1,962 research outputs found

    IP forwarding alternatives in cell switched optical networks

    Get PDF
    Optical switching will enable core Internet packet switching to scale with future transmission rate increases. Currently proposed optical ATM switches do not allow packet reassembly, which is necessary for packet level forwarding. This results in the requirement to create end to end ATM virtual connections for flows even if they contain only one packet. In electronically switched networks MPOA and MPLS allow both cell and packet level forwarding to overcome this problem. This paper examines the feasibility of implementing such protocols over an optically switched network. Two different architectures are examined: use of an adjunct electrical router; and native optical packet reassembly. An examination of the optical reassembly buffer requirements show that the use of MPLS will require significantly more buffering than MPOA

    Power consumption evaluation of circuit-switched versus packet-switched optical backbone networks

    Get PDF
    While telecommunication networks have historically been dominated by a circuit-switched paradigm, the last decades have seen a clear trend towards packet-switched networks. In this paper we evaluate how both paradigms perform in optical backbone networks from a power consumption point of view, and whether the general agreement of circuit switching being more power-efficient holds. We consider artificially generated topologies of various sizes, mesh degrees and not yet previously explored in this context transport linerates. We cross-validate our findings with a number of realistic topologies. Our results show that, as a generalization, packet switching can become preferable when the traffic demands are lower than half the transport linerate. We find that an increase in the network node count does not consistently increase the energy savings of circuit switching over packet switching, but is heavily influenced by the mesh degree and (to a minor extent) by the average link length

    Architecture, design, and modeling of the OPSnet asynchronous optical packet switching node

    Get PDF
    An all-optical packet-switched network supporting multiple services represents a long-term goal for network operators and service providers alike. The EPSRC-funded OPSnet project partnership addresses this issue from device through to network architecture perspectives with the key objective of the design, development, and demonstration of a fully operational asynchronous optical packet switch (OPS) suitable for 100 Gb/s dense-wavelength-division multiplexing (DWDM) operation. The OPS is built around a novel buffer and control architecture that has been shown to be highly flexible and to offer the promise of fair and consistent packet delivery at high load conditions with full support for quality of service (QoS) based on differentiated services over generalized multiprotocol label switching

    Traffic Engineering in G-MPLS networks with QoS guarantees

    Get PDF
    In this paper a new Traffic Engineering (TE) scheme to efficiently route sub-wavelength requests with different QoS requirements is proposed for G-MPLS networks. In most previous studies on TE based on dynamic traffic grooming, the objectives were to minimize the rejection probability by respecting the constraints of the optical node architecture, but without considering service differentiation. In practice, some high-priority (HP) connections can instead be characterized by specific constraints on the maximum tolerable end-to-end delay and packet-loss ratio. The proposed solution consists of a distributed two-stage scheme: each time a new request arrives, an on-line dynamic grooming scheme finds a route which fulfills the QoS requirements. If a HP request is blocked at the ingress router, a preemption algorithm is executed locally in order to create room for this traffic. The proposed preemption mechanism minimizes the network disruption, both in term of number of rerouted low-priority connections and new set-up lightpaths, and the signaling complexity. Extensive simulation experiments are performed to demonstrate the efficiency of our scheme

    Multicast traffic aggregation in MPLS-based VPN networks

    Get PDF
    This article gives an overview of the current practical approaches under study for a scalable implementation of multicast in layer 2 and 3 VPNs over an IP-MPLS multiservice network. These proposals are based on a well-known technique: the aggregation of traffic into shared trees to manage the forwarding state vs. bandwidth saving trade-off. This sort of traffic engineering mechanism requires methods to estimate the resources needed to set up a multicast shared tree for a set of VPNs. The methodology proposed in this article consists of studying the effect of aggregation obtained by random shared tree allocation on a reference model of a representative network scenario.Publicad

    Optical fibre local area networks

    Get PDF

    Impact of topology on layer 2 switched QoS sensitive services

    Get PDF
    High-bandwidth QoS sensitive services such as large scale video surveillance generally depend on provisioned capacity delivered by circuit-switched technology such as SONET/SDH. Yet development in layer 2 protocol sets and manageability extensions to Ethernet standards propose layer 2 packet switching technology as a viable, cheaper alternative to SONET/SDH. Layer 2 switched networks traditionally offer more complex topologies; in this paper we explain general QoS issues with layer 2 switching and show the impact of topology choice on service performance

    Performance evaluation of MPLS-enabled communications infrastructure for wide area monitoring systems

    Get PDF
    In order to obtain the transient power system measurement information, Wide Area Monitoring Systems (WAMS) should be able to collect Phasor Measurement Unit (PMU) data in a timely manner. Therefore along with the continual deployment of PMUs in Great Britain (GB) transmission system substations, a high performance communications infrastructure is becoming essential with regard to the establishment of reliable WAMS. This paper focuses mainly on evaluating the performance of the real-time WAMS communication infrastructure when Multi-Protocol Label Switching (MPLS) capability is added to a conventional IP network. Furthermore, PMU communications from geographically distributed substations to a Phasor Data Concentrator (PDC) are investigated over different transport protocols. Using OPNET Modeler, simulations are performed based on the existing WAMS infrastructure as installed on the GB transmission system. The simulation results are analyzed in detail in order to fully determine the different characteristics of communication delays between PMUs and PDC
    corecore