8 research outputs found

    An MPEG-7 scheme for semantic content modelling and filtering of digital video

    Get PDF
    Abstract Part 5 of the MPEG-7 standard specifies Multimedia Description Schemes (MDS); that is, the format multimedia content models should conform to in order to ensure interoperability across multiple platforms and applications. However, the standard does not specify how the content or the associated model may be filtered. This paper proposes an MPEG-7 scheme which can be deployed for digital video content modelling and filtering. The proposed scheme, COSMOS-7, produces rich and multi-faceted semantic content models and supports a content-based filtering approach that only analyses content relating directly to the preferred content requirements of the user. We present details of the scheme, front-end systems used for content modelling and filtering and experiences with a number of users

    Energy-aware video streaming with QoS control for portable computing devices

    Get PDF
    NOSSDAV '04 : 14th international workshop on Network and operating systems support for digital audio and video , Jun 16-18, 2004 , Cork, IrelandWe propose an energy-aware video streaming system for portable computing devices, in which the video can be played back for the specified duration within the remaining battery amount. To save power, we introduce techniques (i) to reduce playback quality of a video at an intermediate proxy and (ii) to shorten working time of the network I/F card using periodic bulk transfer of the video data on the wireless LAN. To enable playback for the specified duration, we have developed a power consumption model for portable devices using parameters on playback quality, playback duration, battery amount, and so on. We have also developed an algorithm to assign different playback quality among multiple video segments based on the user's preference.within the battery amount. Our experiments using PDAs and laptop PCs on 802.11b WLAN show that our system achieves less than 6 prediction error in playback duration while adapting playback quality among video segments

    COSMOS-7: Video-oriented MPEG-7 scheme for modelling and filtering of semantic content

    Get PDF
    MPEG-7 prescribes a format for semantic content models for multimedia to ensure interoperability across a multitude of platforms and application domains. However, the standard leaves it open as to how the models should be used and how their content should be filtered. Filtering is a technique used to retrieve only content relevant to user requirements, thereby reducing the necessary content-sifting effort of the user. This paper proposes an MPEG-7 scheme that can be deployed for semantic content modelling and filtering of digital video. The proposed scheme, COSMOS-7, produces rich and multi-faceted semantic content models and supports a content-based filtering approach that only analyses content relating directly to the preferred content requirements of the user

    ALEC: Active learning with ensemble of classifiers for clinical diagnosis of coronary artery disease

    Get PDF
    Invasive angiography is the reference standard for coronary artery disease (CAD) diagnosis but is expensive and associated with certain risks. Machine learning (ML) using clinical and noninvasive imaging parameters can be used for CAD diagnosis to avoid the side effects and cost of angiography. However, ML methods require labeled samples for efficient training. The labeled data scarcity and high labeling costs can be mitigated by active learning. This is achieved through selective query of challenging samples for labeling. To the best of our knowledge, active learning has not been used for CAD diagnosis yet. An Active Learning with Ensemble of Classifiers (ALEC) method is proposed for CAD diagnosis, consisting of four classifiers. Three of these classifiers determine whether a patient’s three main coronary arteries are stenotic or not. The fourth classifier predicts whether the patient has CAD or not. ALEC is first trained using labeled samples. For each unlabeled sample, if the outputs of the classifiers are consistent, the sample along with its predicted label is added to the pool of labeled samples. Inconsistent samples are manually labeled by medical experts before being added to the pool. The training is performed once more using the samples labeled so far. The interleaved phases of labeling and training are repeated until all samples are labeled. Compared with 19 other active learning algorithms, ALEC combined with a support vector machine classifier attained superior performance with 97.01% accuracy. Our method is justified mathematically as well. We also comprehensively analyze the CAD dataset used in this paper. As part of dataset analysis, features pairwise correlation is computed. The top 15 features contributing to CAD and stenosis of the three main coronary arteries are determined. The relationship between stenosis of the main arteries is presented using conditional probabilities. The effect of considering the number of stenotic arteries on sample discrimination is investigated. The discrimination power over dataset samples is visualized, assuming each of the three main coronary arteries as a sample label and considering the two remaining arteries as sample features

    Anotação ad-hoc de conteúdos audiovisuais : reutilização de descritores de baixo e alto nível para extracção de conhecimento

    Get PDF
    Tese de mestrado. Engenharia Informática. Faculdade de Engenharia. Universidade do Porto. 200

    Feature binding of MPEG-7 Visual Descriptors Using Chaotic Series

    Get PDF
    Due to advanced segmentation and tracking algorithms, a video can be divided into numerous objects. Segmentation and tracking algorithms output different low-level object features, resulting in a high-dimensional feature vector per object. The challenge is to generate feature vector of objects which can be mapped to human understandable description, such as object labels, e.g., person, car. MPEG-7 provides visual descriptors to describe video contents. However, generally the MPEG-7 visual descriptors are highly redundant, and the feature coefficients in these descriptors need to be pre-processed for domain specific application. Ideal case would be if MPEG-7 visual descriptor based feature vector, can be processed similar to some functional simulations of human brain activity. There has been a established link between the analysis of temporal human brain oscillatory signals and chaotic dynamics from the electroencephalography (EEG) of the brain neurons. Neural signals in limited brain activities are found to be behaviorally relevant (previously appeared to be noise) and can be simulated using chaotic series. Chaotic series is referred to as either a finite-difference or an ordinary differential equation, which presents non-random, irregular fluctuations of parameter values over time in a dynamical system. The dynamics in a chaotic series can be high - or low -dimensional, and the dimensionality can be deduced from the topological dimension of the attractor of the chaotic series. An attractor is manifested by the tendency of a non-linear finite difference equation or an ordinary differential equation, under various but delimited conditions, to go to a reproducible active state, and stay there. We propose a feature binding method, using chaotic series, to generate a new feature vector, C-MP7 , to describe video objects. The proposed method considers MPEG-7 visual descriptor coefficients as dynamical systems. Dynamical systems are excited (similar to neuronal excitation) with either high- or low-dimensional chaotic series, and then histogram-based clustering is applied on the simulated chaotic series coefficients to generate C-MP7 . The proposed feature binding offers better feature vector with high-dimensional chaotic series simulation than with low-dimensional chaotic series, over MPEG-7 visual descriptor based feature vector. Diverse video objects are grouped in four generic classes (e.g., has [barbelow]person, has [barbelow]group [barbelow]of [barbelow]persons, has [barbelow]vehicle, and has [barbelow]unknown ) to observe how well C-MP7 describes different video objects compared to MPEG-7 feature vector. In C-MP7 , with high dimensional chaotic series simulation, 1). descriptor coefficients are reduced dynamically up to 37.05% compared to 10% in MPEG-7 , 2) higher variance is achieved than MPEG-7 , 3) multi-class discriminant analysis of C-MP7 with Fisher-criteria shows increased binary class separation for clustered video objects than that of MPEG-7 , and 4) C-MP7 , specifically provides good clustering of video objects for has [barbelow]vehicle class against other classes. To test C-MP7 in an application, we deploy a combination of multiple binary classifiers for video object classification. Related work on video object classification use non-MPEG-7 features. We specifically observe classification of challenging surveillance video objects, e.g., incomplete objects, partial occlusion, background over lapping, scale and resolution variant objects, indoor / outdoor lighting variations. C-MP7 is used to train different classes of video objects. Object classification accuracy is verified with both low-dimensional and high-dimensional chaotic series based feature binding for C-MP7 . Testing of diverse video objects with high-dimensional chaotic series simulation shows, 1) classification accuracy significantly improves on average, 83% compared to the 62% with MPEG-7 , 2) excellent clustering of vehicle objects leads to above 99% accuracy for only vehicles against all other objects, and 3) with diverse video objects, including objects from poor segmentation. C-MP7 is more robust as a feature vector in classification than MPEG-7 . Initial results on sub-group classification for male and female video objects in has [barbelow]person class are also presentated as subjective observations. Earlier, chaos series properties have been used in video processing applications for compression and digital watermarking. To our best knowledge, this work is the first to use chaotic series for video object description and apply it for object classificatio

    VideoAL: a novel end-to-end MPEG-7 video automatic labeling system

    Get PDF
    In this paper, we describe a novel end-to-end video automatic labeling system, which accepts MPEG-1 sequence inputs and generates MPEG-7 XML metadata files based on the prior established anchor models. Seven modules were developed for the system: Shot Segmentation, Region Segmentation, Annotation, Feature Extraction, Model Learning, Classification, and XML Rendering. The performance of this system has been tested in the NIST TREC-2002 video concept detection benchmark. The proposed system performs best in the mean average precision out of 18 worldwide participants. 1
    corecore