318 research outputs found

    Non intrusive polynomial chaos-based stochastic macromodeling of multiport systems

    Get PDF
    We present a novel technique to efficiently perform the variability analysis of electromagnetic systems. The proposed method calculates a Polynomial Chaos-based macromodel of the system transfer function that includes its statistical properties. The combination of a non-intrusive Polynomial Chaos approach with the Vector Fitting algorithm allows to describe the system variability features with accuracy and efficiency. The results of the variability analysis performed with the proposed method are verified by means of comparison with respect to the standard Monte Carlo analysis

    Stochastic macromodeling for hierarchical uncertainty quantification of nonlinear electronic systems

    Get PDF
    A hierarchical stochastic macromodeling approach is proposed for the efficient variability analysis of complex nonlinear electronic systems. A combination of the Transfer Function Trajectory and Polynomial Chaos methods is used to generate stochastic macromodels. In order to reduce the computational complexity of the model generation when the number of stochastic variables increases, a hierarchical system decomposition is used. Pertinent numerical results validate the proposed methodology

    Stochastic macromodeling of nonlinear systems via polynomial chaos expansion and transfer function trajectories

    Get PDF
    A novel approach is presented to perform stochastic variability analysis of nonlinear systems. The versatility of the method makes it suitable for the analysis of complex nonlinear electronic systems. The proposed technique is a variation-aware extension of the Transfer Function Trajectory method by means of the Polynomial Chaos expansion. The accuracy with respect to the classical Monte Carlo analysis is verified by means of a relevant numerical example showing a simulation speedup of 1777 X

    Stochastic macromodeling for efficient and accurate variability analysis of modern high-speed circuits

    Get PDF
    • 

    corecore