122,149 research outputs found

    Inclusive Decays of Heavy Quarkonium to Light Particles

    Get PDF
    We derive the imaginary part of the potential NRQCD Hamiltonian up to order 1/m^4, when the typical momentum transfer between the heavy quarks is of the order of Lambda_{QCD} or greater, and the binding energy E much smaller than Lambda_{QCD}. We use this result to calculate the inclusive decay widths into light hadrons, photons and lepton pairs, up to O(mv^3 x (Lambda_{QCD}^2/m^2,E/m)) and O(mv^5) times a short-distance coefficient, for S- and P-wave heavy quarkonium states, respectively. We achieve a large reduction in the number of unknown non-perturbative parameters and, therefore, we obtain new model-independent QCD predictions. All the NRQCD matrix elements relevant to that order are expressed in terms of the wave functions at the origin and six universal non-perturbative parameters. The wave-function dependence factorizes and drops out in the ratio of hadronic and electromagnetic decay widths. The universal non-perturbative parameters are expressed in terms of gluonic field-strength correlators, which may be fixed by experimental data or, alternatively, by lattice simulations. Our expressions are expected to hold for most of the charmonium and bottomonium states below threshold. The calculations and methodology are explained in detail so that the evaluation of higher order NRQCD matrix elements in this framework should be straightforward. An example is provided.Comment: 61 pages, 9 figures. Minor change

    Phase Transition in U(1) Configuration Space: Oscillons as Remnants of Vortex-Antivortex Annihilation

    Get PDF
    We show that the annihilation of vortex-antivortex pairs can lead to very long-lived oscillon states in 2d Abelian Higgs models. The emergence of oscillons is controlled by the ratio of scalar and vector field masses, β=(ms/mv)2 and can be described as a phase transition in field configuration space with critical value βc≃0.13(6)±2: only models with βO(β)∼|β−βc|o, where O is an order parameter indicating the presence of oscillons and o=0.2(2)±2 is the critical exponent

    Correlated transport through junction arrays in the small Josephson energy limit: incoherent Cooper-pairs and hot electrons

    Get PDF
    We study correlated transport in a Josephson junction array for small Josephson energies. In this regime transport is dominated by Cooper-pair hopping, although we observe that quasiparticles can not be neglected. We assume that the energy dissipated by a Cooper-pair is absorbed by the intrinsic impedance of the array. This allows us to formulate explicit Cooper-pair hopping rates without adding any parameters to the system. We show that the current is correlated and crucially, these correlations rely fundamentally on the interplay between the Cooper-pairs and equilibrium quasiparticles.Comment: 11 pages, 9 figures - Published Versio

    Determination of the Coherence Length and the Cooper-Pair Size in Unconventional Superconductors by Tunnelling Spectroscopy

    Full text link
    The main purpose of the paper is to discuss a possibility of the determination of the values of the coherence length and the Cooper-pair size in unconventional superconductors by using tunnelling spectroscopy. In the mixed state of type-II superconductors, an applied magnetic field penetrates the superconductor in the form of vortices which form a regular lattice. In unconventional superconductors, the inner structure of a vortex core has a complex structure which is determined by the order parameter of the superconducting state and by the pairing wavefunction of the Cooper pairs. In clean superconductors, the spatial variations of the order parameter and the pairing wavefunction occur over the distances of the order of the coherence length and the Cooper-pair size, respectively. Therefore, by performing tunnelling spectroscopy along a line passing through a vortex core, one is able, in principle, to estimate the values of the coherent length and the Cooper-pair size.Comment: 13 pages, including 17 figure

    Creation of equal-spin triplet superconductivity at the Al/EuS interface

    Get PDF
    In conventional superconductors, electrons of opposite spins are bound into Cooper pairs. However, when the superconductor is in contact with a non-uniformly ordered ferromagnet, an exotic type of superconductivity can appear at the interface, with electrons bound into three possible spin-triplet states. Triplet pairs with equal spin play a vital role in low-dissipation spintronics. Despite the observation of supercurrents through ferromagnets, spectroscopic evidence for the existence of equal-spin triplet pairs is still missing. Here we show a theoretical model that reveals a characteristic gap structure in the quasiparticle density of states which provides a unique signature for the presence of equal-spin triplet pairs. By scanning tunnelling spectroscopy we measure the local density of states to reveal the spin configuration of triplet pairs. We demonstrate that the Al/EuS interface causes strong and tunable spin-mixing by virtue of its spin-dependent transmission.Comment: 10 pages, 4 figures, 17 pages supplementary information, 14 supplementary figure

    Probing a Secluded U(1) at B-factories

    Full text link
    A secluded U(1) gauge field, kinetically mixed with Standard Model hypercharge, provides a `portal' mediating interactions with a hidden sector at the renormalizable level, as recently exploited in the context of WIMP dark matter. The secluded U(1) symmetry-breaking scale may naturally be suppressed relative to the weak scale, and so this sector is efficiently probed by medium energy electron-positron colliders. We study the collider signatures of the minimal secluded U(1) model, focusing on the reach of B-factory experiments such as BaBar and BELLE. In particular, we show that Higgs-strahlung in the secluded sector can lead to multi-lepton signatures which probe the natural range for the kinetic mixing angle of 10^(-2)-10^(-3) over a large portion of the kinematically accessible parameter space.Comment: 14 pages, 3 figure

    Binary Atomic Silicon Logic

    Full text link
    It has long been anticipated that the ultimate in miniature circuitry will be crafted of single atoms. Despite many advances made in scanned probe microscopy studies of molecules and atoms on surfaces, challenges with patterning and limited thermal stability have remained. Here we make progress toward those challenges and demonstrate rudimentary circuit elements through the patterning of dangling bonds on a hydrogen terminated silicon surface. Dangling bonds sequester electrons both spatially and energetically in the bulk band gap, circumventing short circuiting by the substrate. We deploy paired dangling bonds occupied by one movable electron to form a binary electronic building block. Inspired by earlier quantum dot-based approaches, binary information is encoded in the electron position allowing demonstration of a binary wire and an OR gate

    Field-induced structural aging in glasses at ultra low temperatures

    Full text link
    In non-equilibrium experiments on the glasses Mylar and BK7, we measured the excess dielectric response after the temporary application of a strong electric bias field at mK--temperatures. A model recently developed describes the observed long time decays qualitatively for Mylar [PRL 90, 105501, S. Ludwig, P. Nalbach, D. Rosenberg, D. Osheroff], but fails for BK7. In contrast, our results on both samples can be described by including an additional mechanism to the mentioned model with temperature independent decay times of the excess dielectric response. As the origin of this novel process beyond the "tunneling model" we suggest bias field induced structural rearrangements of "tunneling states" that decay by quantum mechanical tunneling.Comment: 4 pages, 4 figures, accepted at PRL, corrected typos in version
    • …
    corecore