) and safe operations (i.e., through avoidance of obstacles or sudden landing) within application missions. In this thesis, we explain a diverse set of techniques involved in drone location prediction, position and velocity estimation and trajectory optimization involving: (i) Kalman Filtering techniques, and (ii) Machine Learning models such as reinforcement learning and deep-reinforcement learning. These techniques facilitate the drones to follow intelligent paths and establish optimal trajectories while carrying out successful application missions under given resource and network constraints. We detail the techniques using two scenarios. The first scenario involves location prediction based intelligent packet transfer between drones in a disaster response scenario using the various Kalman Filtering techniques. The second scenario involves a learning-based trajectory optimization that uses various reinforcement learning models for maintaining high video resolution and effective network performance in a civil application scenario such as aerial monitoring of persons/objects. We conclude with a list of open challenges and future works for intelligent path planning of drones using location prediction and trajectory optimization techniques.Includes bibliographical references

    Blockchain-Based Security Architecture for Unmanned Aerial Vehicles in B5G/6G Services and Beyond: A Comprehensive Approach

    Full text link
    Unmanned Aerial Vehicles (UAVs), previously favored by enthusiasts, have evolved into indispensable tools for effectively managing disasters and responding to emergencies. For example, one of their most critical applications is to provide seamless wireless communication services in remote rural areas. Thus, it is substantial to identify and consider the different security challenges in the research and development associated with advanced UAV-based B5G/6G architectures. Following this requirement, the present study thoroughly examines the security considerations about UAVs in relation to the architectural framework of the 5G/6G system, the technologies that facilitate its operation, and the concerns surrounding privacy. It exhibits security integration at all the protocol stack layers and analyzes the existing mechanisms to secure UAV-based B5G/6G communications and its energy and power optimization factors. Last, this article also summarizes modern technological trends for establishing security and protecting UAV-based systems, along with the open challenges and strategies for future research work.Comment: 25 pages, 6 figures, 3 table

    Autonomic Faulty Node Replacement in UAV-Assisted Wireless Sensor Networks: a Test-bed

    Get PDF
    Several use-cases of the Internet of Things (IoT) rely on the development of large-scale Wireless Sensor Networks (WSNs) in harsh environments characterized by limited Internet connectivity and battery-powered operations. In such scenarios, the failure of a single node due to energy depletion or hardware issues may cause network partitions and disrupt partially or completely the system operations until the intervention of a human operator. In this paper, we investigate the usage of Unmanned Aerial Networks (UAVs) to enable sensory data collection and support resilient communications in presence of faulty sensor nodes. More specifically, we study the possibility of replacing the ground devices with UAVs which are able to temporarily restore the multi-hop communication towards the WSN sink. To this aim, we extended the Uhura framework, a platform for robotic networking, with novel features for automatic network partition detection and UAV-sink coordination. Then, we created a small test-bed composed of a Bluetooth Mesh WSN and one drone, and characterized the performance of the UAV-assisted WSN system in terms of packet delivery ratio of the end-to-end data flows

    A Survey on Energy Optimization Techniques in UAV-Based Cellular Networks: From Conventional to Machine Learning Approaches

    Get PDF
    Wireless communication networks have been witnessing an unprecedented demand due to the increasing number of connected devices and emerging bandwidth-hungry applications. Albeit many competent technologies for capacity enhancement purposes, such as millimeter wave communications and network densification, there is still room and need for further capacity enhancement in wireless communication networks, especially for the cases of unusual people gatherings, such as sport competitions, musical concerts, etc. Unmanned aerial vehicles (UAVs) have been identified as one of the promising options to enhance the capacity due to their easy implementation, pop up fashion operation, and cost-effective nature. The main idea is to deploy base stations on UAVs and operate them as flying base stations, thereby bringing additional capacity to where it is needed. However, because the UAVs mostly have limited energy storage, their energy consumption must be optimized to increase flight time. In this survey, we investigate different energy optimization techniques with a top-level classification in terms of the optimization algorithm employed; conventional and machine learning (ML). Such classification helps understand the state of the art and the current trend in terms of methodology. In this regard, various optimization techniques are identified from the related literature, and they are presented under the above mentioned classes of employed optimization methods. In addition, for the purpose of completeness, we include a brief tutorial on the optimization methods and power supply and charging mechanisms of UAVs. Moreover, novel concepts, such as reflective intelligent surfaces and landing spot optimization, are also covered to capture the latest trend in the literature.Comment: 41 pages, 5 Figures, 6 Tables. Submitted to Open Journal of Communications Society (OJ-COMS
    corecore