21,789 research outputs found

    Analytical expression of the magneto-optical Kerr effect and Brillouin light scattering intensity arising from dynamic magnetization

    Full text link
    Time-resolved magneto-optical Kerr effect (MOKE) and Brillouin light scattering (BLS) spectroscopy are important techniques for the investigation of magnetization dynamics. Within this article, we calculate analytically the MOKE and BLS signals from prototypical spin-wave modes in the ferromagnetic layer. The reliability of the analytical expressions is confirmed by optically exact numerical calculations. Finally, we discuss the dependence of the MOKE and BLS signals on the ferromagnetic layer thickness

    Oscillatory Spin Polarization and Magneto-Optic Kerr Effect in Fe3O4 Thin Films on GaAs(001)

    Full text link
    The spin dependent properties of epitaxial Fe3O4 thin films on GaAs(001) are studied by the ferromagnetic proximity polarization (FPP) effect and magneto-optic Kerr effect (MOKE). Both FPP and MOKE show oscillations with respect to Fe3O4 film thickness, and the oscillations are large enough to induce repeated sign reversals. We attribute the oscillatory behavior to spin-polarized quantum well states forming in the Fe3O4 film. Quantum confinement of the t2g states near the Fermi level provides an explanation for the similar thickness dependences of the FPP and MOKE oscillations.Comment: to appear in Phys. Rev. Let

    Angle Dependence of Photonic Enhancement of Magneto-Optical Kerr Effect in DMS Layers

    Full text link
    We investigate theoretically an angle dependence of enhancement of polar magneto-optical Kerr effect (MOKE) obtained thanks to a deposition of a paramagnetic Diluted Magnetic Semiconductor (DMS) layer on one-dimensional photonic crystal layer. Our transfer matrix method based calculations conducted for TE and TM polarizations of the incident light predict up to an order of magnitude stronger MOKE for a (Ga,Fe)N DMS layer when implementing the proposed design. The maximum enhancement for TE and TM polarization occurs for the light incidence at the normal and at the Brewster angle, respectively. This indicates a possibility of tuning of the MOKE enhancement by adjustment of the polarization and the incidence angle of the light.Comment: 6 figure

    Thickness dependence of linear and quadratic magneto-optical Kerr effect in ultrathin Fe(001) films

    Get PDF
    Magneto-optical Kerr effect (MOKE) magnetometry is one of the most widely employed techniques for the characterization of ferromagnetic thin-film samples. Some information, such as coercive fields or anisotropy strengths can be obtained without any knowledge of the optical and magneto-optical (MO) properties of the material. On the other hand, a quantitative analysis, which requires a precise knowledge of the material's index of refraction n and the MO coupling constants K and G is often desirable, for instance for the comparison of samples, which are different with respect to ferromagnetic layer thicknesses, substrates, or capping layers. While the values of the parameters n and the linear MO coupling parameter K reported by different authors usually vary considerably, the relevant quadratic MO coupling parameters G of Fe are completely unknown. Here, we report on measurements of the thickness dependence (0-60nm) of the linear and quadratic MOKE in epitaxial bcc-Fe(001) wedge-type samples performed at a commonly used laser wavelength of 670nm. By fitting the thickness dependence we are able to extract a complete set of parameters n, K, (G11 - G12), and G44 for the quantitative description of the MOKE of bcc-Fe(001). We find sizable different n, K, and G parameters for films thinner than about 10nm as compared to thicker films, which is indicative of a thickness dependence of the electronic properties or of surface contributions to the MOKE. The effect size of the quadratic MOKE is found to be about a third of the record values recently reported for Co2FeSi.Comment: 8 pages, 5 figure

    Magneto-optic Kerr effect in a spin-polarized zero-moment ferrimagnet

    Get PDF
    The magneto-optical Kerr effect (MOKE) is often assumed to be proportional to the magnetisation of a magnetically ordered metallic sample; in metallic ferrimagnets with chemically distinct sublattices, such as rare-earth transition-metal alloys, it depends on the difference between the sublattice contributions. Here we show that in a highly spin polarized, fully compensated ferrimagnet, where the sublattices are chemically similar, MOKE is observed even when the net moment is strictly zero. We analyse the spectral ellipsometry and MOKE of Mn 2 Ru x Ga, and show that this behaviour is due to a highly spin-polarized conduction band dominated by one of the two manganese sublattices which creates helicity-dependent reflectivity determined by a broad Drude tail. Our findings open new prospects for studying spin dynamics in the infra-red.Comment: 7 pages, 7 figure

    Effect of picosecond strain pulses on thin layers of the ferromagnetic semiconductor (Ga,Mn)(As,P)

    Full text link
    The effect of picosecond acoustic strain pulses (ps-ASP) on a thin layer of (Ga,Mn)As co-doped with phosphorus was probed using magneto-optical Kerr effect (MOKE). A transient MOKE signal followed by low amplitude oscillations was evidenced, with a strong dependence on applied magnetic field, temperature and ps-ASP amplitude. Careful interferometric measurement of the layer's thickness variation induced by the ps-ASP allowed us to model very accurately the resulting signal, and interpret it as the strain modulated reflectivity (differing for σ±\sigma_{\pm} probe polarizations), independently from dynamic magnetization effects.Comment: 6 pages, 5 figure

    Influence of lateral geometry on magnetoresistance and magnetisation reversal in Ni80Fe20 wires

    Get PDF
    The magnetisation reversal processes and magnetoresistance behaviour in micron-sized Ni80Fe20 wires with triangular and rectangular modulated width have been studied. The wires were fabricated by electron beam lithography and a lift-off process. A combination of magnetic force microscopy (MFM), magneto-optical Kerr effect (MOKE) and magnetoresistance (MR) measurements shows that the lateral geometry of the wires greatly influences the magnetic and transport properties. The width modulations modify not only the shape-dependent demagnetising fields, but also the current density. The correlation between the lateral geometry, the magnetic and the transport properties is discussed based on MFM, MOKE and MR results

    Magnetic microstructure and magnetotransport in Co2FeAl Heusler compound thin films

    Get PDF
    We correlate simultaneously recorded magnetotransport and spatially resolved magneto optical Kerr effect (MOKE) data in Co2FeAl Heusler compound thin films micropatterned into Hall bars. Room temperature MOKE images reveal the nucleation and propagation of domains in an externally applied magnetic field and are used to extract a macrospin corresponding to the mean magnetization direction in the Hall bar. The anisotropic magnetoresistance calculated using this macrospin is in excellent agreement with magnetoresistance measurements. This suggests that the magnetotransport in Heusler compounds can be adequately simulated using simple macrospin models, while the magnetoresistance contribution due to domain walls is of negligible importance
    corecore