31 research outputs found

    Comprehensive Evaluations of Student Performance Estimation via Machine Learning

    Get PDF
    Success in student learning is the primary aim of the educational system. Artificial intelligence utilizes data and machine learning to achieve excellence in student learning. In this paper, we exploit several machine learning techniques to estimate early student performance. Two main simulations are used for the evaluation. The first simulation used the Traditional Machine Learning Classifiers (TMLCs) applied to the House dataset, and they are Gaussian NaĂŻve Bayes (GNB), Support Vector Machine (SVM), Decision Tree (DT), Multi-Layer Perceptron (MLP), Random Forest (RF), Linear Discriminant Analysis (LDA), and Quadratic Discriminant Analysis (QDA). The best results were achieved with the MLP classifier with a division of 80% training and 20% testing, with an accuracy of 88.89%. The fusion of these seven classifiers was also applied and the highest result was equal to the MLP. Moreover, in the second simulation, the Convolutional Neural Network (CNN) was utilized and evaluated on five main datasets, namely, House, Western Ontario University (WOU), Experience Application Programming Interface (XAPI), University of California-Irvine (UCI), and Analytics Vidhya (AV). The UCI dataset was subdivided into three datasets, namely, UCI-Math, UCI-Por, and UCI-Fused. Moreover, the AV dataset has three targets which are Math, Reading, and Writing. The best accuracy results were achieved at 97.5%, 99.55%, 98.57%, 99.28%, 99.40%, 99.67%, 92.93%, 96.99%, and 96.84% for the House, WOU, XAPI, UCI-Math, UCI-Por, UCI-Fused, AV-Math, AV-Reading, and AV-Writing datasets, respectively, under the same protocol of evaluation. The system demonstrates that the proposed CNN-based method surpasses all seven conventional methods and other state-of-the-art-work

    Implementing decision tree-based algorithms in medical diagnostic decision support systems

    Get PDF
    As a branch of healthcare, medical diagnosis can be defined as finding the disease based on the signs and symptoms of the patient. To this end, the required information is gathered from different sources like physical examination, medical history and general information of the patient. Development of smart classification models for medical diagnosis is of great interest amongst the researchers. This is mainly owing to the fact that the machine learning and data mining algorithms are capable of detecting the hidden trends between features of a database. Hence, classifying the medical datasets using smart techniques paves the way to design more efficient medical diagnostic decision support systems. Several databases have been provided in the literature to investigate different aspects of diseases. As an alternative to the available diagnosis tools/methods, this research involves machine learning algorithms called Classification and Regression Tree (CART), Random Forest (RF) and Extremely Randomized Trees or Extra Trees (ET) for the development of classification models that can be implemented in computer-aided diagnosis systems. As a decision tree (DT), CART is fast to create, and it applies to both the quantitative and qualitative data. For classification problems, RF and ET employ a number of weak learners like CART to develop models for classification tasks. We employed Wisconsin Breast Cancer Database (WBCD), Z-Alizadeh Sani dataset for coronary artery disease (CAD) and the databanks gathered in Ghaem Hospital’s dermatology clinic for the response of patients having common and/or plantar warts to the cryotherapy and/or immunotherapy methods. To classify the breast cancer type based on the WBCD, the RF and ET methods were employed. It was found that the developed RF and ET models forecast the WBCD type with 100% accuracy in all cases. To choose the proper treatment approach for warts as well as the CAD diagnosis, the CART methodology was employed. The findings of the error analysis revealed that the proposed CART models for the applications of interest attain the highest precision and no literature model can rival it. The outcome of this study supports the idea that methods like CART, RF and ET not only improve the diagnosis precision, but also reduce the time and expense needed to reach a diagnosis. However, since these strategies are highly sensitive to the quality and quantity of the introduced data, more extensive databases with a greater number of independent parameters might be required for further practical implications of the developed models

    Innovations and Social Media Analytics in a Digital Society

    Get PDF
    Recent advances in digitization are transforming healthcare, education, tourism, information technology, and some other sectors. Social media analytics are tools that can be used to measure innovation and the relation of the companies with the citizens. This book comprises state-ofthe-art social media analytics, and advanced innovation policies in the digitization of society. The number of applications that can be used to create and analyze social media analytics generates large amounts of data called big data, including measures of the use of the technologies to develop or to use new services to improve the quality of life of the citizens. Digitization has applications in fields from remote monitoring to smart sensors and other devices. Integration generates data that need to be analyzed and visualized in an easy and clear way, that will be some of the proposals of the researchers present in this book. This volume offers valuable insights to researchers on how to design innovative digital analytics systems and how to improve information delivery remotely.info:eu-repo/semantics/publishedVersio

    Innovations and Social Media Analytics in a Digital Society

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF

    Extracting Statistical Graph Features for Accurate and Efficient Time Series Classification

    Get PDF
    This paper presents a multiscale visibility graph representation for time series as well as feature extraction methods for time series classification (TSC). Unlike traditional TSC approaches that seek to find global similarities in time series databases (eg., Nearest Neighbor with Dynamic Time Warping distance) or methods specializing in locating local patterns/subsequences (eg., shapelets), we extract solely statistical features from graphs that are generated from time series. Specifically, we augment time series by means of their multiscale approximations, which are further transformed into a set of visibility graphs. After extracting probability distributions of small motifs, density, assortativity, etc., these features are used for building highly accurate classification models using generic classifiers (eg., Support Vector Machine and eXtreme Gradient Boosting). Thanks to the way how we transform time series into graphs and extract features from them, we are able to capture both global and local features from time series. Based on extensive experiments on a large number of open datasets and comparison with five state-of-the-art TSC algorithms, our approach is shown to be both accurate and efficient: it is more accurate than Learning Shapelets and at the same time faster than Fast Shapelets
    corecore